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a b s t r a c t 

Light attenuation within suspensions of photosynthetic microorganisms has been widely described by the 

Lambert–Beer equation. However, at depths where most of the light has been absorbed by the cells, light 

decay deviates from the exponential behaviour and shows a lower attenuation than the corresponding 

from the purely exponential fall. This discrepancy can be modelled through the Mittag–Leffler function, 

extending Lambert–Beer law via a tuning parameter α that takes into account the attenuation process. 

In this work, we describe a fractional Lambert–Beer law to estimate light attenuation within cultures 

of model organism Synechocystis sp. PCC 6803. Indeed, we benchmark the measured light field inside 

cultures of two different Synechocystis strains, namely the wild-type and the antenna mutant strain called 

Olive at five different cell densities, with our in silico results. The Mittag–Leffler hyper-parameter α that 

best fits the data is 0.995, close to the exponential case. One of the most striking results to emerge from 

this work is that unlike prior literature on the subject, this one provides experimental evidence on the 

validity of fractional calculus for determining the light field. 

We show that by applying the fractional Lambert–Beer law for describing light attenuation, we are 

able to properly model light decay in photosynthetic microorganisms suspensions. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Photosynthetic microorganisms are capable of absorbing light

y means of a wide variety of photo-active pigments, whose ac-

ive molecules can get excited at given wavelengths. Photosyn-

hetic pigments cover the so called Photosynthetically Active Ra-

iation (PAR), comprising the wavelength range of 400 to 700 nm,

hich practically overlaps the visible spectrum for human beings. 

Light decay in photosynthetic cultures is due to absorption and

cattering phenonema [1] , can be described using inherent optical

roperties of the suspension [2] and by solving a self-consistency

roblem between average irradiance inside the whole volume and

he average PAR downward attenuation coefficient, as both magni-

udes depend on each other. In this regard, a modelling approach

as recently proposed [3] , where the remaining light given as a

AR integrated irradiance value at different depths from the emis-

ion lamp within Synechocystis sp. PCC 6803 (hereafter referred to

s Synechocystis ) cultures was in silico estimated. 
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However, the model employs the Bouguer law, postulated in

ouguer’s Essai d’Optique in 1729 [4] and commonly known in Op-

ics as Lambert–Beer law, for estimating remaining irradiance up

n depth and hence it fails in the evaluation of very low light in-

ensities. Despite light usually follows an exponential decay that

an be described by the Lambert–Beer law, it is known that at low

llumination conditions, below the so called euphotic zone, light

ttenuation deviates from a purely exponential behaviour inside

iological cultures. As a rule of thumb, the exponential case is valid

ithin the interval comprised between that layer of water from the

urface down to the depth at which downward irradiance is 1% of

hat at the depth z = 0 [5] . 

This has been reported in several works on oceanic environ-

ents [6,7] but also in photosynthetic microorganism cultures

rown in artificial conditions [8] . To overcome the poor attenua-

ion prediction capabilities of current models near or within the

uphotic zone, the algorithms can be modified to extend expo-

ential attenuation to a more complex representation by means

f Mittag–Leffler (ML) functions. These are solutions of fractional

rder integral and fractional order differential equations and have

een successfully introduced in several applied areas for studying

ifferent problems such as rheology [9] , diffusion in porous solids

10] , superdiffusive transport and Lévy motion [11] , protein ligand

http://dx.doi.org/10.1016/j.jqsrt.2017.08.012
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rebinding [12] , electrical networks [13] and, in general, they are

useful to study relaxation phenomena in complex physical systems

[14,15] and in probability theory [16] . Moreover, it is remarkable

that ordinary and generalised Mittag–Leffler functions interpolate

between a purely exponential law and a power-like behaviour of

phenomena governed by ordinary kinetic equations and their frac-

tional counterparts [17–19] . 

Regarding optical applications with such class of mathematical

functions, in [20] a ML function for the modulation of a Gaussian

beam was employed and the splitting and accelerating properties

of the obtained Mittag–Leffler–Gaussian beam described. Recently,

the light attenuation modelling through a generalisation of the

exponential function via Mittag–Leffler functions was considered

[21] . That generalisation of the Lambert-Beer rises the accuracy of

the predictions and explains possible deviations from the exponen-

tial extinction law in spatially correlated media. This model was

later improved by introducing a new formal description that in-

cluded Wright type functions to express light transmission prob-

ability in random media [22] . Estimations of the deviation from

the exponential law were also exposed. In this way, multi-order

fractional operators (integral and differential) in the unit disk have

been also used for extending the Lambert–Beer equation [23] . 

Nevertheless, in none of these works experimental data were

assessed. In summary, we have considered the fractional general-

isation of the Lambert–Beer law and modelled light attenuation

within cultures of model organism Synechocystis sp. PCC 6803.

An interesting outcome of this research is that all experimental

measurements are properly modelled by just fitting the hyper-

parameter α of the ML functions. Indeed, just one value is needed

for both studied Synechocystis strains, namely the wild-type and

the antenna mutant strain called Olive at all, i.e. five different, cell

densities. These results back the use of fractional calculus for de-

scribing light attenuation in photobioreactors (PBRs). 

2. Methodology 

Mittag–Leffler (ML) functions, introduced by the homonym

Swedish mathematician Gösta Mittag–Leffler, belong to a family of

special functions characterised by two complex parameters α and

β . When the real part of α is strictly positive, they can be defined

by means of the following convergent series: 

E α(z) = 

∞ ∑ 

k =0 

z k 

�(1 + αk ) 
, α ∈ C , � (α) > 0 , z ∈ C , (1)

or in its more general form by 

E α,β (z) = 

∞ ∑ 

k =0 

z k 

�(β + αk ) 
, α, β ∈ C , � (α) > 0 , � (β) > 0 ,

z ∈ C . (2

The positivity of the real parts of α and β yields that they

become entire functions. Here, �( · ) stands for the Gamma func-

tion of Euler, that generalises the factorial, since �(n ) := (n − 1)!

for every natural number n ∈ N . For every z ∈ C with � ( z ) > 0, this

function can be defined by the following convergent improper in-

tegral 

�(z) := 

∫ ∞ 

0 

t z−1 e −t dt, (3)

ML functions generalise the exponential functions. In particular,

if α = β = 1 , we get the series of the exponential function. They

arise as solutions of the following abstract Cauchy problem {
( d 

dx 
) α f (x ) = −λ f (x ) , x > 0 

f (0) ∈ R given . 
(4)
here ( d 
dx 

) α stands for the Caputo fractional derivative of real

rder α respect to x . As an easy way to understand what is

 fractional derivative, one can think that ( d 
dx 

) 
1 
2 will be the

perator whose square coincides with the usual derivative, i.e.

(( d 
dx 

) 
1 
2 ) 2 ( f ) = f x . Furthermore, there are several ways of intro-

ucing the fractional derivative, such as Riemann–Liouville or Ca-

uto fractional derivatives. See also [24] for the recent Atangana–

aleanu derivative and related properties [25] . In contrast to

iemann–Liouville’s, Caputo fractional derivative allows the resolu-

ion of differential equations without having fractional initial con-

itions. Further information on fractional calculus can be found in

26–30] . 

. Fractional calculus in optics 

Lambert–Beer law states that the evolution of the downward

rradiance at the depth x at any wavelength λ, namely I d ( x, λ), can

e described by 

d 
dx 

I d (λ, x ) = K̄ d (λ) I d (λ, x ) , x > 0 

I d (λ, 0) ∈ R 

+ (5)

eing K̄ d (λ) the corresponding spectrally related downward irra-

iance attenuation coefficient, which can in turn be obtained by

alculating inherent optical properties of each organism [31] , i. e.

easuring chlorophyll-specific absorption and scattering spectra at

ifferent mean acclimation irradiance values, when we deal with

hotosynthetic microorganism cultures. 

Furthermore, in [32] deduction of the Lambert–Beer law was

xplained by means of stochastic approach and linked with Poisson

tatistics. Later a generalised Lambert–Beer law through fractional

alculus was postulated [21] . These results could have been first

nterpreted as local analysis [33] , however it was shown that the

omain of validity is broader [34] . In fact, the same result can be

btained when replacing the ordinary derivative by the fractional

erivative in Beer–Lambert law (5) , that is 

( d 
dx 

) α I d (λ, x ) = K̄ d (λ) I d (λ, x ) , x > 0 

I d (λ, 0) ∈ R 

+ given , 
(6)

hose solution is given by 

 d (λ, x ) = E α( ̄K d (λ) x α) I d (λ, 0) (7)

n this way, a nonlocal analysis is introduced in the Lambert-Beer

aw, incorporating a tuning parameter α > 0 that represents the

emory in x of the model, which is absent in Eq. (5) . Observe

hat for mathematical consistence we must restrict the value of

between 0 and 1, due to the number (= 1) of the initial con-

itions given in (5) . In our approach, we have used expression

6) to properly model light attenuation in biological suspensions.

o do so, Synechocystis experimental attenuation profiles for dif-

erent light sources have been estimated by fitting the parameter

of the Mittag–Leffler function. It is critical to note that Mittag–

effler functions do own the necessary properties to correctly pre-

ict remaining irradiance within the biological culture as they dis-

lay power-law decay at further distances but alternatively co-

ncide with the exponential function at closer ones. Though one

ould expect a two parameters function perform better than a sin-

le one, yet other two parameters functions such as the Gamma

amily do not fulfil the mentioned requirements and hence fail to

atisfactorily model the data. This fact together with the mathe-

atical justification of the generalised Lambert–Beer law through

ittag–Leffler functions [21] , supports ML functions as the right

andidate for modelling light fields within photosynthetic microor-

anism cultures and equivalent physical systems. 
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Fig. 1. Light attenuation profiles of Synechocystis WT strain cultures exposed to 

20 0 0 μmol photons · m 

−2 · s −1 of white LED light at five different OD 750 concen- 

trations (0.1, 0.5, 1.0, 2.5 and 5.0) are depicted. Dots are the original source samples 

[8] and lines the modelling outcome (dashed lines Lambert–Beer law, solid lines 

Mittag–Leffler function). Darker colours correspond to denser suspensions. 
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Fig. 2. Light attenuation profiles of Synechocystis Olive strain cultures exposed to 

20 0 0 μmol photons · m 

−2 · s −1 of white LED light at five different OD 750 concentra- 

tions (0.1, 0.5, 1.0, 2.5 and 5.0) are depicted. Dots are the original source samples 

[8] and lines the modelling outcome (dashed lines Lambert–Beer law, solid lines 

Mittag–Leffler function). Darker colours correspond to denser suspensions. 
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.1. Data for modelling assessment 

The data set to be benchmarked with computational results cor-

esponds to Synechocystis cultures exposed to light kept inside a

ylindrical vessel. This container has radiometric sensors every 11

m to measure PAR downward irradiance within the biological

uspension. In this regard, the Synechocystis attenuation data set

8] is composed of light intensity values at increasing depths for

he strains here studied (wild-type and Olive) plus two extra an-

enna mutants (not assessed in this manuscript as we do not own

nherent optical properties of those strains), all of them exposed

o white LED light at 5 different cell-densities. Such concentrations

re given as optical density values (OD) at 750 nm, namely these

D 750 values correspond to 0.1, 0.5, 1.0, 2.5 and 5.0 units. 

Moreover, in order to benchmark modelling predictions with

he described experimental data, the PAR downward attenuation

oefficient K̄ d (PAR ) needs to be first calculated from the spectrally

ependent one K̄ d (λ) . To this purpose, measured inherent optical

roperties altogether with the depth of the photobioreactor, the

ell-density and also the intensity and emission spectrum of the

ight source have to be taken into account. Following this strategy,

lassical Lambert–Beer law predictions are available as described

n a previous modelling work [3] . In the present manuscript, such

odelling framework has been upgraded with Mittag–Leffler func-

ions to improve its predictability capacity. 

. Results 

In Fig. 1 , the light field as PAR irradiance value vs. the distance

o the illumination source in wild-type (WT) cultures is plotted.

t can be seen that in WT for optical densities equal or greater

han 1.0, the light field starts to deviate from the pure exponential

ase, whereas in Olive this happens for optical densities of at least

.5 ( Fig. 2 ). The lowest measured light intensity from the original

ource within the WT cultures was 1.24 μmol photons · m 

−2 · s −1 

t 3.3 mm, whereas for Olive cultures it was 1.60 at 4.4 mm (both

t the most concentrated cell-density). For these points, light at-

enuation is far from Lambert–Beer law prediction (a line in the

emi-logarithmic plot). Indeed, the obtained values for exponen-

ial decay are just 8.1% (0.1 μmol photons · m 

−2 · s −1 ) and 19% (0.3

mol photons · m 

−2 · s −1 ) of the respectively experimental values in

ach strain, which leads to the conclusion that in culture regions

here practically all the light has been captured by the cells, the

ambert–Beer law does not satisfactorily represent the remaining

ight field, at least in terms of PAR range integrated values (dashed
ines). In fact, this happens in both strains below the euphotic

one, which in our case roughly corresponds to data below 20

mol photons · m 

−2 · s −1 . 

Alternatively, Mittag–Leffler model (solid lines) is able to cor-

ectly predict the remaining downward radiance in both strains at

ny cell density by fitting the ML α parameter to 0.995. 

It is also remarkable that for the case of cultures exposed to a

amp spectrum with a very narrow emission band, the attenuation

s purely exponential in the measured conditions (data not shown

8] ). This is due to the fact that monochromatic light is taken up

y cells at a constant rate given by the attenuation coefficient value

t the peak wavelength of the LED emission spectrum (Gaussian-

haped), whereas in the case of white LED light exposure, attenua-

ion varies gradually: cells mainly absorb light at wavelengths close

o the peaks corresponding to the pigments present in them. This

elective absorption leads to irradiance diminution of the primarily

bsorbed wavelengths while the less absorbed ones contribute to

he remaining light field at deeper distances. In the case of Syne-

hocystis cells, likewise many cyanobacteria which do not possess

ny photo-active pigment capable of capturing green radiation, the

reen components of the spectrum are less absorbed, thus light

radually changes from white at the surface to a greener colour

t the furthest depth. This leads to a progressively lower attenua-

ion, as cells can hardly capture green light, which explains why a

urely exponential decay is not valid in such selectively absorbing

edia. 

. Conclusions 

In this work we propose a new scheme to model light attenu-

tion within photosynthetic cultures based on the use of Mittag–

effler functions. Our scheme is able to substantially improve the

stimation of how light intensity decreases at culture depths near

r within the euphotic zone, where intensity has already decreased

ubstantially and its spectrum has considerably changed due to se-

ective absorption in the medium. Remarkably, the value of the

tting parameter α = 0 . 995 that allows for a proper description

f light attenuation within the cultures is exactly the same for

oth experimental sets corresponding to two different Synechocys-

is strains. This is not a surprising outcome as both strains have

lmost the same size, display similar pigment concentration and

nternal arrangement, except for the missing phycocyanin chro-

ophore in the mutant strain. In view of our results, it may be

ypothesised that properly tuned Mittag–Leffler functions are able

o represent the long range effects due to selective absorption phe-
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nomena in photosynthetic cultures. Indeed, this is the first work

where experimental data corresponding to a system with a slower-

than-exponential light decay have been benchmarked with in sil-

ico results. By updating the previous exponential-type published

model [3] with Mittag–Leffler functions, accurate results are ob-

tained. In fact, this framework generalisation allows the estimation

of the light field at any cell density and optical depth inside a PBR

for photosynthetic microorganism cultures acclimated to a given

irradiance. 

As a further work it would be interesting to test our scheme

with other cyanobacterial or micro-algal species and to explain,

via an analytic estimation, the value of the hyper-parameter taking

into account PBR, light, media, and culture characteristics. Further-

more it would be useful to work with a model that can represent

the behaviour of the fractional Lambert–Beer law in the case that

the parameter varies between 1 and 2 in a different biological phe-

nomenon. This corresponds to the situation where there are two

initial conditions instead of only one as in the classical model (5) . 
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