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Abstract. We analize the inversion of the Laplace transform in UMD
- spaces for resolvent families associated to an integral Volterra equation
of convolution type.

1. Introduction

Let X be a complex Banach space. We consider the following Volterra
equation of convolution type:

(1) u(t) = f(t) +
∫ t

0
a(t− s)Au(s)ds, t ≥ 0,

where A is a closed linear unbounded operator with domain D(A) densely
defined on X , a ∈ L1

loc(R+) is a scalar kernel, and f ∈ L1(R+;X). We recall
from [12] that a family {S(t)}t≥0 of bounded and linear operators defined
in X is said to be a resolvent family for (1) if the following conditions are
satisfied:

(R1) S(t) is strongly continuous on R+ and R(0) = I;
(R2) S(t)x ∈ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0;
(R3) The resolvent equation holds

(2) S(t)x = x +
∫ t

0
a(t− s)S(s)Axds

for all x ∈ D(A) and t ≥ 0.

The notion of resolvent family is a natural extension of the concepts of
a C0-semigroup and a cosine operator function (obtained for a(t) ≡ 1 and
a(t) ≡ t respectively). The existence of a resolvent family allows one to find
the solution for the equation (1). Several properties of resolvent families has
been discussed in [8], [9],[11],[12],[4],[3].

In this paper we examine the convergence of the inverse Laplace transform
for a resolvent family in a Banach space X.

In the sequel we always assume the existence of a resolvent {S(t)}t≥0 for
(1) which is in addition of type (M, ω0), i.e. there are constants M > 0 and
ω0 ∈ R+ such that

||S(t)|| ≤ Meω0t for all t ≥ 0.
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Also, we assume the existence of the Laplace transform of a(t), denoted
â(λ), for all Reλ > ω0. Under these conditions, the generation theorem for
resolvent families (see [12], Theorem 1.3) give us the following

(H1) â(λ) 6= 0 and 1
â(λ) ∈ ρ(A) for all Reλ > ω0;

(H2) H(λ) := (λ− λâ(λ)A)−1 satisfies

(3) H(λ) = Ŝ(λ) =
∫ ∞

0
e−λtS(t)dt, for all Reλ > ω0

Conversely, one may express the resolvent {S(t)}t≥0 in terms of the Laplace
transform H(λ) by different formulas. For instance, by means of the Post-
Widder inversion formula (see [10], Theorem 2.1) or by means of the complex
inversion formula of the Laplace transform obtaining

(4) S(t)x =
1

2πi

∫ ω+i∞

ω−i∞
eλtH(λ)xdλ

for all t > 0, ω > ω0 and x ∈ D(A) (see Proposition 2).

Our main result in this paper establish that in UMD spaces the formula
(4) holds for all x ∈ X. We remark that in the particular case of a(t) ≡ 1
(i.e. S(t) is a C0-semigroup) we recover a result of A. Driouich and O. El-
Mennaoui [6] Theorem 1 (see also [2] Theorem 3.12.2), in fact, the proof
of our main result is very much inspired by the proof of Driouich and El-
Mannaoui for the semigroup case. However, due to the more complicated
structure of the Laplace transform H(λ) the argument involved are more
delicate and differ from those employed in [6]. We also observe that in
the case of a(t) ≡ t, we recover the inversion formula for cosine operator
functions in UMD spaces due to I. Cioranescu and V. Keyantuo [5]. Let
us recall that a Banach space X is called UMD if the Hilbert transform H
defined in the Schwartz space S(R, X) by

Hf(t) := lim
ε→0+

1
π

∫

|t−s|≥ε

f(s)
t− s

ds

extends to a bounded linear operator on Lp(R; X) for some p ∈ (1,∞) (or,
equivalently, for all p ∈ (1,∞), see [1]). Note, that every UMD space is
reflexive and its dual is also a UMD space.

In the following, we will suppose that a ∈ L1
loc(R+) is of subexponential

growth, that is
∫ ∞

0
e−εt|a(t)|dt < ∞, for all ε > 0. Under this condition,

the Laplace transform, â(λ), exists for all Reλ > 0. Also we recall [12] that
a(t) is called k - regular ( k ∈ N), if there is a constant c > 0 such that

|λnâ(n)(λ)| ≤ c|â(λ)|
for all Reλ > 0 and 1 ≤ n ≤ k. Observe that if a ∈ L1

loc(R+) is of subexpo-
nential growth and 1-regular, then â(is) := limλ→is â(λ) exists for all s 6= 0.
Moreover, â(λ) 6= 0 for all Reλ ≥ 0, λ 6= 0 (see [12], Lemma 8.1). We will
need the following result from [11].
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Lemma 1. Let a ∈ L1
loc(R+) be Laplace transformable and suppose that

H(λ) = (λ− λâ(λ)A)−1

exists for all Reλ > 0. Then,

H ′(λ) = f(λ)H(λ) + g(λ)H(λ)2,

where f(λ) = −( 1
λ+ â′(λ)

â(λ) ) and g(λ) = λ â′(λ)
â(λ) for all Reλ > 0. ¤

With the notations of Lemma 1, we give the following

Lemma 2. Let a(t) be 3-regular; then there is a bounded function b ∈
C1(R+) such that b̂(λ) = f(λ) for all Reλ > 0.

Proof. Since a is 1-regular we have |f(λ)| ≤ M
|λ | for all Reλ > 0. On the

other hand f ′(λ) = −
(
− 1

λ2 + â′′(λ)â(λ)−â′(λ)2

â(λ)2

)
implies, |f ′(λ)| ≤ M

|λ|2 for all

Reλ > 0 , because a is 2-regular. Now f ′′(λ) = − 2
λ3 − â′′′(λ)

â(λ) + â′′(λ)
â(λ) ·

â′(λ)
â(λ) −

2 â′(λ)
â(λ) ·

(
â′′(λ)â(λ)−â′(λ)2

â(λ)2

)
and as a is 3-regular we obtain |f ′′(λ)| ≤ M

|λ|3 for
all Reλ > 0. In short we have that f(λ) satisfies

|λn+1f (n)(λ)| ≤ M for all Reλ > 0 and n = 0, 1, 2.

Hence, by Theorem 0.4 in [12] we obtain that there is a bounded function
b ∈ C1(R+) such that b̂(λ) = f(λ) for all Reλ > 0.

¤
We also need the following lemma. For details we refer to the monograph

of J. Prüss ( [12], Lemma 10.1).

Lemma 3. Suppose c is a locally analytic function on C∞+ . Then there is a
function k ∈ L1(R+) such that

c(t) = c(∞) + k̂(λ),

for all λ ∈ C∞+ .

2. Lp - estimates for the inversion of the Laplace transform
in UMD spaces

For j = 1, 2, let {Fj(t)}t≥0 j B(X) be strongly continuous and of type
(M, ω0). Let

F̂j(z) =
∫ ∞

0
e−ztFj(t)dt, Rez > ω0

be the Laplace transform. Then, for ω > ω0, we have F̂j(ω + iλ) ∈ B(X)
and F̂j(ω + iλ) are strongly continuous for λ ∈ R; moreover

sup
λ∈R

||F̂j(ω + iλ)|| < ∞ and lim
|λ|→∞

F̂j(ω + iλ)x = 0 (x ∈ X).

Denote for t ∈ R, r < r′ and x ∈ X
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I1(t, r, r′)x =
1
2π

∫ r′

r
eiλtF̂1(ω + iλ)xdλ,

I2(t, r, r′)x =
1
2π

∫ r′

r
eiλtF̂1(ω + iλ)F̂2(ω + iλ)xdλ.

Lemma 4. We have, for all x ∈ X:

(a) I2(t, r, r′)x =
∫ ∞

0
I1(t− s, r, r′)e−ωsF2(s)xds

(b) I1(t, r, r′)x =
1
2i

eitr′H(e−ir′·e−ω·χ[0,∞)(·)F1(·)x)(t)

− 1
2i

eitrH(e−ir·e−ω·χ[0,∞)(·)F1(·)x)(t)

where H is the Hilbert transform and χ[0,∞)(·) denotes the characteristic
function.

Proof.

I2(t, r, r′)x =
1
2π

∫ r′

r
eiλtF̂1(ω + iλ)[

∫ ∞

0
e−(ω+iλ)sF2(s)xds]dλ

=
1
2π

∫ ∞

0
[
∫ r′

r
eiλ(t−s)F̂1(ω + iλ)dλ]e−ωsF2(s)xds

=
1
2π

∫ ∞

0
I1(t− s, r, r′)e−ωsF2(s)xds

where we used the fact that the function (s, λ) → ||eiλ(t−s)e−ωsF̂1(ω +
iλ)F2(s)x|| belongs to L1(R+ × [r′, r]).

We shall prove further the second formula. Note first that the function
(s, λ) → ||eiλ(t−s)e−ωsF1(s)x|| ∈ L1(R+ × [r′, r]), consequently we have:

I1(t, r, r′)x =
1
2π

∫ r′

r
eiλt[

∫ ∞

0
e−(ω+iλ)sF1(s)xds]dλ

=
1
2π

∫ ∞

0
[
∫ r′

r
eiλ(t−s)dλ]e−ωsF1(s)xds

=
1

2πi
p.v.

∫ ∞

0

ei(t−s)r′ − ei(t−s)r

t− s
e−ωsF1(s)xds

=
eitr′

2πi
p.v.

∫ ∞

0

e−isr′e−ωs

t− s
F1(s)xds− eitr

2πi
p.v.

∫ ∞

0

e−isre−ωs

t− s
F1(s)xds

=
eitr′

2i
H(e−ir′·e−ω·χ[0,∞)(·)F1(·)x)(t)

− eitr

2i
H(e−ir·e−ω·χ[0,∞)(·)F1(·)x)(t)

¤
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Proposition 1. Let X be an UMD space and p ∈ (1,∞); then there exists
a constant C > 0 such that

(c) ||I1(·, r, r′)x||Lp(R,X) ≤ C||x||,
(d) ||I2(·, r, r′)x||L∞(R,X) ≤ C||x||,

for all x ∈ X and r < r′.

Proof. Using (b) we obtain

||2I1(·, r, r′)x||Lp(R,X) ≤ ||H(e−ir′·e−ω·χ[0,∞)(·)F1(·)x||Lp(R,X)

+ ||H(e−ir·e−ω·χ[0,∞)(·)F1(·)x||Lp(R,X)

≤ 2C1||e−ω·χ[0,∞)(·)F1(·)x||Lp(R,X)

≤ 2C1M(
1

(ω − ω0)p
)1/p||x||.

where C1 is the norm of the Hilbert transform in Lp(R, X). Consider further
x ∈ X and x∗ ∈ X∗; we have by (a)

| < x∗, I2(t, r, r′)x > | = |
∫ ∞

0
< x∗, I1(t− s, r, r′)e−ωsF2(s)x > ds|

= |
∫ ∞

0
< I∗1 (t− s, r, r′)x∗, e−ωsF2(s)x > ds|

≤
∫ ∞

0
||e−ωsF2(s)x||||I∗1 (t− s, r, r′)x∗||ds

≤ ||I∗1 (·, r, r′)x∗||Lp(R,X)||e−ω·χ[0,∞)(·)F2(·)x||Lq(R,X)

where 1
p + 1

q = 1. Since X∗ is also a UMD space, we can use (c) to estimate
||I∗1 (·, r, r′)x∗|| and obtain that there exists a constant C2 > 0 such that

| < x∗, I2(t, r, r′)x > | ≤ C2||x∗||||x||
and thus (d) holds.

¤

3. Main result

We start our considerations with the following inversion result in general
Banach spaces.

Lemma 5. Let {S(t)}t≥0 be a strongly continuous family of type (M, ω0)
and let b ∈ C1(R+) be of type (K,ω0); then

(b ∗ S)(t)x = lim
r′→∞ r→−∞

1
2π

∫ r′

r
e(ω+iλ)t(̂b ∗ S)(ω + iλ)xdλ,

for each ω > ω0 and all x ∈ X. Moreover, the convergence is uniform on t
for any compact interval of (0,∞)

Proof. By Theorem 6.3.1 in [7] we have for all x ∈ X and ω > ω0

(5)
∫ t

0
(b′ ∗ S)(s)xds =

1
2πi

∫ ω+i∞

ω−i∞
eλt ̂(b′ ∗ S)(λ)x

dλ

λ
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and

(6)
∫ t

0
S(s)xds =

1
2πi

∫ ω+i∞

ω−i∞
eλtŜ(λ)x

dλ

λ

where the integrals are convergent uniformly with respect to t in any com-
pact interval of (0,∞). We have:

(b′ ∗ S)(s)x = (b ∗ S)′(s)x− b(0)S(s)x, s ∈ R+

and
̂(b′ ∗ S)(λ)x = λ(̂b ∗ S)(λ)x− b(0)Ŝ(λ)x, λ > ω0

so that (5) yields:

(b ∗ S)(t)x− b(0)
∫ t

0
S(s)xds =

1
2πi

∫ ω+i∞

ω−i∞
eλt(̂b ∗ S)(λ)xdλ

− b(0)
1

2πi

∫ ω+i∞

ω−i∞
eλtŜ(λ)x

dλ

λ
.

Using (6) in the above equality we obtain

(b ∗ S)(t)x =
1

2πi

∫ ω+i∞

ω−i∞
eλt(̂b ∗ S)(λ)xdλ

where the convergence of the integral is uniform with respect to t in any
compact interval of (0,∞).

¤

Proposition 2. Let {S(t)}t≥0 be a resolvent family of type (M,ω0) for the
equation (1) and let a ∈ C1(R+) be of type (K,ω0); then for each x ∈ D(A)
and ω > ω0 we have

S(t)x = lim
r→−∞ r′→∞

1
2π

∫ r′

r
e(ω+iλ)tH(ω + iλ)xdλ.

where the convergence is uniform on t for any compact interval of (0,∞).

Proof. For each x ∈ D(A) we have by Lemma 5 and (2)

(a ∗ S)(t)Ax = lim
r→−∞ r′→∞

1
2π

∫ r′

r
e(ω+iλ)t(̂a ∗ S)(ω + iλ)Axdλ

= lim
r→−∞ r′→∞

1
2π

∫ r′

r
e(ω+iλ)t(Ŝ(ω + iλ)x− x

ω + iλ
)dλ

= lim
r→−∞ r′→∞

1
2π

∫ r′

r
e(ω+iλ)tH(ω + iλ)xdλ

− lim
r→−∞ r′→∞

1
2π

∫ r′

r
e(ω+iλ)t x

ω + iλ
dλ

= lim
r→−∞ r′→∞

1
2π

∫ r′

r
e(ω+iλ)tH(ω + iλ)xdλ− x

Hence, the resolvent equation (2) implies the assertion.
¤
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We can give now our main result.

Theorem 1. Let {S(t)}t≥0 be a resolvent family of type (M, ω0) for the
equation (1), defined in a UMD space X; suppose that a(t) is 3-regular,
λ â(λ)′

â(λ) is locally analytic, and |â(λ)| ≤ C
|λ| for all |λ| > 1, then we have for

all x ∈ X,

S(t)x =
1
2π

∫ ∞

−∞
e(ω+iλ)tH(ω + iλ)xdλ, t > 0, ω > ω0

where the convergence is uniform for t in compact intervals of (0,∞).

Proof. Let r < 0 < r′, t > 0, x ∈ X and consider

I(t, r, r′)x =
1
2π

∫ r′

r
eiλtŜ(ω + iλ)xdλ.

An integration by parts yields:

I(t, r, r′)x =
1

2iπt
(eitr′Ŝ(ω + ir′)x− eitrŜ(ω + ir)x)

− 1
2iπt

∫ r′

r
eiλtŜ(ω + iλ)′xdλ.

Since lim
r→−∞ Ŝ(ω + ir)x = lim

r′→∞
Ŝ(ω + ir′)x = 0, in order to prove that

lim I(t, r, r′) exists as r′ → ∞ and r → −∞, we only have to prove that
lim

∫ r′
r eiλtŜ(ω+ iλ)′xdλ exists as r′ →∞ and r → −∞. Since a is 3-regular

we have by Lemma 1

Ŝ(ω + iλ)′ = f(ω + iλ)Ŝ(ω + iλ) + g(ω + iλ)Ŝ(ω + iλ)2

with sup
Rez>0

|zf(z)| < ∞ and sup
Rez>0

|g(z)| < ∞. Hence we have

∫ r′

r
eiλtŜ(ω + iλ)′xdλ =

∫ r′

r
eiλtf(ω + iλ)Ŝ(ω + iλ)xdλ

+
∫ r′

r
eiλtg(ω + iλ)Ŝ(ω + iλ)2xdλ.

Concerning the first integral in the second part of the above equality, we
have by Lemma 2 that there exist a bounded function b ∈ C1(R+) such that
b̂(λ) = f̂(λ). Hence, by Lemma 5 the integral

∫ r′

r
e(ω+iλ)tf(ω + iλ)Ŝ(ω + iλ)xdλ =

∫ r′

r
e(ω+iλ)t(̂b ∗ S)(ω + iλ)xdλ

converges to 2π(b ∗ S)(t)x as r → −∞ and r′ → ∞, uniformly for t in
compact intervals of (0,∞). Next, we will prove the convergence of the
integral ∫ r′

r
eiλtg(ω + iλ)Ŝ(ω + iλ)2xdλ.

We shall consider first the case x ∈ D(A2). We have:

Ŝ2(ω+iλ)x =
x

(ω + iλ)2
+2

â(ω + iλ)
ω + iλ

Ŝ(ω+iλ)Ax+â2(ω+iλ)Ŝ(ω+iλ)2A2x.
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Using the hypothesis, it follows that there is a constant C > 0 such that

||g(ω + iλ)Ŝ2(ω + iλ)x|| ≤ C

|ω + iλ|2 (||x||+ ||Ax||+ ||A2x||).

Consequently, the limit
∫ r′

r
eiλtg(ω + iλ)Ŝ(ω + iλ)2xdλ

exists as r′ → ∞ and r → −∞, for all x ∈ D(A2), uniformly for t in any
compact interval of (0,∞).

Observe further that according the hypothesis and Lemma 3, there exists
a function k ∈ L1(R+) such that

g(ω + iλ)Ŝ(ω + iλ)2x = Ŝ(ω + iλ)[((̂k ∗ S)(ω + iλ)x + g(∞)Ŝ(ω + iλ)]

for all x ∈ X.
Let F1(t) = S(t) and F2(t) = (k ∗ S)(t) + g(∞)S(t). Note that F2 is of

exponential type since k ∈ L1(R+) and hence

g(ω + iλ)Ŝ(ω + iλ)2x = F̂1(ω + iλ)F̂2(ω + iλ)x

for all x ∈ X.
We can now apply the estimate (d) in Proposition 1 to obtain

||
∫ r′

r
eiλtg(ω + iλ)Ŝ(ω + iλ)2xdλ||L∞(R+;X) ≤ C||x||,

for all x ∈ X.
Since D(A2) is dense in X the above integral converges for all x ∈ X. We

conclude that

1
2π

lim
r→−∞ r′→∞

∫ r′

r
e(ω+iλ)tŜ(ω + iλ)xdλ = R(t)x

exists for all x ∈ X, uniformly for t in any compact interval of (0,∞).
On the other hand, by equation (6), we have for all x ∈ X

∫ t

0
S(s)xds =

1
2π

lim
r→−∞ r′→∞

∫ r′

r
e(ω+iλ)tŜ(ω + iλ)x

dλ

ω + iλ

uniformly for t in any compact interval of (0,∞) . By differentiation we
obtain R(t)x = S(t)x for all x ∈ X.

¤

Remark The functions a(t) = tα

Γ(α+1) (α ≥ 0) satisfy the conditions of
the above Theorem. In particular, for α = 0 and α = 1 we recover the
results in [6], Theorem 1 and [5], Proposition 2.12 respectively.
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