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Abstract: In this paper we study a class of singularly perturbed defined abstract Cauchy problems.
We investigate the singular perturbation problem (Pε)εαDα

t uε(t) + u′ε(t) = Auε(t), t ∈ [0, T],
1 < α < 2, ε > 0, for the parabolic equation (P)u′0(t) = Au0(t), t ∈ [0, T], in a Banach space, as
the singular parameter goes to zero. Under the assumption that A is the generator of a bounded
analytic semigroup and under some regularity conditions we show that problem (Pε) has a unique
solution uε(t) for each small ε > 0. Moreover uε(t) converges to u0(t) as ε→ 0+, the unique solution
of equation (P).

Keywords: singular perturbation; fractional partial differential equations; analytic semigroup;
super-diffusive processes

1. Introduction

In the last decade, fractional calculus has been recognized as one of the best tools to describe long
memory processes. These models have not only interest for engineers and physicists, but also for pure
mathematicians. The most important among these models are those described by partial differential
equations containing fractional-order derivatives. Its evolution behaves in a much more complex way
than in the classic case of the entire order and the study of the corresponding theory is an enormously
demanding task. While some results of the qualitative analysis for partial differential equations can be
similarly obtained, many classical methods are rarely directly applicable. Therefore, it is necessary to
develop new theories and methods, which makes research on this topic more challenging.

From an abstract point of view, some works have been developed, including results on the
existence and qualitative properties of abstract Cauchy problems [1,2]. However, to the best of our
knowledge, until now singular perturbation problems have been unreported. One natural question
in this regard is how perturbed super-diffusive processes are related with the parabolic limit when
the perturbation becomes smaller. More precisely, our concern in this paper is to study under which
conditions one can guarantee that the solutions of the super-diffusive initial value problem

εα∂α
t uε(t, x) + ∂tuε(t, x) = ∆uε(t, x), t ∈ [0, T]; 1 < α < 2, x ∈ Ω ⊂ RN ;

uε(0, x) = u0,ε(x);
u′ε(0, x) = u1,ε(x),

(1)

with small parameter ε > 0, can be approximated by the solution of the diffusion equation{
∂tw(t, x) = ∆w(t, x), t ∈ [0, T];
w(0, x) = w0(x), x ∈ Ω ⊂ RN ,
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where ∂α
t denotes the Caputo fractional partial derivative with respect to the variable t, of order α > 0

fixed and ∆ is the Laplacian operator.
When α = 2, Equation (1) is named the Cattaneo equation (see Cattaneo [3]) which has been

studied in many papers. We observe that for 1 < α < 2, this equation has been considered as one of
the possible fractional generalizations of the Cattaneo equation, see for example the papers of Compte
and Metzler [4] and Povstenko [5]. We notice that the time-fractional Cattaneo-type equations has been
studied by many authors, as for instance Cascaval et al. [6], Gómez-Aguilar et al. [7], Ferreira et al. [8]
and Eltayeb et al. [9]. However, to the best of our knowledge, none of them has treated the singular
perturbation problem.

We note that the operator ∆ is the generator of a bounded analytic semigroup as well as of other
strongly continuous families of bounded and linear operators, e.g., cosine families [10]. Therefore,
our study will be done in this general and abstract setting. Let A : D(A) ⊂ X → X be a closed and
densely defined linear operator on a complex Banach space X. Assuming that A is the generator of a
bounded analytic semigroup, we ask ourselves for the existence and uniqueness of solutions uε(t) of
the abstract fractional singular perturbation problem

εαDα
t uε(t) + u′ε(t) = Auε(t), t ∈ [0, T], 1 < α < 2, ε > 0,

uε(0) = u0,ε,
u′ε(0) = u1,ε;

(2)

and their convergence to a solution of the parabolic equation{
u′0(t) = Au0(t), t ∈ [0, T],
u0(0) = u0.

(3)

In the bordeline case α = 2 this question is referred as the hyperbolic singular perturbation
problem, and has a large data. The abstract hyperbolic singular perturbation problem was first
investigated by Kisynski in the reference [11]. In order to obtain his results, Kisynski imposed the
following hypotheses on the operator A defined on a complex Hilbert space: positive definite and
self-adjoint. After that, Sova, in 1970, investigated the same problem using the more general hypothesis
that A generates a strongly continuous cosine function. However, the most relevant results were proved
by Kisynski in [12] who showed explicit solutions using the approach of monotonic functions. Other
references on the subject are [13–16]. The non-homogeneous case was investigated by Fattorini in ([17],
Chapter VI). Lately, the singular perturbation for abstract non-densely defined Cauchy problems has
been studied by Ducrot et al. [18]. An excellent monograph on the subject on singular perturbation is
provided by Verhulst [19].

A remarkable and useful property that distinguishes the (Caputo) fractional singular perturbation
problem with the integer case is provided by the fact that Dα

t uε(0) = 0 for every 1 < α < 2.
This property is well known ([20], Theorem 3.1) but apparently has not been sufficiently exploited.
A valuable consequence, for the fractional singular perturbation problem of System (2), is that the
second initial condition u′ε(0) is always completely determined by the first one. Namely,

u′ε(0) = Auε(0).

Because of this fact, the abstract fractional singular perturbation problem (2) can be restated
as follows: 

εαDα
t uε(t) + u′ε(t) = Auε(t), t ∈ [0, T], 1 < α < 2, ε > 0,

uε(0) = u0,ε,
u′ε(0) = Au0,ε.

(4)

This modeling of the abstract fractional singular perturbation problem, allows the first novelty
of this work: in contrast with the approaches in the integer case α = 2, we will use in this paper a
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completely different (and original) method. The classical approach to the abstract singular perturbation
problem is to introduce a family of solution operators that is explicitly represented by means of Bessel
functions [13,14,17], and whose specific properties are critical for the convergence. Instead, we show
that A generates an abstract bounded resolvent family {Sα,ε(t)}t≥0 associated with the problem (2)
which is uniformly bounded with respect to ε > 0 (see Theorem 2). After that, we show that the unique
strong solution of (4) is given by

uε(t) = Sα,ε(t)u0,ε + (Eε ∗ Sα,ε)(t)Au0,ε,

provided that u0,ε ∈ D(A2). Here Eε(t) := Eα−1,1(−ε−αtα−1) denotes the Mittag–Leffler function
evaluated at the point −ε−αtα−1. This last fact, will play a central role in our findings.

As a consequence of the above result, we will derive our main theorem in this work that roughly
speaking, asserts the convergence of the solution of (4) to the solution of (3) when A is the generator
of a bounded analytic semigroup. The result, that corresponds to Theorem 4 in the text, reads as follows.

Theorem 4. Let 1 < α < 2, ε > 0 and assume that A generates a bounded analytic semigroup on a complex
Banach space X. Suppose that u0(0), uε(0) ∈ D(A2). Then the solutions of Systems (3) and (4) exists and the
following estimate holds:

‖uε(t)− u0(t)‖ ≤ M2C
t2εα

εα + tα−1 ‖A2u0(0)‖+ MC
tεα

εα + tα−1 ‖Au0(0)‖+ M‖uε(0)− u0(0)‖

+ MC
tεα

εα + tα−1 ‖Auε(0)‖.

where C and M are positive constants independent of ε > 0. Moreover, if uε(0) → u0(0) in X and the set
{Auε(0)}ε>0 is bounded then the following convergence result hold true

lim
ε→0+

sup
t∈I
‖uε(t)− u0(t)‖ = 0,

for each I := [a, b] ⊂ [0, T].

The above theorem ensures the local uniform convergence of uε to u0. Note that, in general,
without specific assumption on the dynamical behaviour of the reduced problem (3), one cannot expect
to get a more refined convergence property. However, we are able to show the convergence of integrals
and derivatives, see Corollaries 1 and 2 below.

2. Preliminaries

Let α > 0, m = dαe and u : [0, ∞) → X, where X is a complex Banach space. We denote by R+

the closed interval [0, ∞). The Caputo fractional derivative of u of order α is defined by

Dα
t u(t) :=

∫ t

0
gm−α(t− s)u(m)(s)ds, t > 0,

where

gβ(t) :=
tβ−1

Γ(β)
, t > 0, β > 0,

and in case β = 0 we set g0(t) := δ0, the Dirac measure concentrated at the origin.
The Laplace transform of a function f ∈ L1(R+, X) is defined by

L( f )(λ) := f̂ (λ) := lim
T→∞

∫ T

0
e−λt f (t)dt, Re(λ) > ω,
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when the limit exists.
In particular if f is such that

∫ t
0 f (s)ds is is exponentially bounded, i.e., there exist M > 0 and

ω ∈ R such that ‖
∫ t

0 f (s)ds‖ ≤ Meωt for all t ≥ 0, then f̂ (λ) =
∫ ∞

0 e−λt f (t)dt exists for Re(λ) > ω,
and the integral is absolutely convergent. This remains true if we make the stronger assumption that f
is exponentially bounded (see [10], Chapter I). We have

D̂α
t f (λ) = λα f̂ (λ)−

m−1

∑
k=0

f (k)(0)λα−1−k. (5)

The power function λα is uniquely defined as λα = |λ|αeiarg(λ), with −π < arg(λ) < π.
The Mittag–Leffler function (see, e.g., [21–23] is defined as follows:

Eα,β(z) :=
∞

∑
n=0

zn

Γ(αn + β)
=

1
2πi

∫
Ha

eµ µα−β

µα − z
dµ, α, β > 0, z ∈ C,

where Ha is a Hankel path. For a recent review, we refer to the references [21,24].
The next formula states a quite important property related with the Laplace transform of the

Mittag–Leffler function (cf. [22], (A.27) p. 267):

L(tβ−1Eα,β(−ραtα))(λ) =
λα−β

λα + ρα
, Re(λ) > |ρ|; α > 0, β > 0, ρ ∈ R. (6)

The following important lemma will be very useful for the proof of our results.

Lemma 1 ([25], Th. 1.6). If 0 < α < 2, β ∈ R and π α
2 < µ < min{π, πα}, then

|Eα,β(z)| ≤
C

1 + |z| , z ∈ C, µ ≤ |arg(z)| ≤ π (7)

where the constant C > 0 depends on α, β and µ.

As consequence of the expansion series of Eα,1(−atα) and tEα,2(−atα) we obtain the
following result.

Lemma 2. For a > 0, α > 0 and m ∈ Z+, we have

dm

dtm Eα,1(−atα) = −atα−mEα,α−m+1(−atα), (8)

and
d
dt
[tEα,2(−atα)] = Eα,1(−atα). (9)

Proof. The power series defining Eα,1(−atα) for t > 0 admit the termwise differentiation any times,
and the termwise differentiation and induction on m yields the conclusion for the first identity.
The second identity is a direct consequence of ([25], Equation 1.83).

Lemma 3 ([26]). The Mittag–Leffler function Eα,β(−s) for 0 < α ≤ 1, β ≥ α and s > 0 is completely
monotone, that is,

(−1)n dn

dsn

[
Eα,β(−s)

]
≥ 0, n = 0, 1, 2, ... .

Next, let us denote by L(X, Y) the space of bounded operators from X to Y, and by L(X) when
X = Y.
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Definition 1. Let f : R+ → X be an integrable function (as a Bochner integral) and let T : R+ → L(X, Y)
be strongly continuous. Then the convolution of T and f is defined by

(T ∗ f )(t) :=
∫ t

0
T(t− s) f (s)ds, t ∈ R+.

It is well-known that T ∗ f : R+ → Y exists (as a Bochner integral) and defines a continuous
function (see [10], Prop. 1.3.4). Analogously, we define (a ∗ f )(t) when a is a real or complex-valued
function defined on R+.

We recall some useful properties of convolutions that will be frequently used throughout the
paper. For every f ∈ C(R+; X), k ∈ N, α > 0 we have that for any t ≥ 0,

dk

dtk [(gk+α ∗ f )(t)] = (gα ∗ f )(t).

Let u ∈ C(R+; X) and v ∈ C1(R+; X). Then for every t ≥ 0,

d
dt
[(u ∗ v)(t)] = u(t)v(0) + (u ∗ v′)(t). (10)

Let us define
Eε(t) := Eα−1,1(−ε−αtα−1)

for 1 < α ≤ 2, t > 0 and ε > 0 given. The next lemma shows some interesting properties of Eε(t) that
we will use in what follows.

Proposition 1. Let 1 < α ≤ 2, t > 0 and ε > 0 be given. Then

1. E′ε(t) = −ε−αtα−2Eα−1,α−1(−ε−αtα−1) and E′ε(t) ≤ 0 for all t > 0.
2. 0 ≤ Eε(t) ≤ 1.
3.

Êε(λ) =
εαλα−2

εαλα−1 + 1
=

εαλα−1

εαλα + λ
, λ > 0.

4. εα(g2−α ∗ E′ε)(t) = −Eε(t).
5. Let

mε(t) :=
εα

εα + tα−1 , t > 0.

Then
Eε(t) ≤ C ·mε(t),

where C > 0 is given in Lemma 1 and does not depend on ε > 0. In particular, Eε(t)→ 0 as ε→ 0.
6. ∫ t

0
Eε(s)ds ≤ C · tmε(t).

Proof. The proof of each item is sketched as follows.

1. Follows from Lemmas 2 and 3.
2. Follows from Lemma 3, the identity (1 ∗ E′ε)(t) = Eε(t)− 1 and (a).
3. Follows from (6).
4. Using (c), we observe that the Laplace transform of the left hand side of (d) gives

εα

λ2−α
[λÊε(λ)− 1] =

εα

λ2−α

[ εαλα

εαλα + λ
− 1
]
= − εαλα−1

εαλα + λ

which is precisely the Laplace transform of the right hand side of (d).
5. Follows from Lemma 1, taking into account that arg(−ε−αtα−1) = π.
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6. Note that by (9) we have

∫ t

0
Eε(s)ds =

∫ t

0

d
ds

[sEα−1,2(−ε−αsα−1)]ds = tEα−1,2(−ε−αtα−1)

≤ t · C
1 + ε−αtα−1 = C · tmε(t),

where in the last inequality we used Lemma 1. This finish the proof.

Remark 1. Some properties of the function mε(t) are the following:

1. 0 < mε(t) < 1, t > 0.
2. limε→0 t ·mε(t) = 0 for t in compact subsets of R.
3.

∫ t
0 skmε(s)ds ≤ εαtk+1−α, t > 0, k = 1, 2... .

We recall the following definition.

Definition 2 ([27]). A strongly measurable family of operators {R(t)}t≥0 ⊂ L(X) is said to be uniformly

integrable if
∫ ∞

0
||R(t)||dt < ∞.

From now on, we will denote the norm of any uniformly integrable family of operators by ‖R‖,
i.e., ‖R‖ :=

∫ ∞

0
||R(t)||dt.

The following definition will help us to give an operator theoretical approach to the problem (2).

Definition 3 ([27]). Let A be a closed and densely defined linear operator with domain D(A) on a complex
Banach space X and let a ∈ L1

loc(R+) be Laplace transformable. We say that A is the generator of a resolvent
family if there exist ω ∈ R and a strongly continuous function S : R+ → L(X) such that { 1

â(λ) : Re(λ) >
ω} ⊂ ρ(A) and

H(λ)x :=
1

λâ(λ)
(

1
â(λ)

− A)−1x =
∫ ∞

0
e−λtS(t)xdt, Re(λ) > ω, x ∈ X.

In such case we say that {S(t)}t≥0 is the resolvent family generated by A.

As a particular case, we propose the following definition.

Definition 4. Let ε > 0 and 1 ≤ α ≤ 2 be given. Let A be a closed and densely defined linear operator on
a complex Banach space X. We say that A the generator of an (α, ε)-resolvent family if A is the generator of
a resolvent family for a(t) := 1− Eε(t). In such case, we denote by {Sα,ε(t)}t≥0 the (α, ε)-resolvent family
generated by A. In the limit case ε = 0 and α = 1, we consider a(t) ≡ 1 and we denote by S1,0(t) the
C0-semigroup generated by A.

Remark 2. As a consequence of Proposition 1, part (b), we have a(t) ≥ 0. Moreover, by definition, a(0) = 0.

From ([28], Proposition 3.1 and Lemma 2.2) we obtain directly the following properties.

Proposition 2. Let 1 < α ≤ 2 and ε > 0 be given. Suppose that A is the generator of an (α, ε)-resolvent
family {Sα,ε(t)}t≥0 on X. Then the following assertions hold true:

1. Sα,ε(t) is strongly continuous and Sα,ε(0) = I.
2. For all x ∈ D(A) and t ≥ 0 we have Sα,ε(t)x ∈ D(A) and ASα,ε(t)x = Sα,ε(t)Ax.
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3. Let x ∈ X and t ≥ 0. Then
∫ t

0 (1− Eε)(t− s)Sα,ε(s)xds ∈ D(A) and

Sα,ε(t)x = x + A
∫ t

0
Sα,ε(s)xds− A

∫ t

0
Eε(t− s)Sα,ε(s)xds. (11)

4. For all x ∈ D(A2) we have Sα,ε(·)x ∈ C2(R+; X). Moreover,

S′α,ε(t)x = −
∫ t

0
E′ε(t− s)Sα,ε(s)Axds

for all x ∈ D(A), t ≥ 0 and

S′′α,ε(t)x = −E′ε(t)Ax−
∫ t

0
S′α,ε(t− s)E′ε(s)Axds

for all x ∈ D(A2) and t > 0.

The next result is the corresponding Hille–Yosida type Theorem for (α, ε)-resolvent families. The
proof is a particular case of earlier results that can be found in [27] or ([28], Theorem 3.4).

Theorem 1. Let A be a closed linear densely defined operator in a complex Banach space X. Let 1 < α ≤ 2 and
ε > 0. Then the following assertions are equivalent.

(i) The operator A is the generator of an (α, ε)-resolvent family (Sα,ε(t))t≥0 satisfying ||Sα,ε(t)|| ≤
Mα,εeωα,εt for all t ≥ 0 and for some constants Mα,ε > 0 and ωα,ε ∈ R.

(ii) There exist constants ωα,ε ∈ R and Mα,ε > 0 such that

(P1) εαλα + λ ∈ ρ(A) for all λ with Re(λ) > ωα,ε and
(P2) Hα,ε(λ) := (εαλα−1 + 1)(εαλα + λ− A)−1 satisfies the estimates

||H(n)
α,ε (λ)|| ≤

Mα,εn!
(λ−ωα,ε)n+1 , λ > ωα,ε, n = 0, 1, 2... .

The next proposition is taken from ([27], Proposition 0.1). It will be helpful in order to obtain our
main result.

Proposition 3. Let Y be a complex Banach space. Suppose h : C+ → Y is analytic and verifies

||λh(λ)||+ ||λ2h′(λ)|| ≤ M

for all Re(λ) > 0 and some M > 0. Then

||h(n)(λ)|| ≤ Mn!
λn+1

for all λ > 0 and n = 0, 1, 2... .

Finally, let us remember that a closed and densely defined operator A is called ω-sectorial of
angle θ if there exist θ ∈ [0, π/2), M0 > 0 and ω ∈ R such that its resolvent exists in the sector

ω + Sθ := {ω + λ : λ ∈ C, |arg(λ)| < π

2
+ θ} \ {ω}, (12)

and
||(µ− A)−1|| ≤ M0

|µ−ω| , µ ∈ ω + Sθ . (13)
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These are generators of analytic semigroups. In case ω = 0 we simply say that A is sectorial of
angle θ + π/2. We should point out that in the general theory of sectorial operators, it is not essential
that (13) holds in a sector of angle π/2.

Sufficient conditions to obtain generators of an (α, ε)-resolvent family are given in the following
general result. The proof is similar to ([29], Theorem 3.2).

Theorem 2. Let 1 < α < 2, ε > 0 and A be a sectorial operator of angle π/2. Then A generates an
(α, ε)-resolvent family {Sα,ε(t)}t≥0 and there exists M̃ > 0 (which does not depends of ε) such that ‖Sα,ε(t)‖ ≤
M̃ for all t ≥ 0 and for all ε > 0.

Proof. Let us define gε(λ) := εαλα + λ where λ = reiθ with |θ| < π/2 and r > 0. We observe that

arg(gε(reiθ)) = Im log(gε(reiθ)) = Im
∫ θ

0

d
dt

log(gε(reit))dt = Im
∫ θ

0

g′ε(reit)ireit

gε(reit)
dt,

where a direct computation gives

λ
g′ε(λ)
gε(λ)

= α− 1 +
(2− α)ε−α

λα−1 + ε−α
+

λα−1

λα−1 + ε−α
.

Next, observe that for ε−α > 0 and all z ∈ C with Re(z) ≥ 0 we have ε−α

|z+ε−α | ≤ 1 and |z|
|z+ε−α | ≤ 1.

Moreover, since 1 < α ≤ 2 we have Re (λα−1) ≥ 0. It follows that∣∣∣∣Im ∫ θ

0

ε−α

rα−1ei(α−1)t + ε−α
dt
∣∣∣∣ ≤ ∫ θ

0

∣∣∣∣ ε−α

rα−1ei(α−1)t + ε−α

∣∣∣∣ dt ≤ θ,

and ∣∣∣∣∣Im
∫ θ

0

rα−1ei(α−1)t

rα−1ei(α−1)t + ε−α
dt

∣∣∣∣∣ ≤ θ.

Therefore
| arg(gε(reiθ))| ≤ (α− 1)|θ|+ (2− α)|θ|+ |θ| < π

2
+

π

2
. (14)

We conclude that gε(λ) ∈ S π
2

for all Re(λ) > 0. The previous discussion implies that

Hε(λ) =
1
λ

gε(λ)(gε(λ)− A)−1,

is well defined and, by (13) with ω = 0 and θ = π/2, satisfies the estimate

||λHε(λ)|| ≤ M0 for all Re(λ) > 0,

where M0 does not depend on ε > 0. For H′ε(λ) one obtains that

λ2H′ε(λ) =
(α− 1)εαλα−1

εαλα−1 + 1
λHε(λ)−

αεαλα−1

εαλα−1 + 1
λ2H(λ)2

− 1
εαλα−1 + 1

(λHε(λ))(λHε(λ)),

and hence we conclude that for all Re(λ) > 0

||λ2H′ε(λ)|| ≤ (α− 1)||λHε(λ)||+ α||λ2Hε(λ)
2||+ ||λHε(λ)||||λHε(λ)||

≤ (α− 1)M0 + αM2
0 + M2

0 =: M1.



Mathematics 2020, 8, 403 9 of 14

Let M̃ := M0 + M1. Then
||λHε(λ)||+ ||λ2H′ε(λ)|| ≤ M̃.

Proposition 3 now gives (P2) of Theorem 1 with ω = 0. So we arrive at the conclusion.

Remark 3. Since sectorial operators generate bounded analytic semigroups, we have that the analytic semigroup
associated to A, denoted by {S1,0(t)} is also bounded, i.e., satisfies the following: there exists K0 > 0 such that
‖S1,0(t)‖ ≤ K0 for all t ≥ 0 and the unique strong solution of (3) is given by

u0(t) = S1,0(t)u0,

whenever u0 ∈ D(A). In order to simplify computations, we set M := max{M̃, K0}. Hence ‖S1,0(t)‖ ≤ M
and ‖Sα,ε(t)‖ ≤ M for all t > 0, where M does not depend on ε > 0.

3. Main Results

First of all, we investigate the existence and uniqueness of solutions for the linear fractional
evolution equation

εαDα
t uε(t) + u′ε(t) = Auε(t), t ∈ [0, T], 1 < α < 2, ε > 0,

uε(0) = u0,ε,
u′ε(0) = Au0,ε.

(15)

Here we will assume that A is a closed and densely linear operator which is a generator of an
exponentially bounded (α, ε)-resolvent family.

As natural, and recalling that Dα
t denotes the Caputo fractional derivative of order α ∈ (1, 2), we

will say that uε ∈ C2([0, T]; X) is a strong solution of Equation (15) if uε(t) ∈ D(A) for all t ∈ [0, T]
and verifies (15).

Observe that the above definition at t = 0 of strong solution forces uε(0) ∈ D(A) and the second
initial condition u′ε(0) = Auε(0), because Dα

t uε(0) = 0 when α ∈ (1, 2), see, e.g., ([20], Theorem 3.1).
This is the reason why we consider only one unknown initial value, namely u0,ε, in the problem (15).

Our first result, gives a representation of the unique solution of the initial value problem (15) in
terms of the (α, ε)-resolvent family generated by A and the function Eε analyzed in Proposition 1.

Theorem 3. Let 1 < α < 2, ε > 0 and A be the generator of an (α, ε)-resolvent family Sα,ε(t). Then there
exists a unique strong solution of Equation (15) which can be represented by

uε(t) = Sα,ε(t)uε(0) + (Eε ∗ Sα,ε)(t)Auε(0), t ∈ [0, T], (16)

provided uε(0) ∈ D(A2).

Proof. It is enough to show that uε(t) defined as before, verifies (15). In fact, by Proposition 2 part (d)
and (10) we have for uε(0) ∈ D(A) and all t ∈ [0, T] the identity

u′ε(t) = −(E′ε ∗ Sα,ε)(t)Auε(0) + Sα,ε(t)Auε(0) + (E′ε ∗ Sα,ε)(t)Auε(0) = Sα,ε(t)Auε(0),

holds. Using that uε(0) ∈ D(A2) we obtain again by part (d) of Proposition 2, and (10), the identity

u′′ε (t) = −(E′ε ∗ Sα,ε)(t)A2uε(0), (17)
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valid for all t ∈ (0, T]. Then, convoluting with g2−α and using the identity in Proposition 1 part (d) we
obtain for all t ∈ [0, T] :

εα(g2−α ∗ u′′ε )(t) = −εα(g2−α ∗ E′ε ∗ Sα,ε)(t)A2uε(0) = (Eε ∗ Sα,ε)(t)A2uε(0), (18)

where in the last identity we applied (10). On the other hand, we have

Auε(t)− u′ε(t) = Sα,ε(t)Auε(0) + (Eε ∗ Sα,ε)(t)A2uε(0)− Sα,ε(t)Auε(0)

= (Eε ∗ Sα,ε)(t)A2uε(0), t ∈ [0, T]. (19)

Since εαDα
t uε(t) = εα(g2−α ∗ u′′ε )(t) by definition, comparing Systems (18) and (19) we obtain (15).

The proof is finished.

Next, before to show our main result, we need to prove some technical preliminaries. Recall that
by Proposition 2 and Remark 3, if A be a sectorial operator of angle π/2 then A generates an
(α, ε)-resolvent family {Sα,ε(t)}t≥0 for each ε > 0 and a C0-semigroup in case (α, ε) = (1, 0).
In particular, under such assumption, and whenever u0 ∈ D(A), a unique strong solution (in the
sense that u0 ∈ C1([0, T]; X), u0(t) ∈ D(A) and verifies (3) on [0, T]) of the Equation (3) exists and is
given by

u0(t) = S1,0(t)u0.

Proposition 4. Let 1 < α < 2, ε > 0 and A be a sectorial operator of angle π/2. For all x ∈ D(A2) we have

S1,0(t)x− Sα,ε(t)x = (Eε ∗ Sα,ε ∗ S1,0)(t)A2x + (Eε ∗ Sα,ε)(t)Ax, (20)

and
‖S1,0(t)x− Sα,ε(t)x‖ ≤ M2Ct2mε(t)‖A2x‖+ MCtmε(t)‖Ax‖, (21)

where the constants C > 0 and M > 0 does not depend on ε > 0.

Proof. To verify (20) note that the Laplace transform of S1,0(t) gives the resolvent operator R(λ, A).
Using this, Definition 4, the convolution properties and the uniqueness theorem for the Laplace
transform we obtain (20).

Let us verify (21). For any y ∈ X, we have the following inequalities

‖(Eε ∗ Sα,ε)(t)y‖ ≤
∫ t

0
Eε(t− s)‖Sα,ε(t)y‖ds ≤ M

(∫ t

0
Eε(s)ds

)
‖y‖ ≤ MtCmε(t)‖y‖,

where in the last inequality we have used Proposition 1, part (f). Hence

‖(Eε ∗ Sα,ε)(t)y‖ ≤ MtCmε(t)‖y‖, for all y ∈ X. (22)

Now, since ‖Sα,ε(t)‖ ≤ M for all 1 < α < 2 and for all ε > 0, and ‖S1,0(t)‖ ≤ M, we obtain

‖(Sα,ε ∗ S1,0)(t)y‖ ≤
∫ t

0
‖Sα,ε(t− s)S1,0(s)y‖ds ≤ M2t‖y‖.
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Therefore, again using Proposition 1, part (f), we obtain

‖(Eε ∗ Sα,ε ∗ S1,0)(t)y‖ = ‖
∫ t

0
Eε(t− s)(Sα,ε ∗ S1,0)(s)yds‖

≤
∫ t

0
Eε(t− s)M2s‖y‖ds

≤ M2t
(∫ t

0
Eε(s)ds

)
‖y‖ ≤ M2t2Cmε(t)‖y‖.

Hence (21) follows.

Finally, we arrive at the main result of this paper.

Theorem 4. Let 1 < α < 2 be fixed. Given ε > 0 suppose that A generates a bounded analytic semigroup on a
complex Banach space X and u0(0), uε(0) ∈ D(A2). Then the solutions of (3) and (4) exists and the following
estimate holds:

‖uε(t)− u0(t)‖ ≤ M2t2Cmε(t)‖A2u0(0)‖+ MtCmε(t)‖Au0(0)‖+ M‖uε(0)− u0(0)‖ (23)

+ MCtmε(t)‖Auε(0)‖.

Moreover, if uε(0) → u0(0) in X and the set {Auε(0)}ε>0 is bounded then the strong solution uε(t)
of Problem (2) converges to the unique strong solution u0(t) of Problem (3) as ε → 0 on closed subintervals
of [0, T].

Proof. Since A generates an analytic semigroup then Theorem 2 implies that A generates an
(α, ε)-regularized family {Sα,ε(t)}t≥0 such that ‖Sα,ε(t)‖ ≤ M for all t > 0 and for all ε > 0. Then, by
the representation of uε(t) (see Theorem 3) and u0(t), we obtain the following identity

uε(t)− u0(t) = (Sα,ε(t)− S1,0(t))u0(0) + Sα,ε(t)(uε(0)− u0(0)) + (Eε ∗ Sα,ε)(t)Auε(0). (24)

In view of Proposition 4, the following estimate

‖S1,0(t)u0(0)− Sα,ε(t)u0(0)‖ ≤ M2Ct2mε(t)‖A2u0(0)‖+ MCtmε(t)‖Au0(0)‖, (25)

holds. On the other hand, is clear that

‖Sα,ε(t)(uε(0)− u0(0))‖ ≤ M‖uε(0)− u0(0)‖.

Moreover, by (22) we get that

‖(Eε ∗ Sα,ε)(t)Auε(0)‖ ≤ MCtmε(t)‖Auε(0)‖. (26)

Combining the above inequalities, we obtain (23). Finally, in order to prove the convergence,
it is enough to take into account that the set {Auε(0)}ε>0 is bounded, say, by a constant K > 0,
and mε(t)→ 0 as ε→ 0 for any t > 0. Hence, for any I := [a, b] ⊂ [0, T] with 0 < a < b, we have

sup
t∈I
‖uε(t)− u0(t)‖ ≤ M2b2Cmε(a)‖A2u0(0)‖+ MbCmε(a)‖Au0(0)‖+ M‖uε(0)− u0(0)‖

+ MCbmε(a)K,

and then lim
ε→0

sup
t∈I
‖uε(t) − u0(t)‖ = 0. Therefore, for each ε > 0 the solution uε(t) of Problem (2)

converges to the unique solution u0(t) of the Equation (3) as ε→ 0 on closed subintervals of [0, T].

Next, we prove the convergence of integrals.
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Corollary 1. Under the same conditions of Theorem 4 we have

∫ b

a
‖uε(t)− u0(t)‖dt→ 0 as ε→ 0,

for all a, b ∈ R with 0 < a < b.

Proof. For any a, b > 0 with 0 < a < b we have that

∫ b

a
‖uε(t)− u0(t)‖dt ≤ (b− a) sup

t∈[a,b]
‖uε(t)− u0(t)‖,

and the result follows from the main theorem.

Finally, we prove the convergence of derivatives.

Corollary 2. Let 1 < α < 2, ε > 0 and suppose that A generates a bounded analytic semigroup on a
complex Banach space X such that 0 ∈ σp(A). Assume that u0, u′ε(0) ∈ D(A2) and 0 6= u′ε(0) ∈ ker(A).
If u′ε(0) → Au0, then the solutions of (3) and (4) exists and u′ε(t) → u′0(t) as ε → 0 on closed subintervals
of [0, T].

Proof. Let us define vε(t) := u′ε(t). Observe that by definition, (15) is equivalent to write

εα(g2−α ∗ u′′ε )(t) + u′ε(t) = Auε(t). (27)

Using that A is closed we obtain that

εα d
dt
(g2−α ∗ u′′ε )(t) + u′′ε (t) = Au′ε(t),

or, equivalently

εα d
dt
(g2−α ∗ v′ε)(t) + v′ε(t) = Avε(t).

Applying the rule (10) for the derivative of the convolution we get

εα[v′ε(0)g2−α(t) + (g2−α ∗ v′′ε )(t)] + v′ε(t) = Avε(t).

Observe now that from (27) and the fact that 1 < α < 2, we have u′ε(0) = Auε(0) and hence from
the identity (17) we have

u′′ε (t) = −(E′ε ∗ Sα,ε)(t)A2uε(0), t > 0.

We conclude that v′ε(0) = u′′ε (0) = 0. Then, we have that vε satisfies{
εαDα

t vε(t) + v′ε(t) = Avε(t), t ∈ [0, T], 1 < α < 2, ε > 0,
vε(0) = u′ε(0),

(28)

The result is now the consequence of Theorem 4.
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