Application of the Fractional Fourier

Transform to Image Reconstruction in MRI

Vicente Parot, Carlos Sing-Long, Carlos Lizama, Cristian §&ember, IEEE Sergio Uribe,

and Pablo Irarrazavaenior Member, IEEE

Abstract

To obtain good quality images with Magnetic Resonance (MR) it is necessdrgve good spatial homogeneity
in the By field for the region of imaging. Field homogeneity is difficult to achievefipalarly for short bore magnets
and higher fields. When the passive or active shimming are not epnaughen the inhomogeneity comes from
differences in susceptibility between adjacent regions within an objecg #nerseveral post-processing techniques for
correcting the distortions. These techniques do not have a well suggbgeretical background with the exception
of linear terms. We propose to use the Fractional Fourier TransforRT{For reconstructing the MR signal acquired
under the presence of quadratic fields. The FrFT provides a pre@seetital framework for this. In this work we
show how the FrFT can be used to understand the distortions and totrecoMR data acquired under that condition.
We also show examples of reconstruction for simulated and volunteeuddé quadratic inhomogeneities obtaining
an improved image quality compared with standard Fourier reconstractidre FrFT opens a new paradigm for
understanding and correcting second degree off-resonances wiffoténtial for manufacturing shorter magnets.
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Application of the Fractional Fourier

Transform to Image Reconstruction in MRI

I. INTRODUCTION

Magnetic Resonance (MR) imaging and spectroscopy provitgamber of practical applications for both clinical
and scientific purposes [1], [2]. For this technique it is esmary to have a strong magnetic field with uniform
intensity across the entire field of view. However, deviasidrom the constant magnetic field are inherent to MR
systems as uniform fields are physically difficult to achiewel as adjacent regions within the scanned object show
different susceptibilities, producing inhomogeneiti&sich field variations introduce an accumulating phase over
time into the MR signal, which cannot be demodulated easilyt ¥aries spatially. This problem is worse when
stronger uniform fields are considered and whenever seqaemith long acquisition time are used. High field MR
system designs have to observe this limitation, sometiriggsecondary coils to correct the field, simply reducing
the entire measurement volume or using a local region oféstdor each measurement [3], [4]. Passive and active
shimming techniques help reducing inhomogeneities anc¢c@mmonly used, partially correcting first and second
order field variations in most cases.

Several image reconstruction methods have been propossatrert distortions produced by non homogeneous
fields, being an active field of research [5], [6], [7], [8]],[910], [11], [12], [13]. There is a well known theory
background for the linear correction approaches, in whitkeeact analytical solution is provided [5], [9], but both
for second-order and arbitrary field maps there is no suchlaesive theory background.

The Fractional Fourier Transform (FrFT) is a generalizatod the standard Fourier Transform (FT) by means
of the continuous fractional order, which covers densely the entire transition between imageifhe) domain
(a = 0) and the Fourier domairu(= 1) [14]. The FrFT can be defined in several different ways legdo different
physical interpretations and thus, it has become usefulanynapplications [15], [16], [17]. It has been shown that
the FT properties are special cases of FrFT properties [idifarther research has been done in discretization [18],
[19], fast computation [20], and other aspects of the FrHated to signal processing [21], [22], [23], [24].

It is of general knowledge that the magnetization of an dbjeder a uniform magnetic field can be related to
its FT. Similarly, we noted that the magnetization of an objender a quadratic magnetic field can be related to
its FrFT. In fact, the defining integral kernel of the FT prasea correspondence with the MR signal generated by
a magnetized object in a uniform magnetic field and thus,ldnel reconstructing the object by taking an inverse
FT of its MR signal. Equivalently, the kernel that providde tintegral definition of the FrFT presents a clear
resemblance with the MR signal generated by an object withiraderlying quadratic magnetic field, i.e. a field
which intensity varies spatially as a second order polyabniihis fact suggested us that there is a framework that

allows native MR reconstruction from quadratic fields.
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In this manuscript we present a theoretical descriptiorhefrelationship between the FrFT and the MR signal
generated when quadratic magnetic fields are used. Furbhermwe propose a general MR method based on the
FrFT that allows the acquisition and reconstruction of Mgnsis of objects that have been obtained with quadratic
fields.

In Section II, we propose a new FrFT-based framework thatvallfractional Fourier understanding of the MR
signal obtained with quadratic field inhomogeneities, shgwexamples with simple trajectories. We explain the
relationship between the FrFT and the MR signal in a one—ain@al context, which is extended to two dimensions
in Section Ill. We propose a general reconstruction methased on the FrFT in Section IV. In Section V we
describe the experimental setup and methods, and in Se¢tisre show the results of our simulation, phantom
andin—vivo experiments. Section VIl includes further discussions emiclusions from this work and suggestions

for future work.

Il. THEORY

In this section we explain the relation between the Fraafidfourier Transform and an MR signal acquired
under a quadratic main field, showing how the MR signal can kiten as a FrFT. This framework allows us to

analyze the acquired data in a fractional order polar sgfaoe, where we can extract visual insight.

A. Fractional Fourier Transform

The a—th order FrFTf,(p) = F*{f} (p) of the signalf(u) for 0 < |a| < 2 can be expressed as an integral

transform as (taken from [14] with a slight change of notatio

fa(p) — Ca(ﬂ) / f(u) eiﬂ'(uz cot a—2pu csc (x) du (1)
Cu(p) = oimP” cote /T oot o, a=ar/2 (2)

Note that the most notable difference between this equatiohthe Fourier transform is an extra quadratic phase
in the kernel.

Throughout this section, we have selectednd p to denote dimensionless variables in order to maintain &brm
consistency between the MRI and FrFT contexts. The independariablep is the pseudo—frequency in any
fractional domain and: is the particular case g for the O—th order (the object axis). The relation between th

dimensionless: and its dimensional counterpartwill be addressed at the end of Section IV.

B. MRI Signal under quadratic field map inhomogeneity

At first, we will consider the single—dimensional case. lf¢t:) be the magnetization of the object of interest.
The MRI signal, in a perfect uniform® field, ignoring7; andT; relaxations and after demodulation at the Larmor
frequencywy is

S(t) — /f(u) e—iQﬂk(t)u du
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where, as customarily definekl(t) = v/2n fot G(&)d¢ is the k—space trajectory.
Whenever there is an inhomogeneous fiél¢u) = B, + p(u) as a function of space, the magnetization is
modulated by a time—dependent phase. For the particularafa@squadratic inhomogeneity(u) = pau?+piu+po.

In this case the signal equation becomes
S(t) _ efiZTrpOt/f(u) eiﬂ'(*2p2tu272(k(t)+p1t)u) du (3)

There is a remarkable similarity between this expressiahtha FrFT defined in (1). Consequently, it is natural
to think that the FrFT can be used to reconstruct this dataeber, the FrFT is a theoretical tool that could allow
us to extend the framework of MRI to quadratic fields, whileaeering the homogeneous—field case as a particular

case.

C. Link between the MRI Signal and the FrFT

In order to represent (3) in the form of (1), we define

a(t) = cot™*(—2pst), and
_ k@) +pt k() +pat
A = acal) T irige @

In this definition, botha and p are functions of time but we will often omit this for the saké simplicity.

We usea € (0,7), which ensuresssca > 0, and cot™! is invertible. Therefore we can write these relations as

—2pat = cot  and —2 (k(t) + p1t) = —2pcsca. With these variables the signal in (3) becomes
s(t) = efi27rpgt/f(u) eiﬂ'(u2 cot av—2pu csc o) du
Using (1) we can express the signal equation as a time—poyider FrFT of the object
s(t) = e Ca(p) ™ falp)
falp) = ™' Co(p)s(t) (5)

Note that ifa: were constant and equal 19’2 (or « = 1), we recover the signal equation in terms of the standard
Fourier transform.

The advantage of this relation is that we have a well knowmé&aork for working with quadratic terms in the
magnetic field. In general, the inhomogeneity of the field ba better approximated by a second order polynomial.
Additionally, second order terms naturally occur in coisidg and are the most significant within second and upper

orders.

D. Thep—a space

The definition ofa and p in (4) defines a parametric trajectofy(t), «(¢)) in a space that we call-« space.

Sincea is an angle, this space is conveniently represented in polardinates. The trajectory im—« space starts

December 3, 2009 DRAFT



a=m/2 a=n/2 a=m/2

o (a=0) o (a=0) o (a=0)

@ (b) ©

Fig. 1. Examples of typical trajectories over a quadratidfielthe polar representation pf« space. (a) A constant gradient can be represented
as a circular path (b) A 2DFT bipolar gradient describes tivoutar arcs (c) The polar graph showsa space in the readout direction for
seven readout echoes of an EPI trajectory.

immediately after the excitation: (= 0) in the frequency or Fourier directiony(= 7/2) and as time passes it
curves toward the object axis & 0).

In what follows we will analyze some common trajectoriesngsthis framework. For the sake of simplicity, we
neglect the restrictions on the maximum slew rate.

1) Constant gradientl et us assume that the readout gradi@ptis constant and starts at= 0, as would be the
case in a projection reconstruction sequence. Assume lesahte inhomogeneity is purely quadrati:) = pou?.
Linear and constant terms can be ignored without loss of rgéitye because the first is equivalent to a change in
the amplitude of the gradient and the second can be corrécieéng the signal demodulation. Théiit) would be

fot Godr = Gyt and the trajectory i—« space would be

alt) = cot™(—2pat)

k(t) + pit Got

VI3 /1t 43

which is the parametric form of a circumference centere@Gat/4p-,0). Fig. 1 (a) shows this trajectory starting

in ¢ = 0 at the origin. Assuming, < 0, which resembles the typical case in which the intensityhef B, field
is greater at the center of a magnet, we also observe thatajeetory asymptotically approaches the object axis
(o = 0) ast increases.

As expected, for small values of the trajectory deviates little from the frequency axis=£ 7/2), and therefore
distortions due to field variations are small. This is caesis with the general knowledge that short readouts are
less sensitive to inhomogeneities.

We also note that if; tends to zero, the field inhomogeneity vanishes and the rcefitee circumference located
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at Go/4p- tends to infinity. Equivalently, the—« trajectory becomes a straight line in the frequency dioecti

alt) = cotfl(—ngt):g

Got
plt) = ———— =Gyt

VI+ap2e
2) Standard 2DFT readoutConsidering again that the field distortionzigu) = pou?, we now assume that the
gradient is formed by a negative pulse of duratigrfollowed by a positive one, as is standard in 2DFT readouts.

In this case
—Got 0<t <ty

k() :/0 G(r)dr =

Go(t — 2t0) to <t

Consequently, the trajectory -« space is given by
aft) = cot™(—2pat)

1 —Got 0<t<tiy
—_— X
242
V1+dpst Golt —2ty) to <t

This trajectory is formed by two circular arcs. The trajegtdescribes one arc for the negative gradient centered
at (—Go/4p2,0) and continues to the other one centered@§/4p2, —Goto), which corresponds to the positive
gradient, as shown in Fig. 1 (b).

3) EPI readout: If the gradient were a train of negative and positive pulsessaised in Echo Planar Imaging

—Go for0 <t <tg, 3tg <t < 5y, ...
G(t) =
Go for tg <t < 3tg, Bty < t < Tto, ...
the describep— trajectory would be composed by a series of circular arcgeced at(£Go/4p2, FiGoto/2),
j=0,1,2,... as shown in Fig. 1 (c).
4) Spectroscopylf the sequence has no gradients, as in a pure spectrosampicsiion, the trajectory will only

depend on the linear term of the field deviatipn

alt) = cot™(—2pat)

k(t) + pit _ D1l

V1+4p3t2 /1 +4p3t2

and will have the shape shown in Fig. 1 (a), centerethatdp.,0). If p; = 0, the trajectory is a singularity at the

origin of the p—« space. In this case it is more convenient to represent treegpaCartesian coordinatég, a), and

the readout trajectory = 0 becomes equivalent to acquire the continuous componetedftFT for the orders.

IIl. EXTENSION TO TWO DIMENSIONS

To extend the correspondence of the signal equation to th€ Eefinition we employ the fact that the latter is

separable and easily written in vector form. In two dimensithe FrFT is [14]

) = Calp) [ FluemteAw 8oy
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with

u Pu Ay T (079}
u= y P = y A= , = 3.5 =
v Po Gy Qly
cot ay, 0 CSC (ty, 0
A= , B=
0 cot ay, 0 CSC Qi

andCq(p) = /1 —icot a,/1 —icot a, oimp" Ap.

To write the signal equation in 2D we write the field distontiasp(u) = u"pou +u'p; + pg, with

Piu D2y 0
p1 = and ps =
Piv 0 D2y
so that it becomes
S(t) _ efi27rp0t / f(ll) eifr(f2qu2ut72uT(k(t)+p1t))du (6)

with k(t) = [k.(t) k,(t)]". Note that we also assumed that the field distortion is diabinthe coordinate axis,
i.e. the terms outside the diagonal pf are zero in order to match the separable form of the FrFT.
Remark that bothA and B are diagonal matrices that depend @nWe can proceed as we did previously to

define the four—-dimensional« space using the change of variables:

cota, = —2po,t

cota, = —2po,t
pucscay = kyu(t) + prut
poCscay, = ky(t) 4+ prot

which is equivalent to solve forx and p the matrix equationsA(a) = —2p»t and B(a)p = k(t) + p1t. Finally,

the signal equation can be expressed in terms of a 2D varyidgr FrFT as

s(t) = e ™' Co(p) ™ falp)

IV. RECONSTRUCTION

In the FrFT framework, the reconstruction problem requiocglsnow both the pseudo—frequency and the transform
order where the data was acquired. These can be determimgd(ds The object will be the solution to the inverse

of (5) (ignoring the constant field deviatigr)
flu) = F"{faw (o)} (u)
F={Ca (p(t)) s(t)} (u)

In this expression we have made explicit the time dependehee This dependency implies that the fractional

order changes with time and therefore a inverse FrFT is retiliée. We analyze three different reconstruction

approaches: standard inverse Fourier reconstructiomrsevfractional Fourier reconstruction; and variable prde
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inverse fractional Fourier reconstruction. The differetetween these reconstructions is the assumption they make
on where the data is placed in thea space. In Fig. 2 we show the actyalo space trajectory and the assumption

of the reconstruction scheme for a standard 2DFT readout.

a=1/2 a=m/2 a=rm/2

(@) (b) ©

Fig. 2. Example of a one dimensional 2DFT trajectory in the padpresentation op—a space represented by the continuous line and its
reconstruction interpretation represented by the dashed () Standard Fourier interpretation (b) Fractionalrir interpretation (c) Variable
order inverse fractional Fourier interpretation.

A. Standard Inverse Fourier Reconstruction

The first approach is to perform the reconstruction by ushmg gtandard inverse Fourier transform. This is

equivalent to assume that= /2, cot a = 0 andC; /»(p) = 1. The reconstructed object is

fi(w) = F7 {s(1)} (u)
The samples are acquired in the curved trajectory but aerprdted as being in the frequency axis (vertical

dashed line of Fig. 2(a)). The distortions in the image wdpdnd on how much the reconstruction locations differ

from the sampling locations.

B. Inverse Fractional Fourier Reconstruction

The second approach is to assume that the samples are bqiigedcat a constant order, which can be though
as a tangent approximation in thea plane. This approach has two advantages: (i) the recotisinend sampling

locations are closer; and (ii) the inverse expression istéxa inverse FrFT

faw) = F~*{Ca (p(t)) s(t)} (u)
wherea (or @) is the order (or angle for the tangent line) at the origin. W& will show in Section VI, this
reconstruction provides a better approximation to the eb@ct since it improves the accuracy of the reconstructed

phase over the standard Fourier reconstruction. Howelvermmagnitude is the same as the one obtained with the

standard Fourier reconstruction. Using the definitionslinand (2) it can be seen that

fa(U) _ e*in’LLQ cotc‘v| CSCO_Z‘ /S(t) ei27rupcscéc dp (7)

December 3, 2009 DRAFT



C. Variable Order Inverse Fractional Fourier Reconstructi

Finally, the third approach is to use the actual locationsnatihe data was acquired. To solve the variable order
inverse problem we propose a discrete approach, which filswith the discrete samples and can also provide a
continuous reconstruction. Each samplepirv space(p,, a,) acquired at = ¢,, corresponds to one coefficient
of the FrFT of ordera,, = 2a,, /7. These coefficients can be thought as the expansion of tteetobp the bases
formed by the “chirp” functions. These functions are giventbe inverse FrFT of orde#,, of a delta function
located atp = p,, [14]:

Ao, (u) = F*{d(p—pn)}(u)

(2
_ * —im(u” cot oy, —2upy, cscay)
Ca” (pn) €

where * denotes complex conjugate. Recalling that the sample®riiggn again the constant field shifty) are
defined by

fan(Pn) = Ca, (pn)s(tn)

we have an estimation of the object as the weighted sum ofalfributions.

fa(u)

N
Z fan (pn)A—an (u)
n=1

N
Z ‘ csc an\s(tn)e_i”(“z cot ap —2upy, CSC ary)
n=1

We assume a uniform sampling density, otherwise it would éeessary to incorporate a factor proportional to
p(tn) which arises from the underlying discretization of the mseeFrFT integral by Riemann sums.

The objectf,, (u) can be evaluated for any continuous value:olNote that if we substitute,, by /2 this formula
becomes the definition of the Discrete Frequency Fouriensfaam (DFFT), or the Discrete Fourier Transform
(DFT), if w is also evaluated at discrete valuesalf is substituted by another fixed angle, other thaf2, the
reconstruction is also the DFFT, but with an extra phase anddtlitional constant scaling factor. This is the
discrete version of the inverse Fractional Fourier Tramsfo

The 2D extension of this reconstructions is:
N

Fa) = 3 det(By)s(t) e Avim2u"Bupu) ®)

n=1
D. Units

So far we have used andu as dimensionless variables. To ensure the validity of theéo analysis and extend

it to practical cases, we use the normalizatios- =/q in which

fu) = f(z/q) = Vaf(x) 9)

with f(:z:) the dimensional object. The scale parametdras the same dimension as In the discrete case, we

need longitudes ip to be independent af, which can be achieved by settigg= FOV/+/N [25] where FOV
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is the field of view in distance units an¥l is the number of samples. This normalization is indeperygemplied

for each dimension.

V. EXPERIMENTSAND METHODS

All MRI images mentioned in this section were acquired in dipIntera 1.5T scanner. Linear shimming was
disabled during all acquisitions and no higher order actiiBnming was used. The sequences were performed
without any consideration aboyt« space, using mostly default parameters from pre—loadedesegs in the

system. Complex—valued image reconstructions were peddroff-line.

A. Analytical phantom

In our first experiment, the MR signal for a two dimensiond))2nalytical magnetization phantom was simulated
by numerically evaluating (6) using adaptive quadraturdliTLAB [26], nesting a one—dimensional evaluation
for each dimension. The phantom was designed as a simpliéission of a real reference phantom with the same
dimensions. The acquisition time of each sample/argpace locations were determined considering 2DFT gredien
used in standard Fourier acquisition. We simulated a dartevatrix of 256x 256 samples with a field of view
(FOV) of 25.6 x 25.6 cm and echo tim&E = 56 ms. Each complete readout in the sequence takes 28 ms.

Two signals were simulated, the first with a uniform fld and the second with a quadratic field. The quadratic
deviation was chosen to emulate the quadratic componerd feal phantom, but doubling its values to increase

the effect of the distortion in the simulation, and at the sdime keeping it within a valid physical range.

B. MRI phantom

In another experiment, we scanned an MRI phantom using diédtecho (FFE) echo—planar imaging (EPI)
sequence, with a scan matrix of 128128 samples, image FOV of 24 24 cm, slice thickness 5 mm, flip angle
23, repetition time TR= 650 ms and echo time TE 41 ms. This data was acquired with a number of sample
averages (NSA) of 16 using a Q-body coil. The EPI factor is #gquence is 63. Each complete readout in this

sequence took 76 ms.

C. In—vivo study

An in—vivo study was done scanning the brain of a volunteer, the images acquired using the same sequence
used for the phantom study, except from NSA which was now 8femm the receiving coil which was now a

standard quadrature head coil. A slightly angled transWesigce of the brain was selected.

D. Field maps

In each experiment, structural images were acquired withrtsleadout time sequences to minimize the effect

of field inhomogeneity. The magnetic field was measured irh dacation from phase differences in two images
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with different echo time, usind\w(z,y) = A¢(z,y)/ATE [27] with a shortATE to avoid phase wrapping in the
resulting field map.

To fit quadratic functions to the field maps, we used a maximiaiihood method that minimizes the weighted
squared error between the measured field map and a paramepacable second order polynomial evaluated at
corresponding positions. The weights were the mean of theegmonding pixels in the magnitude of the images
from which the phase difference had been obtained. Thisresghat the field map information was incorporated
correctly depending on the local intensity of the signal aadignal to noise ratio. In the case of time-vivo study,

a region of interest was defined by setting to zero the weightiutside it.

In the phantom study, the field map was determined along atatal reference image usil§TE = 3 ms and
TR and TE equal to 14 and 6.1 ms respectively. A transverga of the physical phantom was selected for this
study.

For thein—vivo study, the structural reference image was obtained with m& BE equal to 17 and 6.2 ms
respectively for the same field of view and resolution. Thédfimap was computed WIttATE = 6 ms. The
anatomy causes further field deviations which cannot becxppated by the fitted function for the entire FOV.
We therefore used an elliptical region of interest (ROI) wehthe field is mainly quadratic and the approximation
is suitable to demonstrate the proposed reconstruction.

Field maps and profiles displayed in all figures in Section Mire the same color scaling, mapping the entire
range to a 180 Hz difference, with the lowest and highesngites mapped to -140 Hz and 40 Hz respectively.
To display the measured field maps and phase images, the fagdvaiue was set to zero wherever the intensity

of the signal was below 5% of its maximum value.

E. Image reconstruction

In all experiments, image reconstruction was performed diimating the magnetization of the object comput-
ing (8) and evaluating: at the corresponding positions in dimensionless coordimddistance units of the results
were scaled using (9) to map the estimated object into themkional coordinates. Three different reconstruction
schemes were used in each experiment, producing threet @sjgimations according to diagrams (a), (b) and (c)
in Fig. 2. The first one is standard inverse Fourier (FT) retmction and used.,,, = o, = 7/2, Yn=1...N.
The second one, inverse fractional Fourier (FrFT) recactin, usedw,,,, = ay, ay, = Gy, Vn = 1... N with
a, and «, equal to the angles at the origin of the four—dimensigral space during the readout. Variable order
inverse fractional Fourier (VO-FrFT) reconstruction tooko account the exact position ip—« space of each

sample.

VI. RESULTS
A. Analytical phantom

One can observe the distortions produced by a quadratic iekeh using the standard Fourier reconstruction,

by comparing Figures 3 (a) and (b). We appreciate a geomeitortion, characteristic of data acquired under
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@)

Fig. 3. Reconstruction results for 2DFT simulations with sotriopic quadratic field. Each column shows magnitude andepinaages with

the same color scaling. Magnitude moves from 0 to 1 and the fromto 7. Phase values have been set to zero when magnitude is below 5%
of maximum. (a) Ideal reconstruction for a homogeneous field sitil and standard inverse Fourier reconstruction. The iréngacolumns
show reconstructions for a quadratic field simulation. (lgn8ard inverse Fourier reconstruction. (c) Inverse foaa Fourier reconstruction
with constanta approximation for each echo. (d) Variable order inversetivaal Fourier reconstruction considering exact trajecto

field inhomogeneity, wich is proportional to the local fieldvéhtion from the central frequency. The phase of
the reconstructed image has a complex quadratic modulatibthe analytical phantom did not have phase. An
intensity nonuniformity distortion is also noted, in whithe distorted image has an intensity approximately 12%
lower in the upper section of the object and a simmilar insesariation in the lower section.

The three reconstructions are shown in Fig. 3 (b), (c) andyslexpected by means of (7), the reconstruction result
for inverse fractional Fourier (FrFT) reconstruction i) $bows identical magnitude than the standard inverse &ouri
(FT) reconstruction (b) but with a phase much closer to thaa@hase. In (d), variable order inverse fractional
Fourier (VO-FrFT) reconstruction shows correction of imatjstortions in magnitude and phase, including the

geometric distortion.

B. MRI phantom

In the MRI phantom study, we have found that the particulanigimation of our MR system with its intrinsic
inhomogeneity and the scanned phantom produced a field naapetbembles an isotropic quadratic function with
its highest intensity in the center of the magnet as shownign 4

In this study, the phase information of the object is unkn@inte we cannot acquire it with the same contrast
as the distorted object but without the effect of the quacild map. We will compare the magnitude of the

reconstructions of the distorted signal with the magnitatla low distortion image acquired with short readouts.
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Field map fit along one column

40

—_——
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[hz]

-100

measured
= === fitted

-140

(©
Fig. 4. Field map fit for MRI Phantom. (a) Measured field map. (li)eBli field map. (c) Along the marked column, the measured magnetic
field (solid line) can be approximated by a quadratic func(idashed line).

(@) (b) (©)
Reconstruction results for MRl Phantom under quaafaeld. Geometric distortions shown in (b) obtained usingtandard Fourier
reconstruction can be corrected in (c) using variable ofdetional Fourier reconstruction, compared to a low distarimage (a).

Fig. 5.
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The FT reconstruction shown in Fig. 5 (b) produces geomatrit intensity distortions similar to those observed
in the simulation study for a quadratic field (Fig. 3 (b)). frig 5 also shows that the VO-FrFT reconstruction (c),
partially corrects these distortions, improving the getgnand intensity of the estimation when comparing both
reconstructions against the low distortion image (a). ®@hgsartifacts are visible in (c) which we do not fully
understand, but believe to be related to an incomplete pt@asection typically used to reduce the EPI ghosting
artifact.

As expected, magnitudes of the fractional Fourier recanttin and standard Fourier reconstruction are identical,

therefore the first was omitted from the figures.

C. In—vivo study

(b) ©

Field map fit along one column

40

50+

[hz]

-100

measured
= === fitted

-140

(d)

Fig. 6. Field map fit forin—vivo study. (b) Measured field map. (c) Fitted field map. Within tHg#tal ROl in (a), the measured magnetic
field can be approximated by a quadratic function as shown)inviith solid and dashed lines respectively for the marked roolu

With the volunteer experiment we found the magnetic field doyvsmoothly inside the brain. In particular, the
field can be approximated by a quadratic function within diptétal region of interest (ROI) as shown in Fig. 6.
The VO-FrFT reconstruction partially corrects most of tlemetric distortions present in the FT reconstruction
as can be seen in Fig. 7, especially in the regions in whicHitteel quadratic function is a close approximation
of the field map. To facilitate the comparison we have supeoged on all reconstructions in Fig. 7 contours that

show the actual location of key features taken from a refarémage (a).
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(b)

Fig. 7. Reconstruction results fan—vivo study. The superimposed contour shows location of some keyré=ain the reference image (a).

(b) Standard Fourier reconstruction. (c) Variable ordeurfes reconstruction with corrected quadratic field inhoeagjty.

VIl. CONCLUSIONS

Traditionally, MRI reconstruction is performed applying mverse Fourier Transform (FT) of the acquired MR
signal. This method rests on the base that the object hasnhagnetized with a perfectly uniform magnetic field. In
practice, it is not possible to get a uniform field becausehyfsgral restrictions and susceptibility variations at the
scanned object. This is a critical problem as the MR commgusipushing for getting short—bore and high—field MR
systems, which are exactly the kind of factors that tend toeiaise field inhomogeneities. Additionally, sequences
with long acquisition windows, such as EPI and spiral, apeaasingly used. These sequences are severely affected
by inhomogeneity—related artifacts. Modern MR systemsagninclude linear field corrections and higher-order
polynomial field corrections are getting a common features therefore reasonable to think that main magnetic
fields are not intrinsically uniform. In fact, in all our exji@ents our magnet showed a nearly quadratic behavior.

We present a new, strongly supported framework for quadmtiomogeneity MR signal analysis based on the
Fractional Fourier Transform (FrFT). It restores the tletioal relation between image space and quadratic magnetic
field signal space, allowing native second order field imagmmstruction (or correction). This transform, which
is a generalization of the FT, has a quadratic term in itsgiatiekernel, so that there is a natural link between the
signal obtained from an object magnetized with a quadragid fand its FrFT.

This new framework and thg— space we introduce give a visual insight to the MR acquisifioocess and
also, provide a meaningful graphical representation thatvs the relation between the image domain, the standard
k—space and FrFT domains.

Our experiments showed that our proposed method, the \@atber fractional Fourier reconstruction (VO—FrFT),
can effectively reconstruct MRI signals under nearly gatdrmagnetic fields, without being affected by the
geometric distortions that appear when those signals amnséructed by the standard FT scheme.

One effect of analyzing MR data using« space is thak is scaled down by a factarc« > 1. This scaling

is not homogeneous ih—space but depends on the time map of the sequence. For asgigeence planned for
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ordinary k—space acquisition, this fact traduces into a resoluti@s.|@hese resolution losses can be eliminated
using stronger gradients with an ordinary sequence or wiodifthe sequence to fipl—« space accounting for the
effect of the time map in resolution.

Trajectories should be modified to fiw space in an optimal way for resolution of the image. Theoakti
advances are also needed to replace the Nyquist sampliegcoadition fromk—space with a similar condition
which would indicate how information density is distribdtalong p—« space.

Our approach based on the Fractional Fourier Transformsgiveew theoretical MR framework between image
space and signal space for quadratic field MR systems, afpwative image reconstruction for second order main
fields. Hopefully, this new approach will reduce the hardweomplexity of MR systems, since the second order

terms in the main magnetic field would no longer be a concern.
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