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Abstract

To obtain good quality images with Magnetic Resonance (MR) it is necessaryto have good spatial homogeneity

in theB0 field for the region of imaging. Field homogeneity is difficult to achieve, particularly for short bore magnets

and higher fields. When the passive or active shimming are not enough, or when the inhomogeneity comes from

differences in susceptibility between adjacent regions within an object, there are several post-processing techniques for

correcting the distortions. These techniques do not have a well supported theoretical background with the exception

of linear terms. We propose to use the Fractional Fourier Transform (FrFT) for reconstructing the MR signal acquired

under the presence of quadratic fields. The FrFT provides a precise theoretical framework for this. In this work we

show how the FrFT can be used to understand the distortions and to reconstruct MR data acquired under that condition.

We also show examples of reconstruction for simulated and volunteer dataunder quadratic inhomogeneities obtaining

an improved image quality compared with standard Fourier reconstructions. The FrFT opens a new paradigm for

understanding and correcting second degree off-resonances with the potential for manufacturing shorter magnets.
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Application of the Fractional Fourier

Transform to Image Reconstruction in MRI

I. I NTRODUCTION

Magnetic Resonance (MR) imaging and spectroscopy provide anumber of practical applications for both clinical

and scientific purposes [1], [2]. For this technique it is necessary to have a strong magnetic field with uniform

intensity across the entire field of view. However, deviations from the constant magnetic field are inherent to MR

systems as uniform fields are physically difficult to achieveand as adjacent regions within the scanned object show

different susceptibilities, producing inhomogeneities.Such field variations introduce an accumulating phase over

time into the MR signal, which cannot be demodulated easily as it varies spatially. This problem is worse when

stronger uniform fields are considered and whenever sequences with long acquisition time are used. High field MR

system designs have to observe this limitation, sometimes using secondary coils to correct the field, simply reducing

the entire measurement volume or using a local region of interest for each measurement [3], [4]. Passive and active

shimming techniques help reducing inhomogeneities and arecommonly used, partially correcting first and second

order field variations in most cases.

Several image reconstruction methods have been proposed tocorrect distortions produced by non homogeneous

fields, being an active field of research [5], [6], [7], [8], [9], [10], [11], [12], [13]. There is a well known theory

background for the linear correction approaches, in which an exact analytical solution is provided [5], [9], but both

for second–order and arbitrary field maps there is no such conclusive theory background.

The Fractional Fourier Transform (FrFT) is a generalization of the standard Fourier Transform (FT) by means

of the continuous fractional ordera, which covers densely the entire transition between image (or time) domain

(a = 0) and the Fourier domain (a = 1) [14]. The FrFT can be defined in several different ways leading to different

physical interpretations and thus, it has become useful in many applications [15], [16], [17]. It has been shown that

the FT properties are special cases of FrFT properties [14] and further research has been done in discretization [18],

[19], fast computation [20], and other aspects of the FrFT related to signal processing [21], [22], [23], [24].

It is of general knowledge that the magnetization of an object under a uniform magnetic field can be related to

its FT. Similarly, we noted that the magnetization of an object under a quadratic magnetic field can be related to

its FrFT. In fact, the defining integral kernel of the FT presents a correspondence with the MR signal generated by

a magnetized object in a uniform magnetic field and thus, it allows reconstructing the object by taking an inverse

FT of its MR signal. Equivalently, the kernel that provides the integral definition of the FrFT presents a clear

resemblance with the MR signal generated by an object with anunderlying quadratic magnetic field, i.e. a field

which intensity varies spatially as a second order polynomial. This fact suggested us that there is a framework that

allows native MR reconstruction from quadratic fields.
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In this manuscript we present a theoretical description of the relationship between the FrFT and the MR signal

generated when quadratic magnetic fields are used. Furthermore, we propose a general MR method based on the

FrFT that allows the acquisition and reconstruction of MR signals of objects that have been obtained with quadratic

fields.

In Section II, we propose a new FrFT–based framework that allows fractional Fourier understanding of the MR

signal obtained with quadratic field inhomogeneities, showing examples with simple trajectories. We explain the

relationship between the FrFT and the MR signal in a one–dimensional context, which is extended to two dimensions

in Section III. We propose a general reconstruction method based on the FrFT in Section IV. In Section V we

describe the experimental setup and methods, and in SectionVI we show the results of our simulation, phantom

and in–vivo experiments. Section VII includes further discussions andconclusions from this work and suggestions

for future work.

II. T HEORY

In this section we explain the relation between the Fractional Fourier Transform and an MR signal acquired

under a quadratic main field, showing how the MR signal can be written as a FrFT. This framework allows us to

analyze the acquired data in a fractional order polar space,from where we can extract visual insight.

A. Fractional Fourier Transform

The a–th order FrFTfa(ρ) = Fa {f} (ρ) of the signalf(u) for 0 < |a| < 2 can be expressed as an integral

transform as (taken from [14] with a slight change of notation)

fa(ρ) = Cα(ρ)

∫

f(u) eiπ(u2 cot α−2ρu csc α) du (1)

Cα(ρ) ≡ eiπρ2 cot α
√

1 − i cot α, α ≡ aπ/2 (2)

Note that the most notable difference between this equationand the Fourier transform is an extra quadratic phase

in the kernel.

Throughout this section, we have selectedu andρ to denote dimensionless variables in order to maintain formal

consistency between the MRI and FrFT contexts. The independent variableρ is the pseudo–frequency in any

fractional domain andu is the particular case ofρ for the 0–th order (the object axis). The relation between the

dimensionlessu and its dimensional counterpartx will be addressed at the end of Section IV.

B. MRI Signal under quadratic field map inhomogeneity

At first, we will consider the single–dimensional case. Letf(u) be the magnetization of the object of interest.

The MRI signal, in a perfect uniformB0 field, ignoringT1 andT2 relaxations and after demodulation at the Larmor

frequencyω0 is

s(t) =

∫

f(u) e−i2πk(t)u du
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where, as customarily defined,k(t) = γ/2π
∫ t

0
G(ξ)dξ is thek–space trajectory.

Whenever there is an inhomogeneous fieldB(u) = B0 + p(u) as a function of space, the magnetization is

modulated by a time–dependent phase. For the particular case of a quadratic inhomogeneity,p(u) = p2u
2+p1u+p0.

In this case the signal equation becomes

s(t) = e−i2πp0t

∫

f(u) eiπ(−2p2tu2
−2(k(t)+p1t)u) du (3)

There is a remarkable similarity between this expression and the FrFT defined in (1). Consequently, it is natural

to think that the FrFT can be used to reconstruct this data. Moreover, the FrFT is a theoretical tool that could allow

us to extend the framework of MRI to quadratic fields, while recovering the homogeneous–field case as a particular

case.

C. Link between the MRI Signal and the FrFT

In order to represent (3) in the form of (1), we define

α(t) = cot−1(−2p2t), and

ρ(t) =
k(t) + p1t

csc α(t)
=

k(t) + p1t
√

1 + 4p2
2t

2
(4)

In this definition, bothα and ρ are functions of time but we will often omit this for the sake of simplicity.

We useα ∈ (0, π), which ensurescsc α > 0, and cot−1 is invertible. Therefore we can write these relations as

−2p2t = cot α and−2 (k(t) + p1t) = −2ρ csc α. With these variables the signal in (3) becomes

s(t) = e−i2πp0t

∫

f(u) eiπ(u2 cot α−2ρu csc α) du

Using (1) we can express the signal equation as a time–varying order FrFT of the object

s(t) = e−i2πp0tCα(ρ)
−1

fa(ρ)

fa(ρ) = ei2πp0tCα(ρ)s(t) (5)

Note that ifα were constant and equal toπ/2 (or a = 1), we recover the signal equation in terms of the standard

Fourier transform.

The advantage of this relation is that we have a well known framework for working with quadratic terms in the

magnetic field. In general, the inhomogeneity of the field will be better approximated by a second order polynomial.

Additionally, second order terms naturally occur in coil design and are the most significant within second and upper

orders.

D. Theρ–α space

The definition ofα andρ in (4) defines a parametric trajectory(ρ(t), α(t)) in a space that we callρ–α space.

Sinceα is an angle, this space is conveniently represented in polarcoordinates. The trajectory inρ–α space starts
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Α=Π�2
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(a)

Α=Π�2

Ρ HΑ=0L

(b)

Α=Π�2

Ρ HΑ=0L

(c)

Fig. 1. Examples of typical trajectories over a quadratic field in the polar representation ofρ–α space. (a) A constant gradient can be represented

as a circular path (b) A 2DFT bipolar gradient describes two circular arcs (c) The polar graph showsρ–α space in the readout direction for

seven readout echoes of an EPI trajectory.

immediately after the excitation (t = 0) in the frequency or Fourier direction (α = π/2) and as time passes it

curves toward the object axis (α = 0).

In what follows we will analyze some common trajectories using this framework. For the sake of simplicity, we

neglect the restrictions on the maximum slew rate.

1) Constant gradient:Let us assume that the readout gradientG0 is constant and starts att = 0, as would be the

case in a projection reconstruction sequence. Assume also that the inhomogeneity is purely quadraticp(u) = p2u
2.

Linear and constant terms can be ignored without loss of generality, because the first is equivalent to a change in

the amplitude of the gradient and the second can be correctedduring the signal demodulation. Thenk(t) would be
∫ t

0
G0dτ = G0t and the trajectory inρ–α space would be

α(t) = cot−1(−2p2t)

ρ(t) =
k(t) + p1t

√

1 + 4p2
2t

2
=

G0t
√

1 + 4p2
2t

2

which is the parametric form of a circumference centered at(G0/4p2, 0). Fig. 1 (a) shows this trajectory starting

in t = 0 at the origin. Assumingp2 < 0, which resembles the typical case in which the intensity of the B0 field

is greater at the center of a magnet, we also observe that the trajectory asymptotically approaches the object axis

(α = 0) as t increases.

As expected, for small values oft, the trajectory deviates little from the frequency axis (α = π/2), and therefore

distortions due to field variations are small. This is consistent with the general knowledge that short readouts are

less sensitive to inhomogeneities.

We also note that ifp2 tends to zero, the field inhomogeneity vanishes and the center of the circumference located
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at G0/4p2 tends to infinity. Equivalently, theρ–α trajectory becomes a straight line in the frequency direction

α(t) = cot−1(−2p2t) =
π

2

ρ(t) =
G0t

√

1 + 4p2
2t

2
= G0t

2) Standard 2DFT readout:Considering again that the field distortion isp(u) = p2u
2, we now assume that the

gradient is formed by a negative pulse of durationt0 followed by a positive one, as is standard in 2DFT readouts.

In this case

k(t) =

∫ t

0

G(τ)dτ =











−G0t 0 < t < t0

G0(t − 2t0) t0 < t

Consequently, the trajectory inρ–α space is given by

α(t) = cot−1(−2p2t)

ρ(t) =
1

√

1 + 4p2
2t

2
×











−G0t 0 < t < t0

G0(t − 2t0) t0 < t

This trajectory is formed by two circular arcs. The trajectory describes one arc for the negative gradient centered

at (−G0/4p2, 0) and continues to the other one centered at(G0/4p2,−G0t0), which corresponds to the positive

gradient, as shown in Fig. 1 (b).

3) EPI readout: If the gradient were a train of negative and positive pulses as is used in Echo Planar Imaging

G(t) =











−G0 for 0 < t < t0, 3t0 < t < 5t0, ...

G0 for t0 < t < 3t0, 5t0 < t < 7t0, ...

the describedρ–α trajectory would be composed by a series of circular arcs centered at(±G0/4p2,∓jG0t0/2),

j = 0, 1, 2, ... as shown in Fig. 1 (c).

4) Spectroscopy:If the sequence has no gradients, as in a pure spectroscopic acquisition, the trajectory will only

depend on the linear term of the field deviationp1

α(t) = cot−1(−2p2t)

ρ(t) =
k(t) + p1t

√

1 + 4p2
2t

2
=

p1t
√

1 + 4p2
2t

2

and will have the shape shown in Fig. 1 (a), centered at(p1/4p2, 0). If p1 = 0, the trajectory is a singularity at the

origin of theρ–α space. In this case it is more convenient to represent the space in Cartesian coordinates(ρ, a), and

the readout trajectoryρ = 0 becomes equivalent to acquire the continuous component of the FrFT for the ordersa.

III. E XTENSION TO TWO DIMENSIONS

To extend the correspondence of the signal equation to the FrFT definition we employ the fact that the latter is

separable and easily written in vector form. In two dimensions the FrFT is [14]

fa(ρ) = Cα(ρ)

∫

f(u) eiπ(uTAu−2uTBρ)du
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with

u =





u

v



 , ρ =





ρu

ρv



 , a =





au

av



 , α = a
π

2
=





αu

αv





A =





cot αu 0

0 cot αv



 , B =





csc αu 0

0 csc αv





andCα(ρ) =
√

1 − i cot αu

√
1 − i cot αv eiπρT Aρ.

To write the signal equation in 2D we write the field distortion asp(u) = uTp2u + uTp1 + p0, with

p1 =





p1u

p1v



 and p2 =





p2u 0

0 p2v





so that it becomes

s(t) = e−i2πp0t

∫

f(u) eiπ(−2uTp2ut−2uT(k(t)+p1t))du (6)

with k(t) = [ku(t) kv(t)]
T. Note that we also assumed that the field distortion is diagonal in the coordinate axis,

i.e. the terms outside the diagonal ofp2 are zero in order to match the separable form of the FrFT.

Remark that bothA and B are diagonal matrices that depend onα. We can proceed as we did previously to

define the four–dimensionalρ–α space using the change of variables:

cot αu = −2p2ut

cot αv = −2p2vt

ρu csc αu = ku(t) + p1ut

ρv csc αv = kv(t) + p1vt

which is equivalent to solve forα andρ the matrix equationsA(α) = −2p2t andB(α)ρ = k(t) + p1t. Finally,

the signal equation can be expressed in terms of a 2D varying–order FrFT as

s(t) = e−i2πp0tCα(ρ)
−1

fa(ρ)

IV. RECONSTRUCTION

In the FrFT framework, the reconstruction problem requiresto know both the pseudo–frequency and the transform

order where the data was acquired. These can be determined using (4). The object will be the solution to the inverse

of (5) (ignoring the constant field deviationp0)

f̂(u) = F−a
{

fa(t) (ρ(t))
}

(u)

= F−a
{

Cα(t) (ρ(t)) s(t)
}

(u)

In this expression we have made explicit the time dependenceof α. This dependency implies that the fractional

order changes with time and therefore a inverse FrFT is not feasible. We analyze three different reconstruction

approaches: standard inverse Fourier reconstruction; inverse fractional Fourier reconstruction; and variable order
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inverse fractional Fourier reconstruction. The difference between these reconstructions is the assumption they make

on where the data is placed in theρ–α space. In Fig. 2 we show the actualρ–α space trajectory and the assumption

of the reconstruction scheme for a standard 2DFT readout.

Α=Π�2

Ρ HΑ=0L

(a)

Α=Π�2

Ρ HΑ=0L

(b)

Α=Π�2

Ρ HΑ=0L

(c)

Fig. 2. Example of a one dimensional 2DFT trajectory in the polar representation ofρ–α space represented by the continuous line and its

reconstruction interpretation represented by the dashed line. (a) Standard Fourier interpretation (b) Fractional Fourier interpretation (c) Variable

order inverse fractional Fourier interpretation.

A. Standard Inverse Fourier Reconstruction

The first approach is to perform the reconstruction by using the standard inverse Fourier transform. This is

equivalent to assume thatα ≡ π/2, cot α ≡ 0 andCπ/2(ρ) ≡ 1. The reconstructed object is

f̂1(u) = F−1 {s(t)} (u)

The samples are acquired in the curved trajectory but are interpreted as being in the frequency axis (vertical

dashed line of Fig. 2(a)). The distortions in the image will depend on how much the reconstruction locations differ

from the sampling locations.

B. Inverse Fractional Fourier Reconstruction

The second approach is to assume that the samples are being acquired at a constant order, which can be though

as a tangent approximation in theρ–α plane. This approach has two advantages: (i) the reconstruction and sampling

locations are closer; and (ii) the inverse expression is exactly a inverse FrFT

f̂ā(u) = F−ā {Cᾱ (ρ(t)) s(t)} (u)

where ā (or ᾱ) is the order (or angle for the tangent line) at the origin. Aswe will show in Section VI, this

reconstruction provides a better approximation to the realobject since it improves the accuracy of the reconstructed

phase over the standard Fourier reconstruction. However, the magnitude is the same as the one obtained with the

standard Fourier reconstruction. Using the definitions in (1) and (2) it can be seen that

f̂ā(u) = e−iπu2 cot ᾱ| csc ᾱ|
∫

s(t) ei2πuρ csc ᾱ dρ (7)
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C. Variable Order Inverse Fractional Fourier Reconstruction

Finally, the third approach is to use the actual locations where the data was acquired. To solve the variable order

inverse problem we propose a discrete approach, which fits well with the discrete samples and can also provide a

continuous reconstruction. Each sample inρ–α space(ρn, αn) acquired att = tn corresponds to one coefficient

of the FrFT of orderan = 2αn/π. These coefficients can be thought as the expansion of the object on the bases

formed by the “chirp” functions. These functions are given by the inverse FrFT of orderan of a delta function

located atρ = ρn [14]:

∆−an
(u) = F−an {δ(ρ − ρn)} (u)

= C∗

αn
(ρn) e−iπ(u2 cot αn−2uρn csc αn)

where ∗ denotes complex conjugate. Recalling that the samples (ignoring again the constant field shift,p0) are

defined by

fan
(ρn) = Cαn

(ρn)s(tn)

we have an estimation of the object as the weighted sum of all contributions.

f̂α(u) =

N
∑

n=1

fan
(ρn)∆−an

(u)

=
N

∑

n=1

| csc αn|s(tn)e−iπ(u2 cot αn−2uρn csc αn)

We assume a uniform sampling density, otherwise it would be necessary to incorporate a factor proportional to

ρ̇(tn) which arises from the underlying discretization of the inverse FrFT integral by Riemann sums.

The objectf̂α(u) can be evaluated for any continuous value ofu. Note that if we substituteαn by π/2 this formula

becomes the definition of the Discrete Frequency Fourier Transform (DFFT), or the Discrete Fourier Transform

(DFT), if u is also evaluated at discrete values. Ifαn is substituted by another fixed angle, other thanπ/2, the

reconstruction is also the DFFT, but with an extra phase and an additional constant scaling factor. This is the

discrete version of the inverse Fractional Fourier Transform.

The 2D extension of this reconstructions is:

f̂(u) =
N

∑

n=1

|det(Bn)|s(tn) e−iπ(uTAnu−2uTBnρn) (8)

D. Units

So far we have usedρ andu as dimensionless variables. To ensure the validity of the former analysis and extend

it to practical cases, we use the normalizationu = x/q in which

f(u) = f(x/q) =
√

qf̃(x) (9)

with f̃(x) the dimensional object. The scale parameterq has the same dimension asx. In the discrete case, we

need longitudes inρ to be independent ofα, which can be achieved by settingq = FOV/
√

N [25] whereFOV
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is the field of view in distance units andN is the number of samples. This normalization is independently applied

for each dimension.

V. EXPERIMENTSAND METHODS

All MRI images mentioned in this section were acquired in a Philips Intera 1.5T scanner. Linear shimming was

disabled during all acquisitions and no higher order activeshimming was used. The sequences were performed

without any consideration aboutρ–α space, using mostly default parameters from pre–loaded sequences in the

system. Complex–valued image reconstructions were performed off–line.

A. Analytical phantom

In our first experiment, the MR signal for a two dimensional (2D) analytical magnetization phantom was simulated

by numerically evaluating (6) using adaptive quadrature inMATLAB [26], nesting a one–dimensional evaluation

for each dimension. The phantom was designed as a simplified version of a real reference phantom with the same

dimensions. The acquisition time of each sample andk–space locations were determined considering 2DFT gradients

used in standard Fourier acquisition. We simulated a cartesian matrix of 256× 256 samples with a field of view

(FOV) of 25.6× 25.6 cm and echo timeTE = 56 ms. Each complete readout in the sequence takes 28 ms.

Two signals were simulated, the first with a uniform B0 field and the second with a quadratic field. The quadratic

deviation was chosen to emulate the quadratic component fora real phantom, but doubling its values to increase

the effect of the distortion in the simulation, and at the same time keeping it within a valid physical range.

B. MRI phantom

In another experiment, we scanned an MRI phantom using a fastfield echo (FFE) echo–planar imaging (EPI)

sequence, with a scan matrix of 128× 128 samples, image FOV of 24× 24 cm, slice thickness 5 mm, flip angle

23◦, repetition time TR= 650 ms and echo time TE= 41 ms. This data was acquired with a number of sample

averages (NSA) of 16 using a Q–body coil. The EPI factor in this sequence is 63. Each complete readout in this

sequence took 76 ms.

C. In–vivo study

An in–vivostudy was done scanning the brain of a volunteer, the images were acquired using the same sequence

used for the phantom study, except from NSA which was now 8 andfrom the receiving coil which was now a

standard quadrature head coil. A slightly angled transversal slice of the brain was selected.

D. Field maps

In each experiment, structural images were acquired with short readout time sequences to minimize the effect

of field inhomogeneity. The magnetic field was measured in each location from phase differences in two images
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with different echo time, using∆ω(x, y) = ∆φ(x, y)/∆TE [27] with a short∆TE to avoid phase wrapping in the

resulting field map.

To fit quadratic functions to the field maps, we used a maximum likelihood method that minimizes the weighted

squared error between the measured field map and a parametricseparable second order polynomial evaluated at

corresponding positions. The weights were the mean of the corresponding pixels in the magnitude of the images

from which the phase difference had been obtained. This ensures that the field map information was incorporated

correctly depending on the local intensity of the signal andits signal to noise ratio. In the case of thein–vivostudy,

a region of interest was defined by setting to zero the weighting outside it.

In the phantom study, the field map was determined along a structural reference image using∆TE = 3 ms and

TR and TE equal to 14 and 6.1 ms respectively. A transversal slice of the physical phantom was selected for this

study.

For the in–vivo study, the structural reference image was obtained with TR and TE equal to 17 and 6.2 ms

respectively for the same field of view and resolution. The field map was computed with∆TE = 6 ms. The

anatomy causes further field deviations which cannot be approximated by the fitted function for the entire FOV.

We therefore used an elliptical region of interest (ROI) where the field is mainly quadratic and the approximation

is suitable to demonstrate the proposed reconstruction.

Field maps and profiles displayed in all figures in Section VI share the same color scaling, mapping the entire

range to a 180 Hz difference, with the lowest and highest intensities mapped to -140 Hz and 40 Hz respectively.

To display the measured field maps and phase images, the field map value was set to zero wherever the intensity

of the signal was below 5% of its maximum value.

E. Image reconstruction

In all experiments, image reconstruction was performed by estimating the magnetization of the object comput-

ing (8) and evaluatingu at the corresponding positions in dimensionless coordinates. Distance units of the results

were scaled using (9) to map the estimated object into the dimensional coordinates. Three different reconstruction

schemes were used in each experiment, producing three object estimations according to diagrams (a), (b) and (c)

in Fig. 2. The first one is standard inverse Fourier (FT) reconstruction and usedαun = αvn = π/2, ∀n = 1 . . . N .

The second one, inverse fractional Fourier (FrFT) reconstruction, usedαun = ᾱu, αvn = ᾱv, ∀n = 1 . . . N with

ᾱu and ᾱv equal to the angles at the origin of the four–dimensionalρ–α space during the readout. Variable order

inverse fractional Fourier (VO–FrFT) reconstruction tookinto account the exact position inρ–α space of each

sample.

VI. RESULTS

A. Analytical phantom

One can observe the distortions produced by a quadratic fieldwhen using the standard Fourier reconstruction,

by comparing Figures 3 (a) and (b). We appreciate a geometricdistortion, characteristic of data acquired under
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(a) (b) (c) (d)

Fig. 3. Reconstruction results for 2DFT simulations with an isotropic quadratic field. Each column shows magnitude and phase images with

the same color scaling. Magnitude moves from 0 to 1 and the from−π to π. Phase values have been set to zero when magnitude is below 5%

of maximum. (a) Ideal reconstruction for a homogeneous field simulation and standard inverse Fourier reconstruction. The remaining columns

show reconstructions for a quadratic field simulation. (b) Standard inverse Fourier reconstruction. (c) Inverse fractional Fourier reconstruction

with constantα approximation for each echo. (d) Variable order inverse fractional Fourier reconstruction considering exact trajectory.

field inhomogeneity, wich is proportional to the local field deviation from the central frequency. The phase of

the reconstructed image has a complex quadratic modulationbut the analytical phantom did not have phase. An

intensity nonuniformity distortion is also noted, in whichthe distorted image has an intensity approximately 12%

lower in the upper section of the object and a simmilar inverse variation in the lower section.

The three reconstructions are shown in Fig. 3 (b), (c) and (d). As expected by means of (7), the reconstruction result

for inverse fractional Fourier (FrFT) reconstruction in (c) shows identical magnitude than the standard inverse Fourier

(FT) reconstruction (b) but with a phase much closer to the actual phase. In (d), variable order inverse fractional

Fourier (VO–FrFT) reconstruction shows correction of image distortions in magnitude and phase, including the

geometric distortion.

B. MRI phantom

In the MRI phantom study, we have found that the particular combination of our MR system with its intrinsic

inhomogeneity and the scanned phantom produced a field map that resembles an isotropic quadratic function with

its highest intensity in the center of the magnet as shown in Fig. 4.

In this study, the phase information of the object is unknownsince we cannot acquire it with the same contrast

as the distorted object but without the effect of the quadratic field map. We will compare the magnitude of the

reconstructions of the distorted signal with the magnitudeof a low distortion image acquired with short readouts.
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Fig. 4. Field map fit for MRI Phantom. (a) Measured field map. (b) Fitted field map. (c) Along the marked column, the measured magnetic

field (solid line) can be approximated by a quadratic function(dashed line).

(a) (b) (c)

Fig. 5. Reconstruction results for MRI Phantom under quadratic field. Geometric distortions shown in (b) obtained using astandard Fourier

reconstruction can be corrected in (c) using variable orderfractional Fourier reconstruction, compared to a low distortion image (a).
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The FT reconstruction shown in Fig. 5 (b) produces geometricand intensity distortions similar to those observed

in the simulation study for a quadratic field (Fig. 3 (b)). Figure 5 also shows that the VO–FrFT reconstruction (c),

partially corrects these distortions, improving the geometry and intensity of the estimation when comparing both

reconstructions against the low distortion image (a). Ghosting artifacts are visible in (c) which we do not fully

understand, but believe to be related to an incomplete phasecorrection typically used to reduce the EPI ghosting

artifact.

As expected, magnitudes of the fractional Fourier reconstruction and standard Fourier reconstruction are identical,

therefore the first was omitted from the figures.

C. In–vivo study

(a) (b) (c)

-140

-100

-50

0

40
Field map fit along one column

[h
z
]

 

 

measured

fitted

(d)

Fig. 6. Field map fit forin–vivo study. (b) Measured field map. (c) Fitted field map. Within the elliptical ROI in (a), the measured magnetic

field can be approximated by a quadratic function as shown in (d) with solid and dashed lines respectively for the marked column.

With the volunteer experiment we found the magnetic field to vary smoothly inside the brain. In particular, the

field can be approximated by a quadratic function within an elliptical region of interest (ROI) as shown in Fig. 6.

The VO–FrFT reconstruction partially corrects most of the geometric distortions present in the FT reconstruction

as can be seen in Fig. 7, especially in the regions in which thefitted quadratic function is a close approximation

of the field map. To facilitate the comparison we have superimposed on all reconstructions in Fig. 7 contours that

show the actual location of key features taken from a reference image (a).
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(a) (b) (c)

Fig. 7. Reconstruction results forin–vivo study. The superimposed contour shows location of some key features in the reference image (a).

(b) Standard Fourier reconstruction. (c) Variable order Fourier reconstruction with corrected quadratic field inhomogeneity.

VII. C ONCLUSIONS

Traditionally, MRI reconstruction is performed applying an inverse Fourier Transform (FT) of the acquired MR

signal. This method rests on the base that the object has beenmagnetized with a perfectly uniform magnetic field. In

practice, it is not possible to get a uniform field because of physical restrictions and susceptibility variations at the

scanned object. This is a critical problem as the MR community is pushing for getting short–bore and high–field MR

systems, which are exactly the kind of factors that tend to increase field inhomogeneities. Additionally, sequences

with long acquisition windows, such as EPI and spiral, are increasingly used. These sequences are severely affected

by inhomogeneity–related artifacts. Modern MR systems always include linear field corrections and higher-order

polynomial field corrections are getting a common feature. It is therefore reasonable to think that main magnetic

fields are not intrinsically uniform. In fact, in all our experiments our magnet showed a nearly quadratic behavior.

We present a new, strongly supported framework for quadratic inhomogeneity MR signal analysis based on the

Fractional Fourier Transform (FrFT). It restores the theoretical relation between image space and quadratic magnetic

field signal space, allowing native second order field image reconstruction (or correction). This transform, which

is a generalization of the FT, has a quadratic term in its integral kernel, so that there is a natural link between the

signal obtained from an object magnetized with a quadratic field and its FrFT.

This new framework and theρ–α space we introduce give a visual insight to the MR acquisition process and

also, provide a meaningful graphical representation that shows the relation between the image domain, the standard

k–space and FrFT domains.

Our experiments showed that our proposed method, the variable order fractional Fourier reconstruction (VO–FrFT),

can effectively reconstruct MRI signals under nearly quadratic magnetic fields, without being affected by the

geometric distortions that appear when those signals are reconstructed by the standard FT scheme.

One effect of analyzing MR data usingρ–α space is thatk is scaled down by a factorcsc α ≥ 1. This scaling

is not homogeneous ink–space but depends on the time map of the sequence. For a givensequence planned for
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ordinary k–space acquisition, this fact traduces into a resolution loss. These resolution losses can be eliminated

using stronger gradients with an ordinary sequence or modifying the sequence to fillρ–α space accounting for the

effect of the time map in resolution.

Trajectories should be modified to fillρ–α space in an optimal way for resolution of the image. Theoretical

advances are also needed to replace the Nyquist sampling rate condition fromk–space with a similar condition

which would indicate how information density is distributed alongρ–α space.

Our approach based on the Fractional Fourier Transform gives a new theoretical MR framework between image

space and signal space for quadratic field MR systems, allowing native image reconstruction for second order main

fields. Hopefully, this new approach will reduce the hardware complexity of MR systems, since the second order

terms in the main magnetic field would no longer be a concern.
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