ON THE INVERSION OF THE LAPLACE TRANSFORM
FOR RESOLVENT FAMILIES IN UMD SPACES

IOANA CIORANESCU AND CARLOS LIZAMA

ABSTRACT. We analize the inversion of the Laplace transform in UM D
- spaces for resolvent families associated to an integral Volterra equation
of convolution type.

1. INTRODUCTION

Let X be a complex Banach space. We consider the following Volterra
equation of convolution type:

t
(1) u(t) = f(t) +/0 a(t — s)Au(s)ds, t=>0,

where A is a closed linear unbounded operator with domain D(A) densely
defined on X , a € L}, .(R,) is a scalar kernel, and f € L'(Ry; X). We recall
from [12] that a family {S(¢)}+>0 of bounded and linear operators defined
in X is said to be a resolvent family for (1) if the following conditions are
satisfied:

(R1) S(t) is strongly continuous on Ry and R(0) = I;

(R2) S(t)x € D(A) and AS(t)x = S(t)Axz for all x € D(A) and t > 0;

(R3) The resolvent equation holds

t
(2) S(t)x =x+ / a(t — s)S(s)Axds
0
for all x € D(A) and ¢t > 0.

The notion of resolvent family is a natural extension of the concepts of
a Cp-semigroup and a cosine operator function (obtained for a(¢) = 1 and
a(t) = t respectively). The existence of a resolvent family allows one to find
the solution for the equation (1). Several properties of resolvent families has
been discussed in [8], [9],[11],[12],[4],[3].

In this paper we examine the convergence of the inverse Laplace transform
for a resolvent family in a Banach space X.

In the sequel we always assume the existence of a resolvent {S(t)}+>¢ for
(1) which is in addition of type (M,wy), i.e. there are constants M > 0 and
wo € R4 such that

1S(t)|| < Me*° for all t > 0.
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Also, we assume the existence of the Laplace transform of a(t), denoted
a(\), for all ReX > wp. Under these conditions, the generation theorem for
resolvent families (see [12], Theorem 1.3) give us the following

(H1) a(X\) # 0 and ﬁ € p(A) for all ReX > wy;

(H2) H(A) := (A — Aa(\)A)~! satisfies

(3) H(\) =S50\ = / e MS(t)dt, for all ReX > wy
0

Conversely, one may express the resolvent {S(t) }+>0 in terms of the Laplace
transform H () by different formulas. For instance, by means of the Post-
Widder inversion formula (see [10], Theorem 2.1) or by means of the complex
inversion formula of the Laplace transform obtaining
(4) S@m—AL WHm&%ummu

- 2mi

w—100

for all t > 0,w > wp and x € D(A) (see Proposition 2).

Our main result in this paper establish that in UM D spaces the formula
(4) holds for all x € X. We remark that in the particular case of a(t) =1
(i.e. S(t) is a Cp-semigroup) we recover a result of A. Driouich and O. El-
Mennaoui [6] Theorem 1 (see also [2] Theorem 3.12.2), in fact, the proof
of our main result is very much inspired by the proof of Driouich and El-
Mannaoui for the semigroup case. However, due to the more complicated
structure of the Laplace transform H(A) the argument involved are more
delicate and differ from those employed in [6]. We also observe that in
the case of a(t) = t, we recover the inversion formula for cosine operator
functions in UM D spaces due to I. Cioranescu and V. Keyantuo [5]. Let
us recall that a Banach space X is called UM D if the Hilbert transform H
defined in the Schwartz space S(R, X) by

— i L f(s)
Hf(t) o el—lgl"" ™ Aslze t— Sds

extends to a bounded linear operator on LP(R; X) for some p € (1,00) (or,
equivalently, for all p € (1,00), see [1]). Note, that every UMD space is
reflexive and its dual is also a UM D space.

1

1oe(R4) is of subexponential

In the following, we will suppose that a € L

[e 9]

growth, that is / e"“a(t)|dt < oo, for all € > 0. Under this condition,

0
the Laplace transform, a()), exists for all ReA > 0. Also we recall [12] that
a(t) is called k - reqgular ( k € N), if there is a constant ¢ > 0 such that

(A" ()] < cla()

for all ReA > 0 and 1 < n < k. Observe that if a € L}OC(RJF) is of subexpo-
nential growth and 1-regular, then a(is) := limy_;s a(\) exists for all s # 0.
Moreover, a(A) # 0 for all ReA > 0, A # 0 (see [12], Lemma 8.1). We will
need the following result from [11].
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Lemma 1. Let a € L}OC(RJF) be Laplace transformable and suppose that
H(A) = (A= Aa(N\)A)™!
exists for all Reh > 0. Then,
H'(X) = fF(NHX) + g(VH N,

where f(A) = —(%—i—%/(()’\\))) and g(\) = /\g(())\‘)) for all ReX > 0.

With the notations of Lemma 1, we give the following

Lemma 2. Let a(t) be 3-regular; then there is a bounded function b €
CY(Ry) such that b(\) = f()\) for all ReX > 0.

Proof. Since a is 1-regular we have |f(\)] < |M/\| for all ReX > 0. On the

other hand f/(\) = — (—% + W) implies, |f'(\)| < % for all

Re) > 0, because a is 2-regular. Now f”(\) = —2& — A &) ()

3 a(\) a(n) a(v)
2@’((?)) . («i”(/\)d(k)—&’(A)2 M

IOV ) and as a is 3-regular we obtain |f” ()] < mp for
all ReA > 0. In short we have that f(\) satisfies

AL F ()] < M for all ReA > 0 and n=0,1,2.

Hence, by Theorem 0.4 in [12] we obtain that there is a bounded function
b € CY(R,) such that b(\) = f(\) for all ReX > 0.
O
We also need the following lemma. For details we refer to the monograph
of J. Priiss ( [12], Lemma 10.1).

Lemma 3. Suppose c is a locally analytic function on C°. Then there is a
function k € L'(Ry) such that

c(t) = c(o0) + k(N),
for all X € C.

2. LP - ESTIMATES FOR THE INVERSION OF THE LAPLACE TRANSFORM
IN UMD SPACES

For j = 1,2, let {F}(t)}+>0 & B(X) be strongly continuous and of type
(M,wp). Let

Fj(z) :/0 e *'Fj(t)dt, Rez > wy

be the Laplace transform. Then, for w > wy, we have Fj(w + i\) € B(X)
and Fj(w 4+ i\) are strongly continuous for A € R; moreover

sup || Fj(w 4 i\)|| < oo and  lim Fj(w +iM)z =0 (z € X).
AER |A|—o0

Denote for t € R,r <7’ and x € X
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!

1 LA
L(t,r, )z = o / eMFy (w + iX)zd),
T

!

1 (" - .
Lt,r,r )z = o / MY (w + iN) Fy(w + i) zd.
™ T

Lemma 4. We have, for all z € X:

(a) Lt,r,r = / Ii(t — 5,7, 7" ) e “* Fy(s)xds
0
1 ... .7
(b) Lit,r, e = Zem H(e ™™ e X(0,00) () F1(-)2) (1)
1 —ir —w-
- Ze”’"H(e e X[0,00) () F1 (1)) (t)

where H is the Hilbert transform and X[p.)(-) denotes the characteristic
function.

Proof.
Lt,r,r = % /TT/ eEMEY (w4 iN) [/000 e~ WS By () zds]dN
— % OOO[ / g M9 By (w4 iX)dNe @ Fy(s)xds
= % 000 Ii(t — 5,7, 7" )e “*Fy(s)xds

where we used the fact that the function (s,A) — Hei/\(tfs)efwspl(w I
i\) Fy(s)x|| belongs to LR, x [r',7]).

We shall prove further the second formula. Note first that the function
(5,A) = ||eMt=9)e=ws By (s)z|| € LY(Ry4 x [r',7]), consequently we have:

/

1 T X [e.e] .
Lit,r, o = / eMt[/ e~ WHNS By (s)zds|dA
2m )y 0
1 o iA(t—s) —ws
= — [|] e d\e “*Fy(s)zds
2 0 r
1 0 ei(t—s)r’ _ 6i(t—s)’/‘
= —pu. WS d
2m_pv /0 t—s ¢ 1(s)ads
ez’tr’ 00 efisr’efws eitr 00 o —isr ,—ws
= 2. —F — . —F
2m‘pv/0 s ils)uds zm'pv/o s [i(s)ds
eitr’ i o
= S e e X0 () FL()2)(1)
eitr i
= 5 HET e X (0,000 () F1()2) (1)
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Proposition 1. Let X be an UMD space and p € (1,00); then there erists
a constant C' > 0 such that

(¢) Gl o e, x) < Cllll
(d) 12,7, m) ][ oo, x) < Clll,
forallzx € X andr <r'.
Proof. Using (b) we obtain

20 ()2l e, x) < HH(efir/'@*w'X[o,oo) ()L )zl e r,x)

+ |[H(e™™ e X(0,00) (VFLC) ] Lo (R, x)
< 2C|le" X[0,00) () F1() || o (R, )
1
< 20y M(———— /7|4
< M ()Pl

where C} is the norm of the Hilbert transform in LP(R, X'). Consider further
x € X and z* € X*; we have by (a)

| <z* Lt,r,rz>] = ]/ <z L (t —s,r,r)e " Fy(s)x > ds|

= ]/ < If(t—s,r,r )", e Fy(s)x > ds|

IN

/0 lle™* Fy(s)z[[|| 7 (t = s,7,7")a"[|ds

< G e we e, x) e ™ X 0,00) () Fo ()2 Lo x)
where % +% = 1. Since X ™ is also a UM D space, we can use (c) to estimate
[| 15 (-, 7, 7")x*|| and obtain that there exists a constant Co > 0 such that

| <™, L(t,r )z > | < Colla™]]]]]]
and thus (d) holds.

3. MAIN RESULT

We start our considerations with the following inversion result in general
Banach spaces.

Lemma 5. Let {S(t)}i>0 be a strongly continuous family of type (M, wp)
and let b € CY(Ry) be of type (K,wo); then

/

GeS) Bz =  Gim [ @tV 9w+ iN)zd),

r'—oo r——o0 2T

for each w > wy and all x € X. Moreover, the convergence is uniform on t
for any compact interval of (0, 00)

Proof. By Theorem 6.3.1 in [7] we have for all x € X and w > wy
w100 P d\

(5) /0 ( + S)(s)zds = —— M % 5) (W22

2mi w—100
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w—+1i00 N d\

t/\ [
e SNz 3

where the integrals are convergent uniformly with respect to ¢t in any com-
pact interval of (0,00). We have:

(b xS)(s)x = (b*S) (s)xr — b(0)S(s)x, s€Ry

21

(6) /0 S(s)xds = =

w—100

and
¥+ S)(N)z = Ab * S)(\)z — b0)S(N)z, A > wp
so that (5) yields:

t w100 —
(b* S)(t)z — b(0) /0 S(s)xds = / eM(bx S)(N)zd\

Using (6) in the above equality we obtain

1 w—+100 P
(bx S)(t)r = — eM(bx S)(N)xdA
2mi w—100
where the convergence of the integral is uniform with respect to t in any
compact interval of (0, co).

O

Proposition 2. Let {S(t)}+>0 be a resolvent family of type (M,wy) for the
equation (1) and let a € C1(Ry) be of type (K,wy); then for each x € D(A)
and w > wg we have

1" o
S(t)x = lim — TN H (W 4 iX)zdA.

r——o0 r'—oo 2T r

where the convergence is uniform on t for any compact interval of (0,00).
Proof. For each x € D(A) we have by Lemma 5 and (2)

(axS)(t)Az = lim 2i / TN G S (w + iN) Azd)
r——o0 r'—o00 2T [,
= lim 1/ eWFNY S (w + iN)x —

r——oo r’'—o0 2T r

d\
w+ i)\)
1 ,
= lim  — [ e“TNH (w4 iX)zdA
r——oo r'—oo 2T r
- L7 oy @
— lim — e —d)
r——oco r'—oo 27 r w+ i
1 [ ,
= lim — / WM H (b + iX)zd\ — o

r——oo r'—oo 2T r

Hence, the resolvent equation (2) implies the assertion.
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We can give now our main result.

Theorem 1. Let {S(t)}>0 be a resolvent family of type (M,wq) for the
equation (1), defined in a UMD space X; suppose that a(t) is 3-regular,

)\%(a)), is locally analytic, and |a(N\)| < ‘% for all |\| > 1, then we have for

all x € X,

1 [ ,
S(t)r = — eWHNUH (w4 iX)zd\, >0, w > wp
2 J_

where the convergence is uniform for t in compact intervals of (0, 00).

Proof. Let r <0< r',t > 0,2 € X and consider
1 o
I(t,r,r)x = / eMS(w +iN\)zdA.
2 J,
An integration by parts yields:

1 A A
I(t,r,r )z = %(em S(w +ir')x — e S(w + ir)x)
L[ MG (w +iN) zdA
2imt [, '

/

Since lim S(w +ir)z = lim S(w + ir')z = 0, in order to prove that
r——00 r’—00

lim I(¢,r,7") exists as ' — oo and r — —oo, we only have to prove that
lim 7 €M S (w—+i)) zd) exists as ' — oo and 7 — —oo. Since a is 3-regular
we have by Lemma 1

S(w+iN) = flw+iN)S(w 4 i) + g(w +iA)S(w + iX)>

with sup |zf(z)] < oo and sup |g(z)| < oco. Hence we have
Rez>0 Rez>0

/ eMS(w +iN)zd\ = / €M f(w + M) S(w + iX)zdA

+ / eMg(w +iN)S(w + iX) 2zd.

Concerning the first integral in the second part of the above equality, we
have by Lemma 2 that there exist a bounded function b € C*(R.) such that

b(A) = f(\). Hence, by Lemma 5 the integral

/ /

/ V(1 NS (w + iNedA = / N (b §) (w -+ iN)zdA

converges to 2w (b x S)(t)x as r — —oo and ' — oo, uniformly for ¢ in
compact intervals of (0,00). Next, we will prove the convergence of the
integral

/ eMg(w 4+ iN)S(w + iX)2zdA.

We shall consider first the case x € D(A?). We have:
a(w +1iN)

(w+1iN)? W+ 1A

S2(w+iN)z = S(w+iX) Az4a2(w+iX)S(w+ir)2 A%,
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Using the hypothesis, it follows that there is a constant C' > 0 such that

lg(w +iX) % (w +iA)a]| < (o] + [l Az]] + [|A%]]).

lw + A2
Consequently, the limit

/

/ eMg(w +iN)S(w + iN) 2zd)

exists as 7’ — oo and 7 — —oo, for all x € D(A?), uniformly for ¢ in any
compact interval of (0, c0).

Observe further that according the hypothesis and Lemma 3, there exists
a function k € L'(R,) such that

9w + NS (W + N2z = S(w + iN[((k * S)(w + Nz + g(00)S(w + i)
for all z € X.
Let Fi(t) = S(t) and F»(t) = (k* S)(t) + g(c0)S(t). Note that Fy is of
exponential type since k € L'(R,) and hence
g(w +iNS(w +iN) 2z = Fi(w + i) Fy(w + i)z

for all z € X.
We can now apply the estimate (d) in Proposition 1 to obtain

I [ Mg+ NS+ iNadN 1m0 < Cllal,

for all z € X.
Since D(A?) is dense in X the above integral converges for all z € X. We
conclude that

L lim / @S (W 4 iX)zd\ = R(t)z

2T r——c0 17'—00

exists for all z € X, uniformly for ¢ in any compact interval of (0, c0).
On the other hand, by equation (6), we have for all z € X

t r
/ S(s)xds = € lim / @IS (W +iN )
0 r

2T r——o0 r'—0c0

d\
w+iA

uniformly for ¢ in any compact interval of (0,00) . By differentiation we
obtain R(t)z = S(t)x for all z € X.
U

Remark The functions a(t) = 1“(54711) (o > 0) satisfy the conditions of

the above Theorem. In particular, for « = 0 and o = 1 we recover the
results in [6], Theorem 1 and [5], Proposition 2.12 respectively.
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