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Abstract. We study existence and qualitative properties of solutions for the abstract fractional relax-

ation equation

(0.1) u′(t)−ADα
t u(t) + u(t) = f(t), 0 < α < 1, t ≥ 0, u(0) = 0,

on a complex Banach space X, where A is a closed linear operator, Dα
t is the Caputo derivative of

fractional order α ∈ (0, 1), and f is an X-valued function. We also study conditions under which the

solution operator has the properties of maximal regularity and Lp integrability. We characterize these

properties in the Hilbert space case.

1. Introduction

The main strategy to study equation (0.1), will be the application of the theory of (a, k)-regularized
resolvent. The notion of (a, k)-regularized resolvent families was first introduced in [8] as a generalization
of solution operator families for linear Volterra integral equations of convolution type; see [9, 10, 12, 14].
We recall the resolvent equation from [8]

(1.2) R(t)x = k(t)x + A(a ∗R)(t)x, t ≥ 0, x ∈ X.

In the above definition (a ∗R)(t)x :=
∫ t

0
a(t− s)R(s)xds stands for the finite convolution product.

2. preliminaries

We recall that the Caputo derivative of fractional order α ∈ (0, 1) is defined as

(2.1) Dα
t u(t) :=

1
Γ(1− α)

∫ t

0

u′(τ)
(t− τ)α

dτ,

whenever u ∈ C1(R+, X). Then the Laplace transform of Dα
t u is given by

(2.2) D̂α
t u(λ) = λαû(λ)− λα−1u(0), Re(λ) > 0, 0 < α < 1;

for details and further properties see [1, 2, 4] and references therein.
Next we recall the generalized Mittag-Leffler function which is defined in the complex plane by the

power series

(2.3) Eα,β(z) :=
∞∑

n=0

zn

Γ(αn + β)
α > 0, β ∈ R, z ∈ C;

see [5, 11]. This is an entire trascendental function. An interesting property related with its Laplace
transform is the following identity cf. [7, 11],

(2.4)
∫ ∞

0

e−λttβ−1Eα,β(ωtα)dt =
λα−β

λα − ω
, Reλ > ω1/α, ω > 0.
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A function a(t) is said to be of positive type if Re[â(λ)] ≥ 0 for all Reλ > 0, and it is called 2-regular,
cf. [13], if there is a constant c > 0 such that

(2.5) |λâ
′
(λ)| ≤ c|â(λ)| and |λ2â

′′
(λ)| ≤ c|â(λ)| for all Reλ > 0.

The following lemma will be needed in the following sections.

Lemma 2.1. Let a(t) := t−αE1,1−α(−t), 0 < α < 1. Then a(t) is of positive type and 2-regular.

Proof. Thanks to (2.4) we obtain that â(λ) =
λα

λ + 1
, and the assertion follows immediately. ¤

Henceforth we shall denote aα(t) := t−αE1,1−α(−t), 0 < α < 1 and k(t) := e−t.

3. Well posedness

First we recall the definition of an (a, k)−regularized resolvent; see [8]. Let A be a closed linear
operator and let a ∈ L1

loc(R+), and k ∈ C(R+). A strongly continuous function R : R+ → B(X) is called
(a, k)−regularized resolvent family with generator A if it satisfies: (i) R(0) = k(0)I, (ii) R(t)x ∈ D(A)
and AR(t)x = R(t)Ax for all x ∈ D(A) and t > 0, (iii) (a ∗R)(t)x ∈ D(A) and

(3.1) R(t)x = k(t)x + A(a ∗R)(t)x, t ≥ 0, x ∈ X.

Theorem 3.1. Let 0 < α < 1. Assume that A is the generator of a bounded analytic C0- semigroup.
Then A is the generator of an (aα, k)-regularized resolvent family R ∈ C1((0,∞);B(X)).

Proof. Since aα(t) is of positive type, we obtain by [13, Corollary 3.1] that 1
âα(λ) ∈ ρ(A) for all Reλ > 0

and there is a constant M ≥ 1 such that H(λ) := (I − âα(λ)A)−1/λ satisfies

(3.2) ||H(λ)|| ≤ M

|λ| for all Reλ > 0.

From the above, and 2-regularity of aα(t), we get by [13, Theorem 3.1] that A generates a (1, aα)-
regularized resolvent family S ∈ C1((0,∞);B(X)) i.e., a resolvent. Thus, there is a constant C ≥ 1 such
that the estimates

(3.3) ||S(t)|| ≤ C, t ≥ 0 and ||S′(t)|| ≤ C/t

holds. Next let x ∈ X and define

(3.4) R(t)x = S(t)x−
∫ t

0

e−(t−τ)S(τ)xdτ, t > 0.

But then, R(t) is a continuously differentiable (aα, k)-regularized family generated by A. In fact, (i)
follows from R(0)x = S(0)x = x = k(0)x. (ii) and the first part of (iii) follows from the corresponding
properties for the resolvent S(t). To prove (3.1) we notice that

A(aα ∗R)(t)x = A(aα ∗ [S(t)x− (k ∗ S)(t)x])
= A(aα ∗ S)(t)x−A(aα ∗ k ∗ S)(t)x
= S(t)x− Ix− k ∗ [S(t)x− Ix]
= S(t)x− Ix− (k ∗ S)(t)x + (k ∗ I)(t)x,

where (k ∗ I)(t)x = −k(t)x + Ix, since k(t) = e−t. Hence

A(aα ∗R)(t)x = S(t)x− (k ∗ S)(t)x− Ix + (−k(t) + Ix) = R(t)x− k(t)x,

proving the claim and the theorem. ¤
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Remark 3.2. We notice that integrating (0.1) we obtain

(3.5) u(t)−A(t−α ∗ u)(t) + (1 ∗ u)(t) = (1 ∗ f)(t),

since Dα
t u(t) = (t−α ∗ u′)(t) and u(0) = 0.

Now let v = u + (1 ∗ u). Hence u = v − (e−t ∗ v). Then equation (3.5) is equivalent to

(3.6) v(t) = A(aα ∗ v)(t) + g(t) v(0) = 0 g = (1 ∗ f)

where aα(t) = t−α − (t−α ∗ e−t) = t−αE1,1−α(−t).

Now by applying the results of [8] we relate the solutions of (0.1) to those of the following integral
equation of Volterra type, which includes (3.6),

(3.7) u(t) = g(t) + A

∫ t

0

(t− s)−αE1,1−α(s− t)u(s)ds, t ≥ 0, 0 < α < 1.

Furthermore, (0.1) is equivalent to (3.7) when g = (1 ∗ f).
We recall next that a function u ∈ C(R+; X) is called a strong solution of (3.7) if aα∗u ∈ C(R+, D(A))

and (3.7) is satisfied. Now the following is a direct consequence of Theorem 3.1 and [8, Corollary 2.13].

Corollary 3.3. Assume that A is the generator of a bounded analytic C0- semigroup and g ∈ C1(R+, X).
Then there exist a unique solution of (3.7).

We say that u ∈ C1(R+;X) is a strong solution of (0.1) if Dα
t u(t) ∈ D(A) for all t ≥ 0 and u satisfies

(0.1).

Proposition 3.4. Let f ∈ C(R+, X). Assume that u is a solution of (0.1). Then u is a solution of (3.7)
with g = k ∗ f.

Proof. By hypothesis u satisfies

(3.8) u′(t)−ADα
t u(t) + u(t) = f(t), 0 < α < 1, t > 0,

and convolving this last equation against k, yields

(k ∗ u′)(t)− (k ∗ADα
t u)(t) + (k ∗ u)(t) = (k ∗ f)(t), 0 < α < 1, t > 0.

Since A is a closed linear operator and Dα
t u(t) ∈ D(A), it follows that k∗Dα

t u(t) ∈ D(A) and k∗ADα
t u =

Ak ∗Dα
t u. But then,

(3.9) (k ∗ u′)(t)−A(k ∗Dα
t u)(t) + (k ∗ u)(t) = (k ∗ f)(t), 0 < α < 1, t > 0.

Next we note the following two identities

(3.10) (k ∗ u′)(t) = (k′ ∗ u)(t) + u(t)k(0) = −(k ∗ u)(t) + u(t), t ≥ 0

and

(3.11) (k ∗Dα
t u)(t) = Dα

t k ∗ u + k(0) t−α ∗ u , t ≥ 0.

Since k(t) = e−t it follows that

(3.12) (Dα
t k)(t) = t−αE1,1−α(−t)− t−α = aα(t)− t−α, t ≥ 0.
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Then by (3.12) it follows that identity (3.11) equals

(3.13) (k ∗Dα
t u)(t) = (aα ∗ u)(t), t ≥ 0.

In particular aα ∗ u ∈ C(R+, D(A)). Hence replacing (3.13) and (3.10) into (3.9) we get

(3.14) u(t)−A(aα ∗ u)(t) = (k ∗ f)(t), t ≥ 0.

¤

In what follows, we set for β ≥ 0, gβ(t) := tβ−1

Γ(β) if t > 0 and gβ(t) := 0 if t ≤ 0.

Theorem 3.5. Assume that A is the generator of a bounded analytic semigroup. Then for all f ∈
L1

loc(R+; D(A)),

(3.15) u(t) =
∫ t

0

R(t− s)f(s)ds

is a strong solution of (0.1), with initial condition u(0) = 0.

Proof. First we note that by Theorem 3.1, u′ exists and

u′(t) =
∫ t

0

R′(t− s)f(s)ds + f(t).

Since f(t) ∈ D(A) and A is closed it then follows that u′(t) = (R′ ∗ f)(t) + f(t) ∈ D(A). Now by the
closedness of A, we obtain Dα

t u(t) = (g1−α ∗ u′)(t) = (g1−α ∗ R′ ∗ f)(t) + (g1−α ∗ f)(t) ∈ D(A) for all
t ≥ 0. Next we show that u satisfies (0.1). Since

(3.16) (g1−α ∗ u)(t) = (1 ∗Dα
t u)(t), 0 < α ≤ 1,

by applying the definition of the Caputo’s derivative and u(0) = 0.

But then by (3.16) equation (0.1) is equivalent to

(3.17) u(t)− (g1−α ∗Au)(t) + (1 ∗ u)(t) = (1 ∗ f)(t).

On the other hand R(t) is an (aα, k)−regularized resolvent where aα(t) = t−αE1,1−α(−t), and k(t) =
e−t it then follows by the resolvent equation (3.1) that

(R ∗ f)(t) = (k ∗ f)(t) + (aα ∗AR ∗ f)(t).

Hence

(3.18)
u(t)− (g1−α ∗Au)(t) = (R ∗ f)(t)− (g1−α ∗AR ∗ f)(t)

= (k ∗ f)(t) + ((aα − g1−α) ∗AR ∗ f)(t).

Now by a direct application of the basic properties of the Mittag Leffler function [?], follows the identity

(3.19) g1−α(t)− aα(t) = (1 ∗ aα)(t).

Hence by replacing (3.19) into (3.18) and by equation (3.1) follows that

u(t)− (g1−α ∗Au)(t) = (k ∗ f)(t)− (1 ∗ a ∗AR ∗ f)(t)
= (k ∗ f)(t)− (1 ∗ (R− k) ∗ f)(t).

Moreover, (1 ∗ (R − k) ∗ f)(t) = (1 ∗ R ∗ f)(t) − ((1 − k) ∗ f)(t), since (1 ∗ k)(t) = 1 − k(t). But then,
(k ∗ f)(t)− (1 ∗ (R− k) ∗ f)(t) = (1 ∗ f)(t)− (1 ∗ u)(t), and hence u(t) satisfies equation (3.17). ¤
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Corollary 3.6. Assume that A is the generator of a bounded analytic semigroup. Then for all f ∈
L1

loc(R+; D(A)) and x ∈ D(A),

(3.20) v(t) = R(t)x +
∫ t

0

R(t− s)f(s)ds

is a strong solution of (0.1), with initial condition u(0) = x.

Proof. We first note that w(t) = R(t)x solves (0.1) with f ≡ 0. In fact, by (3.19) and equation (3.1) we
have

R(t)x = k(t)x + A(aα ∗R)(t)x = k(t)x + A(g1−α ∗R)(t)x−A(1 ∗ aα ∗R)(t)x.

Since A is closed and x ∈ D(A) it follows, that R′(t)x = k′(t)x + A(g1−α ∗ R′)(t)x − A(aα ∗ R)(t)x.

Furthermore, w′(t) = R′(t)x. Then a direct computation shows that w′(t) = −R(t)x + ADα
t R(t)x =

−w(t) + ADα
t w(t). Finally, we set v(t) = w(t) + u(t). Then we have v′(t) = w′(t) + u′(t) = −v(t) +

ADα
t v(t) + f(t), proving the result.

¤

4. Maximal regularity

We introduce the concept of maximal regularity for equation (0.1) in analogy with the first order
Cauchy problem; see e.g. [3].

Definition 4.1. We say that (0.1) has Lp-maximal regularity if there is a strong solution of (0.1) satis-
fying ADα

t u ∈ Lp(R+; X) for each f ∈ Lp(R+; X).

Trough this section we shall need the notion of R-bounded sets, and UMD−spaces; see [3] and the
references therein. We recall

Remark 4.2. We remark some of the elementary properties of R-bounded sets: (i) If S and T are both
R-bounded, then S + T and ST are R-bounded, (ii) Let I be the identity operator on X. Then each
subset M ⊂ B(X) of the form M = {λI : λ ∈ Ω} is R- bounded whenever Ω ⊂ C is bounded.

The purpose of this section is to show the following result on the Lp-maximal regularity for equation
(0.1).

Theorem 4.3. Let X be a UMD-space and 1 < p < ∞. Assume that A generates a bounded analytic
semigroup. Suppose that { iρ+1

(iρ)α }ρ∈R\{0} ⊂ ρ(A) and the set

(4.1)
{ iρ + 1

(iρ)α

( iρ + 1
(iρ)α

−A
)−1}

ρ∈R\{0}

is R-bounded. Then equation (0.1) has Lp-maximal regularity.

Proof. First we set M(ρ) := iρ+1
(iρ)α

(
iρ+1
(iρ)α −A

)−1 and let TM be defined by

(4.2) TMf := F−1M(·)Ff, t ∈ R
for all Ff ∈ D(R;X), where F denotes the Fourier transform.

Since the set {M(ρ)}ρ∈R\{0} is R-bounded by hypothesis, then we claim that the set {ρM ′(ρ)}ρ∈R\{0}
is R-bounded. In fact, we have

(4.3) ρM ′(ρ) = −ρ
â
′
(iρ)

â(iρ)
M(ρ) + ρ

â
′
(iρ)

â(iρ)
M(ρ)2
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where

(4.4) g(iρ) := iρ
â
′
(iρ)

â(iρ)
=

(α− 1)iρ
iρ + 1

− α

iρ + 1

and hence the claim follows by Remark 4.2. Then [3, Theorem 3.19] implies that TM ∈ B(Lp(R; X)).
Now for f ∈ Lp(R;X) we define

(4.5) (Lf)(t) := u′(t) + u(t) =
∫ t

0

R′(t− s)f(s)ds +
∫ t

0

R(t− s)f(s)ds + f(t),

and note that

(4.6) (̂Lf)(ρ) = iρR̂(iρ)f̂(ρ) + R̂(iρ)f̂(ρ) = (iρ + 1)R̂(iρ)f̂(ρ) = M(ρ)f̂(ρ)

Hence, by uniqueness of the Fourier transform, we have L = TM ∈ B(Lp(R; X)). By Theorem 3.5 we
conclude from (4.5) that ADα

t u = u′ + u− f = Lf − f ∈ Lp(R; X) for each f ∈ Lp(R+; X).
¤

It is well known that Hilbert spaces are UMD spaces. Furthermore, in Hilbert spaces the notion of
R-boundedness and boundedness are equivalent. With these remarks under consideration we obtain the
following.

Corollary 4.4. Suppose that A generates a bounded analytic semigroup on a Hilbert space H. Assume
that { iρ+1

(iρ)α }ρ∈R\{0} ⊂ ρ(A) and

(4.7) sup
|ρ|>0

|| iρ + 1
(iρ)α

( iρ + 1
(iρ)α

−A
)−1

|| < ∞.

Then equation (0.1) has Lp-maximal regularity.

Remark 4.5. Since Re
(

iρ+1
(iρ)α

)
= ρ1−αcos((1 − α)π/2) + ρ−αcos(απ/2) > 0 for ρ > 0 and 0 < α < 1.

Hence for ρ < 0 the complex number iρ+1
(iρ)α , has negative real part. Consequently, in spite of the fact that

A generates a bounded analytic semigroup this is not sufficient to imply condition (4.7), of the above
corollary.

5. Integrability

The integrability property for families of bounded linear operators is directly related with stability
properties of linear evolution equations, in particular Volterra integral equations.

Next, as a natural extension of [13, Definition 10.2 (i)] we introduce the following definition of strongly
Lp- integrable family.

Definition 5.1. Let 1 ≤ p < ∞ and {S(t)}t≥0 ⊂ B(X) be a strongly measurable family of operators.
Then {S(t)}t≥0 is called strongly Lp- integrable if S(·)x ∈ Lp(R+;X) for each x ∈ X.

Theorem 5.2. Let X be a UMD-space and let A be the generator of a bounded analytic semigroup.
Assume that { iρ+1

(iρ)α }ρ∈R\{0} ⊂ ρ(A) and

(5.1)
{ iρ + 1

(iρ)α

( iρ + 1
(iρ)α

−A
)−1}

ρ∈R\{0}

is R-bounded. Then {R(t)}t≥0 is strongly Lp- integrable for all 1 < p < ∞.
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Proof. As in the proof of Theorem 4.3 we set M(ρ) := iρ+1
(iρ)α

(
iρ+1
(iρ)α −A

)−1 and let TM be defined by

(5.2) TMf := F−1M(·)Ff, t ∈ R
for all Ff ∈ D(R; X), where F denotes the Fourier transform. Then we know that TM ∈ B(Lp(R; X)).
Define for x ∈ X the function fx(t) = e−tx. Now, by (3.1) we notice that

(5.3) F(R)(ρ) =
1

(iρ)α

( iρ + 1
(iρ)α

−A
)−1

x =
iρ + 1
(iρ)α

( iρ + 1
(iρ)α

−A
)−1(Ffx)(ρ).

Therefore, by uniqueness (TMfx)(t) = R(t)x and since fx ∈ Lp(R+; X), we get
∫ ∞

0

||R(t)x||pdt = ||TMfx||pp ≤ C||fx||pp.

Hence R(·)x ∈ Lp(R+;X) for all x ∈ X. ¤

Remark 5.3. The above result should be compared with [13, Theorem 10.5] where the strong integrability
for resolvent families was obtained only in the setting of Hilbert spaces.
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