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Abstract: In this paper, we review some of the main results in the field of abstract
nonlinear fractional evolution equations. We study solutions of the semilinear
Cauchy problem in the subdiffusive and superdiffusive cases, mainly with the
Caputo and Riemann-Liouville fractional order derivative, in the setting of the
real semiaxis and real axis, and under various assumptions on the main data of
the given equations. We consider in our analysis several kinds of perturbed sys-
tems e.g. delay, control and stochastic properties, even with nonlocal conditions
and impulses. We provide a complete description of the representation of mild
solutions in terms of associated solution families of operators.
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For about two decades semilinear abstract Cauchy problems of the form{︂
𝐶𝐷𝛼

𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ≥ 0, 0 < 𝛼 ≤ 2;
𝑢(0) = 𝑢0; max{0, 𝛼 − 1}(𝑢′(0) − 𝑢1) = 0,

(1)

in a Banach space 𝑋 have been studied in many different settings. Here 𝐴

denotes the generator of a strongly continuous family of bounded and linear
operators in 𝑋 and 𝑓 a nonlinear function.

This abstract and general approach, enables that the results can be applied
to a broad variety of problems, including both ordinary fractional equations and
partial fractional equations problems.

The basic idea for this type of approach is to consider the integral equation

𝑢(𝑡) = 𝑆𝛼(𝑡)𝑥0 +
𝑡∫︁

0

𝑅𝛼(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 ≥ 0, 0 < 𝛼 ≤ 1, (2)

where {𝑅𝛼(𝑡)}𝑡>0 is an (𝛼, 𝛼)-resolvent family generated by 𝐴 and 𝑆𝛼(𝑡) :=
(𝑔1−𝛼 * 𝑅𝛼)(𝑡) is an 𝛼-resolvent family, also generated by the same operator 𝐴.

Carlos Lizama, Department of Mathematics, Universidad de Santiago de Chile, Departa-
mento de Matemática y Ciencia de la Computación, Las Sophoras 173, Estación Central,
Santiago, Chile. e-mail: carlos.lizama@usach.cl

DOI



2 C. Lizama

The reason is that under appropriate conditions on the initial data 𝑥0 and the
forcing term 𝑓 , a solution of the equation (2) corresponds to a strong (or clas-
sical) solution of the equation (1). See the Chapter "Abstract Linear Fractional
Evolution Equations" for more information on this subject.

As a consequence of the definition of fractional derivative of order 𝛼 > 0, in
the situation that 1 < 𝛼 ≤ 2 one should consider the integral equation

𝑢(𝑡) = 𝑆𝛼(𝑡)𝑢0 + (𝑔1 * 𝑆𝛼)(𝑡)𝑢1 +
𝑡∫︁

0

𝑅𝛼(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠 (3)

where {𝑆𝛼(𝑡)}𝑡≥0 is an 𝛼-resolvent family generated by 𝐴 and 𝑅𝛼(𝑡) := (𝑔𝛼−1 *
𝑆𝛼)(𝑡) is an (𝛼, 𝛼)-resolvent family, generated by 𝐴. Note the inversion of roles
between the families 𝑆𝛼(𝑡) and 𝑅𝛼(𝑡) in the cases 0 < 𝛼 ≤ 1 and 1 < 𝛼 ≤ 2,

respectively.
Solutions of the vector-valued integral equation (2) (resp. (3)) are called

mild solutions of (1). It should be noted that the definition of mild solution
for abstract fractional differential equations has been misunderstood for some
researchers, contrasting with those known in the literature on the subject [11,
Section 4]. This has been observed in some papers since some time ago [30, 47,
62].

If 𝐴 is the generator of a 𝐶0-semigroup {𝑆1(𝑡)}𝑡≥0 and 0 < 𝛼 < 1 then,
using the subordination principle, we can show an explicit description of the
families of bounded and linear operators in (2) as follows: The (𝛼, 𝛼)-resolvent
family generated by 𝐴 is given by

𝑅𝛼(𝑡) = 𝑡𝛼−1𝑃𝛼(𝑡) where 𝑃𝛼(𝑡) := 𝛼

∞∫︁
0

𝑠Φ𝛼(𝑠)𝑆1(𝑠𝑡𝛼)𝑑𝑠, 𝑡 > 0 (4)

and the 𝛼-resolvent family generated by 𝐴 is represented by

𝑆𝛼(𝑡) =
∞∫︁

0

Φ𝛼(𝑠)𝑆1(𝑠𝑡𝛼)𝑑𝑠, 𝑡 > 0, (5)

see subsection 2.2 in the Chapter "Abstract Linear Fractional Evolution Equa-
tions" for details. Here Φ𝛼 are the functions of Wright type defined by

Φ𝛼(𝑠) :=
∞∑︁

𝑛=0

(−𝑠)𝑛

𝑛!𝛼(−𝛼𝑛 + 1 − 𝛼) = 1
𝜋𝛼

∞∑︁
𝑛=1

(−𝑠)𝑛−1 Γ(𝑛𝛼 + 1)
𝑛! sin(𝑛𝜋𝛼),

valid for 0 < 𝛼 < 1 and 𝑠 ≥ 0. In the formulation (2) (resp. (3)) the unbounded
operator 𝐴 does only appear in terms of the family 𝑅𝛼(𝑡) (resp. 𝑆𝛼(𝑡)), which
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makes e.g. the application of fixed point theorems for the solution of the integral
equation possible.

A typical argument uses the contraction mapping principle. In such case we
suppose that the nonlinearity 𝑓 is continuous and globally Lipschitz. This argu-
ment has been refined in many directions, e.g. localizing the Lipschitz condition,
or replacing it by compactness assumptions involving measures of non compact-
ness and applying fixed point theorems for set contractions, or by allowing 𝐴 to
depend on 𝑡. This way also a qualitative theory for mild solutions of (1) can be
developed.

There is a already a number of papers available where these ideas have been
carried out in various settings, most of them in the autonomous one. In the non
autonomous case, i.e. when 𝐴 is time dependent, much work remains to be done.

In what follows, for transparency reasons, we separately discuss the cases

0 < 𝛼 ≤ 1 and 1 < 𝛼 ≤ 2.

1 The Semilinear Cauchy Problem: 0 < 𝛼 ≤ 1

1.1 Caputo fractional derivative

As standard model, we consider the semilinear Cauchy problem{︂
𝐶𝐷𝛼

𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ≥ 0, 0 < 𝛼 ≤ 1,

𝑢(0) = 𝑢0.
(1)

This is by far the most studied fractional abstract model in the existing litera-
ture. The analysis cover the existence and uniqueness of mild solutions for the
fractional evolution equation (1) under different conditions on the operator 𝐴,

the nonlinear term 𝑓 and the initial condition 𝑢0. The study of fractional con-
trollability; fractional inclusions; and fractional stochastic evolution equations
and inclusions are the most common subjects of research.

Recall that a mild solution of (1) is a solution of the integral equation

𝑢(𝑡) = 𝑆𝛼(𝑡)𝑥0 +
𝑡∫︁

0

𝑅𝛼(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 ≥ 0, (2)

where 𝑆𝛼(𝑡) = (𝑔1−𝛼 * 𝑅𝛼)(𝑡), being {𝑅𝛼(𝑡)}𝑡>0 an (𝛼, 𝛼)-resolvent family gen-
erated by 𝐴. Existence and uniqueness of local and global mild solutions for
(1) were investigated by Chen, Li, Chen and Feng [15] when 𝐴 is the generator
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of an uniformly bounded and immediately norm continuous 𝐶0-semigroup. As
methods, they have mainly used Sadovskii’s fixed point theorem and the tech-
nique of the measure of noncompactness. See also the paper [37] for a related
result using the Kuratowski measure of noncompactness. However, until now,
the most complete study of the semilinear problem (1) is contained in the mono-
graph [21, Section 3] by Gal and Warma, which also includes several interesting
applications, examples and historical remarks.

If 𝐴 is the generator of a positive, compact and uniformly bounded 𝐶0-
semigroup, the existence of minimal and maximal mild solutions for the problem
(1) with periodic boundary conditions has been studied by Mu and Li [55]. They
used the method of upper and lower solutions coupled with a monotone iterative
technique and the properties of positive 𝐶0-semigroups.

Under the hypothesis that 𝐴 is a sectorial operator on a Banach space 𝑋

(i.e. 𝐴 is the generator of an analytic semigroup), the authors Shu, Lai and Chen
[62] proved the existence of unique mild solutions of (1) with impulses. Under
the same hypothesis of sectoriality of 𝐴, Guswanto and Suzuki [27] studied
the existence and uniqueness of a local mild solution for the problem (1) with
nonlinear term in the form 𝑓(𝑢(𝑡)). They put some conditions on 𝑓 and the
initial data 𝑢0 in terms of the fractional powers of 𝐴. By applying Banach’s
fixed point theorem, they obtain a unique local mild solution with smoothing
effects, estimates, and a behavior at 𝑡 close to 0. In the same line of ideas, and
under some local Lipschitz conditions on 𝑓, De Andrade, Carvalho, Carvahlo-
Neto and Marín-Rubio [18] proved an existence and uniqueness theorem for local
mild solutions to (1), as well as continuation, non-continuation (due to blow-up)
and global existence results. They also investigate critical cases by proving the
existence of the so-called 𝜖-regular mild solutions using a technique of fractional
power spaces associated to the operator 𝐴. For some other results under the
hypothesis of sectoriality on 𝐴, see the recent book of Zhou [75, Section 2.1.4].

Assuming that 𝐴 is the generator of a compact semigroup, Chauhan and
Dabas [14] proved existence of mild solutions for (1) with non local conditions

𝑢(0) + 𝑔(𝑢) = 𝑢0, (3)

and impulses. Moreover, in [14], the nonlinear term admits the general form
𝑓(𝑡, 𝑢(𝑡), 𝑢(𝑎1(𝑡)), ..., 𝑢(𝑎𝑚(𝑡))) where 𝑎𝑖 are scalar functions defined on a finite
interval. In the range 1/2 < 𝛼 < 1, Ponce [59, Theorem 23] proved existence of
mild solutions for (1) with the non local conditions (3) but assuming that 𝐴 is
the generator of an (𝛼, 𝛼)-resolvent family 𝑅𝛼(𝑡) and (𝜆 − 𝐴)−1 is compact for
some 𝜆 ∈ 𝜌(𝐴).
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We remark that the nonlocal condition (3) has a better effect on the solution
of (1) and is more precise for physical measurements than the classical condition
alone.

If the semigroup generated by 𝐴 is non-compact, Gou and Li [24] investi-
gated local and global existence of mild solution for (1) with impulses and an
additional nonlinear term in the form

𝑡∫︁
0

𝑞(𝑡 − 𝑠)𝑔(𝑠, 𝑢(𝑠))𝑑𝑠.

Existence results under general and weak assumptions on 𝑓 by utilizing Schaefer
and O’Regan fixed point theorems have been proved by Wang, Zhou and Feckan
[71]. If 𝐴 generates a bounded analytic semigroup, existence of mild solutions
for fractional order equations with infinite delay and an integral nonlinearity in
the form

∫︀ 𝑡

0 𝑎(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠), 𝑢𝑠)𝑑𝑠 has been analyzed by Aissani and Benchohra
[7], by means of the application of Mönch’s fixed point theorem combined with
the Kuratowski measure of noncompactness.

An interesting way to deal with many kinds of nonlinearities at once, is the
use of the notion of causal operator due to Tonelli [66]. This approach has been
recently pursued by Agarwal, Asma, Lupulescu and O’Regan [2]. The main idea
is consider the model{︂

𝐶𝐷𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + (𝑄𝑢)(𝑡), 𝑎.𝑒. 𝑡 ∈ [0, 𝑇 ],

𝑢|[−𝜎,0] = 𝜙 ∈ 𝐶([−𝜎, 𝑇 ], 𝑋), 𝜎 ≥ 0,
(4)

where 𝑄 : 𝐶([−𝜎, 𝑇 ], 𝑋) → 𝐿𝑝([0, 𝑇 ], 𝑋) is a causal operator, i.e. for each 𝜏 ∈
[0, 𝑇 ) an for all 𝑢, 𝑣 ∈ 𝐿𝑝([−𝜎, 𝑇 ], 𝑋) with 𝑢(𝑡) = 𝑣(𝑡) for every 𝑡 ∈ [0, 𝜏 ], we
have 𝑄𝑢(𝑡) = 𝑄𝑣(𝑡) for a.e. 𝑡 ∈ [0, 𝜏 ]. Using this approach, the authors in [2]
proved existence of mild solution of (4) assuming that 𝐴 is the generator of an
immediately norm continuous semigroup.

In [60], Sakthivel, Ren and Mahmudov established sufficient conditions for
the approximate controllability of the problem

𝐶𝐷𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝐵𝑥(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ [0, 𝑇 ], (5)

with initial condition 𝑢(0) = 𝑢0. Here, the state variable 𝑢(·) takes values in
the Hilbert space 𝐻; 𝐴 is the generator of a 𝐶0-semigroup; the control function
𝑥(·) is given in 𝐿2([0, 𝑇 ], 𝑈), 𝑈 is a Hilbert space; and 𝐵 is a bounded linear
operator from 𝑈 into 𝐻. The results are established under the assumption that
the associated linear system is approximately controllable. Further, the authors
extend their results to study the approximate controllability of fractional systems
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with nonlocal conditions as in (3). See also the papers [72, 33] for further results
on this problem.

We point out that if the operator 𝐵 is compact, or the 𝐶0-semigroup gen-
erated by 𝐴 is compact, then the controllability operator is also compact and
hence the inverse of it does not exist if the state space is infinite dimensional.
See [29] and [56]. Thus, the concept of exact controllability for fractional differ-
ential equations is too strong in infinite dimensional spaces and the notion of
approximate controllability is more appropriate.

In [22] Ge, Zhou and Kou studied the approximate controllability of the
semilinear fractional evolution equation (5) with nonlocal and impulsive con-
ditions. The impulsive functions in that paper are supposed to be continuous
and the nonlocal item is divided into two cases: Lipschitz continuous and only
continuous, which generalizes previous contributions.

In the article [19] Debbouche and Torres studied the approximate controlla-
bility of (5), where the control function depends on multi-delay arguments and
where the nonlocal condition is fractional. In [41], Liu and Fu studied controlla-
bility for (1) with a nonlinear term in the form 𝑓(𝑡, 𝑢(𝑡)) + 𝑔(𝑡)𝑥(𝑡) and a mixed
nonconvex constraint on the control 𝑥(·). We also note the work of Mophou
[53] where she studied the approximate controllability of a fractional semilinear
differential equation (5) but involving the right fractional Caputo derivative.

Sufficient conditions for the approximate controllability of (1) with bounded
delay, namely, the class{︂

𝐶𝐷𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝐵𝑥(𝑡) + 𝑓(𝑡, 𝑢(𝑡 − ℎ)), 𝑡 ∈ (0, 𝜏 ], 1

2 < 𝛼 ≤ 1,

𝑢(𝑡) = 𝜙(𝑡), 𝑡 ∈ [−ℎ, 0],

have been considered by Kumar and Sakavanam [35].
Fractional semilinear differential inclusions in Banach spaces has been stud-

ied by Wang and Zhou [70]. By using the Bohnenblust–Karlin’s fixed point
theorem, an existence result of mild solutions for the multivalued version of (1)
was obtained in [70] under the assumption that 𝐴 generates a compact semi-
group. In such paper, also controllability results are discussed. The paper of
Liu and Liu [42] studied also the same topic but relaxing the conditions in the
nonlinearity, admiting 𝑓 non convex. See also [43, 69, 75] for additional research
on this topic.

Under the general assumption that 𝐴 is the generator of an (𝛼, 𝛼)-resolvent
family, relative controllability for a class of semilinear stochastic fractional dif-
ferential equation with nonlocal conditions of the form{︃

𝐶𝐷𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝐵𝑥(𝑡) + 𝑓(𝑡, 𝑢(𝑡)) + 𝜎(𝑡, 𝑢(𝑡)) 𝑑𝑤(𝑡)

𝑑𝑡 , 𝑡 ∈ [0, 𝑇 ],
𝑢(0) + 𝑔(𝑢) = 𝑢0,
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in Hilbert spaces, were studied by Guendouzi and Hamada [25]. See also the
article of Saktivel, Revathi and Ren [61], where impulsive fractional stochas-
tic differential equations with infinite delay under the same hypothesis has been
studied. In [67], Toufik studied existence and controllability results for fractional
stochastic semilinear differential inclusions of the above form. The results are
obtained by using the Bohnenblust-Karlin fixed point theorem. More recently,
Ahmed [6] proved the existence of mild solutions for a very general class of semi-
linear neutral fractional stochastic integro-differential equations with nonlocal
conditions. Ahmed, derived sufficient conditions with the help of the Sadovskii
fixed point theorem.

When 𝐴 = 𝐴(𝑡) are bounded operators and 0 < 𝛼 < 1, the problem of
existence and uniqueness of solutions on an interval [0, 𝑇 ] was studied by Bal-
achandran and Park [9], as well as the existence and uniqueness of solutions with
nonlocal condition of the form (3) where 𝑔 is a given function satisfying certain
Lipschitz type conditions. In the paper [10] the authors deal with fractional
impulsive evolution equations. Under classical assumptions and by using the
Banach contraction principle, the authors proved the existence and uniqueness
of solutions.

1.2 Riemann-Liouville fractional derivative

We consider the model
𝑅𝐿𝐷𝛼

𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ≥ 0, 0 < 𝛼 ≤ 1, (6)

with initial condition (𝑔1−𝛼 * 𝑢)(0) = 𝑢0.

We observe that the definition of Riemann-Liouville fractional initial con-
dition (𝑔1−𝛼 * 𝑢)(0) = 𝑢0 is difficult to interpret, but play an important role in
some practical problems. Heymans and Podlubny [31] have demonstrated that it
is possible to attribute physical meaning to initial conditions expressed in terms
of Riemann Liouville fractional derivatives on the field of the viscoelasticity.

Assuming that 𝐴 is the generator of an (𝛼, 𝛼)-resolvent family {𝑅𝛼(𝑡)}𝑡>0,

the appropriate and more general notion of mild solution for (6) is a locally
integrable function 𝑢 such that 𝑔1−𝛼 * 𝑢 is absolutely continuous and satisfy the
integral equation

𝑢(𝑡) = 𝑅𝛼(𝑡)𝑢0 +
𝑡∫︁

0

𝑅𝛼(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 > 0, (7)

see [57, Lemma 4] and the Chapter "Abstract Linear Fractional Evolution Equa-
tions". In the paper [59, Theorem 26], Ponce proved existence of mild solutions
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for the problem (6) with nonlocal initial conditions. He assumes that 𝐴 is the
generator of an immediately norm continuous (𝛼, 𝛼)-resolvent family and that
the resolvent operator (𝜆 − 𝐴)−1 is compact for some 𝜆 ∈ 𝜌(𝐴). In the article
[57], Pan, Li and Zhao investigated the solvability and optimal controllability
for the following semilinear control system

𝑅𝐿𝐷𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)) + 𝐵𝑥(𝑡), 𝑡 ∈ 𝐽 := (0, 𝑇 ], (8)

with initial condition (𝑔1−𝛼 * 𝑢)(0) = 𝑢0. Here, the control function 𝑥(·) is
given in a suitable admissible control set, and 𝐵 is a linear operator from a
separable reflexive Banach space 𝑌 into 𝑋. If 𝐴 is the generator of a compact 𝐶0-
semigroup, then sufficient conditions for the existence of mild solutions of (8) are
proved. Further, optimal control results corresponding to the admissible control
sets are shown. More recently, approximate controllability was studied in [32]
when 𝐴 is the generator of an (𝛼, 𝛼)-resolvent family. See also the paper of Liu
and Li [44] where existence of mild solutions of (8) in the space 𝐶1−𝛼(𝐽 ; 𝑋) :=
{𝑢 : 𝑡1−𝛼𝑢(𝑡) ∈ 𝐶(𝐽 ; 𝑋)} as well as approximate controllability is studied. The
article [39] consider also impulses.

If 𝐴 is almost sectorial, i.e. 𝐴 ∈ Θ𝑝
𝜔(𝑋) where −1 < 𝑝 < 0 < 𝜔 < 𝜋/2,

and the associated 𝐶0-semigroup generated by 𝐴 is compact, then Zhou [75,
Section 2.1.3] proved that, under suitable conditions on 𝑓, the problem (6) has
at least one mild solution in 𝐵

(𝛼)
𝑟 (𝐽), for every 𝑥0 ∈ 𝐷(𝐴𝛽) with 𝛽 > 1 + 𝑝.

Here 𝐵
(𝛼)
𝑟 (𝐽) is the ball of radius 𝑟 of the Banach space 𝑋(𝛼)(𝐽) := {𝑢 ∈

𝐶(𝐽 ; 𝑋) : lim𝑡→0+ 𝑡1+𝛼𝑝𝑢(𝑡) exists and is finite } provided with the norm
‖𝑢‖𝛼 := sup𝑡∈𝐽 𝑡1+𝛼𝑝‖𝑢(𝑡)‖.

Fractional evolution inclusions for (6) with nonconvex right hand side has
been only recently studied by Liu, Bin and Liu [38]. Assuming that 𝐴 is the
generator of an (𝛼, 𝛼)-resolvent family, they proved existence of the extreme
solution and the relationship of the solution sets between the original problem
and the convexified problem.

It should be noted that in recent years a practical and useful way to treat
the Caputo and Riemann-Liouville fractional abstract Cauchy problem, simulta-
neously, has been investigated by means of the Hilfer fractional derivative. The
notion of mild solution in such case is a solution of

𝑢(𝑡) = (𝑔𝛾(1−𝛼) * 𝑅𝛼)(𝑡)𝑢0 +
𝑡∫︁

0

𝑅𝛼(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 > 0, (9)

where 0 ≤ 𝛾 ≤ 1 and 0 < 𝛼 ≤ 1. Here {𝑅𝛼(𝑡)}𝑡>0 is an (𝛼, 𝛼)-resolvent family
generated by 𝐴. Note that (𝑔𝛾(1−𝛼) * 𝑅𝛼)(𝑡) is an (𝛼, 𝛼 + 𝛾(1 − 𝛼))-resolvent
family with the same generator. When 𝛾 = 0, the Hilfer fractional derivative
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corresponds to the classical Riemann-Liouville fractional derivative and (9) is
the same that (7) (𝑔0 ≡ Dirac delta). When 𝛾 = 1, the Hilfer fractional derivative
corresponds to the classical Caputo fractional derivative and (9) reduces to (2) in
Section 1.1. For more details on this type of approach for the study of existence
of mild solutions for nonlinear fractional nonautonomous evolution equations of
Sobolev type with delay, see the recent paper of Gou and Li [24].

2 The Semilinear Cauchy Problem: 1 < 𝛼 ≤ 2

2.1 Caputo fractional derivative

In this section, we deal with the problem

𝐶𝐷𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ≥ 0, 1 < 𝛼 ≤ 2, (1)

with initial conditions 𝑢(0) = 𝑢0 and 𝑢′(0) = 𝑢1. Recall that a mild solution of
(1) is understood as a solution of the integral equation

𝑢(𝑡) = 𝑆𝛼(𝑡)𝑢0 + (𝑔1 * 𝑆𝛼)(𝑡)𝑢1 +
𝑡∫︁

0

𝑅𝛼(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠 (2)

where {𝑆𝛼(𝑡)}𝑡≥0 is an 𝛼-resolvent family generated by 𝐴 and 𝑅𝛼(𝑡) := (𝑔𝛼−1 *
𝑆𝛼)(𝑡) is an (𝛼, 𝛼)-resolvent family with the same generator.

If 𝐴 is the generator of a strongly continuous cosine family {𝑆2(𝑡)}𝑡≥0 and
1 < 𝛼 < 2 then, using the subordination principle, we have the following explicit
representation:

𝑆𝛼(𝑡) =
∞∫︁

0

Φ𝛼/2(𝑠)𝑆2(𝑠𝑡𝛼/2)𝑑𝑠.

Existence and uniqueness of mild solutions of (1) with non-local initial conditions
have been proved by Ponce [59, Theorems 20 and 21] under the hypothesis that
𝐴 is the generator of an 𝛼-resolvent family and (𝜆 − 𝐴)−1 is compact for some
𝜆 ∈ 𝜌(𝐴).

Assuming that 𝐴 is the generator of an 𝛼-resolvent family, Li [36] proved
the existence of mild solutions of (1) with a nonlinear term in the form

𝑡∫︁
0

ℎ(𝑡, 𝑠, 𝑢(𝑠))𝑑𝑠 + 𝑔(𝑡).
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The paper by Mophou and N’Guérékata [54] is concerned with the semilinear
differential system of fractional order with infinite delay:

𝐶𝐷𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝐵𝑥(𝑡) + 𝑓(𝑡, 𝑢𝑡), 𝑡 ∈ (0, 𝑇 ], (3)

𝑢(𝑡) = 𝜑(𝑡), 𝑡 ∈ (−∞, 0]. The authors proved that the system is controllable
when 𝐴 generates an 𝛼-resolvent family (𝑆𝛼(𝑡))𝑡≥0 on a complex Banach space
𝑋 and the control 𝑥 ∈ 𝐿2([0, 𝑇 ]; 𝑋). This problem has been also recently studied
by Shukla, Sukanavam and Pandey [64].

Assuming that 𝐴 is the generator of a compact (𝛼, 𝛼)-resolvent family,
Shukla, Sukavanam and Pandey proved in [63] that the problem

𝐶𝐷𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝐵𝑥(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ [0, 𝑇 ],

with initial conditions 𝑢(0) = 𝑢0 and 𝑢′(0) = 𝑢1 is approximately controlable.
They used Schauder’s fixed point theorem in order to achieve their results. We re-
mark that necessary and sufficient conditions for the compactness of {𝑅𝛼(𝑡)}𝑡≥0
have been recently studied by Lizama, Pereira and Ponce [48, 59]. Under essen-
tially the same hypothesis on 𝐴, Guendouzi and Farahi considered in [26] the
approximate controllability for a class of fractional semilinear stochastic dynamic
systems with nonlocal conditions in Hilbert spaces of the form

𝐶𝐷𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝐵𝑥(𝑡) + 𝑓(𝑡, 𝑢(𝑡), 𝑢(𝑏1(𝑡), ..., 𝑢(𝑏𝑚(𝑡)))

+ 𝜎(𝑡, 𝑢(𝑡), 𝑢(𝑎1(𝑡), ..., 𝑎𝑛(𝑡))𝑑𝑤(𝑡)
𝑑𝑡

, 𝑡 ∈ [0, 𝑇 ].

Existence of solutions of (1) in the non autonomous case, i.e. when 𝐴 = 𝐴(𝑡) are
bounded linear operators, and considering impulses and anti-periodic boundary
value conditions in the equation, have been proved by Agarwal and Ahmad [3].
The contraction mapping principle and Krasnoselskii’s fixed point theorem are
applied to prove the main results. An extension of such result to the case of
mixed boundary values has been studied by Zhang, Wang and Song [74].

Dos Santos et al. [20] studied the existence of mild solutions for abstract
fractional neutral equations of the type (1), but that includes an additional
integral term and a state-dependent delay, by using the Leray–Schauder alter-
native fixed point theorem. If the integral term is not present, the resulting
mild solutions coincides with those given by (2). Very recently, Tamilalagan
and Balasubramaniam [65] consider a class of fractional stochastic differential
inclusions, that includes problem (1), driven by fractional Brownian motion in
Hilbert space with Hurst parameter 𝐻 ∈ (1/2, 1). Sufficient conditions for the
existence and asymptotic stability of mild solutions are derived in mean square
moment by employing (𝛼, 𝛼)-resolvent families and Bohnenblust–Karlin’s fixed
point theorem. For other contributions in this direction, see the references in
[65].
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2.2 Riemann-Liouville fractional derivative

We consider the model problem

𝑅𝐿𝐷𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ≥ 0, 1 < 𝛼 ≤ 2, (4)

with initial conditions (𝑔2−𝛼 * 𝑢)(0) = 𝑢0 and (𝑔2−𝛼 * 𝑢)′(0) = 𝑢1. We note
that in this case, controllability, stability analysis and other qualitative and
quantitative properties have not received much attention from researchers, and
hence many problems are still open.

For the problem (4), a mild solution should be understood as a solution of
the following integral equation

𝑢(𝑡) = 𝐿𝛼(𝑡)𝑢0 + 𝑅𝛼(𝑡)𝑢1 +
𝑡∫︁

0

𝑅𝛼(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 ≥ 0,

where {𝐿𝛼(𝑡)}𝑡≥0 is an (𝛼, 𝛼 − 1)-resolvent family generated by 𝐴 and 𝑅𝛼(𝑡) :=
(𝑔1 * 𝐿𝛼)(𝑡) is an (𝛼, 𝛼)-resolvent family, with the same generator 𝐴. However,
except for the information provided by the general theory of (𝑎, 𝑘)-regularized
families, there exists little material in the literature concerning the family of
operators {𝐿𝛼(𝑡)}𝑡≥0. See the Chapter "Abstract Linear Fractional Evolution
Equations" for details.

When 𝐴 is the generator of an (𝛼, 𝛼 − 1)-resolvent family and (𝜆 − 𝐴)−1

is compact for some 𝜆 ∈ 𝜌(𝐴), Ponce [59, Theorems 24 and 25] proved the ex-
istence of at least one mild solution for (4) with nonlocal initial conditions. He
assumed that 𝑓 satisfies a Carathéodory type condition and then uses Kras-
noselskii theorem.

When 𝑢0 = 0 a unified approach to (4) with Riemann-Liouville and Caputo
fractional order derivative of order 1 < 𝛼 ≤ 2 has been developed by Mei,
Peng and Gao [52]. They used the Hilfer fractional derivative and obtain a
representation of the homogeneous problem (4) with 𝑢0 = 0 by means of (𝛼, 𝛼+
𝛾(2 − 𝛼))-resolvent families, where 0 ≤ 𝛾 ≤ 1. This method can be used to
develop a more complete theory for the linear and nonlinear problem, at least in
this case. In a very general form, the linear problem (4) is included in the paper
[34] by Kostic, where strong and mild solutions are considered.
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3 The Semilinear Cauchy Problem on the line:
0 < 𝛼 ≤ 1

We consider the model problem

−∞𝐷𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ R, 0 < 𝛼 ≤ 1, (1)

where −∞𝐷𝛼
𝑡 is the Liouville-Weyl fractional derivative. Suppose that 𝐴 is the

generator of an (𝛼, 𝛼)-resolvent family {𝑅𝛼(𝑡)}𝑡≥0. In such general case, a mild
solution of (1) is a solution of the equation

𝑢(𝑡) =
𝑡∫︁

−∞

𝑅𝛼(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 ∈ R, (2)

whenever the above integral exists. The existence can be proved, for example,
when the nonlinear term is bounded and 𝐴 is the generator of an exponen-
tially stable 𝐶0- semigroup {𝑆1(𝑡)}𝑡≥0 since in such case one can appeal to the
representation

𝑅𝛼(𝑡) = 𝑡𝛼−1𝑃𝛼(𝑡) where 𝑃𝛼(𝑡) := 𝛼

∞∫︁
0

𝑠Φ𝛼(𝑠)𝑆1(𝑠𝑡𝛼)𝑑𝑠, 𝑡 > 0,

and use [75, Property 1.10 (ii) and (iii)] and [75, Property 1.11 (v)]. Using this
representation, and under the hypothesis that 𝐴 is the generator of an expo-
nentially stable 𝐶0-semigroup, which is in addition positive or compact, Zhou
[75, Section 2.2.3] established some sufficient conditions for the existence and
uniqueness of periodic solutions, 𝑆-asymptotically periodic solutions, and other
types of bounded solutions when 𝑓 : R × 𝑋 → 𝑋 satisfies some ordering hy-
pothesis on 𝑋 or Lipschitz conditions in 𝑓 . The main methods are the monotone
iterative technique and Banach contraction principle.

Bounded mild solutions to (1) when in the nonlinear term we add a pertur-
bation in the form

𝑡∫︁
−∞

𝑎(𝑡 − 𝑠)𝐴𝑢(𝑠)𝑑𝑠

have been studied by Ponce [58]. However, until now the study of the model (1)
is still undeveloped and much work remains to be done.
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4 The Semilinear Cauchy Problem on the line:
1 < 𝛼 ≤ 2

We consider the problem

−∞𝐷𝛼
𝑡 𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ R, 1 < 𝛼 ≤ 2. (1)

A mild solution of (1) is a fixed point of the equation

𝑢(𝑡) =
𝑡∫︁

−∞

𝑅𝛼(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 ∈ R,

whenever the above integral exists. Here {𝑅𝛼(𝑡)}𝑡≥0 denotes an (𝛼, 𝛼)-resolvent
family generated by 𝐴. This extension of the notion of mild solution from the
border cases 𝛼 = 1 and 𝛼 = 2 to the intermediary case 1 < 𝛼 < 2 was first noted
by Araya and Lizama [8]. Assuming that 𝐴 is the generator of an integrable
(𝛼, 𝛼)-resolvent family {𝑅𝛼(𝑡)}𝑡≥0 i.e. such that

‖𝑅𝛼(𝑡)‖ ≤ 𝜙𝛼(𝑡), 𝑡 > 0, 𝜙𝛼 ∈ 𝐿1(R+),

and that 𝑓 satisfies a global Lipschitz condition, it is proved in [8] the existence
and uniqueness of an almost automorphic mild solution of the semilinear equa-
tion (1). See also the recent paper of Liu, Cheng and Zhang [40] that establish
the existence of anti-periodic mild solutions. After the paper [8], Cuevas and
Lizama [17] studied almost automorphic mild solutions of the equation (1) with
forcing term 𝑓(𝑡, 𝑢(𝑡)) := 𝐷𝛼−1

𝑡 𝑔(𝑡, 𝑢(𝑡)). In such case, a mild solution of (1) is
a fixed point of the equation

𝑢(𝑡) =
𝑡∫︁

−∞

𝑆𝛼(𝑡 − 𝑠)𝑔(𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 ∈ R,

where {𝑆𝛼(𝑡)}𝑡≥0 is an 𝛼-resolvent family generated by 𝐴. It should be observed
that according to Cuesta [16], a such family {𝑆𝛼(𝑡)}𝑡≥0 exists and is integrable
whenever 𝐴 is a sectorial operator of negative type.

Following this approach, in [5] Agarwal, Cuevas and Soto proved sufficient
conditions for the existence and uniqueness of a pseudo-almost periodic solu-
tions of the equation (1) with forcing term 𝑓(𝑡, 𝑢(𝑡)) := 𝐷𝛼−1

𝑡 𝑔(𝑡, 𝑢(𝑡)). With
the same forcing term, Cao, Yang and Huang [12], proved existence of anti-
periodic mild solutions, Chang, Zhang and N’Guérékata [13] proved the existence
of weighted pseudo almost automorphic mild solutions and He, Cao and Yang
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[28] established sufficient criteria for the existence and uniqueness of a weighted
Stepanov-like pseudo-almost automorphic mild solution. For a review of regular-
ity results in several classes of vector-valued subspaces of the space of continuous
and bounded functions, see the paper [49] by Lizama and Poblete. Wang and Xia
[68] proved the existence and uniqueness of (𝜇, 𝜈)-pseudo almost automorphic
mild solution. See also the paper [73] by Xia, Fan and Agarwal where the same
property is investigated but with nonlinearity in the form 𝐷𝛼−1

𝑡 𝑓(𝑡, 𝐵𝑢(𝑡)), be-
ing 𝐵 a bounded linear operator. Also, in the reference [53], Mophou studied the
existence and uniqueness of weighted pseudo almost automorphic mild solution
to the semilinear fractional equation (1) with 𝑓(𝑡, 𝑢(𝑡)) := 𝑔(𝑡, 𝑢(𝑡), 𝐵𝑢(𝑡)). This
extends a previous paper of Agarwal, de Andrade and Cuevas [4] where the case
𝐵 = 0 was considered. The results obtained are utilized to study the existence
and uniqueness of a weighted pseudo almost automorphic solution to fractional
diffusion wave equation with Dirichlet conditions.

Although existence and uniqueness of solutions of this equation has been
studied in several subspaces of the vector-valued space of bounded functions,
still some development in other lines of research could be interesting to pursue,
as for instance discrete settings. In this line, recently some papers have appeared
[1, 45, 46, 50, 51].
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