
Maximal regularity in lp spaces for discrete time fractional shifted
equations

Carlos Lizama

Universidad de Santiago de Chile, Facultad de Ciencias, Departamento de Matemática y Ciencia de la Computación,
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Abstract

In this paper, we are presenting a new method based on operator-valued Fourier multipliers to
characterize the existence and uniqueness of `p-solutions for discrete time fractional models in the form

∆αu(n, x) = Au(n, x) +

k∑
j=1

βju(n− τj , x) + f(n, u(n, x)), n ∈ Z, x ∈ Ω ⊂ RN , βj ∈ R and τj ∈ Z,

where A is a closed linear operator defined on a Banach space X and ∆α denotes the Grünwald-Letnikov
fractional derivative of order α > 0. If X is a UMD space, we provide this characterization only in terms
of the R-boundedness of the operator-valued symbol associated to the abstract model. To illustrate our
results, we derive new qualitative properties of nonlinear difference equations with shiftings, including
fractional versions of the logistic and Nagumo equations.

Keywords: Maximal `p-regularity; shifted equations, discrete time, Grünwald-Letnikov derivative.

1. Introduction

Evolution equations with delays arise in many areas of applied mathematics. Time delays have
been incorporated by many researchers into biological models to represent resource regeneration times,
maturity periods, feeding times, reaction times, etc. There has been a substantial amount of work related
to this topic, as one can see consulting for example [16], [6], [27], [5] and the bibliography therein.

It is well known that the study of maximal regularity is very useful for treating semilinear and
quasilinear problems. Maximal regularity of evolution equations with operator-valued Fourier multipliers
began to be studied after the pioneering work of H. Amman [3] and L. Weis [33]. Some authors as Arendt
and Bu [4] studied maximal regularity of periodic problems for abstract evolution equations in Banach
spaces having geometrical advantages. They are called UMD-spaces. See also [11], [10] and [9] for more
information on this topic and related work.

Concerning delay equations, there is an increasing number of researchers working on this topic. For
instance, Poblete [29] analysed maximal regularity on vector-valued Hölder spaces. The fractional case
was considered by Ponce in [30]. In [15] Fu and Li treated the well-posedness for a class of evolution
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equations with infinite delay in the scales of Lebesgue, Besov and Triebel-Lizorkin vector-valued Banach
spaces. A good reference in the context of this paper is the monograph by Bátkai and Piazzera [5].

The discrete time setting naturally arises in a wide variety of applications where the temporal structure
is oscillatory and possesses a discrete character as well as in the one-dimensional spatial discretization of
continuous problems. Concerning literature, Hu and Li [18] examined the spatial dynamics of semidiscrete
equations with a shifting habitat. Yu [39] investigated the existence of traveling waves for nonlocal
semidiscrete equations with delays. In [38] and [37], Zinner et.al. investigated, respectively, the existence
of traveling wave fronts for the semidiscrete Nagumo and Fisher equations. A global study of the structure
of such dynamical systems was performed by Mallet-Paret [27].

However, there has been little mention of semidiscrete equations with fractional differences. Recently,
Tarasov [31], [32] began to study fractional models with the Grünwald-Letnikov fractional difference. As
suggested by Tarasov, these models can serve as a new microstructural basis for the fractional nonlocal
continuum mechanics and physics. Fractional-order semidiscrete equations can also be used to formulate
adequate models in nanomechanics [32], [34].

Fractional differences do not only exhibit the advantages of memory effects, as the continuous case
does, but they also involve fewer numerical computations. Recent work of Wu, Baleanu and Xie [36] on
fractional chaotic maps reveals this interest. See also the references therein. The study of the chaotic
behavior of the fractional discrete logistic map with delay was recently proposed in an interesting work by
Wu and Baleanu [35]. In this paper, the bifurcation diagrams are also given for various fractional orders.
Since there is a discrete kernel function in the definition of ∆αu(n) by means of a discrete convolution (see
definition below), the present status of u(n) depends on the previous information. This is the discrete
memory effect, and it has been freshly reported by Huang, Baleanu, Wu and Zeng in [19] in the case of
the fractional logistic map. Roughly speaking, the discrete fractional models have some new degrees of
freedom which can be used to capture the hidden aspects of real world phenomena [35].

First results concerning maximal regularity for discrete time abstract Cauchy problems in Banach
spaces are due to Blunck ([7], [8]). Kalton and Portal [21] considered maximal regularity in `p spaces
for the critical cases p = 1,∞. In [20], Kovács, Li and Lubich showed that for a parabolic problem with
maximal Lp-regularity, the time discretization by a linear multistep method has maximal `p-regularity if
the method is stable. Finally, Cuevas and Vidal [13] incorporated the delay in the research of maximal
`p-regularity of discrete time equations.

In this paper, we address the novel study of the existence and `p-regularity of solutions for the following
abstract Cauchy problem with finite advance/delay:

∆αu(n, x) = Au(n, x) +

k∑
j=1

βju(n− τj , x) + f(n, u(n, x)), n ∈ Z, x ∈ Ω ⊂ RN , α > 0, τj ∈ Z.

(1.1)
where A is a closed linear operator with domain D(A) defined on a Banach space of functions X, and

∆α denotes the generalized Grünwald-Letnikov derivative of order α > 0. See Definition 2.6 below and
the reference [28], where this definition is used in the context of signal processing.

In [24], the author introduced an operator-theoretical method for characterizing `p-maximal regularity
of discrete time fractional linear equations. This characterization was given in terms of boundedness of
the associated resolvent operator, but only in case that A is a bounded operator and 0 < α ≤ 1. See also
the recent paper [26] for the case 1 < α ≤ 2. However, the study of maximal regularity for A unbounded
was left open. Motivated by that mentioned above and the fact that such results are of interest by
themselves, we focus this paper on the study of maximal `p-regularity of (1.1).

In the first part, we present a novel method based on the theory of operator-valued Fourier multipliers
to handle the linear version of (1.1). Roughly speaking, this method takes into account the operator-
valued symbol associated to the linear part of the model abstractly formulated in the setting of a Banach
space, and then inserts it in a distributional framework related to the discrete time Fourier transform. In
order to do that, the necessary preliminaries are given in the Subsection 2.1 below. Then, we introduce a
new concept of `p-multiplier (on sequences) correlated with Blunck’s theorem on operator-valued symbols
[7]. See Definition 2.4 below. The idea of `p-multiplier resembles the variational method for PDE’s, in
the sense that the original model is weakly formulated. This new formulation allows us to solve the weak
problem, by means of a constructive method using consecutive steps and an appropriate choice of regular
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(or test) functions in each step.

Using this method, we succeed in proving that under the hypothesis that X is a UMD-Banach space
and {(1−e−it)α−

∑k
j=1 βje

−itτj}t∈T ⊂ ρ(A) (the resolvent set of the operator A), the following assertions
are equivalent:

(i) The operator A has maximal `p-regularity;

(ii) N(t) := ((1− e−it)α −
∑k
j=1 βje

−itτj −A)−1 is an `p-multiplier from X to [D(A)];

(iii) The set {N(t) : t ∈ T} is R-bounded.

As an immediate consequence of our characterization, we deduce that the solution for the linear version
of (1.1) satisfies the following discrete time maximal regularity estimate:

‖∆αu‖`p(Z;X) + |
k∑
j=1

βj |‖u‖`p(Z;X) + ‖Au‖`p(Z;X) ≤ C‖f‖`p(Z;X). (1.2)

Concerning this last estimate, it has been recently highlighted by Akrivis, Li and Lubich [1] that the
combination of discrete maximal regularity and energy estimates is very useful to derive optimal-order
error bounds for the time-discrete approximation of quasilinear parabolic equations by backward difference
formulas. As pointed out by Li in [22], this estimate can be regarded as the stability of the parabolic
projection onto the finite element space. These results are required for instance in [23] to establish
optimal Lp((0, T );Lq) error estimates of finite element methods for parabolic equations. According to
this research, it could be an interesting challenge to derive optimal-order error bounds for fractional order
schemes using the framework given here.

In the second part of this paper, we show some practical criteria for proving the existence of solutions
on the Lebesgue space `p(Z;X) for a large class of nonlinear difference equations with advance/delay,
notably including the fractional logistic and Nagumo equations.

More specifically, we provide conditions that ensure the existence of solutions in `p(Z;H) spaces for
the nonlinear equation (1.1) on a Hilbert space H solely in terms of the boundedness of the Nemytskii’s
operator and the compactness of the unit ball of D(A). Moreover, we consider the nonlinear perturbed
equation

∆αu(n, x) = Au(n, x) +

k∑
j=1

βju(n− τj , x) +G(u(n, x)) + ρf(n, x) (1.3)

where 0 < ρ < 1, f ∈ `p(Z;X) and G : `p(Z;X) → `p(Z;X). We give sufficient conditions in terms of
the R-boundedness of the operator-valued symbol associated to the linear part of equation (1.3) and the
regularity of G at u = 0 to ensure its `p-regularity for small values of the parameter ρ.

These results provide interesting consequences notably including the study of the existence of solutions
in `p-spaces for the fractional logistic and Nagumo equations. We prove the existence of solutions in
`p(Z;R) for the non-homogeneous fractional logistic map

∆αu(n) = (r − 1)u(n)− ru(n)2 + ρf(n), r, ρ > 0, n ∈ Z, (1.4)

whenever r 6= 1, 1±
( 4

1 + tan(kπα )

)α
2

, k ∈ Z. We also point out that in the non-fractional case we obtain

`p-solutions whenever r 6= 1, 3, a qualitative property which seems to be new in the literature.
We finish this paper considering the one dimensional fractional discrete equation with delay

∆αu(n, t) =
1

d

∂

∂t
u(n, t) + (

a

d
+ 1)u(n, t)− u(n− 1, t) +

1

d
u(n, t)3 −

(
1 + a

d

)
u(n, t)2 +

1

d
f(n, t), (1.5)

where a, d > 0, t ∈ R and n ∈ Z, showing the existence of at least one solution in `p(Z;L2(R)) for a, d
being big enough to satisfy the compatibility condition d < a

2α . New insights are provided in the case
α = 1 which corresponds to the non-homogeneous discrete Nagumo equation. The main idea behind this
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example, and others of the same nature, is to combine the given characterization of maximal regularity,
which is provided only in terms of the data of the equation, and the well established theory of strongly
continuous semigroups (or C0-semigroups). Indeed, as we will see in our last example (Example 4.5)
we take advantage of the fact that in our abstract setting the differential operator A = 1

d
∂
∂t + (ad + 1)I

generates a C0-semigroup on some Lebesgue spaces, like L2(R).

2. Preliminaries

In this section, we present some results that will be needed throughout the paper.

2.1. The discrete time Fourier transform in `p(Z;X)

By S(Z;X) we denote the space of all vector-valued sequences f : Z→ X such that for each k ∈ N0

there exists a constant Ck > 0 satisfying

pk(f) := sup
n∈Z
|n|k‖f(n)‖ < Ck.

Recall that S(Z;X) is norm dense in `p(Z, X) when 1 ≤ p < ∞. We also consider Cnper(R;X), n ∈ N0,
the space of all 2π-periodic X-valued and n-times continuously differentiable functions defined in R.

In what follows, we will denote T := (−π, π) and T0 := (−π, π) \ {0}.

The space of test functions is the space C∞per(T;X) :=
⋂
n∈N0

Cnper(R;X). The topology of C∞per(T;X)
is induced by the countable family of seminorms:

qk(ϕ) = max
k∈N0

sup
t∈[−π,π]

‖ϕ(k)(t)‖,

and so C∞per(T;X) becomes a Fréchet space. If X = C we simply denote C∞per(T;X) = C∞per(T) and
S(Z;X) = S(Z).

We will also need the following spaces of vector-valued distributions:

S ′(Z;X) := {T : S(Z)→ X : T is linear and continuous}

and
D′(T;X) := {T : C∞per(T)→ X : T is linear and continuous}.

It is useful to observe that for each f ∈ `p(Z;X) we can define

Tf (ψ) := 〈Tf , ψ〉 :=
∑
n∈Z

f(n)ψ(n), ψ ∈ S(Z), (2.1)

and we have Tf ∈ S ′(Z, X).

Remark 2.1. By this mapping we identify `p(Z;X) with a subspace of S ′(Z;X). When convenient and
confusion seems unlikely, a function f ∈ `p(Z;X) is identified with Tf ∈ S ′(Z, X).

There also exists a natural mapping that identifies C∞per(T;X) with a subspace of D′(T;X) which
assigns to each S ∈ C∞per(T;X) the linear map

LS(ϕ) := 〈LS , ϕ〉 :=
1

2π

∫ π

−π
ϕ(t)S(t)dt, ϕ ∈ C∞per(T),

and we have LS ∈ D′(T;X).
It is well known that the discrete time Fourier transform F : S(Z;X)→ C∞per(T;X) defined by

Fϕ(t) ≡ ϕ̂(t) :=

∞∑
j=−∞

e−ijtϕ(j), t ∈ (−π, π]
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is an isomorphism whose inverse is given by

F−1ϕ(n) ≡ ϕ̌(n) :=
1

2π

∫ π

−π
ϕ(t)eintdt, n ∈ Z, (2.2)

where ϕ ∈ C∞per(T;X).
In particular, we have

ϕ ∈ C∞per(T) =⇒ ϕ̌ ∈ S(Z),

which follows from integration by parts. This isomorphism, allows us to define the discrete time Fourier
transform (DTFT) between the spaces of distributions S ′(Z;X) and D′(T;X) as follows:

〈FT, ψ〉 ≡ F(T )(ψ) := T̂ (ψ) ≡ 〈T, ψ̌〉, T ∈ S ′(Z;X), ψ ∈ C∞per(T), (2.3)

whose inverse F−1 : D′(T;X)→ S ′(Z;X) is given by

〈F−1L,ψ〉 ≡ F−1(L)(ψ) := Ľ(ψ) ≡ 〈L, ψ̂〉, L ∈ D′(T;X), ψ ∈ S(Z).

In particular, we have

〈FTf , ϕ〉 = 〈Tf , ϕ̌〉 =
∑
n∈Z

f(n)ϕ̌(n), ϕ ∈ C∞per(T), f ∈ `p(Z, X). (2.4)

2.2. The Grünwald-Letnikov fractional derivative

Given u ∈ `p(Z;X), v ∈ `1(Z) we define the convolution product as

(u ∗ v)(n) :=

n∑
j=−∞

u(n− j)v(j) =

∞∑
j=0

u(j)v(n− j), n ∈ Z.

The convolution of a distribution T ∈ S ′(Z, X) with a function a ∈ `1(Z) is defined by

〈T ∗ a, ϕ〉 := 〈T, a ◦ ϕ〉, ϕ ∈ S(Z), (2.5)

where

(a ◦ ϕ)(n) :=

∞∑
j=0

a(j)ϕ(j + n).

Observe that a ◦ ϕ ∈ S(Z). For any α ∈ R, we set

kα(n) =


α(α+ 1)...(α+ n− 1)

n!
n ∈ Z+,

0 otherwise,

where Γ is the Euler gamma function. Note that if α ∈ R \ {−1,−2, ..}, we have kα(n) = Γ(α+n)
Γ(α)Γ(n+1) .

For any β > 0 and f : Z→ X a given sequence, we define the fractional sum of order β as follows

(∆−βf)(n) := (kβ ∗ f)(n) =

n∑
j=−∞

kβ(n− j)f(j), n ∈ Z,

whenever it exists. For α ∈ R+, the fractional difference of order α is defined by

∆αf(n) := (k−α ∗ f)(n) =

n∑
j=−∞

k−α(n− j)f(j) =

∞∑
j=0

k−α(j)f(n− j), n ∈ Z, (2.6)
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see [28, formula (27) with h = 1]. From [24], or directly from the definition, we have the generation
formula

∞∑
j=0

kβ(j)zj =
1

(1− z)β
, β ∈ R, |z| < 1,

see [40, p.42 formulae (1) and (8)]. In particular, for all α ∈ R+ we have that the radial limit exists and

k̂−α(ω) = k̃−α(ω) =

∞∑
j=0

k−α(j)e−iωj =
1

(1− e−iω)−α
=
(

1− e−iω
)α
, ω ∈ T. (2.7)

To end this section, we show the following lemma that will be crucial for the characterization of
maximal regularity given in the forthcoming section.

Lemma 2.2. Let u, v ∈ `p(Z;X) be given and a ∈ `1(Z+) which is defined by 0 for negative values of n.
The following assertions are equivalent:

(i) a ∗ v ∈ `p(Z, X) and (a ∗ v)(n) = u(n) for all n ∈ Z.
(ii) 〈u, ϕ̌〉 = 〈v, (ϕ · â−)̌〉 for all ϕ ∈ C∞per(T),

where

(ϕ · â−)̌(n) :=
1

2π

∫ π

−π
â(−t)ϕ(t)eintdt, n ∈ Z.

Proof. (i) =⇒ (ii) By hypothesis, a ∗ v ∈ `p(Z, X) and 〈a ∗ v, ϕ̌〉 = 〈u, ϕ̌〉 for all ϕ ∈ C∞per(T). We have

〈u, ϕ̌〉 = 〈a ∗ v, ϕ̌〉 = 〈v, a ◦ ϕ̌〉 = 〈v, (ϕ · â−)̌〉,

since

(a ◦ ϕ̌)(n) =

∞∑
j=0

a(j)ϕ̌(j + n) =

∞∑
j=0

a(j)
1

2π

∫ π

−π
ei(j+n)tϕ(t)dt

=
1

2π

∫ π

−π

[ ∞∑
j=0

a(j)eijt
]
eintϕ(t)dt =

1

2π

∫ π

−π

[ ∞∑
j=−∞

a(j)eijt
]
eintϕ(t)dt

=
1

2π

∫ π

−π
â(−t)eintϕ(t)dt.

(ii) =⇒ (i) Following the above calculation in reverse order, we get

〈u, ϕ̌〉 = 〈v, (ϕ · â−)̌〉 = 〈a ∗ v, ϕ̌〉,

for all ϕ ∈ C∞per(T). Since v ∈ `p(Z;X) and a is summable, we obtain a ∗ v ∈ `p(Z;X) and the identity∑
n∈Z

(a ∗ v)(n)ϕ̌(n) =
∑
n∈Z

u(n)ϕ̌(n),

holds. Choosing ϕk(t) := e−ikt, k ∈ Z we achieve that (a ∗ v)(n) = u(n) for all n ∈ Z and the proof is
finished.

2.3. R-boundedness and Blunck’s Theorem

Now, we recall the following Fourier multiplier theorem for operator-valued symbols given by S. Blunck
[7, 2]. This theorem corresponds to the discrete version of a notable result independently proven by Weis
[33] and Amann[3] which provides sufficient conditions to ensure when an operator-valued symbol is
a multiplier. This theorem is established for the UMD class of Banach spaces. For more information
about these spaces see [3, Section III.4.3-III.4.5].

We will first recall the notion of R-bounded sets in the space B(X,Y ) of bounded linear operators
from X into Y endowed with the uniform operator topology.
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Definition 2.3. Let X and Y be Banach spaces. A subset T of B(X,Y ) is called R-bounded if there is
a constant c > 0 such that

‖(T1x1, ..., Tnxn)‖R ≤ c‖(x1, ..., xn)‖R, (2.8)

for all T1, ..., Tn ∈ T , x1, ..., xn ∈ X, n ∈ N, where

‖(x1, ..., xn)‖R :=
1

2n

∑
εj∈{−1,1}n

∥∥∥ n∑
j=1

εjxj

∥∥∥,
for x1, ..., xn ∈ X.

For more information about R-bounded sets and their properties see [2, Section 2.2] and [14]. We
next introduce the following notion.

Definition 2.4. Let X, Y be Banach spaces, 1 < p < ∞. A function M ∈ C∞per(T,B(X,Y )) is an
`p-multiplier (from X to Y ) if there exists a bounded operator T : `p(Z;X)→ `p(Z;Y ) such that∑

n∈Z
(Tf)(n)ϕ̌(n) =

∑
n∈Z

(ϕ ·M−)̌(n)f(n) (2.9)

for all f ∈ `p(Z;X) and all ϕ ∈ C∞per(T). Here

(ϕ ·M−)̌(n) :=
1

2π

∫ π

−π
eintϕ(t)M(−t)dt, n ∈ Z.

Now, we recall the following Fourier multiplier theorem for operator valued symbols given by S. Blunck
[7, 2]. Since we are dealing with unbounded operators we need to state a slight modification of Blunck’s
theorem concerning two Banach spaces instead of one. The proof of this result follows the same steps as
the case X = Y.

Theorem 2.5. [7, Theorem 1.3] Let p ∈ (1,∞) and let X,Y be UMD spaces. Let M ∈ C∞per(T,B(X;Y ))
such that the sets

{M(t) : t ∈ T0} and
{

(1− eit)(1 + eit)M ′(t) : t ∈ T0

}
,

are both R-bounded. Then M is an `p-multiplier (from X to Y ) for 1 < p <∞.

The converse of Blunck’s theorem also holds without any restriction on the Banach spaces X,Y as
follows:

Theorem 2.6. [7, Proposition 1.4] Let p ∈ (1,∞) and let X,Y be Banach spaces. Let M : T→ B(X;Y )
be an operator valued function. Suppose that there is a bounded operator TM : lp(Z;X) → lp(Z;Y ) such
that (2.9) holds. Then the set

{M(t) : t ∈ T}

is R-bounded.

3. Maximal `p-regularity of the linear shifted model

Let α ∈ R+, βj ∈ R, τj ∈ Z and A be a closed linear operator defined in a Banach space X. For a
given vector-valued sequence f : Z→ X we consider the abstract discrete equation

∆αu(n) = Au(n) +

k∑
j=1

βju(n− τj) + f(n), n ∈ Z. (3.1)

Definition 3.1. Let 1 < p < ∞ be given. We say that A has maximal `p-regularity if for each f ∈
`p(Z;X) there exists a unique solution u ∈ `p(Z; [D(A)]) of (3.1), where [D(A)] denotes the domain of A
endowed with the graph norm.
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In this section, our purpose is to provide a characterization of maximal `p-regularity of equation (3.1).
For the sake of simplicity, we will first obtain this characterization for the following equation

∆αu(n) = Au(n) + βu(n− τ) + f(n), n ∈ Z. (3.2)

As a corollary, we will have a full characterization of maximal `p-regularity for the more general equation
(3.1).

In the following result, we show the equivalence between the R-boundedness of the operator valued
symbol of the equation (3.2) defined by ((1−e−it)α−βe−itτ−A)−1 and the fact that it is an `p multiplier.

Theorem 3.2. Let X be a UMD space, 1 < p <∞, β ∈ R, α ∈ R+ and τ ∈ Z. Suppose

{(1− e−it)α − βe−itτ}t∈T ⊂ ρ(A),

and denote M(t) := ((1− e−it)α − βe−itτ −A)−1, then the following assertions are equivalent:
(i) M(t) is an `p-multiplier from X to [D(A)].
(ii) {M(t)}t∈T is R-bounded.

Proof. (ii) =⇒ (i) Since the set {M(t)}t∈T is R-bounded, it is not difficult to observe that {(eit −
1)(eit + 1)M ′(t)}t∈T is also R-bounded. Indeed, given t ∈ T, M(t) : X → [D(A)] can be rewritten as

M(t) = (fα(t)− βe−itτ −A)−1, t ∈ T, (3.3)

where fα(t) := (1− e−it)α. Moreover,

M ′(t) = −(fα(t)−A)−2(f ′α(t) + iτβe−itτ ) t ∈ T. (3.4)

Since f ′α(t) = α
(
eit−1
eit

)α−1
i
eit = iαfα(t) 1

eit−1 , t ∈ T we obtain in (3.4) that:

M ′(t) = (fα(t)− βe−itτ −A)−2iαfα(t)
1

1− eit
− iτβe−itτ (fα(t)− βe−itτ −A)−2 t ∈ T. (3.5)

Therefore,

(1− eit)(1 + eit)M ′(t) = iαM(t)2(1 + eit)
(
1− e−it

)α − iτβe−itτM(t)2(1− eit)(1 + eit), t ∈ T.

From [2, Proposition 2.2.5] we conclude that the set {(1− eit)(1 + eit)M ′(t) : t ∈ T} is R- bounded and
the claim is proven. Finally by Theorem 2.5 we obtain (i).

(i) =⇒ (ii) By hypothesis we have that there exists a bounded operator T such that (2.9) holds.
The conclusion follows from Theorem 2.6.

In some cases, it is necessary to have simultaneous R-bounded symbols in order to obtain `p-
multipliers. This is the content of the following theorem.

Theorem 3.3. Assume that X is a UMD space. Let 1 < p < ∞, τ ∈ Z, β ∈ R and α ∈ R+ be given.
Assume

{(1− e−it)α − βe−itτ}t∈T ⊂ ρ(A),

and the set {((1−e−it)α−βe−itτ −A)−1}t∈T is R-bounded, then the sets N(t) := (1−e−it)α((1−e−it)α−
βe−itτ −A)−1 and S(t) := e−itτ ((1− e−it)α − βe−itτ −A)−1 are `p-multipliers.

Proof. It is enough to observe that since N(t) = fα(t)M(t) and S(t) = e−itτM(t) where fα(t) :=
(1 − e−it)α, the R-boundedness of N(t) and S(t) follows. Then the claim holds from the equivalence
between the R-boundedness of the sets {N(t)}t∈T and {S(t)}t∈T and the fact that N(t) and S(t) are
`p-multipliers from X to [D(A)].
The proof of this last assertion is analogous to the one of Theorem 3.2, taking into account the R-
boundedness of the sets {N(t)}t∈T and {S(t)}t∈T and the identities:

(1− eit)(1 + eit)N ′(t) = iαN(t)2(1 + eit)− iτβS(t)N(t)(1 + eit)(1− eit)− iαN(t)(1 + eit),

(1− eit)(1 + eit)S′(t) = iαS(t)N(t)(1 + eit)− iτ(1 + eit)(1− eit)(S(t)2 + S(t)).
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Our next result provides sufficient conditions, in terms of the spectrum of the operator A, in order to
have an `p-multiplier. We point out that an additional condition on the Banach space X in this case, is
not needed. In what follows we denote:

δτ (n) =

 1 n = τ,

0 otherwise.

Theorem 3.4. Let X be a Banach space, 1 < p <∞, τ ∈ Z, β ∈ R and α ∈ R+ be given. Assume

{(1− e−it)α − βe−itτ}t∈T ⊂ ρ(A).

If A has maximal `p-regularity, then M(t) := ((1− e−it)α − βe−itτ −A)−1 is an `p-multiplier.

Proof. Let f ∈ `p(Z;X) be given. By hypothesis there exists a unique sequence uf : Z → [D(A)] such
that uf ∈ `p(Z; [D(A)]) satisfies:

∆αuf (n) = Auf (n) + βuf (n− τ) + f(n), n ∈ Z. (3.6)

Let Tα : `p(Z;X) → `p(Z; [D(A)]) be defined by Tα(f) = uf , where uf is the unique solution of (3.6).
It can be easily shown using the closed graph theorem that Tα is bounded. To finish the proof, let
ϕ ∈ C∞per(T), f ∈ `p(Z;X) be given and set u := Tαf. Since k−α ∈ `1(Z), (see [40, p.42 formula (2)]) we
obtain the following identities:

(k−α ◦ Š)(n) =

∞∑
j=0

k−α(j)Š(j + n) =

∞∑
j=0

k−α(j)
1

2π

∫ π

−π
ei(n+j)tS(t)dt

=
1

2π

∫ π

−π
eint

( ∞∑
j=0

eijtk−α(j)
)
S(t)dt

=
1

2π

∫ π

−π
eintk̂−α(−t)S(t)dt =: (k̂−α− · S)̌(n), (3.7)

valid for any S ∈ C∞per(T,B(X,Y )). Therefore, using the hypothesis, and that M ∈ C∞per(T,B(X, [D(A)])),
we get

〈Tαf, ϕ̌〉 = 〈u, ϕ̌〉 =
∑
n∈Z

ϕ̌(n)u(n) =
∑
n∈Z

1

2π

∫ π

−π
eintϕ(t)u(n)dt

=
∑
n∈Z

1

2π

∫ π

−π
(1− eit)αeintϕ(t)((1− eit)α − βeitτ −A)−1u(n)dt

− β
∑
n∈Z

1

2π

∫ π

−π
eitτ ((1− eit)α − βeitτ −A)−1u(n)eintϕ(t)dt

−
∑
n∈Z

1

2π

∫ π

−π
((1− eit)α − βeitτ −A)−1Au(n)eintϕ(t)dt

=
∑
n∈Z

1

2π

∫ π

−π
eintk̂−α(−t)ϕ(t)M(−t)u(n)dt

− β
∑
n∈Z

1

2π

∫ π

−π
eintδ̂τ (t)ϕ(t)M(−t)u(n)dt−

∑
n∈Z

1

2π

∫ π

−π
eintϕ(t)M(−t)Au(n)dt

= 〈u, (k̂−α− · ϕ ·M−)̌〉 − β〈u, (δ̂τ− · ϕ ·M−)̌〉 − 〈Au, (ϕ ·M−)̌〉

= 〈u, k−α ◦ (ϕ ·M−)̌〉 − β〈u, δτ ◦ (ϕ ·M−)̌〉 − 〈Au, (ϕ ·M−)̌〉,

where δ̂τ (t) = e−iτt, and in the last equality we have used (3.7) with S = ϕ ·M−. Therefore using (2.5)
and (2.6) we get

〈u, ϕ̌〉 = 〈k−α ∗ u, (ϕ ·M−)̌〉 − β〈δτ ∗ u, (ϕ ·M−)̌〉 − 〈Au, (ϕ ·M−)̌〉 = 〈∆αu− βuτ −Au, (ϕ ·M−)̌〉.
(3.8)
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where δτ ∗ u(n) = u(n − τ) := uτ (n). We conclude that 〈Tαf, ϕ̌〉 = 〈f, (ϕ ·M−)̌〉. This proves the claim
and the theorem.

The following theorem shows that the converse of Theorem 3.4 is also true.

Theorem 3.5. Let X be a UMD space, and 1 < p <∞, τ ∈ Z, β ∈ R, α ∈ R+ be given. Suppose

{(1− e−it)α − βe−itτ}t∈T ⊂ ρ(A).

The following assertions are equivalent:

(i) The operator A has maximal `p-regularity;

(ii) M(t) := ((1− e−it)α − βe−itτ −A)−1 is an `p-multiplier from X to [D(A)];

(iii) The set {M(t) : t ∈ T} is R-bounded.

Proof. It remains to show that (ii) implies (i). Let f ∈ `p(Z;X) be given. By hypothesis, there exists
u ∈ `p(Z; [D(A)]) such that ∑

n∈Z
u(n)ϕ̌(n) =

∑
n∈Z

(ϕ ·M−)̌(n)f(n), (3.9)

for all ϕ ∈ C∞per(T). Moreover, by Theorem 3.3 there exist v, w ∈ `p(Z; [D(A)]) such that∑
n∈Z

v(n)ψ̌(n) =
∑
n∈Z

(ψ ·N−)̌(n)f(n), (3.10)

and ∑
n∈Z

w(n)η̌(n) =
∑
n∈Z

(η · S−)̌(n)f(n), (3.11)

for all ψ, η ∈ C∞per(T). Since N(t) = k̂−α(t)M(t) and S(t) = δ̂τ (t)M(t), we have:

(ψ ·N−)̌(n) =
1

2π

∫ π

−π
eintψ(t)k̂−α(−t)M(−t)dt,

and

(η · S−)̌(n) =
1

2π

∫ π

−π
eintη(t)δ̂τ (−t)M(−t)dt.

Choosing ϕ(t) = ψ(t)k̂−α(−t) ∈ C∞per(T) in (3.9) we get

〈v, ψ̌〉 = 〈u, (ψ · k̂−α− )̌〉.

From Lemma 2.2 we conclude from the above identity that

∆αu(n) = k−α ∗ u(n) = v(n), n ∈ Z. (3.12)

Now, considering ϕ(t) = η(t)δ̂τ (−t) in (3.9) we obtain 〈w, η̌〉 = 〈u, (η · δ̂τ−)〉̌. Observe that ϕ ∈ C∞per(T)
because τ ∈ Z. Again, making use of Lemma 2.2, we conclude from the above identity that

w(n) = δτ ∗ u(n) = u(n− τ), n ∈ Z. (3.13)

Since N(t)−βS(t) = AM(t)+I, after multiplication by eintϕ(t) and integration over the interval (−π, π),
we have

(ϕ ·N−)̌(n)− β(ϕ · S−)̌(n) = A(ϕ ·M−)̌(n) + ϕ̌I,

for all ϕ ∈ C∞per(T). Then we obtain

〈f, (ϕ ·N−)̌〉 − β〈f, (ϕ · S−)̌〉 = 〈f,A(ϕ ·M−)̌〉+ 〈f, ϕ̌〉,
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and by replacing (3.9), (3.10) and (3.11) in the above identity we obtain∑
n∈Z

v(n)ϕ̌(n)− β
∑
n∈Z

w(n)ϕ̌(n) =
∑
n∈Z

Au(n)ϕ̌(n) +
∑
n∈Z

ϕ̌(n)f(n),

for all ϕ ∈ C∞per(T). Considering (3.12) and (3.13) we conclude that u satisfies the equation (3.2). We
have proven the existence of a solution. It remains to prove the uniqueness.
Let u : Z→ [D(A)] be a solution of (3.2) with f ≡ 0. For all ϕ ∈ C∞per(T) and (3.8), we obtain

〈u, ϕ̌〉 = 〈∆αu− βuτ −Au, (ϕ ·M−)̌〉 = 0.

Taking ϕk(t) := e−ikt, k ∈ Z we obtain u ≡ 0 and then the theorem is proven.

The following corollary follows directly from the closed graph theorem.

Corollary 3.6. If the hypothesis of Theorem 3.5 holds true, then u,∆αu, Au ∈ `p(Z;X) and there exists
a constant C > 0 ( independent of f ∈ `p(Z;X)) such that

‖∆αu‖`p(Z;X) + |β|‖u‖`p(Z;X) + ‖Au‖`p(Z;X) ≤ C‖f‖`p(Z;X). (3.14)

We immediately obtain a characterization of maximal `p-regularity for Hilbert spaces, since each
Hilbert space is UMD and, in such case, R-boundedness coincides with boundedness [2].

Corollary 3.7. Let H be a Hilbert space, τ ∈ Z, β ∈ R and α ∈ R+. Suppose

{(1− e−it)α − βe−itτ}t∈T ⊂ ρ(A).

The following assertions are equivalent:

(i) For all f ∈ `p(Z;H) there exists a unique u ∈ `p(Z;H) such that u(n) ∈ D(A) for all n ∈ Z, and
u satisfies (3.2);

(ii) We have

sup
t∈T

∥∥∥∥((1− e−it)α − βe−itτ −A
)−1

∥∥∥∥ <∞. (3.15)

Example 3.8. Let us consider the following equation that corresponds to a discrete Lotka-Sharpe equa-
tion with delay (see e.g. [5]),

∆2u(n, x) = −ux(n, x)− µu(n, x) + νu(n− 1, x) + f(n, x) n ∈ Z, x ∈ R, (3.16)

where µ and ν are positive numbers. Equation (3.16) can be modeled as (3.2) with α = 2, Au = −u′−µu,
β = ν and τ = 1. More concretely, we will analyse the existence of solutions for this equation in
`p(Z;L2(R)).

It is well known that the operator Bu = u′ with domain D(B) = W 1,2(R) generates a contraction
semigroup on L2(R). Therefore, the following estimate holds true:

‖(λ−A)−1‖ = ‖(λ+ µ−B)−1‖ ≤ 1

<(λ) + µ
.

It is not difficult to check that mint∈T <[(1− e−it)2 − νe−it] = − 1
8 (2 + ν)2. Therefore, for all µ such that

1

8
(2 + ν)2 < µ

we obtain from Corollary 3.7 that there exists a unique solution u ∈ `p(Z;L2(R)) of the Lotka-Sharpe
equation (3.16).
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As a corollary of Theorem 3.5, we immediately obtain the following characterization of maximal
`p-regularity of equation (3.1).

Theorem 3.9. Let X be a UMD space, 1 < p <∞, τj ∈ Z, βj ∈ R and α ∈ R+. Suppose

{(1− e−it)α −
k∑
j=1

βje
−itτj}t∈T ⊂ ρ(A).

The following assertions are equivalent:

(i) The operator A has maximal `p-regularity;

(ii) N(t) := ((1− e−it)α −
∑k
j=1 βje

−itτj −A)−1 is an `p-multiplier from X to [D(A)];

(iii) The set {N(t) : t ∈ T} is R-bounded.

Remark 3.10. Below we illustrate the behavior of the set Ωα,β,τ := {(1− e−it)α−βe−itτ}t∈T for different
values of α, τ and β. In Figure 1 we observe that the delay τ has the property of multiplication because
there are two and three leaves representing the delay, respectively. It shows that the number of points in
Ωα,β,τ is greater in the measure that the delay increases.

Figure 1: left: α = 2;β ∈ (0, 7); τ = 2 right: α = 2;β ∈ (0, 7); τ = 3

4. `p-regularity of nonlinear shifted equations

We will first prove the following theorem that will be very useful for the analysis of the existence of
solutions of some nonlinear equations.

Theorem 4.1. Let X be a UMD space, 1 < p <∞, τ ∈ Z, βj ∈ R and α ∈ R+. Assume

{(1− e−it)α −
k∑
j=1

βje
−itτj}t∈T ⊂ ρ(A),

and that the set {(1 − e−it)α −
∑k
j=1 βje

−itτj : t ∈ T} is R-bounded, then the operator Au(n) :=

∆αu(n)−Au(n)−
∑k
j=1 βju(n− τj) with D(A) := `p(Z; [D(A)]) is an isomorphism onto.

Proof. Observe that the space `p(Z; [D(A)]) becomes a Banach space under the norm |||u||| := ‖∆αu‖p+

|
∑k
j=1 βj |‖u‖p + ‖Au‖p. By hypothesis and Corollary 3.6 the inequality (3.14) holds true, and then

we get |||u||| ≤ C||Au||. On the other hand, by definition of the operator A we obtain ||Au|| ≤ |||u|||.
Therefore A is an isomorphism. By Theorem 3.9, the operator A has maximal `p- regularity and then A
is onto.

We now proceed to study the existence of solutions of the following nonlinear equation:

∆αu(n) = Au(n) +

k∑
j=1

βju(n− τj) + f(n, u(n)). (4.1)
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We will first introduce the following notation. Let B := A−1 : `p(Z;X) → `p(Z;D(A)) be defined
by B(f) := u where u is the unique solution of the equation (4.1). Let N : `p(Z;D(A)) → `p(Z;X) be
defined by N (u)(n) := f(n, u(n)) the Nemytskii’s operator.

Theorem 4.2. Let H be a Hilbert space, τ ∈ Z, βj ∈ R and α ∈ R+. Assume that:

(i) {(1− e−it)α−
∑k
j=1 βje

−itτj}t∈T ⊂ ρ(A) and supt∈T

∥∥∥∥((1− e−it)α −
∑k
j=1 βje

−itτj −A
)−1

∥∥∥∥ <∞,
(ii) There exists M > 0 such that sup||u||≤M ||N (u)||`2(Z;H) ≤ M

||B|| ,

(iii) The closed unit ball of D(A) is compact in H,

then the equation (4.1) has a solution u ∈ `2(Z;H) and ||u||`2(Z;H) ≤M.

Proof. Since (i) holds, for all K ∈ Z we can define the operator BK : `2(Z;H)→ `2(Z;H) given by

(BK)(g)(n) =
1

2π

∫ π+ 1
K

−π+ 1
K

(
(1− e−it)α −

k∑
j=1

βje
−itτj −A

)−1

ĝ(t)eintdt.

It is clear by (iii) that BK is compact for all K ∈ Z. Moreover, since (i) holds as K →∞, BK converges
in norm to B, so B is compact. Observe that B is well defined by Theorem 4.1. We can now apply the
Schauder’s fixed point theorem to the equation u = BN (u) in the set {u ∈ `2(Z;D(A)) : ||u|| ≤M} and
then the conclusion holds.

We now consider the nonlinear equation:

∆αu(n) = Au(n) +

k∑
j=1

βju(n− τj) +G(u)(n) + ρf(n), (4.2)

where 0 < ρ < 1, f ∈ `p(Z;X) and G : `p(Z;X) → `p(Z;X) are given. The following result shows the
existence of solutions of (4.2) under some assumptions on the nonlinear term G.

Theorem 4.3. Let X be a UMD space, 1 < p <∞, τ ∈ Z and α ∈ R+. Assume that

{(1− e−it)α −
k∑
j=1

βje
−itτj}t∈T ⊂ ρ(A).

Suppose that

(i) The set {((1− e−it)α −
∑k
j=1 βje

−itτj −A)−1}t∈T is R-bounded,

(ii) G(0) = 0, G is continuously Fréchet differentiable at u = 0 and G′(0) = 0,

then there exists ρ∗ > 0 such that equation (4.2) is solvable for each ρ ∈ [0, ρ∗), with solution u := uρ ∈
`p(Z;X).

Proof. Let ρ ∈ (0, 1) be given and let us define the following one-parameter family:

H[u, ρ] = −Au+G(u) + ρf.

By (ii), it is clear that H[0, 0] = 0, H is continuously differentiable at (0, 0) and the partial Fréchet
derivative is H1

(0,0) = −A, which is invertible by Theorem 4.1. We now apply the implicit function

theorem (see e.g. [17, Theorem 17.6]), and then, we can find ρ∗ such that for all ρ ∈ [0, ρ∗) there exists

u = uρ ∈ `p(Z;X) such that ∆αu(n) = Au(n) +
∑k
j=1 βju(n− τj) +G(u(n)) + ρf(n) for all n ∈ Z.

We finish this paper with the following set of examples in order to illustrate our results.
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Example 4.4. Let us consider the inhomogeneous logistic equation:

u(n+ 1) = ru(n)(1− u(n)) + ρf(n), r, ρ > 0, n ∈ Z. (4.3)

This equation can be expressed as ∆u(n) = (r− 1)u(n)− ru(n)2. It fits into the scheme of equation (4.2)
with X = R, α = 1, G(u(n)) = −ru(n)2, A = (r − 1)Id and βj = 0 for all j ∈ N.

We now want to analyze the existence of solutions of this equation in `p(Z;R).
It is clear that

supt∈T
∥∥((1− e−it)− (r − 1)Id)−1

∥∥ < ∞, whenever r 6= 1, 3 and then (i) in Theorem 4.3 is satisfied.
Moreover, it is clear that G(0) = 0 is continuously Fréchet differentiable at u = 0 and G′(0) = 0. As
a consequence of Theorem 4.3, there exists ρ∗ > 0 such that the equation (4.3) is solvable for each
ρ ∈ [0, ρ∗), with solution u = uρ ∈ `p(Z;R).

As the fractional version of the logistic equation, we consider:

∆αu(n) = (r − 1)u(n)− ru(n)2 + ρf(n), r, ρ > 0, n ∈ Z. (4.4)

Let us calculate the values of r such that (1− e−it)α = (r − 1), that is:

(2− 2 cos t)
α
2 cos(α arctan(

sin t

1− cos t
)) + i(2− 2 cos t)

α
2 sin(α arctan(

sin t

1− cos t
)) = r − 1.

Since r − 1 ∈ R then necessarily, sin(α arctan( sin t
1−cos t )) = 0 and sin t

1−cos t = tan(kπα ), k ∈ Z, that is:

√
1− cos t2

1− cos t
=

sin t

1− cos t
= tan(

kπ

α
).

Solving this equation for cos t we obtain cos t = 1 or cos t =
tan( kπα )

2−1

1+tan( kπα )
2 . As a result, r will be such that:

r − 1 = ±
( 4

1 + tan(kπα )

)α
2

, k ∈ Z or r = 1.

Then supt∈T
∥∥((1− e−it)α − (r − 1)Id)−1

∥∥ < ∞, whenever r 6= 1, 1 ±
(

4
1+tan( kπα )

)α
2 , k ∈ Z. As a conse-

quence, given α > 0, Theorem 4.3 asserts the existence of ρ∗ > 0 such that the equation (4.4) is solvable

in `p(Z;R) for each ρ ∈ [0, ρ∗) and r 6= 1, 1±
(

4
1+tan( kπα )

)α
2 , where −α2 < k < α

2 , k ∈ Z. As an example,

we study the case 2 < α < 4. In Figure 2 we observe that if 2 < α < 2.5 equation (4.4) will have a

solution in `p(Z;R) for all r 6= 1, 1 +
(

4
1+tan( πα )

)α
2 . In contrast, if α ≥ 2.5 we can ensure the existence of

solutions whenever r 6= 1, 1±
(

4
1+tan( πα )

)α
2 .
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Example 4.5. The one dimensional discrete Nagumo equation:

∂

∂t
u(n, t) = d[u(n+ 1, t)− 2u(n, t) + u(n− 1, t)] +H(u(n, t)), t ∈ R, n ∈ Z,

where H(u(n, t)) := u(n, t)(u(n, t) − a)(1 − u(n, t)), d > 0, a > 0 serves as a prototype system for
investigating the properties of lattice differential equations. It has also been proposed as a model for
conduction in myelinated nerve axons [12, 38]. Here we investigate the existence of `p-solutions for the
inhomogeneous equation. In this case, the Nagumo equation can be rewritten as follows:

∆u(n, t) =
1

d

∂

∂t
u(n, t) + (

a

d
+ 1)u(n, t)− u(n− 1, t) +G(u(n, t)) +

1

d
f(n, t), t ∈ R, n ∈ Z. (4.5)

In Theorem 4.3 we set α = 1, A = 1
d
∂
∂t + (ad + 1)Id, β1 = −1, τ = 1, ρ = 1

d and G(u(n, t)) = 1
du(n, t)3 −

( 1+a
d )u(n, t)2. It is clear that G(0) = 0 is continuously Fréchet differentiable at u = 0 and G′(0) = 0. It is

well known that the operator Bu = −u′ with domain D(B) = W 1,2(R) generates a contraction C0-group
on L2(R). Therefore, a ∈ ρ(B) and the estimate

‖(1− e−it)α − β1e
−it −A)−1‖ = ‖(1− (

a

d
+ 1) +

1

d
B)−1‖ = d‖(a−B)−1‖ ≤ d

a
,

holds for all a > 0. Then Theorem 4.3 asserts the existence of a solution in `p(Z;L2(R)) of the inhomo-
geneous Nagumo equation (4.5) for d to be big enough.

We now consider a fractional version of the Nagumo equation given by

∆αu(n, t) =
1

d

∂

∂t
u(n, t) + (

a

d
+ 1)u(n, t)− u(n− 1, t) +G(u(n, t)) +

1

d
f(n, t), t ∈ R, n ∈ Z. (4.6)

In this case, given α > 0, for a, d being big enough to satisfy d < a
2α , and as consequence of Theorem 4.3,

we find the existence of a solution in `p(Z;L2(R)) of (4.6).
Indeed, since

|(1− e−it)α + e−it| ≤ 1 + |(2− 2 cos t)
α
2 cos(α arctan(

sin t

1− cos t
) + i(2− 2 cos t)

α
2 sin(α arctan(

sin t

1− cos t
)| =

= 1 + |(2− 2 cos t)
α
2 eiα arctan( sin t

1−cos t )| ≤ 1 + 2α,

we have for all t ∈ T that

‖(d(1− e−it)α + e−it)((a+ d)−B)−1‖ ≤ d(1 + 2α)

a+ d
< 1. (4.7)

Considering now the identity

‖(λ− µ+B)−1‖ ≤ ‖(µ−B)−1‖‖(λ(µ−B)−1 − Id)−1‖, (4.8)

valid for all µ, µ − λ ∈ ρ(B), we have that for a, d such that d < a
2α there exists a constant M > 0

verifying

‖((1− e−it)α − β1e
−it −A)−1‖ = d‖(d(1− e−it)α + de−it − (

a

d
+ 1) +

1

d
B)−1‖ =

= d‖(d(1− e−it)α + de−it − (a+ d) +B)−1‖
≤ d‖((a+ d)−B)−1‖‖(d((1− e−it)α + e−it)((a+ d)−B)−1 − Id)−1‖

≤ dM

(a+ d)
,

where we have used inequality (4.8) with λ := d((1− e−it)α + e−it), µ := a+ d, Bu = −u′, the estimate
(4.7) and the Neumann’s series. We conclude that if a, d are big enough, satisfying d < a

2α , then we
obtain the existence of a solution u ∈ `p(Z;L2(R)) for the equation (4.6).
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