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Abstract. In this article we study uniform stability of resolvent families asso-
ciated to an integral equation of convolution type. We give sufficient conditions
for the uniform stability of the resolvent family in Hilbert and Banach spaces.
Our main result can be viewed as a substantial generalization of the Gearhart
- Greiner - Prüss ’s characterization of exponential stability for strongly con-
tinuous semigroups.

1. Introduction

Let X be a Banach space. In this paper we are concerned with the study of the
asymptotic behavior for the following integral Volterra equation of scalar type

(1) u(t) =
∫ t

0

a(t− s)Au(s)ds + f(t), t ≥ 0,

where A is a closed and linear operator with domain D(A) dense in X, a ∈ L1
loc(R+)

is a scalar kernel and f ∈ W 1,1(R+, X).
Equation (1) has been extensively studied in the last years, mainly because of its
applications in the theory of linear viscoelasticity. See, for instance, the monograph
[5].
It is well known that equation (1) is well-posed if, and only if (1) admits a resolvent
family, that is, there is a strongly continuous family S(t), t ≥ 0 of bounded and
linear operators defined in X, which commutes with A and satisfies the resolvent
equation

(2) S(t)x = x +
∫ t

0

a(t− s)AS(s)xds, t ≥ 0, x ∈ D(A).

In particular, the resolvent family for (1) in the case a(t) ≡ 1 correspond to the
C0-semigroup generated by A.
Due to the special feature of a convolution in (1), it is appropriated to employ the
Laplace transform for its study. Formally, the Laplace transform H(λ) = Ŝ(λ) of
the resolvent family is represented by

(3) H(λ) = (λ− λâ(λ)A)−1.

The problem to find necessary and sufficient conditions for the stability of resolvent
families, in general, is difficult to handle, essentially due to the complex structure
of (3). In 1992, Arendt and Prüss [1] studied the existence of limt→∞ S(t) = P in
various senses. In particular, they gave sufficient conditions for the strong stability
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of S(t). This result extends to the well-known ABLP-theorem on stability for C0-
semigroups (see [4]).
To our knowledge, there is no further study on the stability of resolvent. Our
purpose in this article is to give some advances in the analysis of sufficient condi-
tions in terms of (3) for the uniform stability of resolvent families in Hilbert and
Banach spaces. The arguments used in [5], Theorem 10.2 and Theorem 10.5 to
prove integrability give tools to prove two general results on uniform stability of
resolvents. The first one (Theorem 1) concerning the hyperbolic case and valid
in Hilbert spaces, generalizes the Gearhart-Greiner-Prüss characterization of expo-
nential stability for strongly continuous semigroups. The second one (Theorem 2),
is concerned with the parabolic case and is true in general Banach spaces.

Our basic assumption to get the above mentioned results is only 1-regularity of
the kernel a(t). We remark that in general it is more difficult to prove integrability
properties than stability for resolvents. However, the kernel a(t) need not to have
the property that 1/λâ(λ) is locally analytic and therefore the results in [5], The-
orems 10.2 and Theorem 10.5 cannot be applied. We show in this paper that this
condition is not needed for stability of resolvents.

Some immediate consequences of our results in the study of the asymptotic
behavior of (1) can be obtained; For instance, suppose f ∈ W 1,1(R+; X). Then, by
the variation of parameters formula, we can conclude that ‖u(t)‖ → 0 as t →∞.
Another application is the connection between the solutions of (1) and the solutions
of the equation on the line

(4) v(t) =
∫ ∞

0

a(s)Av(t− s)ds + g(s) , t ∈ R,

where g ∈ W 1,1(R; X). If (1) admits a resolvent S(t) which is uniformly stable and
uniformly integrable (see Corollary 3). The solution of (4) is given by

v(t) =
∫ ∞

0

S(t)ġ(t− s)ds , t ∈ R.

Assume that ‖ḟ(t) − ġ(t)‖ → 0 as t → +∞. From the variation of parameters
formula we have

u(t)− v(t) = S(t)f(0) +
∫ t

0

S(τ)[ḟ(t− τ)− ġ(t− τ)]dτ −
∫ ∞

t

S(τ)ġ(t− τ)dτ.

Hence ‖u(t) − v(t)‖ → 0 as t → ∞. This shows that the solutions u(t) of (1) and
v(t) of (4) are asymptotic to each other as t →∞.

2. Conditions For Uniform Stability

Recall that a resolvent family {S(t)}t≥0 defined in a Banach space X is called
uniformly stable if

lim
t→+∞

‖S(t)‖ = 0.

In the following, we will suppose that a ∈ L1
loc(R+) is of subexponential growth,

that is
∫∞
0

e−εt | a(t) | dt < ∞, for all ε > 0. In this situation, the Laplace
transform, â(λ), exist for all Reλ > 0.
Also we recall that a(t) is called k-regular (k ∈ N), if there is a constant c > 0 such
that

| λnâ(n)(λ) |≤ c | â(λ) |



UNIFORM STABILITY 3

for all Reλ > 0 and 1 ≤ n ≤ k.
Observe that if a ∈ L1

loc(R+) is of subexponential growth and 1-regular, then
â(is) := limλ→is â(λ) exist for all s 6= 0. Moreover, â(λ) 6= 0 for Reλ ≥ 0, λ 6= 0
(see [5], Lemma 8.1).

Theorem 1. Suppose a(t) ∈ L1
loc(R+) is 1-regular; assume that (1) admits a re-

solvent S(t) with finite growth bound ω0(S) < ∞ in a Hilbert space H, and the
following conditions

(H1) 1
â(λ) ∈ ρ(A) for all Reλ ≥ 0, λ 6= 0.

(H2) λâ(λ) → a(∞) 6= 0 as λ → 0 and 0 ∈ ρ(A).
(H3) H(λ) is uniformly bounded in C+ := {λ ∈ C : Reλ > 0}.

Then S(t) is uniformly stable.

Proof. By hypothesis there are constants M > 0 and ω0 ∈ R such that ‖S(t)‖ ≤
Meω0t. We may suppose that ω0 ≥ 0. Let ω > ω0 + 1 be given and define
R(t) := e−ωtS(t), then ‖R(t)‖ ≤ Me−(ω−ω0)t. Let x ∈ H be fixed, and observe
that χ[0,+∞)(·)R(·)x is in L2(R; H), where χ[0,+∞)(·) denotes the characteristic
function. In fact,

‖χ[0,+∞)(·)R(·)x‖22 =
∫ ∞

0

‖R(t)x‖2dt ≤ M2

∫ ∞

0

(e−(ω−ω0)t‖x‖)2dt

≤ M2 · ‖x‖2
2(ω − ω0)

hence, ‖χ[0,+∞)(·)R(·)x‖2 ≤ M · ‖x‖√
2
√

ω − ω0

.

Because H is a Hilbert space, the Plancherel theorem show us that the Fourier
transform F satisfies ‖Ff‖2 =

√
2π‖f‖2 for all f ∈ L2(R, H). On the other hand,

because S(t) is an exponentially bounded resolvent for (1); its Laplace transform
Ŝ(λ) is then well-defined, holomorphic and satisfies H(λ) = Ŝ(λ) for all Reλ > 0.
Hence, we have for all x ∈ H and s ∈ R:

H(ω + is)x = Ŝ(ω + is)x =
∫ ∞

0

e−(ω+is)tS(t)xdt =
∫ ∞

0

e−iste−ωtS(t)xdt

=
∫ ∞

0

e−istR(t)xdt =
∫ +∞

−∞
e−istχ[0,+∞)(t)R(t)xdt

= F(χ[0,+∞)(·)R(·)x)(s).

It follows from Plancherel theorem that H(ω + i·)x ∈ L2(R;H) and

(5) ‖H(ω + i·)x‖2 =
√

2π · ‖χ[0,+∞)(·)R(·)x‖2 ≤ M ·
√

π

ω − ω0
· ‖x‖.

Writing H(λ) = (λ−λâ(λ)A)−1 = 1
λâ(λ) (

λ
λâ(λ) −A)−1 we observe that lim

λ→0
H(λ)

exist in B(H) due to (H1) and (H2). Hence, from 1-regularity of a(t), conditions
(H1) and (H3) and the Banach-Steinhaus theorem we obtain that H(iρ) is bounded,
for each ρ ∈ R. It follows from the uniform boundedness principle that H(λ) is also
uniformly bounded in the imaginary axis iR.

On the other hand, from the identity

λH(λ)− λâ(λ)AH(λ) = I
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valid for all Reλ ≥ 0, λ 6= 0, we obtain

(6) H(iρ)x = H(ω + iρ)x +
ω

ω + iρ
H(iρ)x + h(ρ)H(iρ)(H(ω + iρ)x− x

ω + iρ
)

for all ρ 6= 0, where h(ρ) = iρ( â(iρ)
â(ω+iρ) − 1).

It follows from the proof of Theorem 10.5 in [5] that h(ρ) is bounded for | ρ |≥ 1.
Choose a function ϕ(ρ) in C∞0 (R), defined by ϕ(ρ) = 1 for | ρ |< 1 and, ϕ(ρ) = 0

for | ρ |≥ 2. Define ψ(ρ) = 1 − ϕ(ρ) for all ρ ∈ R, then using the uniform
boundedness of H(i·) in R and (5) in (6), we conclude that ψ(·)H(i·)x ∈ L2(R; H)
and,

‖ψ(·)H(i·)x‖22 =
∫ +∞

−∞
‖ψ(ρ)H(iρ)x‖2dρ

=
∫

|ρ|≥2

‖H(iρ)x‖2dρ +
∫

1≤|ρ|≤2

‖ψ(ρ)H(iρ)x‖2dρ

≤ M0 · ‖x‖2.

Analogously, we can prove that H(ω + i·)∗x ∈ L2(R; H) and following the same
argument as above we conclude that ψ(·)H(i·)∗x ∈ L2(R, H).
By Parseval’s theorem, there exist a function u ∈ L2(R; H) such that

F(u(·))(ρ) = ψ(ρ)H(iρ)x for a.a. ρ ∈ R.

It follows that

F(u(·))′(ρ) = ψ′(ρ)H(iρ)x + iψ(ρ)H ′(iρ)x

= ψ′(ρ)H(iρ)x + iψ(ρ)(−H(iρ)
iρ x + H(iρ)iρ â′(iρ)

â(iρ) (H(iρ)x− x
iρ ))

hence, by 1-regularity of a(t) and the fact that ψ(·)H(i·)x, ψ(·)H(i·)∗x∗ are in
L2(R; H) for each x, x∗ ∈ H, we get

(7)
∫ +∞

−∞
|< F(u(·))′(ρ), x∗ >| dρ ≤ M0 · ‖x‖ · ‖x∗‖.

On the other hand, again from the uniform boundedness of H(i·) in R we have that
for each t > 0

(8)

S0(t) :=
∫ +∞

−∞
ϕ(ρ)H(iρ)eiρtdρ

=
∫ 2

−2

ϕ(ρ)H(iρ)eiρtdρ ∈ B(H).

Hence, by Riemman-Lebesgue lemma follows that S0(t) → 0 in B(H) as t → +∞.
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Finally, for x, x∗ ∈ H we have that

< S(t)x, x∗ > =
1
2π

∫ +∞

−∞
< H(iρ)x, x∗ > eiρtdρ

=
1
2π

∫ +∞

−∞
< ϕ(ρ)H(iρ)x, x∗ > eiρtdρ

+
1
2π

∫ +∞

−∞
< ψ(ρ)H(iρ)x, x∗ > eiρtdρ.

Integrating by parts in the second integral, we get

< S(t)x, x∗ > =
1
2π

∫ +∞

−∞
< ϕ(ρ)H(iρ)x, x∗ > eiρtdρ

+
1

2πit

∫ +∞

−∞
< (ψ(ρ)H(iρ))′x, x∗ > eiρtdρ

=
1
2π

< S0(t)x, x∗ > +
1

2πit

∫ +∞

−∞
< F(u(·))′(ρ), x∗ > eiρtdρ.

It follows from (7) and (8) that

|< S(t)x, x∗ >|≤ 1
2π
‖S0(t)‖ · ‖x‖ · ‖x∗‖+

1
2πt

M0 · ‖x‖ · ‖x∗‖.
Therefore, ‖S(t)‖ ≤ 1

2π‖S0(t)‖+ 1
2πtM0, from which we obtain the result.

Corollary 1. Suppose that the equation u = a ∗ Au + f , where a(t) is 1-regular
admits a resolvent S(t) with finite growth bound ω0(S) < ∞ in a Hilbert space H.
If S(t) is strongly integrable then S(t) is uniformly stable.

Proof. Follows from Theorem 1 and Theorem 10.5 in [5].

The special case a(t) ≡ 1 give us with the following result on stability of C0-
semigroups due to Gearhart, Greiner and Prüss (see [2], Theorem 1.11).

Corollary 2. Let A be the generator of a C0-semigroup {T (t)}t≥0 with finite growth
bound ω0(S) < ∞ defined in a Hilbert space H. The following conditions are
equivalent.

(a) The semigroup T (t) is uniformly stable.
(b) {λ ∈ C : Reλ ≥ 0} ⊂ ρ(A) and supReλ>0 ‖R(λ; A)‖ < ∞.

Proof. Assume (b). Is easy to see that a(t) ≡ 1 is 1-regular and the hypothesis
(H1)-(H3) are clearly satisfied. Hence (a) follows by Theorem 1.

Assume (a). Since the semigroup is uniformly stable, we conclude from ([2],
Proposition 1.2) that it is also exponentially stable, that is, there is a constant
ω0 > 0 such that ‖S(t)‖ ≤ Me−ω0t. Hence {λ ∈ C : Reλ ≥ 0} ⊆ ρ(A) and
‖R(τ + is; A)‖ ≤ M

τ+ω0
< M

ω0
for all τ ≥ 0 and s ∈ R from which we obtain (b).

We recall the following:

Definition 1. Equation (1) is called parabolic if the following conditions are sa-
tisfied.
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(P1) â(λ) 6= 0, 1/â(λ) ∈ ρ(A) for all Reλ > 0.
(P2) There exists a constant M ≥ 1 such that

(9) ‖H(λ)‖ ≤ M

| λ | for all Reλ > 0.

Theorem 2. Let X be a Banach space. Suppose that a(t) is 1-regular and (H2)
of Theorem 1 holds. If (1) is parabolic then (1) admits a resolvent S(t) uniformly
stable.

Proof. From parabolicity and 1-regularity of a(t) we have by Theorem 3.1 in [5]
the existence of a resolvent family S(t), continuous and bounded for t ≥ 0. Hence
S(·) ∈ L1

loc(R+, B(X)) and moreover by the identity λH(λ)−λâ(λ)AH(λ) = I, for
Reλ > 0, we have that

H ′(λ) = −H(λ)
λ + â′(λ)A(I − â(λ)A)−1H(λ)

= −H(λ)
λ + â′(λ)

â(λ) · â(λ)A · λH(λ) ·H(λ)

= −H(λ)
λ + â′(λ)

â(λ) · (λH(λ)− I) ·H(λ).

It follows from (9) and 1-regularity of a(t), that ‖λH ′(λ)‖ ≤ M1‖H(λ)‖, for Reλ >
0. So, we are in the conditions of Lemma 8.1 in [5]. It follows that H(λ) admits a
B(X)-continuous extension to C+ r {0}. We will prove that H(λ) is, in addition,
continuous at λ = 0. Indeed, from (H2) and 0 ∈ ρ(A) we have that

H(0) = lim
λ→0

H(λ) = lim
λ→0

1
λâ(λ)

(
λ

λâ(λ)
−A)−1 =

−A−1

a(∞)

exist in B(X). Hence ‖H(λ)‖ ≤ M2
1+|λ| for Reλ ≥ 0. It follows that H(λ) is

uniformly bounded on C+. Let x ∈ X and x∗ ∈ X∗ be fixed, we observe that
< H(ω + i·)x, x∗ >∈ L2(R) for all ω ≥ 0. It follows from Lemma 6.1 in [3] that
< S(t)x, x∗ >∈ L2(R+), therefore by L2-theory we have the next representation

(10) < S(t)x, x∗ >=
1
2π

∫ ∞

−∞
< H(iρ)x, x∗ > eiρtdρ , a.a. t ∈ R+.

Now we consider N ∈ N fixed and ϕ ∈ C∞0 (R) defined by ϕ(ρ) = 1 if | ρ |≤ N , 0 if
| ρ |≥ N + 2 and 0 ≤ ϕ ≤ 1 in another case. Then by (10) we have that

(11)

< S(t)x, x∗ > =
1
2π

∫ ∞

−∞
< ϕ(ρ)H(iρ)x, x∗ > eiρtdρ

+
1
2π

∫ ∞

−∞
< (1− ϕ(ρ))H(iρ)x, x∗ > eiρtdρ.

Hence integrating by parts in the second integral in (11) becomes

(12)

< S(t)x, x∗ > =
1
2π

∫ ∞

−∞
< ϕ(ρ)H(iρ)x, x∗ > eiρtdρ

+
1

2πit

∫ ∞

−∞
< [(1− ϕ(ρ))H(iρ)]′x, x∗ > eiρtdρ.

It follows from boundedness of H(λ) on C+ that the first integral is absolutely
integrable. For the second integral, using the estimate ‖ρH ′(iρ)‖ ≤ M2‖H(iρ)‖
a.a. ρ ∈ R and, the Cauchy-Schwarz and Hölder inequalities, it follows that it is
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also absolutely integrable. Therefore, x and x∗ can be dropped in (12) and, S(t)
can be written as

(13)
S(t) =

1
2π

∫ ∞

−∞
ϕ(ρ)H(iρ)eiρtdρ +

1
2πit

∫ ∞

−∞
[(1− ϕ(ρ))H(iρ)]′eiρtdρ

:= S1(t) + S2(t).

It follows from the Riemman-Lebesgue lemma that S1(t) → 0 as t → +∞. On the
other hand, S2(t) satisfies an estimate of the form ‖S2(t)‖ ≤ M2

t . It follows that
S(t) → 0 as t → +∞.

As immediate consequence of Theorem 2 and Theorem 10.2 in [5], we obtain the
following.

Corollary 3. Suppose that u = a ∗Au + f is parabolic in Banach space X, where
a(t) is 1-regular. If S(t) is uniformly integrable then S(t) is uniformly stable.
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2, Santiago-Chile.

E-mail address: vvergara@usach.cl


