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Abstract

The main objective of this doctoral thesis is the study of existence and uniqueness, as
well as qualitative properties of solutions for evolution equations defined in abstract
Banach spaces.

Concerning to evolution equations, one of main subject of study is the study of exis-
tence of solutions. For this reason, we find sufficient conditions that guarantee exis-
tence of mild solutions for some evolution equations. Specifically, we study conditions
which guarantee existence of mild solutions for an integro–differential equation with
non–local initial conditions and a non–autonomous second order differential equation
with non–local initial conditions. Our approach is based on resolvent operator theory.

On th other hand, it is well known that concerning to evolution equations, another im-
portant subject of interest is the study of qualitative properties of their solutions. Moti-
vated by this, we study existence and uniqueness of periodic strong solutions for some
interesting evolution equations having maximal regularity property. Specifically, we
study maximal regularity property on periodic Lebesgue, Besov and Triebel–Lizorkin
spaces for a third–order differential equation and a fractional order differential equa-
tion with finite delay. In the case of periodic Lebesgue spaces our results involve the
notion of U MD–spaces and the concept of R–boundedness of some families of opera-
tors. In the cases of Besov and Triebel–Lizorkin spaces our results only involve bound-
edness conditions for some families of operators. Our approach is based on operator–
valued Fourier multipliers theorems.
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Resumen

El objetivo principal de esta tesis doctoral es el estudio de existencia y unicidad, así
como también, propiedades cualitativas de soluciones de ecuaciones de evolución
definidas en espacios de Banach abstractos.

En relación a una ecuación de evolución, uno de los principales temas de estudio es
la existencia de soluciones. Por este motivo, nosotros encontramos condiciones sufi-
cientes que garantizan existencia de soluciones mild para algunas ecuaciones de evolu-
ción. Específicamente, estudiamos condiciones que aseguran existencia de soluciones
mild para una ecuación integro–diferencial con condiciones iniciales no locales y una
ecuación diferencial de segundo orden no autónoma con condiciones iniciales no lo-
cales. Nuestros métodos están basados en la teoría de operador resolvente.

Por otro lado, es un hecho conocido que en relación a una ecuación de evolución otro
tópico de interés es el estudio de propiedades cualitativas de sus soluciones. Motiva-
dos por esto, estudiamos existencia y unicidad de soluciones periódicas fuertes para
algunas interesantes ecuaciones de evolución teniendo la propiedad de regularidad
maximal. Específicamente, estudiamos la propiedad de regularidad maximal en espa-
cios periódicos de Lebesgue, Besov y Triebel–Lizorkin para una ecuación diferencial
de tercer orden y una ecuación diferencial de orden fraccionario con retardo finito.
En el caso de espacios periódicos de Lebesgue, nuestros resultados involucran la no-
ción de espacios U MD y el concepto de R–acotamiento de algunas familias de oper-
adores. En los casos de espacios periódicos de Besov y Triebel–Lizorkin, nuestros resul-
tados involucran sólo condiciones de acotamiento de estas familias de operadores. Los
métodos usados están basados en teoremas operador–valuados de multiplicadores de
Fourier.
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Introduction

Because many natural phenomena arising from applied fields can be described by par-
tial differential equations and their generalizations, the study of properties of the solu-
tions of these equations is a very important and active field of research. In many cases,
partial differential equations can be transformed into an ordinary differential equa-
tion with values in an infinite dimensional space. This motivates the study of evolution
equations in abstract spaces, especially in Banach spaces.

This thesis is concerned with the study of existence, uniqueness and qualitative prop-
erties of solutions for some classes of abstract evolution equations. This work is the
outcome of the author’s research during his Math Ph.D. study at Universidad de Chile
(March 2009 – September 2012). The main results obtained in this research work are
available through the following four articles made in this period

1) C. Lizama, J.C. Pozo, Existence of mild solutions for semilinear integro–differential
equations with non–local conditions. Submitted

2) V. Poblete, J.C. Pozo, Periodic solutions of an abstract third–order differential equa-
tion. Submitted

3) V. Poblete, J.C. Pozo, Periodic solutions for a fractional order abstract neutral differ-
ential equation with finite delay. Preprint

4) H. R. Henríquez, V.Poblete, J.C. Pozo, Existence of mild–solutions of a non–autonomous
second order evolution equation with non–local initial conditions. Preprint
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Most of the results in the thesis is based on two methods of theory of evolution equa-
tions.

1. Theory of resolvent operators and variation of parameters formula.

2. Maximal regularity property and operator–valued Fourier multipliers.

It is well known that concerning to an evolution equation, one of the main subject of
study is the existence of a solution. However, there exist several notions of solution
of an evolution equation. Strong solution is the best, but more demanding notion. A
weaker concept of solution is the concept of mild solution. In fact, a strong solution is
a mild solution that satisfies additional differentiability properties. Many author prove
existence of strong solutions proving existence of mild solutions and giving smooth-
ness conditions in the initial value. Reader can see the works [83, 84, 125, 147] and
references therein.

The theory of resolvent operator has been subject of increasing interest in past decades,
because it is a central issue for the study of mild solutions of evolution equations.
The resolvent operator is applied to inhomogeneous equations to derive various vari-
ation of parameters formula. In this direction, we refer the works made by de Andrade
and Lizama [50], Arjunan, dos Santos and Cuevas [54], Lizama and N’Guérékata [111],
Prüss [131,132]. Moreover, there exists several methods for proving existence theorems
for the resolvent, for example operational calculus in Hilbert spaces, perturbation ar-
guments, and Laplace–transform method, (for more information see the works made
by Grimmer and Prüss [69] and Prüss [133, 134]). In Chapters 2 and 3, we study the
existence of mild solutions for two very interesting evolution equations. Our approach
is based in resolvent operator theory and variation of parameters formula.

Another important subject of research concerning to evolution equations is the study
of qualitative properties of their solutions. In particular, the problem of existence of
solutions having a periodicity property has been considered by several authors, the
reader can see [13, 77, 79, 80, 114] and references therein. In the same manner, the
study of regularity properties of solutions for evolution equations has been an active
topic of research in last decades. In particular, maximal regularity property has re-
ceived much attention in recent years due to its applications to evolution equations.
Indeed, maximal regularity is an important tool in the study of the following problems:

• Existence and uniqueness of solutions of quasi-linear and non-linear partial dif-
ferential equations.

• Existence and uniqueness of solutions of Volterra integral equations.

• Existence and uniqueness of solutions of neutral equations.

• Existence and uniqueness of solutions of non-autonomous evolution equations.
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In these applications, maximal regularity is usually used to reduce, via a fixed-point
argument, a non-linear (respectively a non-autonomous) problem to a linear (respec-
tively an autonomous) problem. In some cases, maximal regularity is needed to apply
an implicit function theorem. (See [46, p.72]).

Several techniques are used to study the problem of maximal regularity of evolution
equations. One of these is the Fourier multipliers or symbols. There exists an exten-
sive literature about vector–valued Fourier theorems and concrete applications. The
reader can see the works made by, Amann [5], Arendt, Batty and Bu [8], Arendt and
Bu [10, 11, 12], Bu [26], Bu and Fang [27, 28, 29, 30], Bu and Kim [25, 31, 32], Clément,
de Pagter, Sukochev and Witvliet [43], Denk, Hieber and Prüss [52], Girardi and Weis
[61, 62], Kalton and Lancien [90], Keyantuo and Lizama [93, 94, 95, 96], Lizama [110],
Poblete [126, 127] and references therein.

As we have mentioned, this thesis consists in the study of 4 problems, two of them are
related with guarantee existence of mild solutions for some interesting evolution equa-
tions; the other two problems are related with guarantee existence of strong solution
with periodicity and maximal regularity properties for evolution equations. In what
follows, we will give a brief description of each Chapter of this thesis.

Chapter 1 contains notation and preliminary results. Furthermore, in this chapter,
for reader’s convenience, we have summarized some relevant concepts and Theorems,
concerning to general evolution equations.

In Chapter 2, we study the following problem. Find conditions that guarantee exis-
tence of a mild solution of the semi–linear integro–differential equation with non–local
initial conditions

u′(t ) = Au(t )+
∫ t

0
B(t − s)u(s)d s + f (t ,u(t )), t ∈ [0,1]

u(0) = g (u).

 (1)

where A : D(A) ⊆ X → X and B(t ) : D(B(t )) ⊆ X → X for t ∈ I = [0,1] are closed linear
operators in a Banach space X . We assume that D(A) ⊆ D(B(t )) for every t ∈ I and
f : I ×X → X , g : C (I ; X ) → X are given X –valued functions.

Evolution equations with non–local initial conditions are more realistic to describe
natural phenomena than classical initial value problem, because additional informa-
tion is taken into account. For this reason, in recent decades there has been a lot of
interest in this type of problems and applications. For importance of non–local initial
conditions in different fields of applied sciences the reader can see [42, 155, 156] and
the references cited therein.

First investigations in this area were made by Byszewski in the papers [36, 37, 38, 39].
Thenceforth, many authors have worked in evolution equations with non–local initial
conditions, the reader can see [16,57,88,115,121,158] for abstract results and concrete
applications.
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The initial–valued problem (1), that is u(0) = u0 for some u0 ∈ X , has been the subject
of many research papers in recent years, because it has many applications in different
fields such as thermodynamics, electrodynamics, continuum mechanics among oth-
ers, see [134]. For this reason, the study of non–local initial for equation (1) is a very
interesting problem.

The main tool that we use is resolvent operator theory. In fact, to achieve our goal we
use a mixed method, combining existence of a family {R(t )}t∈I called resolvent opera-
tor for equation (1), a formula of variation of parameters and a fixed–point argument
used in [158].

We prove existence of mild solution of equation (1), under conditions of compactness
of g and norm continuity of R(t ) for t > 0. Moreover, in the special case B(t ) = b(t )A,
where the operator A is defined on a Hilbert space and the kernel b is a scalar map,
we are able to give sufficient conditions for existence of mild solutions only in terms
of spectral properties of the operator A and regularity properties of the kernel b. We
remark that, this type of spectral conditions is a new feature that has not been observed
even in the special case B ≡ 0. Finally, to prove the feasibility of the abstract results, we
consider an example for a particular choice of b(t ) and A, which is defined by

(Ax)(t , z) =
n∑

i , j=1
ai j (z)

∂x(t , z)

∂zi∂z j
+

n∑
i=1

bi (z)
x(t , z)

∂zi
+ c(z)x(t , z),

where the given coefficients ai j ,b j ,c (i , j = 1,2, . . . ,n) satisfy the usual uniformly ellip-
ticity conditions. We remark that the results of this Chapter can be found in the joint
work made by Lizama–Pozo [115]

In Chapter 3, we study the following problem. Find conditions that guarantee exis-
tence of a mild solution of second order non–autonomous equation with non–local
initial conditions.

u′′(t ) = A(t )u(t )+ f (t ,u(t )), t ∈ [0, a]
u(0) = g (u),

u′(0) = h(u).

 (2)

where A(t ) : D(A(t )) ⊆ X → X for t ∈ J = [0, a] denote closed linear operators de-
fined in a Banach space X . We assume that D(A(t )) = D for all t ∈ J . The function
f : J × C (J ; X ) → X satisfies Carathéodory type conditions, and the functions
g ,h : C (J ; X ) → X are continuous maps.

The study of second order evolution equations is very interesting problem, because
this type of equation arises in several natural phenomena. In the autonomous case,
this is A(t ) = A for all t , there exists an extensive literature. The existence of solutions
are closely related with the concept of cosine family. For abstract results and concrete
applications we refer the reader to [17, 41, 58, 140, 144] and references therein. In the
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non–autonomous case, the study of solutions becomes much more complicated. How-
ever, we prove existence of mild– solutions for equation (2) imposing very general con-
ditions for the operators A(t ) and the functions f , g and h.

The principal tool which we use is resolvent operator theory. In fact, we prove the
existence of an evolution operator {S(t , s)}t ,s∈J , and then we derive a variation of pa-
rameters formula. Finally, we check the feasibility of our abstract results in the special
case A(t ) = A +B(t ) where the operator A is the generator of a cosine family and the
operators B(t ) satisfy appropriate conditions.

We remark that the results of this Chapter can be found in the joint work made by
Henríquez–Poblete–Pozo [82] .

In Chapter 4, we study the following problem. Find a characterization of maximal
regularity for a linear abstract third–order differential equation.

Recent investigations have demonstrated that third order differential equations de-
scribe several models arising from very interesting natural phenomena, such as wave
propagation in viscous thermally relaxing fluids, flexible space structure with internal
damping, a thin uniform rectangular panel, like a solar cell array, or a spacecraft with
flexible attachments (cf. e.g., [18, 19, 20, 21, 65, 66, 67]).

Motivated by this fact, many authors have worked in abstract third–order differential
equations. In particular, the following equation has been widely studied

αu′′′(t )+u′′(t ) =βAu(t )+γAu′(t )+F (t ,u(t )), for t ∈R+ (3)

where A is a closed linear operator defined on a Banach space X , the function F is
a given and X –valued, and α,β,γ ∈ R+. We mention some aspects that equation (3)
has been analyzed. In [45], a characterization of solutions for its linear version, i.e.
F (t ,u(t )) = f (t ), have been obtained in Hölder spaces C s(R; X ) by Cuevas and Lizama.
In the same manner, Fernández, Lizama and Poblete in [59] characterize well-posedness
in Lebesgue spaces, Lp (R; X ). In addition, Fernández, Lizama and Poblete, in [60],
study regularity of mild and strong solutions defined in R when the underlying spaces
are Hilbert spaces and some qualitative properties of their solutions. On the other
hand, existence of bounded mild solutions of the semi-linear equation (3) is studied
by De Andrade and Lizama in [50].

However, the existence of periodic strong solutions of equation (3) has not been ad-
dressed in the existing literature. For this reason, Chapter 4 is devoted to study the
existence of periodic strong solutions for the following abstract third–order equation

αu′′′(t )+u′′(t ) =βAu(t )+γBu′(t )+ f (t ), t ∈ [0,2π], (4)

with boundary conditions u(0) = u(2π), u′(0) = u′(2π) and u′′(0) = u′′(2π), where the
operators A and B are closed linear operators defined on a Banach space X satisfying

viii



D(A)∩D(B) 6= {0}, the constantsα,β,γ ∈R+, and f belongs to either periodic Lebesgue
spaces , or periodic Besov spaces, or periodic Triebel–Lizorkin spaces. We remark, the
study of existence of solutions for equation (4) in the particular case A ≡ B is a manner
to study periodic solutions of equation (3).

Our approach is based in maximal regularity property for evolution equations and
operator–valued Fourier multiplier theorems. In case of periodic Lebesgue spaces, our
results involve the key notions of U MD–spaces and R–boundedness (see Chapter 1
section 1.4 for definition and related results) of the families of operators

{
kB(iαk3 +k2 + iγkB +βA)−1)

}
k∈Z and

{
i k3(iαk3 +k2 + iγkB +βA)−1}

k∈Z.

On the other hand, in the case of periodic Besov or Triebel–Lizorkin spaces, our results
only involve boundedness condition of the preceding families.

In general, it is not easy to verify the R–boundedness or boundedness condition of
a specific family of operators, especially when two different operators are involved.
However, we verify our hypothesis in the special case B = A1/2 where A is a sectorial
operator; the scalar values α,β, and γ related with equation (4) play a crucial role in
this proof.
We remark that the results of this Chapter can be found in the joint work made by
Poblete–Pozo [129].

In Chapter 5, we study the following problem. Find sufficient conditions that guar-
antee the existence of a periodic strong solution for a fractional neutral equation with
finite delay.

The fractional calculus which allows us to consider integration and differentiation of
any order, not necessarily integer, has been the object of extensive study for analyz-
ing not only anomalous diffusion on fractals (physical objects of fractional dimen-
sion, like some amorphous semiconductors or strongly porous materials; see [6, 118]
and references therein), but also fractional phenomena in optimal control (see, e.g.,
[119, 130, 137]). As indicated in [68, 117, 137] and the related references given there, the
advantages of fractional derivatives become apparent in modelling mechanical and
electrical properties of real materials, as well as in the description of rheological prop-
erties of rocks, and in many other fields. One of the emerging branches of the study is
the Cauchy problems of abstract differential equations involving fractional derivatives
in time. In recent decades there has been a lot of interest in this type of problems, its
applications and various generalizations (cf. e.g., [1,3,44,85] and references therein). It
is significant to study this class of problems, because, in this way, one is more realistic
to describe the memory and hereditary properties of various materials and processes
(cf. [86, 100, 119, 130]).

In the same manner, several systems of great interest in science and engineering are
modeled by partial neutral functional differential equations. The reader can see [64,
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74, 75, 149, 151, 152, 157]. Many of these equation can be written as an abstract neutral
functional differential equation (ANFDE). Additionally, it is well known that one of the
most interesting topics, both from a theoretical as practical point of view, of the quali-
tative theory of differential equations and functional differential equations is the exis-
tence of periodic solutions. In particular, the existence of periodic solutions of ANFDE
has been considered in several works [71, 89, 116, 145, 146, 153].
Motivated by both practical and theoretical considerations, this Chapter is devoted to
the study sufficient conditions that guarantee existence and uniqueness of strong so-
lution for the following fractional neutral differential equation with finite delay

Dα
(
u(t )−Bu(t − r )

)= Au(t )+Fut +GDβut + f (t ), t ∈ [0,2π], (5)

with 0 < β < α 6 2, where r > 0 is a fixed number and A : D(A) ⊆ X → X and
B : D(B) ⊆ X → X are linear closed operators defined in a Banach space X such that
D(A) ⊆ D(B). Here the function ut is given by ut (θ) = u(t + θ) for θ in an appropri-
ate domain, denotes the history of the function u(·) at t and Dβut (·) is defined by
Dβut (·) = (

Dβu
)

t (·). The delay operators F and G are bounded linear map defined
on an suitable space and f is a given function that belongs to either periodic Besov
spaces, or periodic Triebel–Lizorkin spaces.

Our approach is based in a mixed method. We prove and use maximal regularity on
periodic Besov spaces (respectively periodic Triebel–Lizorkin spaces) of an auxiliary
equation and a fixed–point argument to proving existence of a strong B s

p,q –solution
(respectively F s

p,q –solution) of equation (5). Here the auxiliary equation is given by

Dαu(t ) = Au(t )+Fut +GDβut + f (t ), t ∈ [0,2π], and 0 <β<α6 2. (6)

with boundary periodic conditions. All terms in preceding equation are defined in the
same manner as equation (5).

Our main results involve, among other considerations, boundedness of the family of
operators, {

(i k)α
(
(i k)α−Fk − (i k)βGk − A

)−1}
k∈Z

and regularity of the families of bounded operators {Fk }k∈Z and {Gk }k∈Z. Here the fam-
ilies of operators {Fk }k∈Z and {Gk }k∈Z are defined by

Fk x = F (ek x) and Gk x =G(ek x), where ek x(·) = e i k·x for x ∈ X .

In last section of this chapter, to prove the feasibility of the abstract results, we consider
two examples for particular choices of operators A , B ,F and G .

We remark that the main results of this Chapter can be found in the joint work made
by Poblete–Pozo [128].
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CHAPTER 1

Preliminaries

In this thesis X and Y always are complex Banach spaces. We denote the space of all
linear operators from X to Y by L (X ,Y ). In the case X = Y , we will write briefly L (X ).
Let A be an operator defined on X . We will denote its domain by D(A), its domain
endowed with the graph norm by [D(A)], its resolvent set by ρ(A), and its spectrum set
by σ(A) =C\ρ(A).

We denote by C ([0, a]; X ) the space of continuous functions f : [0, a] 7→ X .

Let f ∈ L1
loc (R; X ), we adopt the following notation for Fourier transform and Laplace

transform,

f̂ (ξ) = 1

2π

∫ 2π

0
e iξt f (t )d t , and f̃ (λ) =

∫ ∞

0
e−ωt f (t )d t ,

respectively.

1.1 Families M –bounded and n–regular sequences

In order to give certain conditions which we will need in Chapters 4 and 5, we establish
the following notation. Let {Lk }k∈Z ⊂L (X ,Y ) be a sequence of operators. Set

(∆0Lk ) = Lk , (∆Lk ) = (∆1Lk ) = Lk+1 −Lk

and for n = 2,3, ... , set
(∆nLk ) =∆(∆n−1Lk ).

Definition 1.1. [96] We will say that a family of operators {Lk }k∈Z ⊂ L (X ,Y ) is
M –bounded of order n (n ∈N∪ {0}) if

sup
06l6n

sup
k∈Z

‖k l (∆l Lk )‖ <∞. (1.1)
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Note that, for j ∈ Z fixed, sup
06l6n

sup
k∈Z

‖k l (∆l Lk )‖ < ∞ if and only if

sup
06l6n

sup
k∈Z

‖k l (∆l Lk+ j )‖ <∞. The statement follows directly from the binomial formula.

In the preceding definition when n = 0, the M–boundedness of order n for {Lk }k∈Z
simply means that {Lk }k∈Z is bounded.
When n = 1, this is equivalent to

sup
k∈Z

‖Lk‖ <∞ and sup
k∈Z

‖k (Lk+1 −Lk )‖ <∞. (1.2)

When n = 2, in addition to (1.2), we must have

sup
k∈Z

‖k2 (Lk+2 −2Lk+1 +Lk )‖ <∞ . (1.3)

When n = 3, in addition to (1.2) and (1.3), we must have

sup
k∈Z

‖k3 (Lk+3 −3Lk+2 +3Lk+1 −Lk )‖ <∞ . (1.4)

In the scalar case, that is, {ak }k∈Z ⊆C, we will write ∆n ak =∆(∆n−1ak ).

Definition 1.2. [91] A sequence {ak }k∈Z ⊆C\ {0} is called

a) 1–regular if the sequence
{

k
(∆1ak )

ak

}
k∈Z is bounded;

b) 2–regular if it is 1–regular and the sequence
{

k2 (∆2ak )

ak

}
k∈Z is bounded;

c) 3–regular if it is 2–regular and the sequence
{

k3 (∆3ak )

ak

}
k∈Z is bounded.

For useful properties and further details about n–regularity, see [99].

Remark 1.1. Note that if {ak }k∈Z is an 1–regular sequence then, for all j ∈ Z fixed, the

sequence
{

k
ak+ j −ak

ak+ j

}
k∈Z is bounded. In the cases n = 2,3, analogous properties hold.

1.2 Vector–valued Besov and Triebel–Lizorkin spaces

Periodic Besov and Triebel–Lizorkin spaces form part of functions spaces which are of
special interest. They behave in a similar manner to Sobolev spaces and the property
of maximal regularity can be stated elegantly on them. Furthermore, they generalize
many important spaces. For example, periodic Hölder continuous functions of index
s with 0 < s < 1, is a particular case of periodic Besov spaces, see [12] for more details.
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However, the main reason to work in these spaces is that a certain form of Mikhlin’s
multiplier theorem holds for operator–valued symbols on arbitrary Banach spaces X ,
unlike Lebesgue spaces Lp (T; X ), where this property is valid if and only if p = 2 (for
more information [61]).

Let S (R; X ) be the Schwartz space on R, let S ′(R; X ) be the space of all the tempered
distributions on R and let D′(T; X ) be the space of the X –valued 2π–periodic distribu-
tions. Let Φ(R) be the set of all systems φ = {φ j } j>0 ⊆ S (R; X ) satisfying
supp(φ0) ⊆ [−2,2], and

supp(φ j ) ⊆ [−2 j+1,−2 j−1]∪ [2 j−1,2 j+1],
∑
j>0

φ j (t ) = 1, for t ∈R

and, for α ∈ N∪ {0}, there is a Cα > 0 such that sup
j>0,x∈R

2α j‖φ(α)
j (x)‖ 6 Cα. It is a well

known fact from Littlewood–Paley decomposition theory that this type of systems there
exist. More information about this can be found in [4, 5, 9, 12].

Definition 1.3. [12] Let 1 6 p, q 6 ∞, s ∈ R and φ = (φ j ) j>0 ∈ Φ(R). The X –valued
periodic Besov spaces are defined by

B s,φ
p,q (T; X )) = {

f ∈D′(T; X ) : ‖ f ‖
B

s,φ
p,q

<∞}
where

‖ f ‖
B

s,φ
p,q

=
( ∑

j>0
2 j sq

∥∥∥∑
k∈Z

ek ⊗φ j (k) f̂ (k)
∥∥∥q

p

) 1
q

with usual modifications when p =∞ or q =∞.

The space B s,φ
p,q is independent of φ ∈ Φ(R) and different choices of φ ∈ Φ(R) generate

equivalent norms. As consequence, we will denote ‖ ·‖
B

s,φ
p,q

simply by ‖ ·‖B s
p,q

.

We recall some important properties of these spaces:

(a) Let 16 p, q 6∞, s ∈R be fixed. The X –valued periodic space B s
p,q (T; X ) is a Banach

space.

(b) Let 16 p, q 6∞be fixed. If s > 0, the natural injection from B s
p,q (T; X ) into Lp (T; X )

is a continuous linear operator.

(c) (Lifting property) Let 16 p, q 6∞, s ∈R, f ∈D′(T; X ) and α ∈R then f ∈ B s
p,q (T; X )

if and only if
∑

k 6=0 ek ⊗ (i k)α f̂ (k) ∈ B s−α
p,q (T; X ).

To define the X –valued periodic Triebel–Lizorkin spaces, we use the same notation for
S (R; X ), S ′(R; X ), D′(T; X ) andΦ(R) as those of definition of X –valued periodic Besov
spaces.

3



Definition 1.4. [25] Let φ = (φ)k∈N0 ∈ Φ(R) be fixed, for 1 6 p, q 6 ∞, and s ∈ R.
The X –valued periodic Triebel–Lizorkin spaces are defined by

F s,φ
p,q (T; X ) = {

f ∈D′(T; X ) : ‖ f ‖
F

s,φ
p,q

<∞}
where

‖ f ‖
F

s,φ
p,q

=
∥∥∥( ∑

j>0
2 j sq

∥∥∥∑
k∈Z

ek ⊗φ j (k) f̂ (k)
∥∥∥q

X

) 1
q
∥∥∥

p

with the usual modification when p =∞ or q =∞.

The space F s,φ
p,q is independent of φ ∈ Φ(R) and different choices of φ ∈ Φ(R) generate

equivalent norms. Consequently, we simply denote ‖ ·‖
F

s,φ
p,q

by ‖ ·‖F s
p,q

.

Note that X –valued periodic Triebel–Lizorkin spaces have analogous properties as those
of X –valued periodic Besov spaces, the reader can see [25,32]. We summarize the most
important properties as follows

(a) Let 16 p, q 6∞, s ∈R be fixed. The X –valued periodic space F s
p,q (T; X ) is a Banach

space.

(b) Let 1 6 p, q 6∞ be fixed. If s > 0, then the natural injection from F s
p,q (T; X ) into

Lp (T; X ) is a continuous linear operator.

(c) (Lifting property) Let 16 p, q 6∞, s ∈R, f ∈D′(T; X ) and α ∈R then f ∈ F s
p,q (T; X )

if and only if
∑

k 6=0 ek ⊗ (i k)α f̂ (k) ∈ F s−α
p,q (T; X ).

1.3 Operator–valued Fourier multipliers

In this section, we recall some operator–valued Fourier multipliers theorems, that we
shall use to characterize maximal regularity of problems with periodic boundary con-
ditions in Chapters 4 and 5.

We denote the space consisting of all 2π–periodic, X –valued functions by E(T; X ). The
following definitions will be used in Chapters 4 and 5 with Lebesgue, Besov and Triebel–
Lizorkin spaces.

Definition 1.5. We say that the sequence {Lk }k∈Z ⊆ L (X ,Y ) is an (E(X ),E(Y ))– multi-
plier if for each f ∈ E(T; X ), there exists a function u ∈ E(T;Y ) such that

û(k) = Lk f̂ (k) , for all k ∈Z.

In the case X = Y , we will say that {Lk }k∈Z is an E–multiplier.
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The next Theorem, proved by Arendt and Bu in [10], establishes a sufficient condition
that guarantees when a family {Lk }k∈Z is a Lp –multiplier. It is remarkable, in order to do
this the key concepts of family of operator R–bounded and U MD–spaces are needed
(see section 1.4).

Theorem 1.1. Let p ∈ (1,∞), and let X be U MD–space. Assume that {Lk }k∈Z ⊆ L (X ).
If the families of operators {Lk }k∈Z and {k(∆1Lk )}k∈Z are R–bounded, then {Lk }k∈Z is an
Lp –multiplier.

The following Theorem, proved by Arendt and Bu in [12], establishes a sufficient con-
dition that guarantees when a family {Lk }k∈Z is a B s

p,q –multiplier. We remark, this the-
orem impose stronger conditions than Theorem 1.1 for family of operators {Lk }k∈Z,
however it is valid on an arbitrary Banach space X .

Theorem 1.2. Let 1 6 p, q 6 ∞, and s ∈ R. Let X be a Banach space. If the family
{Lk }k∈Z ⊆L (X ) is M–bounded of order 2, then {Lk }k∈Z is a B s

p,q –multiplier.

The following Theorem, proved by Bu and Kim in [32] , establishes a sufficient con-
dition that guarantees when a family {Lk }k∈Z is a F s

p,q –multiplier. We remark, as well
as in Theorem 1.2, this theorem is valid for arbitrary Banach space X , however more
conditions are imposed for the family of operators {Lk }k∈Z.

Theorem 1.3. Let 1 6 p, q 6 ∞, and s ∈ R. Let X be a Banach space. If the family
{Lk }k∈Z ⊆L (X ) is M–bounded of order 3, then {Lk }k∈Z is a F s

p,q –multiplier.

1.4 Lp–maximal regularity of evolution equations

The Lp –maximal regularity property is a special topic of evolution equations because is
a fundamental tool for the study of non–linear problems. It is remarkable that classical
theorems on Lp –multipliers are no longer valid for operator–valued functions unless
the underlying space is isomorphic to a Hilbert space. However, Weis in [148] gives
a characterization of Lp –maximal regularity in U MD–spaces using the key notion of
R–boundedness and Fourier multipliers techniques. Thenceforth, many authors have
used this concept in the study of Lp –maximal regularity. The reader can see [7, 10, 29,
30, 43, 59, 63, 97, 127]. In Chapter 4 we characterize Lp –maximal regularity of a third–
order differential equation in U MD–spaces, using R–boundedness for some families
of operators. We state in this section the necessary definitions.

Let S (R; X ) be the Schwartz space, consisting of all the rapidly decreasing X –valued
functions. A Banach space will be called a U MD–space if the Hilbert transform can
be extended to a bounded linear operator in Lp (R; X ), for some (and hence for all)
p ∈ (1,∞). Here the Hilbert transform H of a function f ∈S (R; X ) is defined by

(H f )(s) = lim
ε→0

1

π

∫
ε<|t |< 1

ε

f (t − s)

t
d t .
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Examples of U MD–spaces include Hilbert spaces, Sobolev spaces W s
p (Ω), with

1 < p <∞, the Schatten–von Neumann classes Cp (H) of operators on Hilbert spaces
for 1 < p <∞, the Lebesgue spaces Lp (Ω,µ) and Lp (Ω,µ; X ), with 1 < p <∞ and X a
U MD–space. Moreover, every closed subspace of a U MD–space is an U MD–space.
On the other hand, every U MD–space is reflexive, and therefore, L1(Ω,µ), L∞(Ω,µ)
(if Ω is an unbounded set) and periodic Hölder spaces of index α with 0 < α < 1,
Cα([0,2π]; X ) are not U MD–spaces. For further information about these spaces, see
[23, 33, 34].

As we have mentioned, the notion R–boundedness has proved to be a significant tool
in the study of abstract multiplier operators. Preliminary concepts for the definition
and properties of R–boundedness that we will use may be found in [52, 87, 90].

For j ∈N, denote by r j the j−th Rademacher function on [0,1], i.e. r j (t ) = sg n(sin(2 jπt )).
For x ∈ X we write r j x for the vector–valued function t → r j (t )x. The definition of
R–boundedness is given as follows.

Definition 1.6. Let X and Y be Banach spaces. A family of operators T ⊆ L (X ,Y )
is called R–bounded if there exist a constant C > 0 and p ∈ [1,∞) such that for each
n ∈N, T j ∈T , x j ∈ X such that the inequality∥∥∥ n∑

j=1
r j T j x j

∥∥∥
Lp ((0,1);Y )

6C
∥∥∥ n∑

j=1
r j x j

∥∥∥
Lp ((0,1);X )

holds. The smallest such C > 0 is called an R–bound of T , denoted Rp (T ).

Remark 1.2. We remark that large classes of operators are R–bounded, (the reader can
see [63, 87, 143] and references therein). Several properties of R–bounded families can be
founded in the monograph of Denk-Hieber-Prüss [52]. For the reader convenience we
have summarized the most important of them.

(i) If T ⊆L (X ,Y ) is R–bounded, then it is uniformly bounded with

sup{‖T ‖ : T ∈T }6Rp (T ).

(ii) The definition of R–boundedness is independent of p ∈ [1,∞).

(iii) When X and Y are Hilbert spaces, T ⊆ L (X ,Y ) is R–bounded if and only if T is
uniformly bounded.

(iv) Let X , Y be Banach spaces and T , S ⊆L (X ,Y ) be R–bounded. Then

T +S = {T +S : T ∈T ,S ∈S }

is R–bounded as well, and Rp (T +S )6Rp (T )+Rp (S ).
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(v) Let X , Y and Z be Banach spaces and T ⊆ L (X ,Y ), and S ⊆ L (Y , Z ) be R–
bounded. Then

T S = {T S : T ∈T ,S ∈S }

is R–bounded as well, and Rp (T S )6Rp (T )Rp (S ).

(vi) Let X , Y be Banach spaces and T ⊆L (X ,Y ) be R–bounded. If {αk }k∈Z is a bounded
sequence, then {αk T : k ∈Z , T ∈T } is R–bounded.

The next Proposition proved in [10] relates Lp –multipliers and R–bounded families of
operators.

Proposition 1.1. Let p ∈ (1,∞), and let X and Y be UMD–spaces. Assume that
{Lk }k∈Z ⊆L (X ,Y ). If the family {Lk }k∈Z is an (Lp (X ),Lp (Y ))–multiplier, then {Lk }k∈Z is
R–bounded.

In order to work with Lp –maximal regularity for evolution equations, various researchers
introduce the following vector–valued spaces of functions. See [10, 93, 99].

Definition 1.7. Let p ∈ [1,∞), and let n ∈N. Let X and Y be Banach spaces. We define
the following vector–valued function spaces.

H n,p
per (X ,Y ) = {

u ∈ Lp (T; X ) : ∃ v ∈ Lp (T;Y ) such that v̂(k) = (i k)nû(k), for all k ∈Z}
.

In the case X = Y , we just write H n,p
per (X ). We highlight two important properties of

these spaces:

• Let n,m ∈N. If n 6m, then H m,p
per (X ,Y ) ⊆ H n,p

per (X ,Y ).

• If u ∈ H n,p
per (X ), then for all 06 k 6 n −1, we have u(k)(0) = u(k)(2π).

Remark 1.3. For 1 6 p 6∞, by [10, Lemma 2.2], for all n ∈ N the family of operators
{kn Mk }k∈Z is an Lp –multiplier if and only if {Lk }k∈Z is an (Lp (X ), H n,p

per (X ))–multiplier.

Lemma 1.1. [10] Let f , g ∈ Lp (T; X ), with p ∈ [1,∞). If A is a closed operator in a Banach
space X , then the following two assertions are equivalent.

(i) f (t ) ∈ D(A) and that A f (t ) = g (t ) a.e.

(ii) f̂ (k) ∈ D(A) and that A f̂ (k) = ĝ (k), for all k ∈Z.
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1.5 Measure of Non–compactness

The theory of measures of non–compactness has many applications in Topology, Func-
tional analysis and Operator theory. For more information the reader can see [14]. In
this thesis we use the notion of Hausdorff measure of non–compactness.

Definition 1.8. Let B be a bounded subset of a semi–normed linear space Y . The Haus-
dorff measure of non–compactness is defined by

γ(B) = inf{ε> 0 : B has a finite cover by balls of radius ε}

Remark 1.4. This measure of non–compactness satisfies important properties, we have
summarized the most important for our work. For more details see [14].

(a) If A ⊆ B then γ(A)6 γ(B).

(b) γ(A) = γ(A), where A denotes the closure of A.

(c) γ(A) = 0 if and only if A is totally bounded.

(d) γ(λA) = |λ|γ(A) with λ ∈R.

(e) γ(A∪B) = max{γ(A),γ(B)}

(f) γ(A+B)6 γ(A)+γ(B), where A+B = {a +b : a ∈ A, b ∈ B}.

(g) γ(A) = γ(co(A)) where co(A) is the closed convex hull of A.

The following Lemmas will be necessary for the problems that we study in Chapter
2 and Chapter 3. In what follows, we denote by ζ the Hausdorff measure of non–
compactness on X and byγ the Hausdorff measure of non–compactness on C ([0, a]; X ).

Lemma 1.2. Let S ⊆ C ([0, a]; X ). If S is bounded and equicontinuous, then the set of
functions co(S) ⊆ C ([0, a]; X ) is also bounded and equicontinuous. Here co(S) denotes
the convex hull of S.

Lemma 1.3. [14] Let W ⊆ C ([0, a]; X ). If W is bounded, then ζ(W (t )) 6 γ(W ) for all
t ∈ [0, a], where W (t ) = {x(t ) : x ∈ W } ⊆ X . Furthermore, if W is equicontinuous on
[0, a], then ζ(W (t )) is continuous on [0, a], and

γ(W ) = sup{ζ(W (t )) : t ∈ [0, a]}.

Lemma 1.4. [22]. If W is a bounded set, then for each ε > 0, there exists a sequence
{un}n∈N ⊆W such that

γ(W )6 2γ({un}n∈N)+ε.
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Lemma 1.5. [108]. Suposse that 0 < ε< 1 and h > 0 and let

Sn = εn +C n
1 ε

n−1h +C n
2 ε

n−2 h2

2!
+·· ·+ hn

n!
, n ∈N

then lim
n→∞Sn = 0, where for 06m 6 n and the constants are defined by C n

m = (n
m

)
.

The following results are the key in the proof of the Theorems of Chapter 2 and Chapter
3. The first one was proved by Sadovskii [136] in 1967. In 1955 Darbo [48] proved the
same result for γ–k–set contractions, k < 1. The second one is a sharpening of the first
one and it is due to Liu, Guo, C. Wu, Y. Wu [108].

Definition 1.9. A mapping F : C ([0, a]; X ) → C ([0, a]; X ) is said to be a γ–k–set con-
traction, k ∈ (0,1), if F is continuous and if for all bounded subsets B of C ([0, a]; X ),
γ(F (B)) 6 kγ(B). F is said to be γ–condensing if F is continuous and γ(F (A)) < γ(A)
for every bounded subset A of C ([0, a]; X ) with γ(A) > 0.

Theorem 1.4. Suppose M is a nonempty bounded closed and convex subset of a Banach
space X and suppose F : M → M is γ–condensing . Then F has a fixed point in M.

Theorem 1.5. Let B be a closed and convex subset of a complex Banach space X , let
F : B → B be a continuous operator such that F (B) is bounded. For each bounded subset
C ⊆ B, set

F 1(C ) = F (C ) and F n(C ) = F (co(F n−1(C ))), n = 2,3, . . .

If there exist a constant 06 r < 1 and n0 ∈N such that for each bounded subset C ⊆ B

γ(F n0 (C ))6 rγ(C )

then F has a fixed point in B.
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CHAPTER 2

Mild Solutions for an Integro–Differential
Equation with Non–local Initial

Conditions

As we have mention in Introduction, evolution equations with non–local initial con-
ditions generalize evolution equations with classical initial conditions. This notion
is more complete for describing nature phenomena than the classical one because
additional information is taken into account. For the importance of nonlocal condi-
tions in different fields of applied sciences see [42,53,155,156] and the references cited
therein. For example, in [51] the author describes the diffusion phenomenon of a small

amount of gas in a transparent tube by using the formula g (u) =
p∑

i=0
ci u(ti ), where ci ,

i = 0,1, . . . , p, are given constants and 0 < t0 < t1 < ·· · < tp < 1.

The earliest works in this area were made by Byszewski in [36,37,38,39]. In these works,
using semigroup methods and Banach fixed point theorem the author prove existence
and uniqueness of mild and strong solutions of the problem

u′(t ) = Au(t )+ f (t ,u(t )) t ∈ [0,1]
x(0) = g (u).

}
(2.1)

when A is an operator defined in a Banach space X and generates a semigroup {T (t )}t>0,
f and g are given X –valued functions.

Thenceforth, problem (2.1) has been extensively examined. In fact, in [40] Byszewski
and Lakshmikantham have studied existence and uniqueness of mild solution when
f and g satisfy Lipschitz-type conditions. In [121, 122] Ntouyas and Tsamatos have
studied this problem under conditions of compactness of the function g and the semi-
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group generated by A. Recently, in [158], Zhu, Song and Li have treated this problem
without conditions of compactness on the semigroup {T (t )}t>0 and the function f .

On the other hand, the study of integro–differential equations has been an active topic
of research in recent years since it has many applications in different areas. In addition,
there exists an extensive literature about integro–differential equations with non–local
initial conditions, (cf. e.g., [16, 56, 57, 88, 106, 115, 121, 122, 123, 158]). Our work is a
contribution to this theory. In fact, this Chapter is devoted to the study of the exis-
tence of mild solutions for semi–linear integro–differential evolution equations. More
precisely, we consider the following problem on an abstract Banach space X

u′(t ) = Au(t )+
∫ t

0
B(t − s)u(s)d s + f (t ,u(t )), t ∈ [0,1]

u(0) = g (u).

 (2.2)

where A : D(A) ⊆ X → X and B(t ) : D(B(t )) ⊆ X → X for t ∈ I = [0,1] are closed linear
operators in a Banach space X . We assume that D(A) ⊆ D(B(t )) for every t ∈ I and
f : I ×X → X , g : C (I ; X ) → X are given X –valued functions.

The initial valued version of equation (2.2) has been extensively studied by many re-
searchers because it is very important in different fields such as thermodynamics, elec-
trodynamics, continuum mechanics and population biology, among others. For more
information see [15, 47, 134]. For this reason the study of mild solutions for equation
(2.2) is a very interesting problem.

2.1 Main Results

Most of authors obtain the existence, uniqueness of solutions and well–posedness for
equation (2.2) establishing the existence of a resolvent operator {R(t )}t∈I (see Grimmer
and Prüss [69, 134]).

Next, we include some preliminaries concerning to resolvent operator {R(t )}t∈I related
with equation (2.2).

Definition 2.1. A family {R(t )}t∈I of bounded linear operators on X is called a resolvent
operator of equation (2.2) if the following conditions are fulfilled.

(R1) For each x ∈ X , R(0)x = x and R(·)x ∈C ([0,1]; X ).

(R2) The map R : [0,1] →L ([D(A)]) is strongly continuous.

(R3) For each y ∈ D(A), the function t → R(t )y is continuously differentiable and

d

d t
R(t )y = AR(t )y +

∫ t

0
B(t − s)R(s)yd s =

= R(t )Ay +
∫ t

0
R(t − s)B(s)yd s, t ∈ I .

(2.3)
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Furthermore, we will say that the resolvent operator of equation (2.2), {R(t )}t∈I , has the
property (EP) if the application from C (I ; X ) to C (I ; X ) defined by
u(·) → R(·)g (u) takes bounded sets into equicontinuous sets.

Remark 2.1. There exists several situations where the resolvent operator of equation
(2.2), {R(t )}t∈I , has property (EP), for example

a) If the function t → R(t ) is continuous from (0,+∞) to L (X ) endowed with the uni-
form operator norm ‖ ·‖L (X ).

b) If function g takes values in D(A).

c) If function g is a compact operator.

As we have mentioned, the existence of mild solutions of the linear classical version of
equation (2.2), this is

u′(t ) = Au(t )+
∫ t

0
B(t − s)u(s)d s + f (t ), t ∈ I

u(0) = u0 ∈ X ,

 (2.4)

has been studied by Grimmer and Prüss. Assuming that the function f ∈ L1(I ; X ) they
prove that

u(t ) = R(t )u0 +
∫ t

0
R(t − s) f (s)d s, t ∈ I , (2.5)

is a mild solution of the problem (2.4). Motivated by this result, we adopt the following
concept of solution.

Definition 2.2. A function u ∈C (I ; X ) is called a mild solution of equation (2.2) if sat-
isfies the equation

u(t ) = R(t )g (u)+
∫ t

0
R(t − s) f (s,u(s))d s t ∈ I . (2.6)

Clearly, a manner to guarantee the existence of a mild solution of equation (2.2) is using
a fixed–point argument. For this reason, we apply an adaptation of the method used
in [158] where the authors prove that equation (2.1) has a mild solution. The crucial
concept that is involved by this technique is Hausdorff measure of non–compactness.
See Chapter (1) Preliminaries for definition, properties and results related.
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Henceforth, we assume that the following assertions hold.

(H1) Equation (2.1) admits a resolvent operator {R(t )}t∈I satisfying the property (EP).

(H2) The function g : C (I ; X ) → X is a compact map, and for each M > 0 the number
gM defined by gM = sup

{‖g (u)‖ : ‖u‖6 M
}

is finite.

(H3) The function f : I × X → X satisfies the Carathéodory type conditions, that is,
f (·, x) is measurable for all x ∈ X and f (t , ·) is continuous for almost all t ∈ I .

(H4) There exist a function m ∈ L1(I ;R+) and a nondecreasing continuous function
Φ :R+ →R+ such that

‖ f (t , x)‖6m(t )Φ(‖u‖)

for all x ∈ X and almost all t ∈ I .

(H5) There exists a function H ∈ L1(I ;R+) such that for any subset of functions
S ⊆C (I ; X ), we have

ζ{ f (t ,S(t ))}6 H(t )ζ{S(t )}

for almost all t ∈ I .

The main result in this Chapter is the following theorem.

Theorem 2.1. If the hipothesis (H1)–(H5) are satisfied and there exists a constant R > 0
such that

K gM +KΦ(M)
∫ 1

0
m(s)d s 6 M ,

where K = sup
{‖R(t )‖ : t ∈ I

}
, then the problem (2.2) has at least one mild solution.

Proof. Define F : C (I ; X ) →C (I ; X ) by

(Fu)(t ) = R(t )g (u)+
∫ t

0
R(t − s) f (s,u(s))d s, t ∈ I

for all u ∈C (I ; X ).

First we show that F is a continuous map. Let {un}n∈N ⊆ C (I ; X ) such that un → u (in
the norm of C (I ; X )) Note that

‖F (un)−F (u)‖6K ‖g (un)− g (u)‖+K
∫ 1

0
‖ f (s,un(s))− f (s,u(s))‖d s,

by hypotheses (H2) and (H3) and Lebesgue dominated convergence theorem we have
that ‖F (un)−F (u)‖→ 0 as n →∞.
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Now denote by BM = {u ∈ C (I ; X ) : ‖u(t )‖X 6 M , for all t ∈ I } and note that for any
u ∈ BM we have

‖(Fu)(t )‖6 ‖R(t )g (u)‖+
∥∥∥∥∫ t

0
R(t − s) f (s,u(s))d s

∥∥∥∥
6K gM +KΦ(M)

∫ 1

0
m(s)d s 6 M .

Therefore, F : BM → BM and F (BM ) is a bounded set. Moreover, since the family of
operators {R(t )}t∈I has the property (EP), we have that F (BM ) is an equicontinuous set
of functions.

Define B= co(F (BM )). It follows from Lemma 1.4 that the set B is equicontinuous and
the operator F : B→B is bounded and continuous. In addition, F (B) is a bounded
set of functions.

From properties of Hausdorff measure of non–compactness we have that

ζ(F (B(t )))6 ζ
{
R(t )g (B)

}+ζ(∫ t

0
R(t − s) f (s,B(s))d s

)
6K ζ{g (B)}+K

∫ t

0
ζ{ f (s,B(s))}d s

6K
∫ t

0
H(s)ζ{B(s)}d s 6Kγ(B)

∫ t

0
H(s)d s

Since H ∈ L1(I ; X ) for δ< 1/K there existsϕ ∈C (I ;R+) satisfying
∫ 1

0
|H(s)−ϕ(s)|d s < δ.

Therefore,

ζ(F (B(t )))6Kγ(B)

[∫ t

0
|H(s)−ϕ(s)|d s +

∫ t

0
ϕ(s)d s

]
6Kγ(B) [δ+N t ] ,

where N = ‖ϕ‖∞. Thus , we have

ζ(F (B(t )))6 (a +bt )γ(B), where a = δK and b = K N .

Since (F (B) is an equicontinuous set of functions we have that

γ(F (B))6 (a +b)γ(B).

In the same manner, it follows from properties of Hausdorff measure of non–compactness
that
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ζ(F 2(B(t )))6 ζ(R(t )g (F 1B))+ζ
(∫ t

0
R(t − s) f (s,F 1B(s))d s

)
6K

∫ t

0
ζ{ f (s,F 1B(s)))}d s 6K

∫ t

0
H(s)ζ{F 1B(s)}d s

6K
∫ t

0

∣∣H(s)−ϕ(s)
∣∣ζ{F 1B(s)}d s +K

∫ t

0
ϕ(s)ζ{F 1B(s)}d s

6Kδ(a +bt )γ(B)+K N

(
at + bt 2

2

)
γ(B)

6
[

a(a +bt )+b

(
at + bt 2

2

)]
γ(B).

Therefore, for all t ∈ I we have

ζ(F 2(B(t )))6
(

a2 +2abt + (bt )2

2

)
γ(B).

Furthermore, since F 2(B) is an equicontinuous set of functions, we have that

γ(F 2B)6
(

a2 +2ab + b2

2

)
γ(B).

It follows from an inductive process that for all n ∈N, it hold

ζ(F n(B(t )))6
(

an +C n
1 an−1bt +C n

2 an−2 (bt )2

2!
+C n

3 an−3 (bt )3

3!
· · ·+ (bt )n

n!

)
γ(B).

In fact, suppose that

ζ(F n(B(t )))6
(

an +C n
1 an−1bt +C n

2 an−2 (bt )2

2!
+·· ·+ (bt )n

n!

)
γ(B).
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By properties of Hausdorff measure of non–compactness we have that for (n + 1) it
holds

ζ(F n+1(B(t )))6 ζ{R(t )g (F n(B))}+ζ
(∫ t

0
R(t − s) f (s,F n(B(s)))d s

)
6K

∫ t

0
ζ{ f (s,F nB(s)))}d s 6K

∫ t

0
H(s)ζ{F nB(s)}d s

6K
∫ t

0

∣∣H(s)−ϕ(s)
∣∣ζ{F nB(s)}d s +K

∫ t

0
ϕ(s)ζ{F nB(s)}d s

6Kδ

(
an +C n

1 an−1bt +C n
2 an−2 (bt )2

2!
+·· ·+ (bt )n

n!

)
γ(B)

+K N

(
an t +C n

1 an−1 bt 2

2
+C n

2 an−2 b2t 3

3!
+·· ·+ bn t n+1

(n +1)!

)
γ(B)

6 a

(
an +C n

1 an−1bt +C n
2 an−2 (bt )2

2!
+·· ·+ (bt )n

n!

)
γ(B)

+b

(
an t +C n

1 an−1 bt 2

2
+C n

2 an−2 b2t 3

3!
+·· ·+ bn t n+1

(n +1)!

)
γ(B).

From the fact that, for all 16m 6 n, it holds C n
m−1 +C n

m =C n+1
m we have have

ζ(F n+1(B(t )))6
(

an+1 +C n+1
1 an(bt )+C n+1

2 an−1 (bt )2

2!
+·· ·+ (bt )n+1

(n +1)!

)
γ(B).

Hence, for all n ∈N, it hold

ζ(F n(B(t )))6
(

an +C n
1 an−1bt +C n

2 an−2 (bt )2

2!
+C n

3 an−3 (bt )3

3!
· · ·+ (bt )n

n!

)
γ(B).

Since, for all n ∈N the set of functions F n(B) is equicontinuous we have that

γ(F n(B))6
(

an +C 1
n an−1b +C 2

n an−2 b2

2!
+C 3

n an−3 b3

3!
· · ·+ bn

n!

)
γ(B).

Furthermore, since 0 6 a < 1 and b > 0, it follows from Lemma 1.4 that there exists
n0 ∈N such that

an0 +C 1
n0

an0−1b +C 2
n0

an0−2 b2

2!
+·· ·+ bn0

n0!
= r < 1

Therefore, there exists n0 ∈ N such that γ(F n0 (B)) 6 rγ(B), with r < 1.
It follows from Theorem 1.5 that F has a fixed point in B. This fixed point is a mild
solution of equation (2.2).
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Our next result is related with a special case of equation (2.2). Consider the following
equation

u′(t ) = Au(t )+
∫ t

0
b(t − s)Au(s)d s + f (t ,u(t )), t ∈ I

u(0) = g (u).

 (2.7)

where A is a closed linear operator defined on a Hilbert space H , the kernel b ∈ L1
l oc (0,1; X ),

and f is a given function.

To prove existence of mild solutions of equation (??), we will need the following defini-
tions introduced in [134].

Let a ∈ L1
l oc (R+; X ). We say that a is Laplace transformable if there exists a constant

ω ∈R such that
∫ ∞

0
e−ωt |a(t )|d t <∞. We denote ã(λ) =

∫ ∞

0
e−λt a(t )d t , with Reλ>ω

Definition 2.3. Let a ∈ L1
l oc (R+; X ) be Laplace transformable and k ∈N. We say that a(t )

is k–regular if there exists a constant C > 0 such that

|λn ã(n)(λ)|6C |ã(λ)|

for all Reλ>ω , 0 < n 6 k.

Convolutions of k–regular kernels are again k–regular. Moreover, integration and dif-
ferentiation are operations which preserve k–regularity as well. See [134, pp. 70].
We recall the following concept introduced in [134].

Definition 2.4. Let f ∈C∞(I ; X ). We will say that f is completely monotone if and only
if (−1)n f (n)(λ)> 0 for all λ> 0 and n ∈N.

Definition 2.5. Let a ∈ L1
loc (I ; X ) such that a is Laplace transformable. We say that a is

completely positive if and only if

1

λã(λ)
and

−ã′(λ)

(ã(λ))2

are completely monotone.

Finally, we recall that one-parameter family {S(t )}t>0 of operators is said to be expo-
nentially bounded of type (M ,ω) if there are constants M > 1 and ω ∈R such that

‖S(t )‖6 Meωt , for all t > 0.

The next Proposition guarantees existence of a resolvent operator of equation (2.7),
furthermore this resolvent operator is continuous in norm for t > 0. For this purpose
we will introduce the conditions (C1) and (C2).
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(C1) For all t ∈ I , the kernel a defined by a(t ) =
∫ t

0
b(s)d s +1, for all t ∈ I , is 2–regular

and completely positive.

(C2) There exists µ0 >ω such that

lim
|µ|→∞

∥∥∥∥∥ 1

b̃(µ0 + iµ)+1

(
µ0 + iµ

b̃(µ0 + iµ)+1
− A

)−1∥∥∥∥∥= 0

Proposition 2.1. Suppose that A is the generates a C0–semigroup of type (M ,ω) on H

a Hilbert space. If the conditions (C1)–(C2) are satisfied then, there exists a resolvent
operator {R(t )}t∈I for equation (2.7) which is continuous in norm for t > 0.

Proof. Integrating on time equation (2.7) we get

u(t ) =
∫ t

0
a(t − s)Au(s)d s +

∫ t

0
f (s,u(s))+ g (u). (2.8)

Since the scalar kernel a is completely positive and A generates a C0–semigroup, it
follows from [134, Theorem 4.2] that there exists a family of operators {R(t )}t∈I strongly
continuous, exponentially bounded that commutes with A, satisfying

R(t )x = x +
∫ t

0
a(t − s)AR(s)xd s. (2.9)

On the other hand, using hypothesis (C2) and since the scalar kernel a is 2–regular, it
follows from [109, Theorem 2.2] that {R(t )}t∈I is continuous on L (H ) for t > 0. Fur-
ther, since a ∈ C 1(R+), it follows from equation (2.9) that R(t ) is differentiable for all
t > 0 and satisfies

d

d t
R(t )x = AR(t )x +

∫ t

0
b(t − s)AR(s)xd s, t > 0. (2.10)

From the preceding equality, we conclude that {R(t )}t∈I is a resolvent operator for
equation (2.7) which is norm continuous.

Corollary 2.1. Suppose that A generates a C0–semigroup of type (M ,ω) on H a Hilbert
space and conditions (C1)–(C2) are fulfilled. If the hypothesis (H2)–(H5) are satisfied
and there exists M > 0 such that

K gM +KΦ(M)
∫ 1

0
m(s)d s 6 M , where K = sup{‖R(t )‖ : t ∈ I },

then equation (2.7) has at least a mild solution.

Proof. It follows from Proposition 2.1 that the equation (2.7) admits a resolvent op-
erator {R(t )}t∈I satisfying the property (EP). Moreover, since hypothesis (H2)-(H5) are
satisfied, we apply Theorem 2.1 and conclude that equation (2.7) has a mild solution.
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2.2 An Example

In this section we prove the feasibility of our abstract results applying them to a con-
crete partial differential equation with non–local initial condition. Let X = L2(Rn) and
consider the following integro-differential equation

∂w(t ,ξ)

∂t
= Aw(t ,ξ)+

∫ t

0
βe−α(t−s) Aw(s,ξ)d s + t−1/3 cos(w(t ,ξ)), t ∈ I .

w(0,ξ) =
N∑

i=1

∫
Rn

qk(ξ, y)w(ti , y)d y, ξ ∈Rn .

 (2.11)

where N is a positive integer, 0 < t1 < t2 < ·· · < tN < 1; k ∈ L2(Rn ×Rn ;R+), q ∈ R+, the
constants α,β satisfy −α6β6 06α. The operator A is defined by

(Aw)(t ,ξ) =
n∑

i , j=1
ai j (z)

∂w(t ,ξ)

∂ξi∂ξ j
+

n∑
i=1

bi (ξ)
∂w(t ,ξ)

∂ξi
+ c(ξ)w(t ,ξ),

with given coefficients ai j , bi , c, (i , j = 1,2, . . . ,n) satisfying the usual uniformly ellip-
ticity conditions, and D(A) = {v ∈ X : v ∈ H 2(Rn)}.

We will prove that there exists q > 0 sufficiently small such that equation (2.11) has a
mild solution on X .
In what follows, we identify u(t ) = w(t , ·). With this identification the preceding equa-
tion takes the abstract form

u′(t ) = Au(t )+
∫ t

0
b(t − s)Au(s)d s + f (t ,u(t )), t ∈ I

u(0) = g (u),

 (2.12)

where the function g : C (I ; X ) → X is given by g (u) =
N∑

i=1
qkg (u(ti )) with

(kg v)(ξ) =
∫
Rn

k(ξ, y)v(y)d y, for v ∈ X ,ξ ∈Rn ,

the function f : I × X → X is defined by f (t ,u(t )) = t−1/3 cos(u(t )) = t−1/3 cos(w(t , ·)),
and the kernel b is given by b(t ) =βe−αt .

Note that ‖g (u)‖6 qN
(∫
Rn

∫
Rn

k2(z, y)d yd z
)1/2‖u‖, and the function kg is completely

continuous.
Furthermore, the function f satisfies ‖ f (t ,u(t ))‖6 t−1/3Φ(‖u‖), with Φ(‖u‖) ≡ 1 and
‖ f (t ,u1)− f (t ,u2)‖6 t−1/3‖u1 −u2‖.
Therefore, conditions (H2)–(H5) are fulfilled.
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Define a(t ) =
∫ t

0
βe−αsd s +1, for all t ∈ I . Since the kernel b defined by b(t ) = βe−αt

is 2–regular, it follows that a is 2–regular. Furthermore, we claim that a is completely
positive. In fact, we have

ã(λ) = λ+α+β
λ(λ+α)

.

Define the functions f1 and f2 by f1(λ) = 1

λã(λ)
and f2(λ) = −ã ′(λ)

[ã(λ)]2
respectively. In

another words

f1(λ) = λ+α
λ+α+β and f2(λ) = λ2 +2(α+β)λ+αβ+α2

(λ+α+β)2
.

Direct calculation shows that

f (n)
1 (λ) = (−1)n+1β(n +1)!

(λ+α+β)n+1
and f (n)

2 (λ) = (−1)n+1β(α+β)(n +1)!

(λ+α+β)n+2
for n ∈N.

Since −α 6 β 6 0 6 α, we have that f1 and f2 are completely monotone. Thus, the
kernel a is completely positive.

On the other hand, it follows from [55] that A generates an analytic, non compact semi-
group {T (t )}t>0 on L2(Rn). Furthermore, there exists a constant M > 0 such that

M = sup{‖T (t )‖ : t > 0} <+∞.

It follows from this fact and Hille–Yosida theorem that z ∈ ρ(A) for Re(z) > 0.
A direct calculation shows that,

Re

(
µ0 + iµ

b̃(µ0 + iµ)+1

)
= µ3

0 +µ2
0α+µ2

0(α+β)+µ0α(α+β)+µ0µ
2 −µ2β

(α+β)2 +2µ0(α+β)+µ2
0 +µ2

.

Hence, for µ0 > 0, we have that, Re

(
µ0 + iµ

b̃(µ0 + iµ)+1

)
> 0. This implies that

(
µ0 + iµ

b̃(µ0 + iµ)+1
− A

)−1

∈L (X ).

Moreover, ∥∥∥∥∥ 1

b̃(µ0 + iµ)+1

(
µ0 + iµ

b̃(µ0 + iµ)+1
− A

)−1∥∥∥∥∥6
∥∥∥∥ M

µ0 + iµ

∥∥∥∥ .
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Therefore,

lim
|µ|→∞

∥∥∥∥∥ 1

b̃(µ0 + iµ)+1

(
µ0 + iµ

b̃(µ0 + iµ)+1
− A

)−1∥∥∥∥∥= 0.

It follows from Proposition 2.1, equation (2.11) admits a resolvent operator {R(t )}t∈I

satisfying property (EP). Let K = sup{‖R(t )‖ : t ∈ I } and c = N
(∫
Rn

∫
Rn

k2(z, y)d yd z
)1/2

.

A direct computation shows that for each M > 0 the number gM is equal to gM = qcM .

Therefore the expression gM K +KΦ(M)
∫ 1

0
m(s)d s, is equivalent to qcK M + 3K

2
.

Since, there exists q > 0 such that qcK < 1 it follows that, there exists M > 0 satisfying

qcK M + 3K

2
6 M .

From Corollary 2.1 we conclude that there exists a mild solution of equation (2.11).
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CHAPTER 3

Mild Solutions of Second Order
Non–autonomous Cauchy Problem with

non–local initial conditions

As we have mentioned in preceding Chapter, the study of mild solutions of evolution
equations is very important because it has a lot of applications. In particular, the study
mild solutions for problems with non–local initial conditions have taken great interest
in last decades.

This chapter is devoted to study the existence of mild solutions of non–local initial
value problem described as a second order non–autonomous abstract differential prob-
lem

u′′(t ) = A(t )u(t )+ f (t ,u(t )) t ∈ [0, a]
u(0) = g (u)

u′(0) = h(u)

 (3.1)

For t ∈ J = [0, a], A(t ) : D(A(t )) ⊆ X → X for t ∈ J = [0, a] denote closed linear operators
defined in a Banach space X . We assume that D(A(t )) = D for all t ∈ J . The function
f : J × C (J ; X ) → X satisfies Carathéodory type conditions, and the functions
g ,h : C (J ; X ) → X are continuous maps.

There exists an extensive literature concerning second order problems. In the au-
tonomous case, this is A(t ) ≡ A, for all t ∈ J , the solutions of these equations are closely
related with the concept of cosine families. We refer the reader to [58,140,141,142,144]
for basic concepts about these families.

In the same manner, the study of mild solutions of equation (3.1) are closely related
with the concept of evolution operator {S(t , s)}t ,s∈J . In the literature several techniques

22



have been discussed to establish the existence of the evolution operator
{S(t , s)}t ,s∈J . In particular, a very studied situation is that A(t ) is the perturbation of an
operator A that generates a cosine operator function. For this reason, below we briefly
review some essential properties of the theory of cosine functions. We will mention a
few of properties and notations needed to establish our main results.

Let A : D(A) ⊆ X → X be the infinitesimal generator of a strongly continuous cosine
family {C0(t )}t>0 of bounded linear operators in X and let {S0(t )}t>0 be the sine family

associated with {C0(t )}t>0, which is defined by S0(t )x =
∫ t

0
C0(s)xd s, for x ∈ X and

t ∈R. It is immediate that

C0(t )x −x = A
∫ t

0
S0(s)xd s, for all x ∈ X and t > 0.

The notation E stands for the space consisting of vectors x ∈ X such that the function
C0(·)x is of class C 1. Kisyński in [101] has proved that E endowed with the norm

‖x‖1 = ‖x‖+ sup
06t61

‖AS0(t )x‖, x ∈ E ,

is a Banach space. It is known that the operator valued function G(t ) =
[

C0(t ) S0(t )
AS0(t ) C0(t )

]
is a strongly continuous group of bounded linear operators on the space E ×X . gener-

ated by the operator A =
[

0 I
A 0

]
defined on D(A)×E . It follows from this property that

S0(t ) : X → E is a bounded linear operator such that the operator valued map S0(·) is
strongly continuous and AS0(t ) : E → X is a bounded linear operator such that, for
each x ∈ E , satisfies AS0(t )x → 0 as t → 0. Furthermore, recall that, if f : [0,∞) → X is a

locally integrable function, then u(t ) =
∫ t

0
S0(t − s) f (s)d s defines an E–valued contin-

uous function.
We finally mention that the function u(·) given by

u(t ) =C0(t − s)x +S0(t − s)y +
∫ t

s
S0(t −ξ) f (ξ)dξ, t ∈ J , (3.2)

is called mild solution of the problem

u′′(t ) = Au(t )+ f (t ), t ∈ J ,
u(s) = x,

u′(s) = y.

 (3.3)

If x ∈ E , the function u(·) given by (3.2) is continuously differentiable and

u′(t ) = AS0(t − s)x +C0(t − s)y +
∫ t

s
C0(t −ξ) f (ξ)dξ, t ∈ J . (3.4)

23



If x ∈ D(A), y ∈ E and f is a continuously differentiable function, then the function u(·)
is a classical solution of problem (3.3).

Non–autonomous second order problems have received much attention in recent years
due their applications in different fields. Specially, many authors have studied the ini-
tial value Cauchy equation

u′′(t ) = A(t )u(t )+ f (t ) t ∈ J
u(s) = x

u′(s) = y.

 (3.5)

We refer the reader to [17, 78, 107, 138, 150]. As we have mentioned, the existence
of solutions of this equation is related with the existence of the evolution operator
{S(t , s)}t ,s∈J for homogeneous equation

u′′(t ) = A(t )u(t ), t ∈ J .
u(s) = x

u′(s) = y.

 (3.6)

In this thesis, we will use the concept of evolution operator {S(t , s)}t ,s∈J associated with
equation (3.6) introduced by Kozak in [103]. With this purpose, we assume that the
domain of A(t ) is a subspace D dense in X and independent of t ∈ J , and for each
x ∈ D the function t → A(t )x is continuous.

Definition 3.1. A map S : J × J → L (X ) is said to be an evolution operator of equa-
tion (3.6) if the following conditions are fulfilled:

(D1) For each x ∈ X the map (t , s) → S(t , s)x is continuously differentiable and

(a) For each t ∈ J , S(t , t ) = 0.

(b) For all t , s ∈ J and each x ∈ X , ∂
∂t S(t , s)x |t=s = x and ∂

∂s S(t , s)x |t=s =−x.

(D2) For all t , s ∈ J , if x ∈ D, then S(t , s)x ∈ D, the map (t , s) → S(t , s)x is of class C 2 and

(a) ∂2

∂t 2 S(t , s)x = A(t )S(t , s)x.

(b) ∂2

∂s2 S(t , s)x = S(t , s)A(s)x.

(c) ∂2

∂s∂t S(t , s)x |t=s = 0.

(D3) For all s, t ∈ J , if x ∈ D then ∂
∂t S(t , s)x ∈ D. Further, there exist ∂3

∂t 2∂s
S(t , s)x, ∂3

∂s2∂t
S(t , s)x

and

(a) ∂3

∂t 2∂s
S(t , s)x = A(t ) ∂

∂s S(t , s)x. Moreover, the map (t , s) → A(t ) ∂
∂s S(t , s)x is con-

tinuous.

(b) ∂3

∂s2∂t
S(t , s)x = A(t ) ∂

∂t S(t , s)x.
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Assuming that f : J → X is an integrable function, Kozak in [103] has proved that the
function u : J → X given by

u(t ) =− ∂

∂s
S(t , s)x +S(t , s)y +

∫ t

s
S(t ,ξ) f (ξ)dξ, (3.7)

is a mild solution of equation (3.6). Motivated by this result, we will say that a function
u ∈C (J ; X ) is a mild solution of problem (3.1) if verifies

u(t ) =− ∂

∂s
S(t ,0)g (u)+S(t ,0)h(u)+

∫ t

0
S(t ,ξ) f (ξ,u(ξ))dξ. (3.8)

Henceforth, we assume that there exists an evolution operator {S(t , s)}t6s,t6a associ-
ated with equation (3.6). To abbreviate the text, we introduce the operator
C (t , s) =−∂S(t ,s)

∂s . With this notation, the mild solution of problem (3.1) is

u(t ) =C (t ,0)g (u)+S(t ,0)h(u)+
∫ t

0
S(t ,ξ) f (ξ,u(ξ))dξ. (3.9)

In addition, we set K > 0 such that

sup
t ,s∈J

‖S(t , s)‖6K and sup
t ,s∈J

‖C (t , s)‖6K . (3.10)

We denote N1 a positive constant such that

‖S(t +h, s)−S(t , s)‖6 N1|h| for all t , s, t +h ∈ J . (3.11)

3.1 Main Results

In this section we will present our main results. In the same manner as that of Chapter
2, an argument to prove existence of mild solution of non–autonomous problem (3.1)
is using fixed–point Theorems. The Theorems that we will use are related with the
concept of measure of non–compactness.

Similarly to Chapter 2, in order to give a condition that we will need in the proof of
main results of this Chapter, we consider the following list of assertions.

(Cgh1) The functions g and h are continuous maps. Further, for each M > 0 the num-
bers gM and hM defined by

gM = sup
{‖g (u)‖ : ‖u‖6 M

}
and hM = sup

{‖h(u)‖ : ‖u‖6 M
}

are finite.
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(Cgh2) The functions f and g satisfy

γ(g (B))+γ(h(B)) < 1

2K
γ(B)

for all bounded set of continuous functions B . Here the constant K is defined as
in inequality (3.10).

(Cg1) The map from C (J ; X ) to C (J ; X ) given by u(·) → C (·,0)g (u) takes bounded sets
into equicontinuous sets.

(Cg2) The function g : C (J ; X ) → X satisfies γ(g (B)) < 1

K
γ(B) for all bounded set of

functions B ⊆C (J ; X ). Here the constant K is defined as in equation 3.10.

(CS1) The evolution operator {S(t , s)}t ,s∈J is a compact family of operators.

(Cf1) The map f : J × X → X satisfies the Carathéodory type conditions, that is, f (·, x)
is measurable for all x ∈ X and f (t , ·) is continuous for almost all t ∈ J .

(Cf2) There exist functions m ∈ L1(J ;R+) and non–decreasing continuous function
Φ :R+ →R+ such that

‖ f (t , x)‖6m(t )Φ(‖x‖)

for all x ∈ X and almost all t ∈ J .

(Cf3) There exists a function H ∈ L1(J ;R+) such that for any subset of functions
S ⊆C (J ; X ), we have

ζ( f (t ,S(t )))6 H(t )ζ(S(t ))

for almost all t ∈ J .

Condition (Cg1) play a crucial role in the proof of Theorem 3.1, for this reason we will
show several situations where this condition is valid.

Lemma 3.1. Let g : C (J ; X ) → X be a continuous map. If g is a compact function then
the function u(·) →C (·,0)g (u) takes bounded sets into equicontinuous sets.

Proof. Let S ⊆ C (J ; X ) be a bounded set of continuous functions, this is, there exists
M > 0 such that ‖u‖ 6 M for all u ∈ S. Let ε > 0 be an arbitrary positive number.
Since the function g is compact we have that there exist x1, x2, . . . , xp ∈ X such that

g (S) ⊆
p⋃

i=1
B

(
xi ,

ε

4K

)
.

For i ∈ {1,2 . . . , p}, define the functions fi : J → X given by fi (t ) = C (t ,0)xi . Clearly
these functions are continuous. Furthermore, since all functions fi are defined in a
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compact set it follows that for all i ∈ {1,2, . . . , p} the functions fi are uniformly con-
tinuous. Hence, for i ∈ {1,2, . . . , p} there exists hi > 0 such that for all t ∈ J we have

‖(C (t +hi ,0)−C (t ,0))xi‖6 ε

2
.

Denote δ= min
{
hi : i = 1,2, . . . , p

}
. Thus, we have that ‖(C (t +δ,0)−C (t ,0))xi‖6 ε

2
for

all t ∈ J and i ∈ {1,2 . . . , p}.

Let u ∈ S, we know that there exists i ∈ {1,2, . . . , p} such that ‖g (u)−xi‖6 ε

2
. Therefore

‖C (t +δ,0)g (u)−C (t ,0)g (u)‖6 ‖(C (t +δ,0)−C (t ,0))(g (u)−xi )‖
+‖(C (t +δ,0)−C (t ,0))xi‖
6 2K ‖g (u)−xi‖+ ε

2
6 ε.

This argument is valid for any u ∈ S. Since, δ is independent of u and t we have that
the set

{C (·,0)g (u) : u ∈ S}

is an equicontinuous set of continuous functions.

Lemma 3.2. Assume that A(t ) = A+B(t ) for all t ∈ J , here the operator A is the generator
of a cosine family {C0(t )}t∈J defined on X , and B(t ) ∈ L (E ; X ) for all t ∈ J ,
and B(t )z ∈ C 1(J ; X ) for z ∈ E. Let g : C (J ; X ) → X be a continuous map such that
g (u) ∈ E for all u ∈C (J ; X ), then the function u(·) →C (·,0)g (u) takes bounded sets into
equicontinuous sets.

Proof. Under the hypothesis, it has been proved by Serizawa and Watanabe in [139]
that {C (t , s)}t ,s∈J is differentiable in E .

In the same manner as that of Chapter 2, henceforth we assume that the following
assertions hold:

Theorem 3.1. Suppose that the function g and h are compact maps and the conditions
(Cgh1), (Cf1), (Cf2) and (Cf3) are fulfilled. If there exists a constant R > 0 such that

K (gM +hM )+KΦ(M)
∫ a

0
m(s)d s 6 M ,

then the problem (3.1) has at least one mild solution.

Proof. Define F : C (J ; X ) →C (J ; X ) by

(Fu)(t ) =C (t ,0)g (u)+S(t ,0)h(u)+
∫ t

0
S(t , s) f (s,u(s))d s, t ∈ J .
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First, we show that F is a continuous map. Let {un}n∈N ⊆ C (J ; X ) such that un → u (in
the norm of C (J ; X )) Note that

‖F (un)−F (u)‖6K ‖g (un)− g (u)‖+K ‖h(un)−h(u)‖
+K

∫ a

0
‖ f (s,un(s))− f (s,u(s))‖d s.

Since, the functions g and h are continuous maps, it follows from Lebesgue dominated
theorem that ‖F (un) → F (u)‖→ 0 as n →∞.
Now denote by BM = {

u ∈C (J ; X ) : ‖u(t )‖6 M for all t ∈ J
}

and note that for any u ∈ BM

we have

‖(Fu)(t )‖6 ‖C (t ,0)g (u)‖+6 ‖S(t ,0)h(u)‖+
∥∥∥∥∫ t

0
S(t , s) f (s,u(s))d s

∥∥∥∥
6K (gM +hM )+KΦ(M)

∫ a

0
m(s)d s 6 M .

Therefore, F : BM → BM and F (BM ) is a bounded set. Moreover, F (BM ) is an equicontin-
uous set of functions. In fact, let ε> 0 be an arbitrary positive number. By Lemma 3.1

there exists δ1 > 0 such that ‖(C (t +δ1,0)−C (t ,0))g (u)‖6 ε

4
. Choose δ2 > 0 such that

δ2 < min

{
δ1,

ε

4hM N1
,

ε

4KΦ(M)M
,

ε

4Φ(M)‖m‖1

}
,

where m∞ is defined by m∞ = sup
{
m(t ) : t ∈ J

}
and ‖m‖1 denotes the integral norm

of function m defined in condition (Cf2), the function Φ is defined in condition (Cf2),
and K and N1 have been chosen as inequalities (3.10) and (3.11). The constant hM is
defined in condition (Cgh1)
For all |t2 − t1| < δ2 and for all u ∈ BM we have

‖(Fu)(t2)− (Fu)(t1)‖6 ‖C (t2)g (u)−C (t1)g (u)‖+‖S(t2)h(u)−S(t1)h(u)‖

+KΦ(M)
∫ t2

t1

m(s)d s +Φ(M)
∫ t1

0
‖S(t2, s)−S(t1, s)‖m(s)d s

6
ε

4
+ ε

4
+ ε

4
+ ε

4
= ε.

Define B= co(F (BM )). It follows from Lemma 1.2 that the set B is equicontinuous and
the operator F : B→B is bounded and continuous. In addition, F (B) is a bounded
set of functions. Same argument made to show that F (BM ) is an equicontinuous set of
functions show that F (B) is an equicontinuous set of functions.

From properties of Hausdorff measure of non–compactness we have that
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ζ(F (B(t )))6 ζ
{
C (t ,0)g (B)

}+ζ{S(t ,0)h(B)
}+ζ(∫ t

0
S(t , s) f (s,B(·))d s

)
6K ζ{g (B)}+K ζ{h(B)}+K

∫ t

0
ζ{ f (s,B(s))}d s

6Kγ(B)
∫ t

0
H(s)d s

Since H ∈ L1(J ;R+) for δ < 1/K there is ϕ ∈ C (J ;R+) such that
∫ a

0
|H(s)−ϕ(s)|d s < δ.

Therefore,

ζ(F (B(t )))6Kγ(B)

[∫ t

0
|H(s)−ϕ(s)|d s +

∫ t

0
|ϕ(s)|d s

]
6Kδγ(B)+K N t ,

where N = ‖ϕ‖∞. Thus, we have

γ(F (B(t )))6 (A+B t )γ(B) where A = Kδ and B = K N .

Following the same arguments as those of proof of Theorem 2.1 in Chapter 2, we have
that

γ(F n(B))6
(

An +C n
1 An−1B a +C n

2 An−2 (B a)2

2!
+·· ·+ (B a)n

n!

)
γ(B).

Furthermore, since 0 6 A < 1 and B a > 0, it follows from Lemma 1.4 that there exists
n0 ∈N such that

An0 +C n0
1 An0−1B +C n0

2 An0−2 B 2

2!
+·· ·+ B n0

n0!
= r < 1

Therefore, γ(F n0 (B)) 6 rγ(B), with r < 1. It follows from Theorem 1.5 that F has a
fixed point in B. This fixed point is a mild solution of equation (3.1).

Theorem 3.1 imposes some restrictive conditions about functions g and h. In fact,
non–local initial conditions that arise in specific applications, are very often condens-
ing maps. Motivated by this, the next result imposes much more weak restrictions for
g and h.

Theorem 3.2. Suppose that the functions g and h are condensing maps and the condi-
tions (Cgh1), (Cgh2), (Cf1) and(Cf2) are fulfilled. If there exists a constant R > 0 such
that

K (gM +hM )+KΦ(M)
∫ a

0
m(s)d s 6 M ,

then the problem (3.1) has at least one mild solution.
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Proof. Define F : C (J ; X ) →C (J ; X ) by

(Fu)(t ) =C (t ,0)g (u)+S(t ,0)h(u)+
∫ t

0
S(t , s) f (s,u(s))d s, t ∈ J

for all u ∈C (J ; X ).
Following the same argument as that of proof of Theorem 3.1, we prove that F is a
continuous map. We introduce the mappings

F1 : C (J ; X ) →C (J ; X ) defined by (F1u)(t ) =C (t ,0)g (u)+S(t ,0)h(u), t ∈ J .

and

F2 : C (J ; X ) →C (J ; X ) defined by (F2u)(t ) =
∫ t

0
S(t , s) f (s,u(s))d s, t ∈ J

Since {S(t , s)}t ,s∈J is a family of operators such that

‖S(t +h, s)−S(t , s)‖6 N1|h| for all t , s, t +h ∈ J ,

it follows from Arzela–Ascoli theorem that F2 is a compact map. On the other hand F1

is a γ–condensing map. In fact, γ(F1B) 6 γ(C (·,0)g (B))+γ(S(·,0)g (B)) < γ(B) for all
bounded set of functions B .
By hypothesis, there exists a constant R > 0 such that

K (gM +hM )+KΦ(M)
∫ a

0
m(s)d s 6R.

Therefore, F : BM → BM . It follows from Theorem 1.4 that F has a fixed point in BM and
this fixed point is a mild solution of equation (3.1).

Assume now that A(t ) = A +B(t ) for all t ∈ J , where B(·) : J → L (E ; X ) is a map such
that the function t → B(t )x is continuously differentiable in X for each x ∈ E . It has
been established by Serizawa and Watanabe [139] that for each (y, z) ∈ D(A)×E the
non–autonomous abstract Cauchy problem

u′′(t ) = (A+B(t ))u(t ), t ∈ J
u(0) = x,

u′(0) = y,

 (3.12)

has a unique solution u(·) such that the function t → u(t ) is continuously differentiable
in E . It is clear that the same argument allows us to conclude that equation

u′′(t ) = (A+B(t ))u(t ), t ∈ J
u(s) = x,

u′(s) = y,

 (3.13)
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has a unique solution u(·, s) such that the function t → u(t , s) is continuously differen-
tiable in E . It follows from (3.7) that

u(t , s) =C0(t − s)x +S0(t − s)y +
∫ t

s
S0(t −ξ)B(ξ)u(ξ, s)dξ

In particular, for x = 0 we have

u(t , s) = S0(t − s)y +
∫ t

s
S0(t −ξ)B(ξ)u(ξ, s)dξ

Consequently,

‖u(t , s)‖1 6 ‖S0(t − s)‖
L (X ,E)‖z‖+

∫ t

s
‖S0(t −ξ)‖

L (X ,E)‖B(ξ)‖
L (X ,E)‖u(ξ, s)‖1dξ.

Applying the Gronwall–Bellman lemma, there exists a constant Ñ > 0 such that
‖u(t , s)‖1 6 Ñ‖z‖, s, t ∈ J .

We define the operator S(t , s)y = u(t , s). It follows from the previous estimate that
S(t , s) is a bounded linear map on E . Since E is dense in X , we can extend S(t , s) to
X . We keep the notation S(t , s) for this extension.

It is well known that, except in the case dim(X ) < ∞, the cosine function C0(t ) can-
not be compact for all t ∈ R. By contrast, for the cosine functions that arise in spe-
cific applications, the sine function S0(t ) is very often a compact operator for all t ∈ R.
This motivates the following result proved by Henríquez in [78]. We remark, this result
shows a situation where the condition (CS1) is valid.

Lemma 3.3. Under the preceding conditions, S(·, ·) is an evolution operator for equation
(3.14). Moreover, if S0(t ) is compact for all t ∈R, then S(t , s) is also compact for all s 6 t .

Now consider the particular case of equation (3.1).

u′′(t ) = (A+B(t ))u(t )+ f (t ,u(t )), t ∈ J
u(s) = g (u),

u′(s) = h(u).

 (3.14)

Next Theorem gives sufficient conditions to guarantee existence of a mild solution of
equation (3.14). We remark, this results imposes much more weak conditions for func-
tion h. In same manner as those of Theorems 3.1 and 3.2, we enumerate following
conditions.

Theorem 3.3. Suppose that the functions g and h are condensing maps and the condi-
tions (Cgh1), (Cg2), (Cf1) and (Cf2) are fulfilled. If the evolution operator {S0(t )}t∈J is a
compact family of operators and if there exists a constant M > 0 such that

K (gM +hM )+KΦ(M)
∫ a

0
m(s)d s 6 M ,

then the problem (3.14) has at least one mild solution.
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Proof. Define F : C (J ; X ) →C (J ; X ) by

(Fu)(t ) =C (t ,0)g (u)+S(t ,0)h(u)+
∫ t

0
S(t , s) f (s,u(s))d s, t ∈ J .

Following the same argument as that of proof of Theorem 3.1, we obtain that F is a
continuous map. We introduce the mappings

F1 : C (J ; X ) →C (J ; X ) defined by (F1u)(t ) =C (t ,0)g (u), t ∈ J ,

and

F2 : C (J ; X ) →C (J ; X ) defined by (F2u)(t ) = S(t ,0)h(u)+
∫ t

0
S(t , s) f (s,u(s))d s, t ∈ J .

It follows from Lemma 3.2 that {S(t , s)}t ,s∈J is a compact evolution operator, following
same argument of proof of Theorem 3.2 we have that F2 is a compact map. Thus, for
all B ⊆C (J ; X ) we have

γ(F (B))6 γ(F1B) < γ(B).

Therefore, F is a γ–condensing operator. By Hypothesis, there exists M > 0 such that
F : BM → BM . It follows from Theorem 1.4 that F has a fixed point in BM , and this fixed–
point is a mild solution of equation (3.14).

Remark 3.1. Note that proof of Theorem 3.3 still is valid for general A(·) such that the
corresponding evolution operator {S(t , s)}t ,s∈J of equation (3.1) is a compact evolution
operator.

3.2 Examples

The one–dimensional wave equation modeled as an abstract Cauchy problem has been
studied extensievolutionvely. See for example [154]. In this section, we apply the ab-
stract results established in preceding section to study the existence of solutions of the
non–autonomous wave equation with non–local initial conditions. Specifically, we will
study the following problem

∂2w(t ,ξ)

∂t 2
= ∂2w(t ,ξ)

∂ξ2
+b(t )

∂w(t ,ξ)

∂ξ
+F (t , w(t ,ξ)), t ∈ J , and 06 ξ6 2π

w(t ,0) = w(t ,2π) t ∈ J

w(0,ξ) =
m∑

i=0
gi w(ti ,ξ)

∂w(0,ξ)

∂t
=

m∑
i=0

hi w(ti ,ξ)
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We model this problem in the space X = L2(T;R), where the group T is defined as
the quotient R/2πZ. We will use the identification between functions on T and 2π–
periodic functions on R. Specifically, in what follows we denote by L2(T;R) the space
of 2π–periodic 2–integrable functions from R into R. Similarly, H 2(T;R) denotes the
Sobolev space of 2π–periodic functions u :R 7→R such that u′′ ∈ L2(T;R).

In what follows, we use the identification u(t ) = w(t , ·) for all t ∈ J . In another words,
for all t ∈ J , we have the the function u(t ) : [0,2π] → R defined by u(t )(ξ) = w(t ,ξ).
Furthermore, consider the operator A defined by

Az = d 2z(ξ)

dξ2
with domain D(A) = {z ∈ L2(T;R) : z ∈ H 2(T;R)}.

For t ∈ J the operators B(t ) are defined by

B(t )z = b(t )
d z(ξ)

dξ
with domain D = {z ∈ L2(T;C) : z ∈ H 1(T;C)},

and the functions g and h defined by

g (u) =
p∑

i=0
gi u(ti ) and h(u) =

p∑
i=0

hi u(ti ),

for i = 0,1, . . . , p, the numbers gi and hi , are given constants and 0 < t0 < ·· · < tp < a.

Assume that
p∑

i=0
(g i +hi ) < 1.

With this considerations preceding equation can be written in the abstract form

u′′(t ) = (A+B(t ))u(t )+ f (t ,u(t )), t ∈ J
u(0) = g (u),

u′(0) = h(u).

 (3.15)

It is well known that A is the infinitesimal generator of a strongly continuous cosine
function {C0(t )}t∈J in X . Moreover, A has discrete spectrum, the spectrum of A consists
of eigenvalues −n2 for n ∈Zwith associated eigenvectors

zn(ξ) = 1p
2π

e i nξ for n ∈Z.

Furthermore, the set {zn : n ∈Z} is an orthonormal basis of X . In particular,

Az = ∑
n∈Z

−n2〈z, zn〉zn

for z ∈ D(A). The cosine function C0(t ) is given by

C0(t )z = ∑
n∈Z

cos(nt )〈z, zn〉zn , t ∈R,

33



with associated sine function

S0(t )z = t〈z, z0〉z0 +
∑

n∈Z\{0}

sin(nt )

n
〈z, zn〉zn t ∈R.

It is clear that ‖C0(t )‖6 1 for all t ∈R. Thus, C0(·) is uniformly bounded onR. Moreover,
the family {S0(t )}t∈R is compact family of operators such that ‖S0(t )‖6 1 for all t ∈R.
It has been proved by Henríquez in [78] that the equation (3.2) admits an evolution op-
erator {S(t , s)}06t ,s6a . From Lemma 3.1 we have that the evolution operator {S(t , s)}t ,s∈J

is compact.

Consider the function f (t ,u(t )) = α(t )β(u(t )) for all t ∈ J , where α is an integrable
function and β is a bounded map.

By direct computation, the conditions (Cgh1), (Cg2), (Cf1) and (Cf2) are satisfied. In
addition, since

p∑
i=0

(gi +hi ) < 1,

there exists M > 0 such that

M
p∑

i=0
(gi +hi )+L‖α‖1 6 M ,

where L is the bound of function β and ‖α‖1 =
∫ a

0
‖α(t )‖d t .

It follows from Theorem 3.3 that there exists a mild solution for equation (3.15) in
L2(Rn ;R).
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CHAPTER 4

Periodic Solutions of an Abstract
Third–Order Differential Equation

Recent investigations have demonstrated that third–order differential equations de-
scribe several models arising from natural phenomena, such as wave propagation in
viscous thermally relaxing fluids or flexible space structures with internal damping, for
example, a thin uniform rectangular panel, like a solar cell array, and a spacecraft with
flexible attachments. For more information see [18, 19, 20, 21, 65, 66, 67] and references
therein.

Considering the influence of an external force, many of these equations take the ab-
stract form

αu′′′(t )+u′′(t ) =βAu(t )+γAu′(t )+F (t ,u(t )), for t ∈R+, (4.1)

where A is a closed linear operator defined on a Banach space X , the function F is a
given and X –valued map, and the constants α,β,γ ∈R+.

Equation (4.1) has been studied in many aspects. Next, we just mention a few of them.
A characterization of solutions for its linear version, i.e. F (t ,u(t )) = f (t ), have been
obtained in Hölder spaces C s(R; X ) by Cuevas and Lizama in [45]. In the same man-
ner, Fernández, Lizama and Poblete in [59] characterize well-posedness in Lebesgue
spaces, Lp (R; X ). Further, Fernández, Lizama and Poblete, in [60], study regularity and
qualitative properties of mild and strong solutions defined in R+ where the underlying
space is a Hilbert space. On the other hand, existence of bounded mild solutions of the
semi–linear equation (4.1) is studied in [50] by De Andrade and Lizama.

As we have said in Introduction, concerning to abstract evolution equations, the study
of solutions having periodicity property is a very important subject of research. How-
ever, for abstract third–order differential equation (4.1), this aspect has not been ad-
dressed in the existing literature. For this reason, this Chapter is dedicated to study
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existence and uniqueness of periodic strong solutions for abstract third–order equa-
tion

αu′′′(t )+u′′(t ) =βAu(t )+γBu′(t )+ f (t ), t ∈ [0,2π], (4.2)

with boundary conditions u(0) = u(2π), u′(0) = u′(2π) and u′′(0) = u′′(2π). Here A and
B are closed linear operators defined on a Banach space X with D(A)∩D(B) 6= {0}, the
constants α,β,γ ∈ R+, and f belongs to either periodic Lebesgue spaces , or periodic
Besov spaces, or periodic Triebel–Lizorkin spaces. Our approach is based in vector–
valued Fourier theorems and maximal regularity property. We remark, the study of
existence of solutions for equation (4.2) in the particular case A ≡ B is a manner to
study periodic solutions of equation (4.1).

With a specific norm, we will denote the space consisting of all 2π–periodic, X –valued
functions by E(T; X ), and denote the set consisting of all functions in E(T; X ) which
are n times differentiable by E n(T; X ) . The following definitions will be used in subse-
quent sections with either periodic Lebesgue spaces, periodic Besov spaces or periodic
Triebel–Lizorkin spaces.

Definition 4.1. A function u is called a strong E–solution of equation (4.2) if
u ∈ E 3(T; X )∩E 1(T; [D(B)])∩E(T; X ) and equation (4.2) holds a.e. in [0,2π].

Definition 4.2. We say that solutions of equation (4.2) has E–maximal regularity if for
each f ∈ E(T; X ), equation (4.2) has a unique strong E–solution.

For the rest of this chapter we introduce the following notation. Given α,β,γ> 0, and
closed linear operators A and B defined on a Banach space X , with D(A)∩D(B) 6= {0}.
For k ∈Z, we will write

ak = i k3 and bk = iαk3 +k2, (4.3)

and the operators

Nk = (bk + iγkB +βA)−1 and Mk = ak Nk . (4.4)

Furthermore, we denote

ρ(A,B) = {k ∈Z : Nk exists and is bounded} and σ(A,B) =Z\ρ(A,B) .

4.1 Maximal regularity for a third–order differential equa-
tion in periodic Lebesgue spaces

In this section, we give a characterization of Lp –maximal regularity for equation (4.2).
For this reason we prove Theorem 4.1 and to carry out its proof, we need the following
results.
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Lemma 4.1. Let α,β,γ > 0, and let A and B be closed linear operators defined on a
Banach space X . If {Mk }k∈Z and {kB Nk }k∈Z are R–bounded families of operators, then

{kak (∆1Nk )}k∈Z and {k2B(∆1Nk )}k∈Z
are R–bounded families of operators.

Proof. First note that {ak Nk }k∈Z is R–bounded if and only if {bk Nk }k∈Z is R–bounded.
Furthermore, for all j ∈ Z fixed, we have {ak Nk+ j }k∈Z and that {kB Nk+ j }k∈Z are R–
bounded families. For k ∈Z, we have

(∆1Nk ) = Nk+1(bk −bk+1 − iγB)Nk =−(∆1bk )Nk+1Nk − iγNk+1B Nk . (4.5)

Hence, for all k ∈Z\ {0} we have

kak (∆1Nk ) =−k
(∆1bk )

bk

bk

ak
ak Nk+1Mk +γak Nk+1kB Nk

and,

k2B(∆1Nk ) =−k(∆1bk )kB Nk+1Nk − iγkB Nk+1kB Nk

=−k
(∆1bk )

bk

bk

ak
kB Nk+1Mk − iγkB Nk+1kB Nk .

Direct computation shows that if k = 0 the operators k1ak (∆1Nk ) and k2B(∆1Nk ) are
bounded. In addition, {bk }k∈Z is a 1–regular sequence and sup

k∈Z\{0}

∣∣bk /ak
∣∣ < ∞. The

Lemma results from the properties of R–bounded families.

Lemma 4.2. Let p ∈ (1,∞), and let X be a U MD–space. If α,β,γ> 0, and A and B are
closed linear operators defined on X , then the following two assertions are equivalent.

(i) The families {kB Nk }k∈Z and {Mk }k∈Z are R–bounded.

(ii) The families {kB Nk }k∈Z and {Mk }k∈Z are Lp –multipliers.

Proof. (i ) ⇒ (i i ). By hypothesis, {Mk }k∈Z and {kB Nk }k∈Z are R–bounded families of
operators. According to Theorem 1.1, it suffices to show that the families

{k(∆1Mk )}k∈Z and {k(∆1kB Nk )}k∈Z
are R–bounded. For this, note that

k(∆1Mk ) = k
(∆1ak )

ak
ak Nk+1 +kak (∆1Nk ) .

Similarly, we write
k(∆1kB Nk ) = k2B(∆1Nk )+kB Nk+1.

Since {ak }k∈Z is a 1–regular sequence, statement (i i ) results from Lemma 4.1 and the
properties of R–bounded families.
(i i ) ⇒ (i ). Statement (i ) follows from Proposition 1.1.
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Theorem 4.1. Let p ∈ (1,∞), and let X be a U MD–space. The following two assertions
are equivalent.

(i) Equation (4.2) has Lp –maximal regularity.

(ii) σ(A,B) =;. The families {Mk }k∈Z and {kB Nk }k∈Z are R–bounded.

Proof. (i ) ⇒ (i i ). Let k ∈ Z be fixed, and let x ∈ X . Define h(t ) = e i kt x. A simple
computation shows that ĥ(k) = x. By hypothesis, there exists a function u ∈ H 3,p

per (X )∩
H 1,p

per (X ; [D(B)])∩Lp (T; [D(A)]) such that, for almost all t ∈ [0,2π], we have

αu′′′(t )+u′′(t ) =βAu(t )+γBu′(t )+h(t ) .

Applying Fourier transform to both sides of the preceding equality, we obtain

(−iαk3 −k2 − iγkB −βA)û(k) = x.

Since x is arbitrary, we have that (−bk − iγkB −βA) is surjective.

On the other hand, let z ∈ D(A)∩D(B), and assume (−bk−iγkB−βA)z = 0. Substituting
u(t ) = e i kt z in equation (4.2), we see that u is a periodic solution of this equation when
f ≡ 0. The uniqueness of the solution implies that z = 0.

Now suppose (bk + iγkB +βA) has no bounded inverse. Then for each k ∈ Z, there
exists a sequence {yk,n}n∈Z ⊆ X such that∥∥yn,k

∥∥6 1 and
∥∥Nk yk,n

∥∥> n2, for all n ∈Z .

Write xk = yk,k . We obtain ‖Nk xk‖> k2, for all k ∈Z.

Let g (t ) = ∑
k∈Z\{0}

xk

k2
e i kt . Note that g ∈ Lp (T; X ). By hypothesis, there exists a unique

strong Lp –solution u ∈ Lp (T; X ). Applying Fourier transform to equation (4.2), we have
û(k) =−Nk ĝ (k) , for all k ∈Z. We know

u(t ) = ∑
k∈Z\{0}

−xk

k2
e i kt Nk , for almost t ∈ [0,2π].

For all k ∈ Z, we have
∥∥∥xk

k2
Nk

∥∥∥> 1 and conclude that u ∉ Lp (T; X ). Since u is a strong

Lp –solution of equation (4.2), this is a contradiction. Hence Nk ∈ L (X ), for all k ∈ Z.
Therefore, σ(A,B) =;.

Next let f ∈ Lp (T; X ). By hypothesis, there exits a unique function u ∈ H 3,p
per (X ) ∩

H 1,p
per (X ; [D(B)])∩Lp (T; [D(A)]) such that

αu′′′(t )+u′′(t ) =βAu(t )+γBu′(t )+ f (t )
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for almost all t ∈ [0,2π]. Applying Fourier transform to both sides of the preceding
equation, we have

(−bk − iγkB −βA)û(k) = f̂ (k)

for all k ∈Z. Since σ(A,B) =; , we have

û(k) = (−bk − iγkB −βA)−1 f̂ (k) , for all k ∈Z.

Multiplying by iγk on both sides of the preceding equality, we obtain

iγkû(k) =−iγk(bk + iγkB +βA)−1 f̂ (k).

Since u ∈ H 1,p
per (X ; [D(B)]), there is a function v ∈ Lp (T; [D(B)]) satisfying v̂(k) = iγkû(k),

for all k ∈Z. Therefore,

v̂(k) =−iγk(bk + iγkB +βA)−1 f̂ (k) , for all k ∈Z.

Define w = B v . Since v ∈ Lp (T; [D(B)]), we conclude w ∈ Lp (T; X ). Since B is a closed
linear operator, it follows from Lemma 1.1 that,

ŵ(k) =−iγkB Nk f̂ (k), for all k ∈Z .

This implies that the family {kB Nk }k∈Z is an Lp –multiplier.

On the other hand, since u ∈ Lp (T; [D(A)]), we define r = −βAu, and we have r ∈
Lp (T; X ). Since A is linear and closed, it follows from Lemma 1.1 that

r̂ (k) =−βANk f̂ (k), for all k ∈Z .

Hence, the family {−βANk }k∈Z is an Lp –multiplier. Now for all k ∈Z, we have

bk Nk = I − iγkB Nk −βANk .

Since the sum of Lp –multipliers is also an Lp –multiplier, we conclude {bk Nk }k∈Z is an
Lp –multiplier. Since, the sequence

{
ak /bk

}
k∈Z\{0} is bounded and ak

bk
bk Nk = Mk , we

have that {Mk }k∈Z an Lp –multiplier. It now follows from Proposition 1.1 that {Mk }k∈Z
and {kB Nk }k∈Z are R–bounded families.

(i i ) ⇒ (i ). By hypothesis, the conditions of Lemma 4.2 are satisfied. Therefore, {Mk }k∈Z
and {kB Nk }k∈Z are Lp –multipliers. From Remark 1.1 we conclude that {(−bk − iγkB −
βA)−1}k∈Z is an (Lp (X ), H 3,p

per (X ))–multiplier. Thus, given a function f ∈ Lp (T; X ), there

exists a function u ∈ H 3,p
per (X ) such that, for all k ∈Z,

û(k) = (−bk −βA− iγkB)−1 f̂ (k). (4.6)

Moreover, from Lemma 1.1 we have that u(t ) ∈ D(A)∩D(B) for almost all t ∈ [0,2π].
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As we have shown, the family {i kB(−bk − iγkB −βA)−1}k∈Z is an Lp –multiplier. Then
there exists a function v ∈ Lp (T; X ) satisfying

v̂(k) = i kB(−bk − iγkB −βA)−1 f̂ (k)

for all k. According to equality (4.6), we have v̂(k) = i kBû(k), for all k ∈Z.
On the another hand, since H 3,p

per (X ) ⊆ H 1,p
per (X ), there exists a function w ∈ Lp (T; X )

such that ŵ(k) = i kû(k), for all k ∈Z. Since B is closed linear operator, we have

v̂(k) = B(i kû(k)) = B ŵ(k) = B̂ w(k)

for all k ∈ Z. By the uniqueness of the Fourier coefficients, v = B w . This implies that
w ∈ Lp (T; [D(B)]). Therefore, u ∈ H 1,p

per (X ; [D(B)]). We claim that u ∈ Lp (T; [D(A)]). In
fact, using the identity

βA(bk + iγkB +βA)−1 = I −bk (bk + iγkB +βA)−1 − iγkB(bk + iγkB +βA)−1

we see that
{
βA(bk+iγkB+βA)−1

}
k∈Z is an Lp –multiplier. Thus, there exists a function

h ∈ Lp (T; X ) satisfying
ĥ(k) = A(bk + iγB +βA)−1 f̂ (k)

for all k. It follows from equality (4.2) that ĥ(k) = Aû(k), for all k ∈ Z. By the unique-
ness of the Fourier coefficients, we have h = Au. This implies that u ∈ Lp (T; [D(A)]) as
asserted. Therefore, u ∈ H 3,p

per (X )∩H 1,p
per (X ; [D(B)])∩Lp (T; [D(A)]).

We have shown that u ∈ H 3,p
per (X ). Thus, u(0) = u(2π), u′(0) = u′(2π), and u′′(0) =

u′′(2π). Since A and B are closed linear operators, it now follows from equality (4.3)
that

αû′′′(k)+ û′′(k) =βÂu(k)+γB̂u(k)+ f̂ (k), for all k ∈Z.

From the uniqueness of the Fourier coefficients we conclude that equation (4.2) holds
a.e. in [0,2π]. Therefore, u is a strong Lp –solution of equation (4.2). It remains to show
that this solution is unique. Indeed, let f ∈ Lp (T; X ). Suppose equation (4.2) has two
strong Lp –solutions, u1 and u2. A direct computation shows that

(−bk − iγkB −βA)
[
û1(k)− û2(k)

]= 0

for all k ∈ Z. Since (−bk − iγkB −βA) is invertible, we have û1(k) = û2(k) for all k ∈ Z.
By the uniqueness of the Fourier coefficients, u1 ≡ u2. Therefore, equation (4.2) has
Lp –maximal regularity.

It is not easy to verify the R–boundedness condition of a specific family of operators,
especially when two different operators are involved. Our next Corollary require ad-
ditional conditions about the operators A and B , however is a more practical result to
check that families {ak Nk }k∈Z and {kB Nk }k∈Z are R–bounded. With this purpose, for

k ∈Z define the operators Sk =
(
−bk

β
− A

)−1
.

40



Corollary 4.1. Let 1 < p <∞, and let X be a U MD–space. Supose that for all k ∈ Z we

have −bk

β
∈ ρ(A). Assume that the families of operators F1 = {ak Sk : k ∈ Z} and F2 ={

i k
γ

β
BSk : k ∈ Z

}
are R–bounded. If Rp (F2) < 1 then equation (4.2) has

Lp –maximal regularity.

Proof. According to [81, Lemma 3.17], the family{(
I − i kγ

β
BSk

)−1}
k∈Z

is R–bounded. For k ∈Z the operators Mk = ak Sk

(
I − i kγ

β
BSk

)−1

kB Nk = kBSk

(
I − i kγ

β
BSk

)−1

.

By properties of R–boundedness, we conclude the families {Mk }k∈Z and {kB Nk }k∈Z are
R–bounded. The Corollary results from Theorem 4.1.

Following corollary is given as an answer to the study of existence of periodic solutions
for equation (4.1). With this purpose, we denote the complex sequence {dk }k∈Z given
by

dk =− iαk3 +k2

iγk +β for k ∈Z.

Corollary 4.2. Let p ∈ (1,∞), and let X be a U MD−space. The following two assertions
are equivalent.

(i) Equation (4.2), with B ≡ A, has Lp –maximal regularity.

(ii) {dk }k∈Z ⊆ ρ(A) and that {dk (dk − A)−1}k∈Z is R–bounded.

Proof. (i ) ⇒ (i i ). According to Theorem 4.1, we have that σ(A, A) = ; and that the
operators (iαk3+k2+ iγk A+βA)−1 ∈L (X ), for all k ∈Z. In addition, {i k3(iαk3+k2+
iγk A +βA)−1}k∈Z is R−bounded. Hence, this family of operators is bounded. Then
there exists a constant C > 0 such that sup

k∈Z

∥∥i k3(iαk3 +k2 + iγk A+βA)−1
∥∥6C .

This implies

‖(dk − A)−1‖6 |iγk +β|
|i k3| C , for all k ∈Z\ {0}.

Since 0 ∈ ρ(A, A) if and only if 0 ∈ ρ(A), we have {dk }k∈Z ⊆ ρ(A). Properties of R−bounded
families and the equality

dk (dk − A)−1 = iαk3 +k2

i k3
i k3(iαk3 +k2 + (iγk +β)A)−1

show that {dk (dk − A)−1}k∈Z is R−bounded.
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(i i ) ⇒ (i ). For this, note that assertion (ii) guarantees that condition (ii) of Theorem 4.1
is satisfied. In fact, let k ∈Z, by hypothesis dk ∈ ρ(A), this implies that (dk −A)−1 is well
defined in L (X ). Since {dk (dk − A)−1}k∈Z is R−bounded, there exists a constant C > 0
such that

sup
k∈Z

‖dk (dk − A)−1‖ = sup
k∈Z

|iαk3 +k2| ‖(iαk3 +k2 + (iγk +β)A)−1‖6C .

Then, for all k ∈Z\ {0}, we obtain

‖(−iαk3 −k2 − (iγk +β)A)−1‖6 C

|iαk3 +k2| .

Since 0 ∈ ρ(A) if and only if 0 ∈ ρ(A, A), we have σ(A, A) =;.
We combine properties of R−bounded families with the identities

i k3(iαk3 +k2 + iγk A+βA)−1 = i k3

iαk3 +k2
dk (dk − A)−1

and

k A(iαk3 +k2 + iγk A+βA)−1 = −k

iγk +β (dk (dk − A)−1 − I )

to obtain that the families {i k3(bk + iγk A +βA)−1}k∈Z and {k A(bk + iγk A +βA)−1}k∈Z
are R−bounded.

4.2 Maximal regularity for a third–order differential equa-
tion in periodic Besov spaces

In this section, we give a characterization of B s
p,q –maximal regularity for equation (4.2).

For this reason we prove Theorem 4.2 and to carry out its proof, we need the following
results.

Lemma 4.3. Let α,β,γ > 0, and let A and B be closed linear operators defined on X . If
{Mk }k∈Z and {kB Nk }k∈Z are bounded families of operators, then

{k2ak (∆2Nk )}k∈Z and {k3B(∆2Nk )}k∈Z

are bounded families of operators.

Proof. We make the same considerations as that of Lemma 4.1. We have that {ak Nk }k∈Z
is bounded if and only if {bk Nk }k∈Z is bounded. Further, for all j ∈Z fixed, we have that{

ak Nk+ j
}

k∈Z and {kB Nk+ j }k∈Z are bounded families. For k ∈Z\ {0}, we have
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k2ak (∆2Nk ) = iγkak (Nk −Nk+2)kB Nk+1 −Mk k2 (∆2bk )

bk

bk

ak
ak Nk+1

+kak (Nk+2 −Nk )k
(∆1bk+1)

bk

bk

ak
ak Nk+1

and

k3B(∆2Nk ) = k2B(Nk −Nk+2)kB Nk+1 −kB Nk k2 (∆2bk )

bk

bk

ak
ak Nk+1

−k2B(Nk+2 −Nk )k
(∆1bk+1)

bk

bk

ak
ak Nk+1.

A direct computation shows that if k = 0 the operators k2ak (∆2Nk ) and k3B(∆2Nk ) are
bounded. Since {bk }k∈Z is a 2–regular sequence, same calculation made in proof of
Lemma 4.1 shows that the families of operators {k2ak (∆2Nk )}k∈Z and {k3B(∆2Nk )}k∈Z
are bounded.

Lemma 4.4. Let 16 p, q 6∞, and s > 0. Letα,β,γ ∈R+, and let A and B be closed linear
operators defined on a Banach space X . The following two assertions are equivalent.

(i) The families {kB Nk }k∈Z and {Mk }k∈Z are bounded.

(ii) The families {kB Nk }k∈Z and {Mk }k∈Z are B s
p,q –multiplier.

Proof. (i ) ⇒ (i i ). According to Theorem 1.2 , we need to show that the families {Mk }k∈Z
and {kB Nk }k∈Z are M–bounded of order 2. Exactly, the same calculation made in proof
of Lemma 4.2 displays that {k(∆1Mk )}k∈Z and {k(∆1kB Nk )}k∈Z are bounded. Now note
that

k2(∆2Mk ) = k2ak (∆2Nk )+k2 (∆2ak )

ak
ak Nk+1 −k

(∆1ak )

ak
kak (Nk −Nk+2) .

Also
k2(∆2kB Nk ) = k3B(∆2Nk )+k2B(Nk+2 −Nk ).

A simple verification shows that if k = 0 the operator k2(∆2Mk ) is bounded. Further-
more, it follows from Lemma 4.1 and Lemma 4.3 that {Mk }k∈Z and {kB Nk }k∈Z are M–
bounded of order 2.
(i i ) ⇒ (i ). It follows from the Closed Graph theorem that there exists a C > 0 (indepen-
dent of f ) such that, for f ∈ B s

p,q (T; X ), we have∥∥∥∑
k∈Z

ek ⊗Mk f̂ (k)
∥∥∥

B s
p,q

6C‖ f ‖B s
p,q

.
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Let x ∈ X , and define f (t ) = e i kt x for k ∈Z fixed. The preceding inequality implies

‖ek‖B s
p,q

‖Mk x‖B s
p,q

= ‖ek Mk x‖B s
p,q

6C‖ek‖B s
p,q

‖x‖B s
p,q

.

Hence for all k ∈ Z we have ‖Mk‖ 6 C . Consequently, sup
k∈Z

‖Mk‖ < ∞ . Similarly,

sup
k∈Z

‖kB Nk‖ <∞.

The following Theorem gives a characterization of maximal regularity on periodic Besov
spaces for equation (4.2). Its proof is very similar to as that of Theorem (4.1), so we will
pass over it.

Theorem 4.2. Let 1 6 p, q 6∞, and s > 0. Let X be a Banach space. The following two
assertions are equivalent.

(i) Equation (4.2) has B s
p,q –maximal regularity.

(ii) σ(A,B) =;. The families {Mk }k∈Z and {kB Nk }k∈Z are bounded.

In the same manner as preceding section, we give a more practical criteria to checking
boundedness condition about families {ak Nk }k∈Z and {kB Nk }k∈Z. We use the same
notation introduced in Corollary 4.1 for the family {Sk }k∈Z. We do not give its proof
because it follows the same lines as those of proof of Corollary 4.1.

Corollary 4.3. Let 1 6 p, q 6 ∞, s > 0 and X a Banach space. Suppose that for all

k ∈ Z we have −bk

β
∈ ρ(A). Assume that the families {ak Sk }k∈Z and

{ iγk

β
BSk

}
k∈Z are

bounded. If sup
k∈Z

‖ak Sk‖ < 1 , then the equation (4.2) has B s
p,q –maximal regularity.

As Corollary 4.2 in preceding section, the following result is an answer to the study of
existence of periodic solutions for equation (4.1). Its proof follows the same lines as
those of proof of Corollary 4.2, so we pass over it.

Corollary 4.4. Let X a Banach space and 1 6 p, q 6∞ and s > 0 The following asser-
tions are equivalent,

(i) The equation (4.1) with B ≡ A, has B s
p,q –maximal regularity.

(ii) {dk }k∈Z ⊆ ρ(A) and {dk (dk − A)−1}k∈Z is bounded.

4.3 Maximal regularity for a third–order differential equa-
tion in periodic Triebel–Lizorkin spaces

In this section, we give a characterization of F s
p,q –maximal regularity for Equation (4.2).

For this reason we prove Theorem 4.3, its proof will depend on our next results.
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Lemma 4.5. Let α,β,γ > 0, and let A and B be closed linear operators defined on X . If
{Mk }k∈Z and {kB Nk }k∈Z are bounded families, then

{k3ak (∆3Nk )}k∈Z {k4B(∆3Nk )}k∈Z

are bounded families.

Proof. We make the same considerations as those of Lemmas 4.1 and 4.3. We have
that {ak Nk }k∈Z is bounded if and only if {bk Nk }k∈Z is bounded. Further, for all j ∈ Z
fixed, we have that

{
ak Nk+ j

}
k∈Z and {kB Nk+ j }k∈Z are bounded families. Using the

calculations as those of Lemma 4.3, for all k ∈Zwe see that

∆2Nk = (Nk+2 −Nk )(−(∆1bk+2)− iγB)Nk+1 −Nk (∆2bk )Nk+1.

Therefore, for k ∈Z\ {0}, we have

k3ak (∆3Nk ) = k2ak
(
(∆2Nk+1)+ (∆2Nk )

)
k (−(∆bk+2)− iγB)Nk+2 (4.7)

−kak (Nk+2 −Nk ) k2 (∆2bk+1)

bk

bk

ak
ak Nk+2

+kak (Nk+2 −Nk ) k2(−(∆bk+1)− iγB)(∆1Nk+1)

−k3 (∆3bk )

bk
ak Nk+1 bk Nk+2 −k2 (∆2bk )

bk
kak (∆1Nk )bk Nk+2

−k2 (∆2bk )

bk
bk Nk kak (Nk+2 −Nk ),

and

k4B(∆3Nk ) = k3B(∆2Nk+1) k(−(∆1bk+2)− iγB)Nk+2 (4.8)

+k3B(∆2Nk ) k(−(∆2bk+2)− iγB)Nk+2

+k2B(Nk+2 −Nk ) k2 (∆2bk+1)

bk+2
bk+2Nk+2

−k2B(Nk+2 −Nk ) k2(−(∆2bk+2)− iγB)(Nk+2 −Nk )

+ k3(∆3bk )

bk
ak Nk+1bk Nk+2 −

k2(∆2bk )

bk
k2B(∆1Nk )bk Nk+2

− k2(∆2bk )

bk
bk B Nk k2(Nk+2 −Nk ).

A direct computation shows that if k = 0 the operators k3ak (∆3Nk ) and k4B(∆3Nk ) are
bounded. Since {bk }k∈Z is a 3–regular sequence, it follows from Lemmas 4.1 and 4.3
that all of the terms on the right side of identities (4.7) and (4.8) are uniformly bounded.
Therefore, {k3ak (∆3Nk )}k∈Z and {k4B(∆3Nk )}k∈Z are bounded families.
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Lemma 4.6. Let 1 6 p, q 6 ∞, and s > 0, and let A and B be closed linear operators
defined on a Banach space X . The following two assertions are equivalent.

(i) The families {kB Nk }k∈Z and {Mk }k∈Z are bounded.

(ii) The families {kB Nk }k∈Z and {Mk }k∈Z are F s
p,q –multiplier.

Proof. (i ) ⇒ (i i ). The proof of Lemma 4.4 shows that {Mk }k∈Z and {kB Nk }k∈Z, are
M–bounded of order 2. Moreover, we have

k3(∆3Mk ) = k3ak (∆3Nk )+k3(ak+3 −ak )(∆2Nk+1)+k3(∆2ak+1)(∆1Nk+1)

−2k3(∆2ak )(∆1Nk+1)+ (∆3ak )Nk+2,

and
k3(∆3kB Nk ) = k4B(∆3Nk )+3k3B(∆2Nk+1).

It follows from Lemmas 4.1, 4.3 and 4.5 that {Mk }k∈Z and {kB Nk } are M–bounded of
order 3. Statement (i i ) now follows from Theorem 1.3.

(i i ) ⇒ (i ). The proof follows the same lines as that of Theorem 4.4.

The following Theorem gives a characterization of maximal regularity for equation
(4.2) on periodic Triebel–Lizorkin spaces. Its proof is similar to proof of Theorems 4.1
and 4.3, so we pass over it.

Theorem 4.3. Let 16 p and q 6∞. If s > 0 and X is a Banach space, then the following
two assertions are equivalent.

(i) Equation (4.2) has F s
p,q –maximal regularity.

(ii) σ(A,B) =;. The families {Mk }k∈Z and {kB Nk }k∈Z are bounded.

In the same manner as preceding sections, we give a more practical criteria to checking
boundedness condition about families {ak Nk }k∈Z and {kB Nk }k∈Z. We use the same
notation introduced in Corollary 4.1 for the family {Sk }k∈Z. We do not give its proof
because it follows the same lines as those of proof of Corollary 4.1.

Corollary 4.5. Let 16 p, q 6∞, s > 0 and X a Banach space. Supose that for all k ∈Zwe

have −bk

β
∈ ρ(A). Assume that the families {ak Sk }k∈Z and

{ iγk

β
BSk

}
k∈Z are bounded.

If sup
k∈Z

‖ak Sk‖ < 1 , then the equation (4.2) has F s
p,q –maximal regularity.

As Corollary 4.1 and 4.3 in preceding sections, the following result is an answer to the
study of existence of periodic solutions for equation (4.1). Its proof follows the same
lines as those of proof of Corollary 4.1, so we pass over it.

Corollary 4.6. Let X a Banach space and 1 6 p, q 6∞ and s > 0 The following asser-
tions are equivalent,

(i) The equation (4.1) with B ≡ A, has F s
p,q –maximal regularity.

(ii) {dk }k∈Z ⊆ ρ(A) and {dk (dk − A)−1}k∈Z is bounded.
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4.4 Examples.

To finish this chapter, in this section, we apply our results to some interesting exam-
ples.

Example 4.1. Let α,β,γ ∈ R+. Let 1 6 p, q 6∞, and s > 0. Consider the abstract equa-
tion

αu′′′(t )+u′′(t ) =βAu(t )+γAu′(t )+ f (t ) , for t ∈ [0,2π] (4.9)

with boundary conditions u(0) = u(2π), u′(0) = u′(2π) and u′′(0) = u′′(2π), and A a
positive selfadjoint operator defined on a Hilbert space H such that inf

λ∈σ(A)
{λ} 6= 0. If

f ∈ B s
p,q (T; H) (resp. F s

p,q (T; H)), then equation (4.3) has B s
p,q –maximal regularity (resp.

F s
p,q –maximal regularity).

Proof. We have dk = −(αγk4 +βk2)

(γk)2 +β2
+ i

(γ−αβ)k3

(γk)2 +β2
. Since A is positive selfadjoint such

that inf
λ∈σ(A)

‖λ‖ 6= 0, we know thatσ(A) ⊆ [ε,+∞), with ε> 0. This implies that dk ∈ ρ(A),

for all k ∈ Z. Moreover, by [92, Chapter 5, Section 3.5], we know that for k ∈ Z, ‖(dk −
A)−1‖ = 1

di st (dk ,σ(A))
. Therefore, sup

k∈Z
‖dk (dk − A)−1‖ <∞. According to Corollaries 4.4

and 4.6, equation (4.9) has, respectively, B s
p,q –maximal regularity and F s

p,q –maximal
regularity.

For the next example we need to introduce some preliminaries on sectorial operators.
Denote by Σφ ⊆C the open sector

Σφ = {λ ∈C\ {0} / |argλ| <φ}.

We denote
H (Σφ) = { f :Σφ→C holomorphic}

and
H ∞(Σφ) = { f :Σφ→C holomorphic and bounded }.

H ∞(Σφ) is a Banach space endowed with the norm

‖ f ‖φ∞ = sup
|arg(λ)|<φ

| f (λ)|.

We further define the subspace H0(Σφ) of H (Σφ) as follows:

H0(Σφ) = ⋃
α,β<0

{ f ∈H (Σφ) : ‖ f ‖∞α,β <∞}

where
‖ f ‖∞α,β = sup

|λ|61
|λα f (λ)|+ sup

|λ|>1
|λ−β f (λ)| .
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Definition 4.3. [91] A closed linear operator A in X is called sectorial if the following
two conditions hold.

(i) We have D(A) = X , R(A) = X , and (−∞,0) ⊆ ρ(A).

(ii) We have supt>0 ‖t (t + A)−1‖6 M , for some M > 0.

A is called R–sectorial if the family {t (t + A)−1}t>0 is R–bounded. We denote the class of
sectorial operators (resp. R–sectorial operators) in X by S(X ) (resp. RS(X )).

If A ∈ S(X ), then Σφ ⊆ ρ(−A) , for some φ> 0 and sup
|arg(λ)|<φ

‖λ(λ+ A)−1‖ <∞.

We denote the spectral angle of A ∈ S(X ) by

φA = inf
{
φ : Σπ−φ ⊆ ρ(−A) , sup

λ∈Σπ−φ
‖λ(λ+ A)−1‖ <∞}

Definition 4.4. Let A be a sectorial operator. If there exist φ>φA and a constant Kφ > 0
such that

‖ f (A)‖6Kφ‖ f ‖φ∞ , for all f ∈H0(Σφ)

then we say that a sectorial operator A admits a bounded H ∞–calculus.

We denote the class of sectorial operators A which admit a bounded H ∞–calculus by
H ∞(X ). Moreover, the H ∞–angle is defined by

φ∞
A = inf{φ>φA : Definition (4.4) holds}.

Remark 4.1. Let A be a sectorial operator which admits a bounded H ∞–calculus. If the
set

{h(A) : h ∈H ∞(Σθ) , ‖h‖θ∞}6 1}

is R–bounded for some θ > 0, we say that A admits an R–bounded H ∞–calculus. We
denote the class of such operators by RH ∞(X ). The RH ∞–angle is analogous to the
H ∞–angle, and is denoted θR∞

A . For further information about sectorial and R–sectorial
operators, see [91].

We state the following Proposition from functional calculus theory without proof (com-
pare [52]). The proof of Lemma of 4.7 depends on this result.

Proposition 4.1. Let A ∈ RH ∞(X ) and suppose that {hλ}λ∈Λ ⊆ H ∞(Σθ) is uniformly
bounded for some θ > θR∞

A , where Λ is an arbitrary index set. Then the set {hλ(A)}λ∈Λ is
R–bounded.

Lemma 4.7. Letα,β ∈R+. Assume that X is a U MD–space. Suppose that A ∈RH ∞(X ),
with RH ∞–angle θR∞

A < π
2 , then the families of operators{

i k3
(
− iαk3 +k2

β
− A

)−1}
k∈Z

and

{
i k A1/2

(
− iαk3 +k2

β
− A

)−1}
k∈Z

are R–bounded.
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Proof. For every λ ∈C and z ∈Σπ/2, we define the functions

F 1(λ, z) = βλ3

αλ3 +λ2 −βz
and F 2(λ, z) = βλz1/2

αλ3 +λ2 −βz
.

We claim that there is a constant M > 0 such that sup
k∈Z

∥∥F j (i k, ·)∥∥H ∞(Σπ/2) 6 M ,

for j = 1,2. Indeed, note that

(αλ3 +λ2 −βz) = (αλ3 +λ2)
(
1− βz

αλ3 +λ2

)
.

Hence, there exists a constant M1 > 0 such that

|F 1(i k, z)| = |iβk3|
|iαk3 +k2|

∣∣∣1+ βz
iαk3+k2

∣∣∣ 6 M1∣∣∣1+ βz
iαk3+k2

∣∣∣ .

On the other hand, note also that

(αλ3 +λ2 −βz) =
p
αλ3 +λ2z1/2

(
1− β1/2z1/2

p
αλ3+λ2

)(
β1/2 +

p
αλ3+λ2

z1/2

)
.

Thus, there exists M2 > 0 such that

|F 2(i k, z)|6 M2∣∣∣1− β1/2z1/2
p
−iαk3−k2

∣∣∣∣∣∣β1/2 +
p
−iαk3−k2

z1/2

∣∣∣ .

Since z ∈Σπ/2, we have that the denominators never vanish. In addition, F 1(0, z) = 0 =
F 2(0, z). Therefore, there exists M > 0 such that sup

k∈Z

∥∥F j (i k, ·)∥∥H ∞(Σπ/2) 6 M , for j = 1,2.

It follows from Proposition 4.1 that the sets {F j (i k, A)}k∈Z with j = 1,2 are R–bounded.
In particular, for all k ∈Z the operators (−iαk3 −k2 −βA)−1 exist. Furthermore, for all

k ∈Z the operators
(
− iαk3 +k2

β
− A

)−1
exist in L (X ), and

{
i k3

(
− iαk3 +k2

β
− A

)−1}
k∈Z and

{
i k A1/2

(
− iαk3 +k2

β
− A

)−1}
k∈Z

are R–bounded families of operators.

Example 4.2. Let X be a U MD–space, and let p ∈ (1,∞). Suppose A ∈ RH ∞(X ), with
RH ∞–angle θR∞

A < π
2 . Consider the family of operators

F =
{

i k A1/2
(
− iαk3 +k2

β
− A

)−1
: k ∈Z

}
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with α,β> 0. If γ> 0 is such that γ
βRp (F ) < 1, then the equation

αu′′′(t )+u′′(t ) =βAu(t )+γA1/2u′(t )+ f (t ), for t ∈ [0,2π] (4.10)

with boundary conditions u(0) = u(2π), u′(0) = u′(2π) and u′′(0) = u′′(2π), has Lp –
maximal regularity.
Proof. According to Lemma 4.7, the families of operators{

i k A1/2
(
− iαk3 +k2

β
− A

)−1
}

k∈Z
and

{
i k3

(
− iαk3 +k2

β
− A

)−1}
k∈Z

are R–bounded. Since
γ

β
Rp (F ) < 1, it follows from Corollary 4.1 that equation (4.10)

has Lp –maximal regularity.
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CHAPTER 5

Periodic Solutions of a Fractional Neutral
Differential Equation with Finite Delay

It is well known that neutral functional differential equations are used to represent im-
portant physical systems. We refer to [72, 76, 102] for a discussion about this aspect of
the theory. Similarly, motivated by the fact that abstract neutral functional differential
equations (abbreviated, ANFDE) arise in many areas of applied mathematics, this type
of equations has received much attention in recent years ([49, 73, 76]). On the other
hand, because several important physical phenomena are modeled by abstract frac-
tional differential equations, this type of equations have been studied extensively last
time for many authors. We refer the reader to the works [2, 104, 120, 124, 135] and the
references listed therein for recent information on this subject.

There exists several notions of fractional differentiation. In this thesis we use the frac-
tional differentiation in sense of Liouville–Grünwald–Letnikov. This concept was in-
troduced in [70, 105] and has been widely studied by several authors. In these works
the fractional derivative is defined directly as a limit of a fractional difference quotient.
In [35], the authors apply this approach based on fractional differences to study frac-
tional differentiation of periodic scalar functions. This idea has been used to extend
the definition of fractional differentiation to vector–valued functions, (see [98]). In the
case of periodic functions this concept enables one to set up a fractional calculus in
the Lp setting with the usual rules, as well as provides a connection with the classical
Weyl fractional derivative (see [137]).

Let α> 0. Given f ∈ Lp (T; X ) for 16 p <∞ the Riemann difference

∆αt f (x) :=
∞∑

j=0
(−1) j

(
α

j

)
f (x − t j ),

51



(
where

(
α

j

)
= α(α−1) · · · (α− j −1)

j !

)
exists almost everywhere and

‖∆αt f ‖Lp (T;X ) 6
∞∑

j=0

∣∣∣∣∣
(
α

j

)∣∣∣∣∣‖ f ‖Lp (T;X )

since
∑∞

j=0 |
(α

j

)| <∞ (see [35]).

The following definition is a direct extension of Definition 2.1 in [35] to vector–valued
case. See [98] for its connection with differential equations.

Definition 5.1. Let X be a complex Banach space,α> 0 and 16 p <∞. Let f ∈ Lp (T; X ).
If there exists g ∈ Lp (T; X ) such that limt→0+ t−α∆αt f = g in the Lp (T; X ) norm, then g is
called the αth–Liouville–Grünwald–Letnikov derivative of f in the mean of order p.

We abbreviate this terminology by αth-derivative and we denote it by Dα f = g .

Example 5.1. Theαth-derivative of e i ax for any real a is given by (i a)e i ax . In particular,
Dα sin x = sin

(
x + π

2α
)

and Dα cos x = cos
(
x + π

2α
)
.

We also mention here a few properties of this fractional derivative. The proof follows
the same steps as in the scalar case given in Proposition 4.1 in [35].

Proposition 5.1. Let 1 6 p <∞ and f ∈ Lp (T; X ). For α,β > 0 the following properties
hold:

(a) If Dα f ∈ Lp (T; X ), then Dβ f ∈ Lp (T; X ) for all 0 <β<α.

(b) DαDβ f = Dα+β f whenever one of the two sides is well defined.

Let f ∈ Lp (T; X ) and α > 0. It has been proved by Butzer and Westphal [35] that
Dα f ∈ Lp (T; X ) if and only if there exists g ∈ Lp (T; X ) such that (i k)α f̂ (k) = ĝ (k), where

(i k)α = |k|αe
πiα

2 sgn(k). In this case Dα f = g .

In this chapter, we study a characterization of maximal regularity on Besov and Triebel–
Lizorkin spaces of fractional differential equation with finite delay

Dαu(t ) = Au(t )+Fut +GDβut + f (t ), t ∈ [0,2π], and 0 <β<α6 2. (5.1)

with different periodic boundary conditions depending on the values of α and β. They
are

u(0) = u(2π) if 0 <β<α6 1

Dα−1u(0) = Dα−1(2π) and u(0) = u(2π) if 0 <β< 1 <α6 2

Dα−1u(0) = Dα−1(2π) , u(0) = u(2π) and
Dβ−1u(0) = Dβ−1(2π) if 1 <β<α6 2
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Here the function ut is given by ut (θ) = u(t+θ) for θ in an appropriate domain, denotes
the history of the function u(·) at t and Dβut (·) is definded by Dβut (·) = (

Dβu
)

t (·). The
delay operators F and G are bounded linear map defined on an suitable space and f
is a given function that belongs to a Besov or Triebel–Lizorkin spaces. The operator
A : D(A) ⊆ X → X is a linear closed operator defined in a complex Banach space X .

In recent years, several particular cases of equation (5.1) have been studied by many
authors. If α = 1 and F ≡ G ≡ 0, Arendt and Bu in [10, 12] have studied Lp –maximal
regularity and B s

p,q –maximal regularity, and Bu and Kim in [32], have studied F s
p,q –

maximal regularity. On the other hand, Lizama in [110] has obtained a characteriza-
tion of existence and uniqueness of strong Lp –solutions, and Lizama and Poblete in
[112] study C s–maximal regularity of the corresponding equation on the real line. In
the same manner, if α = 2 and β = 1, Bu in [24] characterizes C s–maximal regularity
on R. Furthermore, if α = 2 and β = 1, Bu and Fang in [30] have studied this equation
simultaneosly in cathegories of periodic Lebesgue, Besov and Triebel–Lizorkin spaces.
Moreover, if 1 <α< 2 and G ≡ 0, Lizama and Poblete in [113] study Lp –maximal regu-
larity of this equation.

We use maximal regularity on Besov spaces (respectively Triebel–Lizorkin spaces) of
equation (5.1) and a fixed point argument to proving existence of a strong B s

p,q –solution
(respectively F s

p,q –solution) of neutral fractional differential equation with finite delay

Dα
(
u(t )−Bu(t − r )

)= Au(t )+Fut +GDβut + f (t ) t ∈ [0,2π], (5.2)

with 0 <β<α6 2, where r > 0 is a fixed number and B : D(B) ⊆ X → X is a linear closed
operator defined in a Banach space X such that D(A) ⊆ D(B). All of the rest of terms
of this equation are defined like in equation (5.1). This method is an adaptation of the
technique that Henriquez and Poblete use successfully in [81] to prove that equation
(5.2) in the particular case G ≡ 0 has a unique strong Lp -solution for some 1 < p <∞.

With a specific norm, we denote the space consisting of all 2π–periodic, X –valued
functions by E(T; X ). Let α> 0 and denote the set consisting of all functions in E(T; X )
which are α times differentiable in sense of Liouville–Grünwald–Letnikov (if it is well
defined) by Eα(T; X ) . The following definitions will be used in subsequent sections
with periodic Besov and Triebel–Lizorkin periodic spaces.

Definition 5.2. A function u is called a strong E–solution of equation (5.1) if
u ∈ Eα(T; X )∩E(T; [D(A)])∩E(T; X ) and equation (5.1) holds a.e. in [0,2π].

Definition 5.3. We say that solutions of equation (5.1) has E–maximal regularity if for
each f ∈ E(T; X ), equation (5.1) has a unique strong E–solution.

For the rest of this chapter we introduce the following notation. Given 0 < β < α6 2,
and a closed linear operator A defined on a Banach space X . For k ∈Z, we will write

ak = (i k)α and bk = (i k)β (5.3)
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and the bounded operators Fk and Gk defined by

Fk x = F (ek x) and Gk x =G(ek x), where ek x(t ) = e i kt x. (5.4)

Moreover, we will denote

Nk = (ak I −Fk −bkGk − A)−1. (5.5)

and
Mk = ak

(
ak I −bkGk −Fk − A

)−1 = ak Nk (5.6)

In order to give conditions which we will need later, we say that {Fk }k∈Z satisfies the
condition

(F2) If the family of operators

{
k2

ak

(
∆2Fk

)}
k∈Z\{0}

is a bounded.

(F3) If {Fk }k∈Z satisfies (F2) and the family

{
k3

ak

(
∆3Fk

)}
k∈Z\{0}

is bounded.

In the same manner, we say that the family {Gk }k∈Z satisfies the condition

(G2) If the families of operators

{
kbk

ak

(
∆1Gk

)}
k∈Z\{0}

and

{
k2bk

ak

(
∆2Gk

)}
k∈Z\{0}

are

bounded.

(G3) If {Gk }k∈Z satisfies (G2) and the family

{
k3bk

ak

(
∆3Gk

)}
k∈Z\{0}

is bounded.

5.1 Periodic Strong B s
p,q–solution.

The first objective of this section is the study B s
p,q –maximal regularity of equation (5.1).

For this purpose, givenα> 0 we present a characterization of the Besov space B s+α
p,q (T; X )

in terms of Liouville–Grünwald–Letnikov fractional derivative.

Proposition 5.2. Let α > 0 and a function u ∈ B s
p,q (T; X ) with 1 6 p, q 6∞ and s > 0.

Dαu ∈ B s
p,q (T; X ) if and only if there exists g ∈ B s

p,q (T; X ) such that (i k)αû(k) = ĝ (k),
and in this case Dαu = g . In fact we have

B s+α
p,q (T; X ) = {u ∈ B s

p,q (T; X ) : Dαu ∈ B s
p,q (T; X )}.
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Proof. Let u ∈ B s
p,q (T; X ) such that Dαu ∈ B s

p,q (T; X ). We claim that u ∈ B s+α
p,q (T; X ). In

fact, since Dαu ∈ B s
p,q (T; X ), it follows from lifting property of Besov spaces, that∑

k 6=0
ek ⊗ �Dαu(k) ∈ B s

p,q (T; X ).

Since �Dαu(k) = (i k)αû(k) for all k ∈Z, we have that∑
k 6=0

ek ⊗ (i k)αû(k) ∈ B s
p,q (T; X ).

By lifting property this is equivalent to u ∈ B s+α
p,q (T; X ).

Reciprocally, suppose that u ∈ B s+α
p,q (T; X ). by lifting property this is equivalent that∑

k 6=0
ek ⊗ (i k)αû(k) ∈ B s

p,q (T; X ) (5.7)

Since s > 0, we have that ∑
k 6=0

ek ⊗ (i k)αû(k) ∈ Lp (T; X )

It follows from [35, Theorem 4.1] that there exists g ∈ Lp (T; X ) such that ĝ (k) = (i k)αû(k)
for all k ∈ Z. Furthermore, it follows from the affirmation (5.7) that g ∈ B s

p,q (T; X ).
Therefore Dαu ∈ B s

p,q (T; X ).

With this characterization we redefine elegantly B s
p,q –maximal regularity of solutions

of equation (5.1) in particular case s > 0.

Definition 5.4. Let 1 6 p, q 6 ∞, s > 0 and let f ∈ B s
p,q (T; X ). A function u is called

strong B s
p,q –solution of equation (5.1) if u ∈ B s+α(T; X )∩B s

p,q (T; [D(A)]) and u satisfies
the equation (5.1) for almost t ∈ [0,2π]. We say that solutions of equation (5.1) has B s

p,q –
maximal regularity if, for each f ∈ B s

p,q (T; X ) equation (5.1) has an unique strong B s
p,q –

solution.

The proof of Theorem 5.1 will depend of our next results.

Lemma 5.1. Let 1 6 p, q 6∞, s > 0 and 0 < β< α6 2. Let G ∈ L (B s
p,q (T; X ); X ). If the

family {Gk }k∈Z satisfy the condition (G2) then{
k

ak

(
∆1bkGk

)}
k∈Z\{0}

and

{
k2

ak

(
∆2bkGk

)}
k∈Z\{0}

are bounded families of operators.

Proof. We note that for all k ∈Z, it holds(
∆1bkGk

)= (
∆1bk

)
Gk+1 +bk

(
∆1Gk

)
.
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Therefore, for all k ∈Z\ {0},

k

ak
(∆1bkGk ) = k

(
∆1bk

)
bk

bk

ak
Gk+1 +

kbk

ak

(
∆1Gk

)
.

On the other hand, for all k ∈Zwe have(
∆2bkGk

)= (
∆1bk+1

)[
(∆1Gk+1)+ (∆1Gk )

]+ (
∆2bk

)
Gk +bk+1

(
∆2Gk

)
.

Therefore, for all k ∈Z\ {0} we have,

k2

ak
(∆2bkGk ) = k(∆1bk+1)

bk

kbk

ak
[(∆1Gk+1)+ (∆1Gk )]+ k2(∆2bk )

bk

bk

ak
Gk +

k2bk+1

ak
(∆2Gk ).

Since the sequence {bk }k∈Z is 2–regular and sup
k∈Z

‖Gk‖6C‖G‖ for some C > 0, it follows

from the hypothesis that{
k

ak

(
∆1bkGk

)}
k∈Z\{0}

and

{
k2

ak

(
∆2bkGk

)}
k∈Z\{0}

are bounded families.

Lemma 5.2. Let 1 6 p, q 6∞, s > 0 and 0 <β<α6 2. Let A be a linear closed operator
defined in a Banach space X and F,G ∈L (B s

p,q (T; X ); X ). Assume that for all k ∈Z, the
operators Nk are well defined in L (X ). If the family {Fk }k∈Z satisfies the condition (F2)
and {Gk }k∈Z satisfies (G2) and the family of operators {Mk }k∈Z is bounded then{

kak
(
∆1Nk

)}
k∈Z and

{
k2ak

(
∆2Nk

)}
k∈Z

are bounded families of operators.

Proof. We note that for all k ∈Z it holds(
∆1Nk

) = Nk+1
(
ak −Fk −bkGk −ak+1 +Fk+1 +bk+1Gk+1

)
Nk

= (−∆ak
)
Nk+1Nk +Nk+1

(
∆1Fk

)
Nk +Nk+1

(
∆1bkGk

)
Nk .

(5.8)

Therefore, for all k ∈Z\ {0}

kak
(
∆1Nk

)= k

(−∆1ak
)

ak
ak Nk+1Mk +

k

ak
ak Nk+1

(
∆1Fk

)
Mk +ak Nk+1

k

ak

(
∆1bkGk

)
Mk .

A direct computation, shows that kak
(
∆1Nk

)
is bounded if k = 0. Since the sequence

{ak }k∈Z is 2–regular and the families of operators {Fk }k∈Z and {Gk }k∈Z are bounded, it
follows from Lemma 5.1 that

{
kak

(
∆1Nk

)}
k∈Z is a bounded family of operators.

56



On the other hand, for all k ∈Zwe have(
∆2Nk

) = [
(∆1Nk+1)+ (∆1Nk )

][
(−∆1ak+1)+ (

∆1Fk+1
)+ (

∆1bk+1Gk+1
)]

Nk+1

+ Nk
[(−∆2ak

)+ (
∆2Fk

)+ (
∆2bkGk

)]
Nk+1.

(5.9)

Therefore, for all k ∈Z\ {0}

k2ak
(
∆2Nk

)= kak
[
(∆1Nk+1)+ (∆1Nk )

] k

ak

[−(
∆1ak+1

)+ (∆1Fk+1)+ (∆1bk+1Gk+1)
]

ak Nk+1

+Mk

[
k2 (−∆2ak )

ak
+ k2

ak

(
∆2Fk

)+ k2

ak
(∆2bkGk )

]
ak Nk+1.

A direct computation shows that if k = 0 the operator k2ak
(
∆2Nk

)
is bounded. Since

the sequence {ak }k∈Z is 2–regular, the families {Fk }k∈Z and {Gk }k∈Z are bounded, and
the family {kak (∆1Nk )}k∈Z is bounded, it follows from Lemma 5.1 that the family of
operators

{
k2ak

(
∆2Nk

)}
k∈Z is bounded.

Lemma 5.3. Let 1 6 p, q 6∞, s > 0 and 0 <β<α6 2. Let A be a linear closed operator
defined in a Banach space X and F,G ∈ L (B s

p,q (T; X ); X ). Assume that for all k ∈ Z,
the operators Nk are well defined in L (X ). If {Fk }k∈Z satisfies the condition (F2) and
{Gk }k∈Z satisfies the condition (G2) and the family of operators {Mk }k∈Z is bounded then
the family {Fk Nk }k∈Z is a B s

p,q –multiplier.

Proof. According to Theorem 1.2, it suffices to show that the family of operators
{Fk Nk }k∈Z is M–bounded of order 2. With this purpose, note that sup

k∈Z
‖Fk‖ 6 C‖F‖

for some C > 0 and sup
k∈Z

‖Nk‖ < ∞. Therefore the family of operators
{
Fk Nk

}
k∈Z is

bounded.

On the other hand, we have

k
(
∆1Fk Nk

)= k

ak+1

(
∆1Fk

)
Mk+1 +

1

ak
Fk kak

(
∆1Nk

)
and

k2(∆2Fk Nk
)= 1

ak
Fk+1k2ak

(
∆2Nk

)+ k2

ak

(
∆2Fk

)
Mk +

k

ak

(
∆1Fk+1

)
kak

(
(∆1Nk+1)+ (∆1Nk )

)
It follows from Lemmas 5.1 and 5.2 that {Fk Nk }k∈Z is M -bounded of order 2.

Lemma 5.4. Let 1 6 p, q 6∞, s > 0 and 0 <β<α6 2. Let A be a linear closed operator
defined in a Banach space X and F,G ∈ L (B s

p,q (T; X ); X ). Assume that for all k ∈ Z,
the operators Nk are well defined in L (X ). If {Fk }k∈Z satisfies (F2) and {Gk }k∈Z satisfies
(G2) and the family of operators {Mk }k∈Z is bounded then {(i k)βGk Nk }k∈Z is a B s

p,q –
multiplier.
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Proof. According to Theorem 1.2 it suffices to show that the family of operators
{(i k)βGk Nk }k∈Z is M–bounded of order 2.
For this, note that sup

k∈Z
‖Gk‖6C‖G‖ for some C > 0 and sup

k∈Z
‖bk Nk‖ <∞.

Therefore
{
(i k)βGk Nk

}
k∈Z is bounded.

On the other hand, we have

k
(
∆1bkGk Nk

)= k

ak

(
∆1bkGk

)
ak Nk+1 +

bk

ak
Gk kak

(
∆1Nk

)
and

k2(∆2bkGk Nk
)= k

ak

(
∆1bk+1Gk+1

)
kak

[(
∆1Nk+1

)+ (
∆1Nk

)]+ k2

ak
(∆2bkGk )Mk

+ bk+1

ak
Gk+1k2ak

(
∆2Nk

)
.

It follows from Lemmas 5.1 and 5.2 that {(i k)βGk Nk }k∈Z is M -bounded of order 2.

Lemma 5.5. Let 1 6 p, q 6∞, s > 0 and 0 <β<α6 2. Let A be a linear closed operator
defined in a Banach space X and F,G ∈L (B s

p,q (T; X ); X ). Assume that for all k ∈Z, the
operators Nk are well defined in L (X ). If {Fk }k∈Z satisfies (F2) and {Gk }k∈Z satisfies (G2)
then the following assertions are equivalent

(i) The family of operators {Mk }k∈Z is a bounded.

(ii) The family of operators {Mk }k∈Z is a B s
p,q –multiplier.

Proof. (i ) ⇒ (i i ). According Theorem 1.2 it suffices to show that that {Mk }k∈Z is
M–bounded of order 2. By hypothesis, sup

k∈Z
‖Mk‖ <∞. We note that

k(∆1Mk ) = k(∆1ak )

ak+1
Mk+1 +kak (∆1Nk ).

On the other hand, we have

k2(∆2Mk
)= k

(
∆1ak+1

)
ak

kak
[(
∆1Nk+1)+ (∆1Nk

)]+ k2
(
∆2ak

)
ak

Mk +k2ak+1
(
∆2Nk

)
.

Since the sequence {ak }k∈Z is 2–regular, it follows from Lemmas 5.1 and 5.2 that {Mk }k∈Z
is M–bounded of order 2.

(i i ) ⇒ (i ). It follows from Closed Graph Theorem that there exists C > 0 (independent
of f ) such that for f ∈ B s

p,q (T; X ) we have,∥∥∥∑
k∈Z

ek ⊗Mk f̂ (k)
∥∥∥

B s
p,q

6C
∥∥ f

∥∥
B s

p,q
.
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Let x ∈ X and define f (t ) = e i kt x for k ∈Z fixed. Then the above inequality implies

‖ek‖B s
p,q

‖Mk x‖B s
p,q

= ‖ek Mk x‖B s
p,q

6C‖ek‖B s
p,q

‖x‖B s
p,q

.

Hence for all k ∈Zwe have ‖Mk‖6C . Thus sup
k∈Z

‖Mk‖ <∞.

Next Theorem establishes a characterization of B s
p,q –maximal regularity of solution of

equation (5.1).

Theorem 5.1. Let 1 6 p, q 6∞, s > 0. Let be X a Banach space. If the families {Fk }k∈Z
and {Gk }k∈Z, defined by the operators F and G of equation (5.1) satisfy the conditions
(F2) and (G2) respectively, then the following assertions are equivalent

(i) The solution of equation (5.1) has B s
p,q –maximal regularity.

(ii) {Nk }k∈Z ⊆L (X ) and the family {Mk }k∈Z is bounded.

Proof. (i ) ⇒ (i i ). We show that for k ∈ Z the operators ((i k)αI − (i k)βGk − Fk − A)
are invertible. For this, let k ∈ Z fixed and x ∈ X , and define h(t ) = e i kt x, a direct cal-
culation shows that ĥ(k) = x. By hypothesis there exists a function u ∈ B s+α

p,q (T; X )∩
B s

p,q (T; [D(A)]) such that , for almost all t ∈ [0,2π], we have

Dαu(t ) = Au(t )+Fut +GDβut +h(t ).

Applying Fourier transform to both sides of the preceding equality, we obtain(
(i k)α−Fk − (i k)βGk − A

)
û(k) = ĥ(k) = x,

since x and k are arbitrary, we have that for k ∈Z the operators
(
(i k)α−Fk−(i k)βGk−A

)
are surjective.

On the other hand, let z ∈ D(A), and assume that ((i k)α−Fk − (i k)βGk − A)z = 0. Sub-
stituting u(t ) = e i kt z in the equation (5.1) we see that u is a periodic solution of this
equation when f ≡ 0. The uniqueness of solution implies that z = 0.

Since for all k ∈Z the linear operators Nk are closed defined in whole space X , it follows
from Closed Graph Theorem that Nk ∈L (X ). Thus {Nk }k∈Z ⊆L (X ).

Let f ∈ B s
p,q (T; X ). By hypothesis, there exists a function u ∈ B s+α

p,q (T, X )∩B s
p,q (T, [D(A)])

such that u is the unique strong solution of the equation

Dαu(t ) = Au(t )+Fut +GDβut + f (t ), t ∈ [0,2π].

Applying Fourier transform to both sides of the preceding equation, we have(
(i k)α−Fk − (i k)βGk − A

)
û(k) = f̂ (k)
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for all k ∈ Z. Since for all k ∈ Z the operator
(
(i k)α−Fk − (i k)βGk − A

)
is invertible, we

have
û(k) = (

(i k)α−Fk − (i k)βGk − A
)−1 f̂ (k) for all k ∈Z.

Hence, (i k)αû(k) = �Dαu(k) = (i k)αNk f̂ (k) = Mk f̂ (k) for all k ∈Z.
Since u ∈ B s+α

p,q (T; X ), by Proposition 5.2 we have that Dαu ∈ B s
p,q (T; X ). Therefore

the family {Mk }k∈Z is a B s
p,q –multiplier. It follows from Lemma 5.5 that {Mk }k∈Z is a

bounded family of operators.

(i i ) ⇒ (i ). By hypothesis, the conditions of Lemma 5.5 are satisfied. Therefore, {Mk }k∈Z
is a B s

p,q –multiplier. Define the family of operator {Ik }k∈Z, by Ik = 1
(i k)α I when k 6= 0 and

I0 = I . It follows from Theorem 1.2 that {Ik }k∈Z is a B s
p,q –multiplier. Since Nk = Ik Lk

for all k ∈ Z \ {0} we have {Nk }k∈Z is a B s
p,q –multiplier. Accordingly, given a arbitrary

function f ∈ B s
p,q (T; X ) there exist functions u, w ∈ B s

p,q (T, X ) such that

û(k) = Nk f̂ (k) and ŵ(k) = (i k)αNk f̂ (k) for all k ∈Z. (5.10)

Therefore,
ŵ(k) = (i k)αû(k) = �Dαu(k) for all k ∈Z.

By the uniqueness of the Fourier coefficients, Dαu = w . This implies that that Dαu ∈
B s

p,q (T; X ). It follows from Proposition 5.2 that u ∈ B s+α
p,q (T; X ).

On the other hand, it follows from Lemma 5.3 that {Fk Nk }k∈Z is a B s
p,q –multiplier. Con-

sequently, there exists a function g ∈ B s
p,q (T; X ) such that

ĝ (k) = Fk Nk f̂ (k) for all k ∈Z.

By equality (5.10) we have

ĝ (k) = Fk û(k) for all k ∈Z.

A direct computation shows that F̂ut (k) = Fk û(k) for all k ∈Z. By the uniqueness of the
Fourier coefficients, Fut = g . This implies that that Fut ∈ B s

p,q (T; X ).

In the same manner, it follows from Lemma 5.4 that {(i k)βGk Nk }k∈Z is a B s
p,q –multiplier.

Hence there exists a function h ∈ B s
p,q (T; X ) such that

ĥ(k) = (i k)βGk Nk f̂ (k) for all k ∈Z.

By equality (5.10) we have

ĥ(k) = (i k)βGk û(k) for all k ∈Z.

A direct computation shows that (i k)βGk û(k) = àGDβut (k) for all k ∈Z. By the unique-
ness of the Fourier coefficients, GDβut = h. This implies that that GDβut ∈ B s

p,q (T; X ).
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It follows from equality (5.10) that

û(k) = (
(i k)α−Fk − (i k)βGk − A

)−1 f̂ (k).

Thus, (
(i k)α−Fk − (i k)βGk − A

)
û(k) = f̂ (k)

for all k ∈ Z. Using the fact that A is a closed operator, we have that u(t ) ∈ D(A) for
almost t ∈ [0,2π]. Moreover, by uniqueness of Fourier coefficients we have

Dα
t u(t ) = Au(t )+Fut +GDβut + f (t )

for almost t ∈ [0,2π]. Since f ,Fut ,GDβut and Dαu ∈ B s
p,q (T; X ), we conclude that Au ∈

B s
p,q (T; X ). This implies that u ∈ B s

p,q (T; [D(A)]). Therefore, u is a strong B s
p,q –solution

of equation (5.1).

Since
(
(i k)αI −(i k)βGk −Fk −A

)−1 is invertible for all k ∈Z, this strong B s
p,q –solution is

unique. Therefore the solution of equation (5.1) has B s
p,q –maximal regularity.

As we have mentioned, the verification of assumptions concerning the family {Nk }k∈Z
is not an easy work. Our next Corollary require additional conditions about the opera-
tors A, F and G , however is a more practical result to check that {(i k)αNk } is bounded.
Let α> 1, define the operators Sk = ((i k)α− A)−1, for all k ∈Z.

Corollary 5.1. Let 1 6 p, q 6 ∞, s > 0. Let be X a Banach space. Assume that
{(i k)α}k∈Z ⊆ ρ(A) and the families {Fk }k∈Z and {Gk }k∈Z, defined by the operators F and
G of equation (5.1) satisfy the conditions (F2) and (G2) respectively. If the family of oper-

ators
{
(i k)α

(
(i k)α− A

)−1}k∈Z is bounded, and sup
k∈Z

∥∥∥(
(i k)βGk +Fk

)
Sk

∥∥∥< 1 then equation

(5.1) has B s
p,q –maximal regularity.

Proof. Since sup
k∈Z

∥∥(
(i k)βGk +Fk

)
Sk

∥∥< 1, we have that the family

{(
I − (

(i k)βGk +Fk
)
Sk

)−1
}

k∈Z

is bounded. In addition

Nk =
[(

(i k)α− A
)(

I − (
(i k)βGk +Fk

)
Sk

)]−1

= (
I − (

(i k)βGk +Fk
)
Sk

)−1((i k)α− A
)−1.

Therefore the family {(i k)αNk }k∈Z is bounded. Since the families {Fk }k∈Z and {Gk }k∈Z
satisfy the conditions (F2) and (G2) respectively, it follows from Theorem 5.1 that equa-
tion (5.1) has B s

p,q –maximal regularity.
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5.2 Periodic Strong B s
p,q–solutions of a Neutral Fractional

Differential Equation with Finite Delay

In this section, as we have said, we use the results about B s
p,q –maximal regularity of

solution of equation (5.1) to prove that fractional neutral differential equation

Dα
(
u(t )−Bu(t − r )

)= Au(t )+Fut +GDβut + f (t ), (5.11)

has a periodic strong B s
p,q –solution.

Note that, if equation (5.1) has B s
p,q –maximal regularity for some 1 6 p, q 6 ∞ and

s > 0, the linear map Ψ : B s
p,q (T; X ) → B s

p,q (T; X ) given by Ψ(g ) = Dαv , is well defined.
Here v is the unique strong B s

p,q –solution of the equation

Dαv = Au +Fut +GDβut + g (t ). (5.12)

Lemma 5.6. Let 1 6 p, q 6 ∞, s > 0, and 1 6 β 6 α. Let be X a Banach space. As-
sume that B is a bounded operator, for all k ∈ Z the operators Nk is well defined in
L (X ) and the families {Fk }k∈Z and {Gk }k∈Z defined by the operators F and G of equa-
tion (5.11) satisfy the conditions (F2) and (G2) respectively. If {(i k)αNk }k∈Z is a bounded
family of operators, such that supk∈Z |k|α‖B‖‖Nk‖ < 1 and ‖B‖‖Ψ‖ < 1, then the family
{(I −e−i kr (i k)αB Nk )−1}k∈Z is a B s

p,q –multiplier.

Proof. Denote Rk = (I −e−i kr (i k)αB Nk )−1 for all k ∈Z. Since sup
k∈Z

|k|α‖B‖‖Nk‖ < 1, the

family {Rk }k∈Z ⊆L (X ). Let f ∈ B s
p,q (T; X ). Define the map P : B s

p,q (T; X ) → B s
p,q (T; X )

by
Pϕ(t ) = BΨ(ϕ)(t − r )+ f (t ).

By Theorem 5.1 the map P is well defined. Moreover P is a contraction, thus there
exists a function g ∈ B s

p,q (T; X ) such that

g (t ) = BΨ(g )(t − r )+ f (t ) = BDαu(t − r )+ f (t ), (5.13)

where u is the unique strong B s
p,q –solution of the equation

Dαu(t ) = Au(t )+Fut +GDβut + g (t ) t ∈ [0,2π], 0 <β<α6 2. (5.14)

Applying Fourier transform to both side of equation (5.13) we have

ĝ (k) = e−i kr (i k)αBû(k)+ f̂ (k) for all k ∈Z (5.15)

On the other hand, applying Fourier transform to both sides of equation (5.14) we have

û(k) = Nk ĝ (k) for all k ∈Z (5.16)
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Therefore
ĝ (k) = e−i kr (i k)αB Nk ĝ (k)+ f̂ (k) for all k ∈Z.

This implies that ĝ (k) = Rk f̂ (k) for all k ∈Z.
Hence, the family of operators {(I −e−i kr (i k)αB Nk )−1}k∈Z is a B s

p,q –multiplier.

Next Theorem gives sufficient condition that guarantee existence of a strong
B s

p,q –solution of equation (5.11). We use the notation introduced in preceding Lemma.

Theorem 5.2. Let 1 6 p, q 6 ∞, s > 0, and 0 < β < α 6 2. Let be X a Banach space.
Assume that B is a bounded operator, for all k ∈ Z the operators Nk is well defined in
L (X ) and the families {Fk }k∈Z and {Gk }k∈Z defined by the operators F and G of equation
(5.11) satisfy the conditions (F2) and (G2) respectively. If {(i k)αNk }k∈Z is a bounded
family of operators, such that supk∈Z |k|α‖B‖‖Nk‖ < 1 and ‖B‖‖Ψ‖ < 1, then for every
f ∈ B s

p,q (T; X ) there exists an unique strong B s
p,q –solution of Equation (5.11).

Proof. It follows from Lemma 5.6 that the family of operators {(I−e−i kr (i k)αB Nk )−1}k∈Z
is a B s

p,q –multiplier. Denote Rk = (I − e−i kr (i k)αB Nk )−1. Let f ∈ B s
p,q (T; X ). Since

{Rk }k∈Z is B s
p,q –multiplier, there exists g ∈ B s

p,q (T; X ) such that

ĝ (k) = Rk f̂ (k) for all k ∈Z. (5.17)

On the other hand, by Theorem 5.1, there exists a function u ∈ B s
p,q (T; X ) such that u is

the unique strong B s
p,q –solution of equation

Dαu(t ) = Au(t )+Fut +GDβut + g (t ), t ∈ [0,2π], 0 <β<α6 2. (5.18)

Applying Fourier transform to both side of the preceding equality we have

û(k) = Nk ĝ (k) for all k ∈Z. (5.19)

It follows from equality (5.17) that

û(k) = Nk Rk f̂ (k) for all k ∈Z. (5.20)

Note that

Nk Rk = (
(i k)α−e−i kr (i k)αB − (i k)βGk −Fk − A

)−1 for all k ∈Z.

Thus, (
(i k)α−e−i kr (i k)αB − (i k)βGk −Fk − A

)
û(k) = f̂ (k) for all k ∈Z.

Since A is a closed linear operator, it follows from uniqueness of Fourier coefficients
that u satisfies the equation

Dα
(
u(t )−Bu(t − r )

)= Au(t )+Fut +GDβut + f (t ) for almost t ∈ [0,2π].
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Therefore u is a strong B s
p,q –solution of equation (5.11). It only remains to show that

the strong B s
p,q –solution is unique. Indeed let f ∈ B s

p,q (T; X ). Suppose equation (5.11)
has two strong B s

p,q –solutions, u1 and u2. A direct computation shows that(
(i k)α−e−i kr (i k)αB − (i k)βGk −Fk − A

)
(û1(k)− û2(k)) = 0

for all k ∈Z. Since
(
(i k)α−e−i kr (i k)αB − (i k)βGk −Fk − A

)
is invertible, for all k ∈Zwe

have that û1(k) = û2(k). By the uniqueness of the Fourier coefficients, u1 ≡ u2.

5.3 Periodic Strong F s
p,q–solution.

Recall, we are studying the equations

Dαu(t ) = Au(t )+Fut +GDβut + f (t ), (5.21)

and

Dα
(
u(t )−Bu(t − r )

)= Au(t )+Fut +GDβut + f (t ), (5.22)

where all terms of these equations are defined in (5.1) and (5.2). Our approach is simi-
lar as that of preceding section. For this reason, the first objective of this section is the
study F s

p,q –maximal regularity of equation (5.21). For this purpose, in the same manner
of preceding section, given α> 0 we present a characterization of the Triebel–Lizorkin
space F s+α

p,q (T; X ) in terms of Liouville–Grünwald–Letnikov fractional derivative.

Proposition 5.3. Let α > 0 and a function u ∈ F s
p,q (T; X ) with 1 6 p, q 6∞ and s > 0.

Dαu ∈ F s
p,q (T; X ) if and only if there exists g ∈ F s

p,q (T; X ) such that (i k)αû(k) = ĝ (k), and
in this case Dαu = g . In fact we have

F s+α
p,q (T; X ) = {u ∈ F s

p,q (T; X ) : Dαu ∈ F s
p,q (T; X )}.

Proof. The proof follows the same lines as those of proof Proposition 5.2

With this characterization we redefine elegantly F s
p,q –maximal regularity of solutions

of equation (5.21) when s > 0.

Definition 5.5. Let 1 6 p, q 6 ∞, s > 0 and let f ∈ F s
p,q (T; X ). A function u is called

strong F s
p,q –solution of equation (5.21) if u ∈ F s+α(T; X )∩F s

p,q (T; [D(A)]) and u satisfies
the equation (5.21) for almost t ∈ [0,2π]. We say that equation (5.21) has F s

p,q –maximal
regularity if, for each f ∈ F s

p,q (T; X ) equation (5.21) has a unique strong F s
p,q –solution.

The proof of Theorem 5.3 will depend of our next results.
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Lemma 5.7. Let 1 6 p, q 6 ∞, s > 0 and 0 < β < α 6 2. Let G ∈ L (F s
p,q (T; X ); X ). If

{Gk }k∈Z satisfy (G3) then {
k3

ak

(
∆3bkGk

)}
k∈Z\{0}

is a bounded family of operators.

Proof. We note that for all k ∈Z it holds

(∆3bkGk ) = bk (∆3Gk )+ (bk+3 −bk )(∆2Gk+1)+ (∆2bk+1)(∆1Gk+1)

+ (∆3bk )Gk+2 −2(∆2bk )(∆1Gk+1).

Therefore, for all k ∈Z\ {0} we have

k3

ak
(∆3bkGk ) = kbk

ak
(∆3Gk )+ k(bk+3 −bk )

bk

k2bk

ak
(∆2Gk+1)+ k2(∆2bk+1)

bk

kbk

ak
(∆1Gk+1)

+ k3(∆3bk )

bk

bk

ak
Gk+2 −2

k2(∆2bk )

bk

kbk

ak
(∆1Gk+1).

Since the sequence {bk }k∈Z is 3–regular and {Gk }k∈Z is a bounded family satisfying con-
dition (G3) it follows from Lemma 5.1 that{

k3

ak

(
∆3bkGk

)}
k∈Z\{0}

is a bounded family of operators.

Lemma 5.8. Let 1 6 p, q 6∞, s > 0 and 0 <β<α6 2. Let A be a linear closed operator
defined in a Banach space X and F,G ∈L (F s

p,q (T; X ); X ). Assume that for all k ∈Z, the
operators Nk are well defined in L (X ). If the family {Fk }k∈Z satisfies the condition (F3)
and {Gk }k∈Z satisfies (G3) and the family of operators {Mk }k∈Z is bounded then{

k3ak
(
∆3Nk

)}
k∈Z

is a bounded family of operators.

Proof. We note that for all k ∈Z it holds

(∆3Nk ) = [
(∆2Nk+1)+ (∆2Nk )

][
(−∆1ak+2)+ (∆1Fk+2)+ (∆1bk+2Gk+2)

]
Nk+1

+ [
(∆1Nk+1)+ (∆1Nk )

][
(−∆2ak+1)+ (∆2Fk )+ (∆2bk+1Gk+1)

]
Nk+1

+ [
(∆1Nk+1)+ (∆1Nk )

][
(−∆1ak+1)+ (∆1Fk )+ (∆1bk+1Gk+1)

]
(∆1Nk )

+ (∆1Nk )
[
(−∆2ak+1)+ (∆2Fk+1)+ (∆2bk+1Gk+1)

]
Nk+2

+ Nk
[
(−∆3ak )+ (∆3Fk )+ (∆3bkGk )

]
Nk+2

+ Nk
[
(−∆2ak )+ (∆2Fk )+ (∆2bkGk )

]
(∆1Nk+1).
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Therefore,

k3ak (∆3Nk ) = k2ak
[
(∆2Nk+1)+ (∆2Nk )

] k

ak+1

[
(−∆1ak+2)+ (∆1Fk+2)+ (∆1bk+2Gk+2)

]
Mk+1

+kak
[
(∆1Nk+1)+ (∆1Nk )

] k2

ak

[
(−∆2ak+1)+ (∆2Fk )+ (∆2bk+1Gk+1)

]
Mk+1

+kak
[
(∆1Nk+1)+ (∆1Nk )

] k

ak

[
(−∆1ak+1)+ (∆1Fk )+ (∆1bk+1Gk+1)

]
kak (∆1Nk )

+kak (∆1Nk )
k2

ak+1

[
(−∆2ak+1)+ (∆2Fk+1)+ (∆2bk+1Gk+1)

]
ak Nk+2

+Mk
k3

ak

[
(−∆3ak )+ (∆3Fk )+ (∆3bkGk )

]
ak Nk+2

+Mk
k2

ak

[
(−∆2ak )+ (∆2Fk )+ (∆2bkGk )

]
kak (∆1Nk+1).

Direct computation shows that k3ak (∆3Nk ) is a bounded operator in the particular
case k = 0. Since the sequence {ak }k∈Z is 3–regular, it follows from Lemmas 5.1 and 5.2,
and hypothesis that the family

{
k3ak (∆3Nk )

}
k∈Z is bounded.

Lemma 5.9. Let 1 6 p, q 6∞, s > 0 and 0 <β<α6 2. Let A be a linear closed operator
defined in a Banach space X and F,G ∈L (F s

p,q (T; X ); X ). Assume that for all k ∈Z, the
operators Nk are well defined. If {Fk }k∈Z satisfy (F3) and {Gk }k∈Z satisfy (G3) and the
family of operators {Mk }k∈Z is bounded then the family {Fk Nk }k∈Z is a F s

p,q –multiplier.

Proof. According to Theorem 1.3, it suffices to show that the family of operators
{Fk Nk }k∈Z is M–bounded of order 3. It follows from Lemma 5.3 that {Fk Nk }k∈Z is M–
bounded of order 2. It remains to show that {k3(∆3Fk Nk )}k∈Z is bounded. For this we
note that

(∆3Fk Nk ) = Fk (∆3Nk )+ (Fk+3 −Fk )(∆2Nk+1)+ (∆2Fk+1)(∆1Nk+1)

+ (∆3Fk )Nk+2 −2(∆2Fk )(∆1Nk+1).

Therefore, for all k ∈Z\ {0} we have

k3(∆3Fk Nk ) = 1

ak
Fk k3ak (∆3Nk )+ k

ak
(Fk+3 −Fk )k2ak (∆2Nk+1)+ k2

ak
(∆2Fk+1)kak (∆1Nk+1)

+ k3

ak
(∆3Fk )ak Nk+2 −2

k2

ak
(∆2Fk )kak (∆1Nk+1).

Clearly, if k = 0 the operator k3(∆3Fk Nk ) is bounded. Since {Fk }k∈Z satisfies the condi-
tion (F3), it follows that {Fk Nk }k∈Z is M–bounded of order 3.
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Lemma 5.10. Let 16 p, q 6∞, s > 0 and 0 <β<α6 2. Let A be a linear closed operator
defined in a Banach space X and F,G ∈ L (F s

p,q (T; X ); X ). Assume that for all k ∈ Z,
the operators Nk are well defined. If {Fk }k∈Z satisfy (F3) and {Gk }k∈Z satisfy (G3) and
the family of operators {Mk }k∈Z is bounded then the family {(i k)βGk Nk }k∈Z is a F s

p,q –
multiplier.

Proof. According to Theorem 1.3, it suffices to show that the family of operators
{bkGk Nk }k∈Z is M–bounded of order 3. It follows from Lemma 5.4 that {bkGk Nk }k∈Z
is M–bounded of order 2. It remains to show that {k3(∆3bkGk Nk )}k∈Z is bounded. For
this we note that

(∆3bkGk Nk ) = bkGk (∆3Nk )+ (bk+3Gk+3 −bkGk )(∆2Nk+1)+ (∆2bk+1Gk+1)(∆1Nk+1)

+ (∆3bkGk )Nk+2 −2(∆2bkGk )(∆1Nk+1)

Therefore, for all k ∈Z\ {0} we have

k3(∆3bkGk Nk ) = bk

ak
Gk k3ak (∆3Nk )+ k

ak
(bk+3Gk+3 −bkGk )k2ak (∆2Nk+1)

+ k2

ak
(∆2bk+1Gk+1)kak (∆1Nk+1)+ k3

ak
(∆3bkGk )ak Nk+2

−2
k2

ak
(∆2bkGk )kak (∆1Nk+1)

A direct computation shows that k3(∆3bkGk Nk ) is a bounded operator in the particular
case k = 0. Since {Gk }k∈Z satisfies the condition (G3), it follows from Lemmas 5.1, 5.2,
5.7 and 5.8 that {bkGk Nk }k∈Z is M–bounded of order 3.

Lemma 5.11. Let 1 6 p, q 6∞, s > 0 and 1 6 β6 α. Let A be a linear closed operator
defined in a Banach space X and F,G ∈L (F s

p,q (T; X ); X ). Assume that for all k ∈Z, the
operators Nk are well defined. If {Fk }k∈Z satisfies (F3) and {Gk }k∈Z satisfies (G3) then the
following assertions are equivalent

(i) The family of operators {Mk }k∈Z is a bounded.

(ii) The family of operators {Mk }k∈Z is a F s
p,q –multiplier.

Proof. (i ) ⇒ (i i ). According Theorem 1.3 it suffices to show that {Mk }k∈Z is M–bounded
of order 3. It follows from 5.5 that {Mk }k∈Z is a family of operators M–bounded of order
2. It remains to show that {k3(∆3Mk )}k∈Z is a bounded family of operators. For this we
note

∆3Mk = ak (∆3Nk )+ (ak+3 −ak )(∆2Nk+1)+ (∆2ak+1)(∆1Nk+1)

+ (∆3ak )Nk+2 −2(∆2ak )(∆1Nk+1).
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Therefore,

k3(∆3Mk ) = k3ak (∆3Nk )+ k(ak+3 −ak )

ak
kak (∆2Nk+1)+ k2

ak
(∆2ak+1)kak (∆1Nk+1)

+ k3(∆3ak )

ak
ak Nk+2 −

2k2(∆2ak )

ak
kak (∆1Nk+1).

Clearly, if k = 0 the operator k3(∆3Fk Nk ) is bounded. Since the sequence {ak }k∈Z is
3–regular, it follows from Lemma 5.2 and Lemma 5.8 that the family {Mk }k∈Z is M–
bounded of order 3.
(i i ) ⇒ (i ) The proof follows the same lines as those of Lemma 5.5.

Theorem 5.3. Let 16 p, q 6∞, s > 0 and 0 <β<α6 2. Let A be a linear closed operator
defined in a Banach space X and F,G ∈ L (F s

p,q (T; X ); X ). If {Fk }k∈Z satisfies (F3) and
{Gk }k∈Z satisfies (G3) then the following assertions are equivalent,

(i) The solution of equation (5.21) has F s
p,q –maximal regularity.

(ii) {Nk }k∈Z ⊆L (X ) and the family {Mk }k∈Z is bounded.

Proof. The proof follows the same lines as that of Theorem 5.1.

As we have mentioned, the verification of assumptions concerning the family {Nk }k∈Z
is not an easy work. Our next Corollary require additional conditions about the op-
erators A, F and G , however is a more practical result to check that these families are
bounded. Define the operators Sk = (ak − A)−1, for all k ∈Z.

Corollary 5.2. Let 1 6 p, q 6 ∞, s > 0. Let be X a Banach space. Assume that
{(i k)α}k∈Z ⊆ ρ(A) and the families {Fk }k∈Z and {Gk }k∈Z, defined by the operators F and
G of equation (5.21) satisfy the conditions (F3) and (G3) respectively. If the family of op-

erators
{
(i k)α

(
(i k)α− A

)−1}k∈Z is bounded, and sup
k∈Z

∥∥∥(
(i k)βGk +Fk

)(
(i k)α− A

)−1
∥∥∥ < 1

then equation (5.21) has F s
p,q –maximal regularity.

Proof. The proof follows the same lines as those of Corollary 5.1.

5.4 Periodic Strong F s
p,q–solutions of a Neutral Fractional

Differential Equation with Finite Delay

Now, we use the results about maximal regularity on periodic Triebel–Lizorkin spaces
to prove that equation (5.22) has a strong F s

p,q –solution.

Note that, if equation (5.21) has F s
p,q –maximal regularity for some 1 6 p, q 6 ∞ and

s ∈ R, the linear map Ψ : F s
p,q (T; X ) → F s

p,q (T; X ) given by Ψ(g ) = Dαv , where v is the
unique strong F s

p,q –solution of the equation (5.21), is well defined.
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Lemma 5.12. Let 1 6 p, q 6 ∞, s > 0, and 0 < β < α 6 2. Let be X a Banach space.
Assume that B is a bounded operator, for all k ∈ Z the operators Nk is well defined in
L (X ) and the families {Fk }k∈Z and {Gk }k∈Z defined by the operators F and G of equation
(5.22) satisfy the conditions (F3) and (G3) respectively. If {(i k)αNk }k∈Z is a bounded
family of operators, such that supk∈Z |k|α‖B‖‖Nk‖ < 1 and ‖B‖‖Ψ‖ < 1, then the family
{(I −e−i kr (i k)αB Nk )−1}k∈Z is a F s

p,q –multiplier.

Next Theorem gives sufficient condition that guarantee existence of a strong B s
p,q –

solution of equation (5.22). We use the notation introduced in preceding Lemma.

Theorem 5.4. Let 1 6 p, q 6 ∞, s > 0, and 0 < β < α 6 2. Let be X a Banach space.
Assume that B is a bounded operator, for all k ∈ Z the operators Nk is well defined in
L (X ) and the families {Fk }k∈Z and {Gk }k∈Z defined by the operators F and G of equation
(5.22) satisfy the conditions (F3) and (G3) respectively. If {(i k)αNk }k∈Z is a bounded
family of operators, such that supk∈Z |k|α‖B‖‖Nk‖ < 1 and ‖B‖‖Ψ‖ < 1, then for every
f ∈ B s

p,q (T; X ) there exists an unique strong F s
p,q –solution of equation (5.22).

5.5 Examples.

In this section we apply the results that we have obtained in the previous sections to
concrete equations.

Example 5.2. Let X =C, 16 p, q 6∞, s > 0 and 16β<α6 2. Suppose that ρ ∈R\{−1}.
Consider the fractional differential equation with finite delay

Dαu(t ) = ρu(t )+u(t −2π)+Dβu(t −2π)+ f (t ) t ∈ [0,2π] (5.23)

where f ∈ B s
p,q (T;C). Writing A = ρI and Fut = Gut = u(t − 2π) we have an abstract

differential equation of the form (5.1).

Let 16 p, q 6∞ and s > 0, we claim that this equation has B s
p,q -maximal regularity. In

fact, for all k ∈Z the operators Fk and Gk are given by Fk =Gk = e2iπk = 1. Therefore the
family {Fk }k∈Z and {Gk }k∈Z satisfy the conditions (F2) and (G2). Moreover, the operators
Nk take the form

Nk = 1

(i k)α− (i k)β−1−ρ , for all k ∈Z.

Since Im
(
(i k)α− (i k)β

) 6= 0 for all k ∈ Z \ {0} and 1+ρ 6= 0, we have {(i k)αNk }k∈Z is a
bounded family of operators. This means that there exists a constant C1 > 0 such that
supk∈Z ‖(i k)αNk‖6C1.

On the other hand, it follows from Theorem 5.1 that equation (5.23) has B s
p,q -maximal

regularity andΨ : B s
p,q (T;C) → B s

p,q (T;C), defined byΨ f = Dαu , where u is the unique
strong B s

p,q –solution of equation (5.23), is a bounded linear operator. Thus there exists
C2 > 0 such that ‖Ψ‖6C2.
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Suppose that ‖B‖ < min
{

1
C1

, 1
C2

}
, it follows from Theorem 5.2 that equation

Dα
(
u(t )−Bu(t − r )

)= ρu(t )+u(t −2π)+Dβu(t −2π)+ f (t ) t ∈ [0,2π] (5.24)

has a unique strong B s
p,q –solution.

Example 5.3. Let 1 6 p, q 6 ∞ and s > 0. Consider the following neutral fractional
differential equation with finite delay

∂α

∂tα
(
u(t , x)−bu(t −2π, x)

) = ∂2u(t , x)

∂x2
+

∫ 0

−2π
q1γ(s)u(t + s, x)d s

+
∫ 0

−2π
q2γ(s)Dβu(t + s, x)d s + f (t , x),

(5.25)

with 1 < β < α < 2. We will show that there exists b > 0 sufficiently small such that
the equation (5.25) has B s

p,q –maximal regularity. For this purpose, we assume that γ :
[−2π,0] → L (X ) is a function twice strongly continuously differentiable. Furthermore,
q1 and q2 are positive numbers such that

∣∣q1 +q2 cos
(βπ

2

)∣∣6 ∣∣q2 cos(
βπ

2
)
∣∣

and
q2Cγ < sin(

απ

2
),

where Cγ =
(∫ 0

−2π
γ2(s)d s

)1/2

. The function f satisfies Carathéodory type conditions.

Considering the space X = L2([0,π]) and the operators A,B ,F and G given by

Av = ∂2v(x)

∂x2
with domain D(A) = {v ∈ X : v ∈ H 2([0,π]), v(0) = v(π) = 0}

B v = bv for all v ∈ X with b ∈R+

F v =
∫ 0

−2π
q1γ(s)v(s)d s Gv =

∫ 0

−2π
q2γ(s)v(s)d s for all v ∈ X .

equation (5.25) takes the abstract form of equation (5.1).

Clearly ‖F‖6 q1Cγ and ‖G‖6 q2Cγ. Define, for all k ∈Z the operators

Fk =
∫ 0

−2π
q1e i ksγ(s)d s and Gk =

∫ 0

−2π
q2e i ksγ(s)d s

A direct computation shows that for all k ∈Z\ {0}

Fk = i q1[γ(−2π)−γ(0)]

k
− q1[γ′(−2π)−γ′(0)]

k2
− i q1

k2

∫ 0

−2π
e i ksγ′′(s)d s
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and

Gk = i q2[γ(−2π)−γ(0)]

k
− q2[γ′(−2π)−γ′(0)]

k2
− i q2

k2

∫ 0

−2π
e i ksγ′′(s)d s.

Denote Pk = i q1

k2

∫ 0

−2π
e i ksγ′′(s)d s. Since

sup
k∈Z\{0}

∥∥∥∥ k2

ak
(∆2Pk )

∥∥∥∥6 4q1‖γ′′‖2

∣∣∣∣ 1

(k +2)2
+ 2

(k +1)2
+ 1

k2

∣∣∣∣<∞,

the family {Fk }k∈Z satisfies the condition (F2).
Following the same argument to prove that {Fk }k∈Z satisfies (F2), we note that the family
{Gk }k∈Z satisfies the condition (G2).
On another hand, the spectrum of A consists of eigenvalues −n2 for n ∈N. Their associ-
ated eigenvectors are given by

yn(x) =
√

2

π
sin(nx).

Morever, the set {xn : n ∈N} is an orthonormal basis of X . In particular

Ax = ∑
n∈N

−n2〈x, xn〉xn for all x ∈ D(A). (5.26)

Therefore {(i k)α}k∈Z ⊆ ρ(A) and
(
(i k)αI − A

)−1 = ∑
n∈N

1

(i k)α+n2
〈x, xn〉xn .

Since |(i k)α+n2|> ∣∣Im
(
(i k)α

)∣∣= |k|α sin(απ2 ) we have∥∥∥(
(i k)αI − A

)−1
∥∥∥6 1

|k|α sin(απ2 )
. (5.27)

On the other hand,∥∥(i k)βGk +Fk
∥∥6 |(i k)βq2 +q1|Cγ6 q2

∣∣∣(i k)β
∣∣∣Cγ = q2

∣∣k∣∣βCγ. (5.28)

It follows from (5.27) that

sup
k∈Z

‖(i k)α
(
(i k)αI − A

)−1‖ <∞

Moreover, from (5.28) we have that

∥∥∥(
(i k)βGk +Fk

)(
(i k)αI − A

)−1
∥∥∥6 q2 |k|βCγ

|k|α sin(απ2 )
.
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Since q2Cγ < sin(απ2 ) we have sup
k∈Z

∥∥∥(
(i k)βGk +Fk

)
Sk

∥∥∥< 1. From Corollary 5.1, it follows

that fractional delay equation

∂α

∂tα
u(t , x) = ∂2u(t , x)

∂x2
+

∫ 0

−2π
q1γ(s)u(t + s, x)d s

+
∫ 0

−2π
q2γ(s)Dβu(t + s, x)d s + f (t , x)

(5.29)

has B s
p,q –maximal regularity, for 16 p, q 6∞ and s > 0.

Thus the mapΨ : B s
p,q (T; X ) → B s

p,q (T; X ), defined byΨ( f ) = Dαu where u is the unique
strong B s

p,q –solution of equation (5.29), is a bounded linear operator. Therefore there
exists C2 > 0 such that ‖Ψ‖6C2.
Moreover, there exists C1 > 0 such that sup

k∈Z
|k|α‖Nk‖6C1. If the constant b > 0 satisfies

the condition b < min
{

1
C1

, 1
C2

}
we have

sup
k∈Z

|k|α‖B‖‖Nk‖ < 1 and sup
k∈Z

‖B‖‖Ψ‖ < 1

It follows from Theorem 5.2 that equation (5.25) has a unique strong B s
p,q -solution.
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[101] J. Kisyński, On cosine operator functions and one-parameter groups of operators, Studia Math. 44
(1972), 93–105. Collection of articles honoring the completion by Antoni Zygmund of 50 years of
scientific activity. I. MR0312328 (47 #890)

[102] V. Kolmanovskii and A. Myshkis, Introduction to the theory and applications of functional-
differential equations, Mathematics and its Applications, vol. 463, Kluwer Academic Publishers,
Dordrecht, 1999. MR1680144 (2000c:34164)

78

http://www.ams.org/mathscinet-getitem?mr=2680040
http://www.ams.org/mathscinet-getitem?mr=2680040
http://www.ams.org/mathscinet-getitem?mr=1890104
http://www.ams.org/mathscinet-getitem?mr=1890104
http://www.ams.org/mathscinet-getitem?mr=2491037
http://www.ams.org/mathscinet-getitem?mr=2491037
http://www.ams.org/mathscinet-getitem?mr=2834816
http://www.ams.org/mathscinet-getitem?mr=2349985
http://www.ams.org/mathscinet-getitem?mr=2349985
http://www.ams.org/mathscinet-getitem?mr=1800212
http://www.ams.org/mathscinet-getitem?mr=1800212
http://www.ams.org/mathscinet-getitem?mr=1866491
http://www.ams.org/mathscinet-getitem?mr=1866491
http://www.ams.org/mathscinet-getitem?mr=1335452
http://www.ams.org/mathscinet-getitem?mr=1335452
http://www.ams.org/mathscinet-getitem?mr=2050043
http://www.ams.org/mathscinet-getitem?mr=2050043
http://www.ams.org/mathscinet-getitem?mr=2133386
http://www.ams.org/mathscinet-getitem?mr=2133386
http://www.ams.org/mathscinet-getitem?mr=2269937
http://www.ams.org/mathscinet-getitem?mr=2269937
http://www.ams.org/mathscinet-getitem?mr=2221083
http://www.ams.org/mathscinet-getitem?mr=2221083
http://www.ams.org/mathscinet-getitem?mr=2402741
http://www.ams.org/mathscinet-getitem?mr=2402741
http://www.ams.org/mathscinet-getitem?mr=2789193
http://www.ams.org/mathscinet-getitem?mr=2789193
http://www.ams.org/mathscinet-getitem?mr=2474584
http://www.ams.org/mathscinet-getitem?mr=2474584
http://www.ams.org/mathscinet-getitem?mr=2218073
http://www.ams.org/mathscinet-getitem?mr=2218073
http://www.ams.org/mathscinet-getitem?mr=0312328
http://www.ams.org/mathscinet-getitem?mr=0312328
http://www.ams.org/mathscinet-getitem?mr=1680144
http://www.ams.org/mathscinet-getitem?mr=1680144


[103] M. Kozak, A fundamental solution of a second-order differential equation in a Banach space, Univ.
Iagel. Acta Math. 32 (1995), 275–289. MR1345144 (96k:34126)

[104] V. Lakshmikantham and J. V. Devi, Theory of fractional differential equations in a Banach space,
Eur. J. Pure Appl. Math. 1 (2008), no. 1, 38–45. MR2379647 (2009a:34102)

[105] A. V. Letnikov, Theory and differentiation of fractional order, Mat. Sb. 3, 1–68.

[106] Y. P. Lin and J. H. Liu, Semilinear integrodifferential equations with nonlocal Cauchy problem, Non-
linear Anal. 26 (1996), no. 5, 1023–1033. MR1362770 (96j:34112)

[107] Y. Lin, Time-dependent perturbation theory for abstract evolution equations of second order, Studia
Math. 130 (1998), no. 3, 263–274. MR1624819 (99i:34080)

[108] L. Liu, F. Guo, C. Wu, and Y. Wu, Existence theorems of global solutions for nonlinear Volterra type
integral equations in Banach spaces, J. Math. Anal. Appl. 309 (2005), no. 2, 638–649. MR2154141
(2006c:45004)

[109] C. Lizama, A characterization of uniform continuity for Volterra equations in Hilbert spaces, Proc.
Amer. Math. Soc. 126 (1998), no. 12, 3581–3587. MR1469423 (99b:45008)

[110] C. Lizama, Fourier multipliers and periodic solutions of delay equations in Banach spaces, J. Math.
Anal. Appl. 324 (2006), no. 2, 921–933. MR2265090 (2007g:34139)

[111] C. Lizama and G. M. N’Guérékata, Bounded mild solutions for semilinear integro differential equa-
tions in Banach spaces, Integral Equations Operator Theory 68 (2010), no. 2, 207–227. MR2721083
(2011k:45016)

[112] C. Lizama and V. Poblete, Maximal regularity of delay equations in Banach spaces, Studia Math.
175 (2006), no. 1, 91–102. MR2261702 (2007g:34170)

[113] C. Lizama and V. Poblete, Periodic solutions of fractional differential equations with delay, J. Evol.
Equ. 11 (2011), no. 1, 57–70. MR2780573 (2012b:34191)

[114] C. Lizama and R. Ponce, Periodic solutions of degenerate differential equations in vector-valued
function spaces, Studia Math. 202 (2011), no. 1, 49–63. MR2756012 (2012b:34152)

[115] C. Lizama and J. C. Pozo, Existence of mild solutions for semilinear integrodifferential equations
with nonlocal conditions. Submitted.

[116] S. Ma, Z. Wang, and Q. Xu, Periodic solutions of linear neutral integro-differential equations, Acta
Math. Sci. Ser. B Engl. Ed. 24 (2004), no. 3, 337–348. MR2073250 (2005e:34242)

[117] R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A 278
(2000), no. 1-2, 107–125. MR1763650 (2001b:35138)

[118] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics
approach, Phys. Rep. 339 (2000), no. 1, 77. MR1809268 (2001k:82082)

[119] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equa-
tions, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1993. MR1219954
(94e:26013)

[120] G. M. Mophou and G. M. N’Guérékata, On integral solutions of some nonlocal fractional differen-
tial equations with nondense domain, Nonlinear Anal. 71 (2009), no. 10, 4668–4675. MR2548700

[121] S. K. Ntouyas and P. Ch. Tsamatos, Global existence for second order semilinear ordinary and de-
lay integrodifferential equations with nonlocal conditions, Appl. Anal. 67 (1997), no. 3-4, 245–257.
MR1614061 (98k:34103)

79

http://www.ams.org/mathscinet-getitem?mr=1345144
http://www.ams.org/mathscinet-getitem?mr=1345144
http://www.ams.org/mathscinet-getitem?mr=2379647
http://www.ams.org/mathscinet-getitem?mr=2379647
http://www.ams.org/mathscinet-getitem?mr=1362770
http://www.ams.org/mathscinet-getitem?mr=1362770
http://www.ams.org/mathscinet-getitem?mr=1624819
http://www.ams.org/mathscinet-getitem?mr=1624819
http://www.ams.org/mathscinet-getitem?mr=2154141
http://www.ams.org/mathscinet-getitem?mr=2154141
http://www.ams.org/mathscinet-getitem?mr=1469423
http://www.ams.org/mathscinet-getitem?mr=1469423
http://www.ams.org/mathscinet-getitem?mr=2265090
http://www.ams.org/mathscinet-getitem?mr=2265090
http://www.ams.org/mathscinet-getitem?mr=2721083
http://www.ams.org/mathscinet-getitem?mr=2721083
http://www.ams.org/mathscinet-getitem?mr=2261702
http://www.ams.org/mathscinet-getitem?mr=2261702
http://www.ams.org/mathscinet-getitem?mr=2780573
http://www.ams.org/mathscinet-getitem?mr=2780573
http://www.ams.org/mathscinet-getitem?mr=2756012
http://www.ams.org/mathscinet-getitem?mr=2756012
http://www.ams.org/mathscinet-getitem?mr=2073250
http://www.ams.org/mathscinet-getitem?mr=2073250
http://www.ams.org/mathscinet-getitem?mr=1763650
http://www.ams.org/mathscinet-getitem?mr=1763650
http://www.ams.org/mathscinet-getitem?mr=1809268
http://www.ams.org/mathscinet-getitem?mr=1809268
http://www.ams.org/mathscinet-getitem?mr=1219954
http://www.ams.org/mathscinet-getitem?mr=1219954
http://www.ams.org/mathscinet-getitem?mr=2548700
http://www.ams.org/mathscinet-getitem?mr=1614061
http://www.ams.org/mathscinet-getitem?mr=1614061


[122] S. K. Ntouyas and P. Ch. Tsamatos, Global existence for semilinear evolution equations with nonlo-
cal conditions, J. Math. Anal. Appl. 210 (1997), no. 2, 679–687. MR1453198 (98e:34116)

[123] S. K. Ntouyas and P. Ch. Tsamatos, Global existence for semilinear evolution integrodifferential
equations with delay and nonlocal conditions, Appl. Anal. 64 (1997), no. 1-2, 99–105. MR1460074
(98e:45008)

[124] D. N. Pandey, A. Ujlayan, and D. Bahuguna, On a solution to fractional order integrodifferential
equations with analytic semigroups, Nonlinear Anal. 71 (2009), no. 9, 3690–3698. MR2536279
(2010g:34122)

[125] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied
Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR710486 (85g:47061)

[126] V. Poblete, Solutions of second-order integro-differential equations on periodic Besov spaces, Proc.
Edinb. Math. Soc. (2) 50 (2007), no. 2, 477–492. MR2334958 (2008h:45003)

[127] V. Poblete, Maximal regularity of second-order equations with delay, J. Differential Equations 246
(2009), no. 1, 261–276. MR2467023 (2009h:34086)

[128] V. Poblete and J. C. Pozo, Periodic solutions for a fractional order abstract neutral differential equa-
tion with finite delay. Preprint.

[129] V. Poblete and J. C. Pozo, Periodic solutions of an abstract third–order differential equation. Sub-
mitted.

[130] I. Podlubny, I. Petráš, B. M. Vinagre, P. O’Leary, and L’. Dorčák, Analogue realizations of fractional-
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