
CONTROLLABILITY RESULTS FOR THE
MOORE–GIBSON–THOMPSON EQUATION ARISING IN NONLINEAR

ACOUSTICS

CARLOS LIZAMA AND SEBASTIÁN ZAMORANO

Abstract. We show that the Moore-Gibson-Thomson equation

τ∂ttty + α∂tty − c2∆y − b∆∂ty = k∂tt(y
2) + χω(t)u,

is controlled by a force that is supported on an moving subset ω(t) of the domain, satis-
fying a geometrical condition. Using the concept of approximately outer invertible map, a

generalized implicit function theorem and assuming that γ := α − τc2

b > 0, the local null
controllability in the nonlinear case is established. Moreover, the analysis of the critical
value γ = 0 for the linear equation is included.

1. Introduction

Our concern in this paper is the study of controllability for the following equation of third
order in time

(1.1) αytt − c2∆y + τyttt − b∆yt = F (t, y, yt, ytt),

where τ is a positive constant accounting for relaxation (the relaxation time), c is the speed
of sound, b = δ + τc2 ≥ 0, where δ is the diffusivity of sound. The case b = 0 and
F (t, y, yt, ytt) = β(y2)t is known as the Westervelt equation. This equation is employed
for modeling the finite–amplitude nonlinear wave propagation in a soft tissue. In such
case y represents the pressure of the acoustic field generated by a high–intensity focused
ultrasound (HIFU). HIFU is a therapeutic method for a non-invasive ablation of benign and
malignant tumors [45]. In such case, the first two terms in equation (1.1) describe the linear
lossless wave propagating at a small-signal sound speed. The third term represents the loss
due to thermal conduction and fluid viscosity. The nonlinear term F accounts for acoustic
nonlinearity which may considerably affect thermal and mechanical changes within the tissue
[22].

One of the main issues concerning this equation is the study of how a memory term
creates damping mechanism and whether it causes energy decay. This issue is an ongoing
research of I. Lasiecka, B. Kaltenbacher and co–workers [16, 23, 24, 25, 29]. Observe that
thorough study of the linearized models is a good starting point for better understanding
the nonlinear models. Actually, the work [36] has shown that, even in the linear case, rich
dynamics appear. This model is known as the Moore-Gibson-Thomson equation [24].

However the study of controllability properties of the Moore-Gibson-Thomson equation
(MGT equation) appears as an untreated topic in the literature that deserves to be inves-
tigated. The development of new knowledge on this area of research is an interesting and
challenging open problem in all of its variants.
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The first goal of this paper is to study the interior controllability of the linear MGT
equation, which is obtained from equation (1.1) with F ≡ 0, as follows τyttt + αytt − c2∆y − b∆yt = χωu , in Q,

y = 0 , on Γ,
y(0) = y0, yt(0) = y1, ytt(0) = y2 , in Ω.

(1.2)

Here, Ω ⊂ Rn, n ≥ 1 is a bounded domain with smooth boundary ∂Ω. We denote by
Q = Ω × (0, T ) and Γ = ∂Ω × (0, T ), T > 0. Without loss of generality we assume that
τ = 1.

The control u is applied on an open subset ω of the domain Ω. This fact is modeled by
the multiplicative factor χω which stands for the characteristic function of the set ω that
constitutes the support of the control.

Specifically, we consider the problem of null controllability of equation (1.2). In other
words, given a final time T > 0 and initial data for the system (y0, y1, y2) in a suitable
functional setting (see Section 2), we analyze the existence of a control u ∈ L2((0, T ) × ω)
such that the corresponding solution of equation (1.2) satisfies the resting condition at the
final time t = T :

y(x, T ) = yt(x, T ) = ytt(x, T ) = 0 in Ω.(1.3)

Since the equation (1.2) has internal damping −b∆yt (also called structural damping),
which produces a strong smoothing effect, resulting in the well posedness of equation (1.1)
(see [25]), thus, it is expected to find poor control properties for equation (1.1). This is
because the damping generates accumulation points in the spectrum. We refer to [36] for an
extensive analysis and numerical validation of the spectrum of the MGT equation. Such a
phenomenon was first noticed in [44] for the beam equation with internal damping, in [31] for
the plate equation with internal damping, in [38] for the linearized Benjamin–Bona–Mahony
equation, and in [37, 40] for the structurally damped wave equation.

These poor control properties can also be seen if we rewrite the equation (1.1) with F = 0
as follows

(yt + αy)tt − b∆(
c2

b
y + yt) = 0.(1.4)

The above expression motivates the introduction of the following change of variable

z =
c2

b
y + yt,(1.5)

which implies that the equation (1.2) can be rewritten as a coupled system{
ztt − b∆z + γzt − γβz + γβ2y = 0,

yt + βy = z,
(1.6)

where γ := α− c2

b
≥ 0 denotes the critical coefficient and β := c2

b
. The critical coefficient γ

is taken positive because in [12] the authors proved that the equation (1.2) exhibits chaotic
behavior when γ is negative.

Then, the system under consideration can be seen as a wave equation with viscous damping
(γzt) coupled with a ODE, which implies that there exists vertical rays in the space–time
variable (x, t) which do not propagate at all in the space variable x, thus also making
the study of controllability–observability impossible in a cylindrical subset ω × (0, T ) ⊂
Ω× (0, T ) = Q. Regarding that, we note that the wave equation needs a geometric control
condition (GCC) for the control of waves [3] and, because of the existence of vertical rays,
we need to control the system with ω = Ω. However, from an applied point of view,
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one is interested in employing localized control ω ⊂ Ω. Hence, we cannot use controls
supported in a cylindrical subset of Q. Such kind of phenomenon was observed in the study
of the null controllability of viscoelastic equations with viscous Kelvin–Voigt and frictional
dampings in [10], in which the system is not null controllable due to the existence of time–like
characteristic hyperplanes, when the control domain is a nontrivial space–time cylinder.

A solution to this problem is to consider a moving distributed control with a long control
time, such that the support of the control, which is moving, can visit all the domain. This
technique was used to study the controllability properties by Castro and Zuazua in [8] and
by Khapalov in [27] for parabolic equations, by Rosier and Zhang in [42] for the Benjamin–
Bona–Mahony equation, by Martin, Rosier and Rouchon in [37] for the wave equation in the
one–dimensional setting, by Chaves, Rosier and Zuazua in [10] for a system of viscoelasticity,
by Lu, Zhang and Zuazua in [34] for the wave equation with memory, and by Chaves, Zhang
and Zuazua in [11] for evolution equations with memory. In the one–dimensional case, the
idea of considering a moving control domain, also called moving point control, was introduced
by J. L. Lions in [33] for the wave equation.

For that reason, in this work we consider that the control is supported on an subset ω(t)
of the domain. The support of the control u at time t may move in time and χω(t) = χω(t)(x)
stands for the characteristic function of the set ω(t). The control u ∈ L2(ω) is an applied
force localized in ω(t), where ω := {(x, t) : x ∈ ω(t), t ∈ (0, T )}.

Obviously, it is necessary to impose a certain geometric condition on ω so that the control
domain can visit all the domain Ω. Inspired by [10, 34, 43] and by the coupled system (1.6) of
a wave equation with a ODE, we consider the following geometrical condition on the moving
control domain.

Definition 1.1. We say that an open set U ⊂ Ω × (0, T ) satisfies the Moving Geometric
Control Condition (MGCC for short), if

a) all rays of geometric optics of the wave equation enter into U before the time T .
b) for all x0 ∈ Ω, the vertical line {(x0, s) : s ∈ R} enters into U before the time T and

inf
x∈Ω

sup
(t1,t2)×{x}⊂U

(t2 − t1) > 0.(1.7)

A few remarks concerning the MGCC:

Remark 1.2. (1) The condition a) is the basic assumption to be able to obtain the con-
trollability of the wave equation, which follows the classical laws of Geometric Optics,
see [3, 47]. This result was proved by means of microlocal analysis techniques.

(2) If we denote by T0 the infimum of T > 0 such that U satisfies the MGCC, we obtain
that the set O = ∪t∈(0,T )U(t) is a control domain that satisfies the usual GCC for a
time T > T0.

(3) The condition b) needs that vertical rays, which do not propagate in space, also reach
the control set and stay in it for some time. In practice this means that the cross
section U(t) of U has to move as time t evolves covering the whole domain. See
[10, 34, 43] for more details concerning this condition.

Under the previous condition on the control domain, we obtain the first main result of
this paper. For sake of simplicity we denote by X the Hilbert space H2(Ω) ∩H1

0 (Ω).
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Theorem 1.3. Let T > 0 be such that ω satisfy the MGCC and γ ≥ 0. Then for all
(y0, y1, y2) ∈ X ×X ×H1

0 (Ω), there exists a function u ∈ L2(ω) such that the solution of τyttt + αytt − c2∆y − b∆yt = χω(t)u , in Q,
y = 0 , on Γ,

y(0) = y0, yt(0) = y1, ytt(0) = y2 , in Ω,
(1.8)

fulfills

y(T ) = yt(T ) = ytt(T ) = 0, in Ω.(1.9)

The second goal of this paper is the analysis of the interior controllability for the nonlinear
MGT equation which is obtained from (1.1) with F (t, y, yt, yt) = k(y2)tt, k > 0, as follows τyttt + αytt − c2∆y − b∆yt = k(y2)tt + χω(t)u , in Q,

y = 0 , on Γ,
y(0) = y0, yt(0) = y1, ytt(0) = y2 , in Ω.

(1.10)

We refer to [26, 28, 30] for the development of well posedness and exponential decay of
energy to this nonlinear equation using tools of semigroup theory, and to the references
[1, 7, 17, 18, 35] for studies on regularity, extensions, methods and qualitative properties of
the linear equation.

As in the linear case, we consider the null controllability for (1.10) using again a moving
control domain. Since (1.10) is a nonlinear type equation, we study a local controllability
result. Namely, we say that equation (1.10) is locally null controlable at time T > 0 if there
exists a neighborhood of the origin such that for any initial data (y0, y1, y2) belonging to this
neighborhood, there exists a control u ∈ L2(ω) such that the solution y of (1.10) satisfies

y(T ) = yt(T ) = ytt(T ) = 0, in Ω.

The usual way to establish controllability of a nonlinear equation is to linearize the nonlin-
ear problem into some coupled linear systems. Then, for the controllability result established
for the linearized system, some fixed–point or implicit function results can be applied to es-
tablish controllability for the nonlinear system. The technique of fixed–point arguments
(e.g. Kukatani’s Theorem [19]) was used to study the null controllability in [4, 5] for a fluid–
structure problem and in [21] for a chemotaxis system, and the implicit function Theorem
was used, among others, in [13, 14] for two and three dimensional Navier–Stokes system,
respectively. In all these articles, the main point of the proof was to establish a Carleman
estimates of the linearized adjoint equation. This inequality together with appropriate regu-
larity results provides the suitable spaces of functions for the definition of an operator where
the implicit function Theorem, or fixed–point Theorem, can be applied.

Since in this article we prove the Theorem 1.3 without Carleman estimates, we cannot use
the classic result of the implicit function Theorem as in [13, 14], where the operator has to
be of class C1 with surjective derivative. With the notion of outer invertible operator and
Hadamard derivative, a generalized implicit function Theorem is employed in our case [15].
Thus, we only need to prove that the derivative of a suitable operator is compact.

Then, from the null controllability in the linear case Theorem 1.3 and a Generalized
Implicit Function Theorem (see Section 4) we get the second main result of the paper, that
is the local null controllability of the nonlinear MGT equation on a bounded domain.

Theorem 1.4. Let T > 0 be such that ω fulfills the MGCC and γ > 0. Then there exists
ρ > 0 such that if

‖(y0, y1, y2)‖X×X×H1
0 (Ω) ≤ ρ,(1.11)
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then there are y ∈ C([0, T ];X×X×H1
0 (Ω)) and u ∈ L2(ω) such that the solution y of (1.10)

fulfills

y(T ) = yt(T ) = ytt(T ) = 0, in Ω.(1.12)

Theorems 1.3 and 1.4 are, as far as we know, the first results concerning the control
property of the linear and nonlinear MGT equation. In this sense, the main contribution of
this work is not only the null controllability of the equation, but also to give new insights
showing that, in order to obtain the controllability, it is necessary that the control moves in
such a way that it can cross the whole domain. Concerning methods, we remark that to our
knowledge, this is the first time that the results in [15] are used in control theory. This way,
we propose a novel way to deal with controllability for nonlinear equations.

The remaining of this paper is organized as follows. In section 2 we present some basic
results about the well posedness of the MGT equation which are needed for the controllability
property. In section 3 we prove the first result of our work, namely Theorem 1.3, separating
the cases γ > 0 and γ = 0, where γ denotes the critical coefficient. In section 4 we treat
the nonlinear MGT equation and we prove Theorem 1.4. Finally, in section 5 we provide
additional comments concerning the main conclusions of this paper and directions of future
work.

2. Preliminaries

For the sake of completeness, we state the main results regarding the well posedness and
regularity of solutions for the linear and nonlinear MGT equation.

2.1. Well posedness of the linear MGT equation. In this section we present the well
posedness result needed for studying the control system (1.8). We first review some results
given by Marchand, McDevitt and Triggiani in [36] (also in [25]). Let us consider the equation yttt + αytt − c2∆y − b∆yt = f , in Q,

y = 0 , on Γ,
y(0) = y0, yt(0) = y1, ytt(0) = y2 , in Ω,

(2.1)

where (y0, y1, y2) belongs to some function spaces to be specified below.
Using the change of variable (1.5), the problem (2.1) can be written as a coupled system

ztt − b∆z + γzt − γβz + γβ2y = f , in Q,
yt + βy = z , in Q,
y = z = 0 , on Γ,

z(0) = z0, zt(0) = z1, y(0) = y0 , in Ω.

(2.2)

We know that the energy associated to the MGT equation decay exponentially when the
critical coefficient γ is strictly positive and is conserved when γ is zero (see [25]). This can
be seen from the coupled system (2.2). Indeed, if γ > 0 the first equation in (2.2) is a wave
equation with viscous damping and it is well known that this equation has a exponential
decay of the energy [46]. On the other hand, when γ = 0, the first equation is a pure wave
equation which is conservative [47].

In the vector variable Z = (z, zt, y)T , the system (2.2) can be formally written as

Zt = AZ + F,(2.3)



6 C. LIZAMA AND S. ZAMORANO

where

A =

 0 I 0
b∆ + γβI −γI −γβ2I

I 0 −βI

 , F =

 f
0
0

 ,(2.4)

where I is the identity operator and ∆ the Laplace operator.
However, the writing (2.3)–(2.4) is purely formal. As it is well known, within the frame-

work of Hilbert (or Banach) spaces of infinite dimension, a rigorous definition of the operator
requires knowledge of not only the way in which the operator acts, but also his domain.

An adequate phase space, among others (see [36]), to solve the equation (2.3) is

H = X ×H1
0 (Ω)×X.(2.5)

Remember that X denotes the Hilbert space H2(Ω) ∩ H1
0 (Ω). It is well know that if we

consider the space L2(Ω) and Au = −∆u, then the operator A has domain D(A) = X when
we consider homogeneous Dirichlet boundary conditions.

Then, the operator A defined by (2.4) has domain D(A) given by (see [36])

D(A) = D(A3/2)×D(A)×D(A) ⊂ H.(2.6)

With all these ingredients and assuming that γ > 0, we obtain that the operator A is the
generator of a strongly continuous group eAt on H. Moreover, the operator

M = I

 0 0 1
1 0 −β
−β 1 β2

(2.7)

is a homeomorphism between the spaces H and X ×X ×H1
0 (Ω).

Finally, if the initial data (y0, y1, y2) of (2.1) belongs to X × X × H1
0 (Ω) and f ∈

L2(0, T ;L2(Ω)), then under the operator M we have that (z0, z1, y0) ∈ H and

(z, zt, y) ∈ C([0, T ];H).(2.8)

For a complete and extensive analysis, using methods of semigroup theory, of the well
posedness of MGT equation, we refer to [36].

2.2. Well posedness of the nonlinear MGT equation. The nonlinear MGT equation
read as follows

τyttt + αytt − c2∆y − b∆yt =
d2

dt2

(
1

c2

[
1 +

D

2E

]
y2

)
, in Q,

y = 0 , on Γ,
y(0) = y0, yt(0) = y1, ytt(0) = y2 , in Ω.

(2.9)

Here the positive parameters D,E represent the nonlinear interactions (see [39] for a physical
interpretation).

Let us denote by E the following energy functional

E(t) ≡ ‖∆y(t)‖2
L2(Ω) + ‖∇yt‖2

L2(Ω) + ‖ytt‖2
L2(Ω).(2.10)

For the nonlinear MGT equation (2.9) we have the following global results proved in [26],
for small initial data.

Theorem 2.1. [26, Theorem 1.4] Assume that the critical coefficient γ is strictly positive.
Then for any C > 0 there exists ρC = ρC(γ) > 0, such that solutions of (2.9) corresponding
to initial data (y0, y1, y2) ∈ X ×X ×H1

0 (Ω) with

E(0) ≤ ρC(2.11)
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exists for all t > 0 and satisfy

(y, yt, yt) ∈ C1((0, T );X ×X ×H1
0 (Ω)) ∩ C([0, T ];X ×H1

0 (Ω)× L2(Ω)).(2.12)

and

E(t) ≤ C ∀t > 0,(2.13)

and depends continuously, with respect to the topology generated by E, on the initial data.
Besides, there exist constants ω = ω(γ) > 0, C > 0 such that solutions of (2.9) satisfy

E(t) ≤ Ce−ωt ∀t > 0.(2.14)

3. Controllability of the linear MGT equation

This section is devoted to prove Theorem 1.3. We separate the proof into two cases: γ > 0
and γ = 0. This is because the first one needs a much finer development, unlike the second
that proves to be a little easier since this condition simplifies the system to study.

3.1. Case γ > 0. In the present section, we reduce the null controllability problem of the
equation (1.8) to the null controllability of a coupled system.

Consider the coupled system (2.2) with f = χω(t)u. We observe that if these coupled
system is null controllable then the equation (1.8) is null controllable. Indeed, if (2.2) is
controllable then we obtain that for any initial data (z0, z1, y0) there is a control u ∈ L2(ω)
such that the pair (z, y), solution of (2.2), satisfies

z(x, T ) = zt(x, T ) = y(x, T ) = 0 in Ω.

This implies that

z(T ) = yt(T ) + βy(T ),

zt(T ) = ytt(T ) + βyt(T ),

and we immediately obtain that

yt(T ) = 0, ytt(T ) = 0.

Thus, we analyze the following controlled system
ztt − b∆z + γzt − γβz + γβ2y = χω(t)u , in Q,

yt + βy = z , in Q,
y = z = 0 , on Γ,

z(0) = z0, zt(0) = z1, y(0) = y0 , in Ω.

(3.1)

Now, to study the controllability of the coupled system (3.1), we borrow some ideas from
[34] and introduce the following subset of ω. For any ε > 0 and O ⊂ R1+n, we denote by
ωε(O) := {x ∈ R1+n : dist(x,O) < ε}. Let ωε be the following subset of ω

ωε := ω \ ωε(∂w \ Γ).(3.2)

As ω satisfies the MGCC, there exists ε0 > 0 such that w 3
2
ε and ωε0 still fulfills the MGCC,

see [34]. Now, let ξ ∈ C∞(Q) be given and satisfying the following set of conditions 0 ≤ ξ ≤ 1,
ξ = 1 in ωε0 ,
ξ = 0 in ω \ ω ε

2
.

(3.3)
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We observe that supp(ξ) ⊂ ω. With this notation, we consider the following controlled
system 

ztt − b∆z + γzt − γβz + γβ2y = ξu , in Q,
yt + βy = z , in Q,
y = z = 0 , on Γ,

z(0) = z0, zt(0) = z1, y(0) = y0 , in Ω.

(3.4)

To study the null controllability of the coupled system (3.4), we introduce the adjoint system
ptt − b∆p− γpt − γβp+ γβ2q = 0 , in Q,

−qt + βq = p , in Q,
p = q = 0 , on Γ,

p(T ) = p0, pt(T ) = p1, q(T ) = q0 , in Ω,

(3.5)

where (p0, p1, q0) ∈ L2(Ω)×H−1(Ω)× L2(Ω).
Let us first deduce a necessary and sufficient condition for the null controllability property

of (3.4) to hold. By 〈, 〉U,U ′ we denote the duality product between U and its dual U ′.

Lemma 3.1. The control u ∈ L2(ω) drives the initial data (z0, z1, y0) ∈ X ×H1
0 (Ω)×X of

system (3.4) to zero in time T if and only if

(3.6)

∫
ω

ξu(x, t)p(x, t)dxdt = 〈z0, pt(0)〉X,X′ + γβ2〈y0, q(0)〉X,X′ − 〈z1, p(0)〉H1
0 (Ω),H−1(Ω)

− γ〈z0, p(0)〉H1
0 (Ω),H−1(Ω),

for all (p0, p1, q0) ∈ L2(Ω) × H−1(Ω) × L2(Ω), where (p, q) is the corresponding solution of
(3.5).

Proof. By multiplying the first equation of (3.4) by p and then integrating by parts, we
obtain

(3.7)

∫
ω

ξu(x, t)p(x, t)dxdt =

∫
Q

[z(ptt − b∆p− γpt − γβp) + γβ2py]dxdt

+ 〈p0, zt(T )〉L2(Ω) − 〈z1, p(0)〉H1
0 (Ω),H−1(Ω) − 〈z(T ), p1〉H1

0 (Ω),H−1(Ω) + 〈z0, pt(0)〉X,X′
+ γ〈z(T ), p0〉L2(Ω) − γ〈z0, p(0)〉H1

0 (Ω),H−1(Ω).

Now, by multiplying the second equation of (3.4) by q and then integrating by parts, we
have ∫

Q

ypdxdt =

∫
Q

zqdxdt− 〈q0, y(T )〉L2(Ω) + 〈y0, q(0)〉X,X′ .(3.8)

Then, combining equations (3.7) and (3.8) and regarding the system (3.5), we deduce that

(3.9)

∫
ω

ξu(x, t)p(x, t)dxdt = 〈zt(T ), p0〉L2(Ω) − 〈z1, p(0)〉H1
0 (Ω),H−1(Ω)

− 〈z(T ), p1〉H1
0 (Ω),H−1(Ω) + 〈z0, pt(0)〉X,X′ + γ〈z(T ), p0〉L2(Ω) − γ〈z0, p(0)〉H1

0 (Ω),H−1(Ω)

− γβ2〈y(T ), q0〉L2(Ω) + γβ2〈y0, q(0)〉X,X′ .

Now, from (3.9) it follows immediately that (3.6) holds if and only if (z0, z1, y0) is control-
lable to zero and u is the corresponding control. �
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Now, we introduce the classical concept of observability associated to the adjoint problem
(3.5) for the study of the controllability. Since the operator A, defined in Section 2, is the
generator of a strongly continuous group on H, borrowing the ideas for the observability
inequality of the wave equation, we can define the following initial observability estimates.

Definition 3.2. The system (3.5) is said to be (initially) observable on ω with weight ξ if
the following observability inequality holds

‖p(0)‖2
H−1(Ω) + ‖pt(0)‖2

X′ + ‖q(0)‖X′ ≤ C‖ξp‖2
L2(ω),(3.10)

for any final data (p0, p1, q0) ∈ L2(Ω)×H−1(Ω)× L2(Ω).

By standard duality argument, we obtain the following result. See [19, 32, 47] and the
references therein for a complete revision of this duality.

Proposition 3.3. The system (3.4) is null controllable if and only if the system (3.5) is
observable on ω with weight ξ.

Proof. We start proving that the observability estimates implies the null controllability.
Consider the functional L : L2(Ω)×H−1(Ω)× L2(Ω)→ R, defined by

L(p0, p1, q0) =
1

2

∫
ω

|ξp|2dxdt+ 〈z1, p(0)〉H1
0 (Ω),H−1(Ω) + γ〈z0, p(0)〉H1

0 (Ω),H−1(Ω)

−〈z0, pt(0)〉X,X′ − γβ2〈y0, q(0)〉X,X′ .

It is easy to prove that L is continuous, strictly convex and coercive. The coercivity of L
follows from the observability estimate (3.10). Then, it is well known that L attains its
minimum in (p̃0, p̃1, q̃0) ∈ L2(Ω)×H−1(Ω)× L2(Ω) (see [6]).

From the necessary condition of minimum of L, we obtain that∫
ω

ξp̃pdxdt− 〈z0, pt(0)〉X,X′ − γβ2〈y0, q(0)〉X,X′ + 〈z1, p(0)〉H1
0 (Ω),H−1(Ω)

+ γ〈z0, p(0)〉H1
0 (Ω),H−1(Ω) = 0,

where the pair (p̃, q̃) is the solution of (3.5) with final data (p̃0, p̃1, q̃0). From Lemma 3.1, we
deduce the null controllability of (3.4).

Next, we prove that the null controllability implies the observability inequality (3.10).
Indeed, if it was not true, then there exists a sequence {pk0, pk1, qk0}k∈N, (pk0, p

k
1, q

k
0) 6= (0, 0, 0)

for all k ∈ N, that belongs to L2(Ω) × H−1(Ω) × L2(Ω) such that the solution (pk, qk) of
(3.5) corresponding to the final data (pk0, p

k
1, q

k
0) satisfy

0 ≤
∫
ω

|ξpk|2dxdt < 1

k2
(‖pk(0)‖2

H−1(Ω) + ‖pkt (0)‖2
X′ + ‖qk(0)‖X′)(3.11)

:=
1

k2
‖(pk(0), pkt (0), qk0(0))‖2

H−1(Ω)×X′×X′ .(3.12)

Let us write

(p̃k0, p̃
k
1, q̃

k
0) =

√
k

‖(pk(0), pkt (0), qk(0))‖
(pk0, p

k
1, q

k
0)H−1(Ω)×X′×X′ .

We denote by (p̃k, q̃k) the solution of (3.5) with final data (p̃k0, p̃
k
1, q̃

k
0). We define the

bounded linear operator G : L2(Ω)×H−1(Ω)× L2(Ω)→ H−1(Ω)×X ′ ×X ′ as follows

G(p0, p1, q0) = (p(0), pt(0), q(0)), ∀(p0, p1, q0) ∈ L2(Ω)×H−1(Ω)× L2(Ω).
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Then, we obtain that

‖G(p̃k0, p̃
k
1, q̃

k
0)‖2

H−1(Ω)×X′×X′ =

√
k

‖(pk(0), pkt (0), qk(0))‖H−1(Ω)×X′×X′
‖G(pk0, p

k
1, q

k
0)‖H−1(Ω)×X′×X′

(3.13)

=
√
k.

Thus, we deduce ∫
ω

|ξp̃k|2dxdt < 1

k
.(3.14)

On the other hand, since the system (3.4) is null controllable, from Lemma 3.1 we obtain
that there is a control u ∈ L2(ω) such that for any (z0, z1, y0) ∈ X ×H1

0 (Ω)×X we have∫
ω

ξu(x, t)p̃k(x, t)dxdt = 〈z0, p̃
k
t (0)〉X,X′ + γβ2〈y0, q̃

k(0)〉X,X′

− 〈z1, p̃
k(0)〉H1

0 (Ω),H−1(Ω) − γ〈z0, p̃
k(0)〉H1

0 (Ω),H−1(Ω).

Now, let us define the duality product between X ×H1
0 (Ω)×X and H−1(Ω)×X ′(Ω)×X ′

by

〈(φ0, φ1, φ2), (ϕ0, ϕ1, ϕ2)〉 = 〈φ1, ϕ0〉X,X′ + γβ2〈φ2, ϕ2〉X,X′ − 〈φ0, γϕ0 + ϕ1〉H1
0 (Ω),H−1(Ω).

Therefore, we obtain∫
ω

ξu(x, t)p̃k(x, t)dxdt = 〈(z0, z1, y0),L(p̃k0, p̃
k
1, q̃

k
0)〉.

From the previous computation and (3.14), we deduce that L(pk0, p
k
1, q

k
0) tends to zero

weakly in X ′ ×H−1(Ω)×X ′. By the Uniform Boundedness Principle the sequence

{L(pk0, p
k
1, q

k
0)}k∈N

is uniformly bounded in X ′ × H−1(Ω) × X ′. This fact contradicts (3.13) and the proof is
finished. �

Thus, our main result, namely Theorem 1.3, is equivalent to prove the observability esti-
mates (3.10). This can be seen in the following Theorem.

Theorem 3.4. Suppose that ω fulfills the MGCC. Then the system (3.5) is observable on ω
with weight ξ.

The main idea for the proof of this Theorem is to introduce an alternative functional
setting for the controllability and observability problems (3.4) and (3.5), respectively. Then,
in this new setting we can use a finer observability inequality given by Lü, Zhang and Zuazua
[34] and conclude the assertion.

We observe that the inequality (3.10) contains terms involving norms in negative Sobolev
spaces, which makes the analysis even more difficult. For this reason, we will consider the
controllability and observability problems for (3.4) and (3.5), respectively, in the following
functional setting.

Definition 3.5. (i) We say that the system (3.4) is null controllable if for any initial data
(z0, z1, y0) ∈ L2(Ω)×H−1(Ω)×L2(Ω), there is a control function u ∈ L2(0, T ;X ′) such that
the corresponding solution (z, y) of (3.4) satisfies

z(T ) = zt(T ) = y(T ) = 0 in Ω.(3.15)
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(ii) The system (3.5) is said to be initially observable on ω with weight ξ if for any final data
(p0, p1, q0) ∈ X ×H1

0 (Ω)×X, there exists a constant C > 0 such that

‖p(0)‖2
H1

0 (Ω) + ‖pt(0)‖2
L2(Ω) + ‖q(0)‖L2(Ω) ≤ C‖ξp‖2

H2(ω).(3.16)

In this new setting, let us start with a classical characterization of the null controllability
for the control system (3.4). The proof is identical to that given in Lemma 3.1, so we omit
it.

Lemma 3.6. The control u ∈ L2(0, T ;X ′) drives the initial data (z0, z1, y0) ∈ L2(Ω) ×
H−1(Ω)× L2(Ω) of system (3.4) to zero in time T if and only if

(3.17) 〈ξp, u〉L2(0,T ;X),L2(0,T ;X′) = 〈pt(0), z0〉L2(Ω) + γβ2〈q(0), y0〉L2(Ω)

− 〈p(0), z1〉H1
0 (Ω),H−1(Ω) − γ〈p(0), z0〉L2(Ω),

for all (p0, p1, q0) ∈ X ×H1
0 (Ω)×X where (p, q) is the corresponding solution of (3.5).

As usual (see [47]), the relation (3.17) can be seen as an optimality condition for the
critical points for a certain functional.

Proposition 3.7. Assume that the coupled system (3.5) with final data (p0, p1, q0) ∈ X ×
H1

0 (Ω) × X is initially observable in ω with weight ξ. Then, the problem (3.4) is null con-
trollable for any initial data (z0, z1, y0) ∈ L2(Ω)×H−1(Ω)× L2(Ω).

Proof. Assume that (3.5) is initially observable with final data (p0, p1, q0) ∈ X×H1
0 (Ω)×X.

Since we have changed the functional setting of our controllability and observability problem,
and in order to define a certain functional (as the Proposition 3.3), we consider the Hilbert
space V which is the completion of{

(p0, p1, q0) ∈ X ×H1
0 (Ω)×X :

∫
ω

|(∂tt + ∆)(ξp)|2dxdt <∞
}
,(3.18)

with respect to the norm (from the observability hypothesis)

‖(p0, p1, q0)‖2
V :=

∫
ω

|(∂tt + ∆)(ξp)|2dxdt,(3.19)

where (p, q) is the solution of (3.5) with final data (p0, p1, q0).
First, we observe that V ⊂ H1

0 (Ω)×L2(Ω)×L2(Ω). Indeed, if (p, q) is a solution to (3.5),
then necessarily it is also solution of the following problem

φtt − b∆φ− γφt − γβφ+ γβ2ϕ = 0 , in Q,
−ϕt + βϕ = φ , in Q,
φ = ϕ = 0 , on Γ,

φ(0) = p(0), φt(0) = pt(0), ϕ(0) = q(0) , in Ω.

(3.20)

From the observability inequality (3.16), we know that if (p0, p1, q0) ∈ V , then

(p(0), pt(0), q(0)) ∈ H1
0 (Ω)× L2(Ω)× L2(Ω).(3.21)

We deduce that (p(0), pt(0), q(0)) ∈ L2(Ω) ×H−1(Ω) × L2(Ω). From the well–posedness of
(3.20) we obtain that

(φ, ϕ) ∈ [C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω))]× C1([0, T ];L2(Ω)).(3.22)
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Insomuch as (p(0), pt(0)) ∈ H1
0 (Ω)×L2(Ω) and ϕ ∈ C1([0, T ];L2(Ω)), from the wave equation

of (3.20) we have that

φ ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)).(3.23)

Thus we obtain that (p0, p1, q0) = (φ(T ), φt(T ), ϕ(T )) ∈ H1
0 (Ω)× L2(Ω)× L2(Ω).

Now, we are in position to prove that the functional J has a unique minimizer. From
the Direct Method of Calculus of Variations, we know that it is sufficient to prove that J
is continuous, strictly convex and coercive. The first two assertions are immediate. The
coercivity of J follows from the observability inequality (3.16) and from the positivity of all
the constants involved. Indeed,

J(p0, p1, q0) ≥ 1

2

∫
ω

|(∂tt + ∆)(ξp)|2dxdt− ‖p(0)‖H1
0 (Ω)‖z1‖H−1(Ω) − γ‖p(0)‖2‖z0‖2

− ‖pt(0)‖2‖z0‖2 − γβ2‖q(0)‖2‖y0‖2

≥ C1‖ξp‖2
H2(w) − (‖p(0)‖H1

0 (Ω)‖z1‖H−1(Ω) + ‖pt(0)‖2‖z0‖2

+ γβ2‖q(0)‖2‖y0‖2 + γ‖p(0)‖2‖z0‖2)

≥ C1‖ξp‖2
H2(w) − C2‖ξp‖H2(w)(‖z1‖H−1(Ω) + ‖z0‖2 + γβ2‖y0‖2

+ γ‖z0‖2).

By the previous computation we obtain that J is coercive. This implies that J has a unique
minimizer (p̂0, p̂1, q̂0) ∈ V .

Now, since J achieve its minimum at (p̂0, p̂1, q̂0), then for any (p0, p1, q0) ∈ X×H1
0 (Ω)×X

and h ∈ R we have necessarily that

lim
h→0

J(p̂0 + hp0, p̂1 + hp1, q̂0 + hq0)− J(p̂0, p̂1, q̂0)

h
= 0.(3.24)

Let us develop the numerator of the previous limit.

J(p̂0 + hp0, p̂1 + hp1, q̂0 + hq0)− J(p̂0, p̂1, q̂0)

=
1

2

∫
ω

|(∂tt + ∆)(ξ(p̂+ hp))|2dxdt+ 〈p̂(0) + hp(0), z1〉H1
0 (Ω),H−1(Ω)

+ γ〈p̂(0) + hp(0), z0〉L2(Ω) − 〈p̂t(0) + hpt(0), z0〉L2(Ω) − γβ2〈q̂(0) + hq(0), y0〉L2(Ω)

− 1

2

∫
ω

|(∂tt + ∆)(ξp̂)|2dxdt− 〈p̂(0), z1〉H1
0 (Ω),H−1(Ω) − γ〈p̂(0), z0〉L2(Ω)

+ 〈p̂t(0), z0〉L2(Ω) + γβ2〈q̂(0), y0〉L2(Ω)

= h

∫
ω

(∂tt + ∆)(ξp̂)(∂tt + ∆)(ξp)dxdt+
h2

2

∫
ω

|(∂tt + ∆)(ξp)|2dxdt

+ h〈p(0), z1〉H1
0 (Ω),H−1(Ω) + hγ〈p(0), z0〉L2(Ω)

− h〈pt(0), z0〉L2(Ω) − hγβ2〈q(0), y0〉L2(Ω).

Thus, replacing in (3.24) we obtain

(3.25) 0 =

∫
ω

(∂tt + ∆)(ξp̂)(∂tt + ∆)(ξp)dxdt+ 〈p(0), z1〉H1
0 (Ω),H−1(Ω)

+ γ〈p(0), z0〉L2(Ω) − 〈pt(0), z0〉L2(Ω) − γβ2〈q(0), y0〉L2(Ω).

From (3.25) we can observe that if u = (∂tt + ∆)2(ξp̂) belongs to L2(0, T ;X ′), then
necessarily u is a control which leads the initial data (z0, z1, y0) to zero in time T . Indeed, if
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u = (∂tt + ∆)2(ξp̂) ∈ L2(0, T ;X ′), then

〈ξp, u〉L2(0,T ;X),L2(0,T ;X′) =

∫
ω

(∂tt + ∆)(ξp̂)(∂tt + ∆)(ξp)dxdt,

and from (3.25) we deduce that

〈ξp, u〉L2(0,T ;X),L2(0,T ;X′) = −〈p(0), z1〉H1
0 (Ω),H−1(Ω) − γ〈p(0), z0〉L2(Ω)

+ 〈pt(0), z0〉L2(Ω) + γβ2〈q(0), y0〉L2(Ω).

Lemma 3.6 implies that u is a control of the system (3.4).
Therefore, to finish the proof, we need to prove that u = (∂tt + ∆)2(ξp̂) belongs to

L2(0, T ;X ′). Indeed, from the definition of V we have

(∂tt + ∆)(ξp̂) ∈ L2(ω).(3.26)

Because (p̂0, p̂1, q̂0) belongs to V ⊂ H1
0 (Ω) × L2(Ω) × L2(Ω), we obtain that the solution

(p̂, q̂) of (3.5) corresponding to the final data (p̂0, p̂1, q̂0) satisfies

p̂ ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)), q̂ ∈ C1([0, T ];L2(Ω)).(3.27)

Now, we develop the term (∂tt + ∆)(ξp̂):

∂tt(ξp̂) = 2ξtp̂t + ξttp̂+ ξp̂tt

∆(ξp̂) = p̂∆ξ + 2∇ξ · ∇p̂+ ξ∆p̂.

From (3.27), we obtain that

2ξtp̂t + ξttp̂ ∈ C([0, T ];L2(Ω)), p̂∆ξ + 2∇ξ · ∇p̂ ∈ C([0, T ];L2(Ω)).(3.28)

Since (p̂, q̂) is the solution of (3.5), we deduce the following

(ξp̂)tt − b∆(ξp̂)− γ(ξp̂)t − γβ(ξp̂) + γβ2(ξq̂) = 2ξtp̂t + ξttp̂− bp̂∆ξ − 2b∇ξ · ∇p̂− γξtp̂
and

−(ξq̂)t + β2(ξq̂) = ξp̂− ξtq̂.
From the definition of ξ, we obtain that the pair (ξp̂, ξq̂) satisfies the following system

(ξp̂)tt − b∆(ξp̂)− γ(ξp̂)t − γβ(ξp̂) + γβ2(ξq̂) = 2ξtp̂t + ξttp̂− bp̂∆ξ
−2b∇ξ · ∇p̂− γξtp̂ , in Q,

−(ξq̂)t + β(ξq̂) = (ξp̂)− ξtq̂ , in Q,
ξp̂ = ξq̂ = 0 , on Γ,

(ξp̂)(T ) = 0, (ξp̂)t(T ) = 0, (ξq̂)(T ) = 0 , in Ω.

(3.29)

For what comes next we need the following computations. Using the first equation of (3.5)
we obtain

(3.30) (∂tt + ∆)(ξtp̂t) = ξtttp̂t + 2ξtt[b∆p̂+ γp̂t + γβp̂− γβ2q̂] + ξt[b∆p̂t + γβp̂t − γβ2q̂t]

+ ξt[b∆p̂+ γp̂t + γβp̂− γβ2q̂] + p̂t∆ξt + 2∇ξt · ∇p̂t + ξt∆p̂t.

Then, we have that (∂tt + ∆)(ξtp̂t) ∈ C([0, T ] : X ′). Similarly, we deduce that

(∂tt + ∆)(2ξtp̂t + ξttp̂− bp̂∆ξ − 2b∇ξ · ∇p̂− γξtp̂) ∈ C([0, T ];X ′).(3.31)

Also, we obtain

(3.32) (∂tt + ∆)(ξp̂− ξtq̂) = 2ξtp̂t + ξttp̂+ ξ(b∆p̂+ γp̂t + γβp̂− γβ2q̂) + p̂∆ξ

+ 2∇ξ · ∇p̂+ ξ∆p̂− ξtttq̂− 2ξttq̂t− ξt(p̂t− βq̂t)− q̂∆ξt− 2∇ξt · ∇q̂− ξt∆q̂ ∈ C([0, T ];X ′).
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Now, write ψ = (∂tt+∆)(ξp̂) and η = (∂tt+∆)(ξq̂). Then, using (3.29) and (3.31)–(3.32),
we obtain that (ψ, η) solves

ψtt − b∆ψ − γψt − γβψ + γβ2η = (∂tt + ∆)(2ξtp̂t + ξttp̂− bp̂∆ξ
−2b∇ξ · ∇p̂− γξtp̂) , in Q,

−ηt + βη = (∂tt + ∆)(ψ − ξtq̂) , in Q,
ψ = η = 0 , on Γ,

ψ(T ) = 0, ψt(T ) = 0, η(T ) = 0 , in Ω.

(3.33)

Then we conclude from (3.32) and the second equation of (3.33) that

η ∈ C1([0, T ];X ′).(3.34)

Besides, from (3.26) we obtain that ∆(∂tt + ∆)(ξp̂) ∈ L2(0, T ;X ′). Using that ψ =
(∂tt + ∆)(ξp̂), it follows from (3.30), (3.31), (3.32), (3.33) and (3.34) that ∂tt(∂tt + ∆)(ξp̂) ∈
L2(0, T ;X ′). Therefore, we can conclude that

u = (∂tt + ∆)2(ξp̂) ∈ L2(0, T ;X ′).

This completes the proof. �

Now, from [34] we deduce the following finer observability estimate.

Proposition 3.8 (see [34]). If the system (3.4) with initial data (z0, z1, y0) ∈ L2(Ω) ×
H−1(Ω)× L2(Ω) is null controllable, then the solutions (p, q) of (3.5) satisfies

‖p(0)‖2
H1

0 (Ω) + ‖pt(0)‖2
L2(Ω) + ‖q(0)‖L2(Ω) ≤ C‖∆(ξp)‖2

L2(ω),

for any (p0, p1, q0) ∈ X ×H1
0 (Ω)×X.

Proof. The proof is similar to the one given in Proposition 3.3.
�

The above improved observability inequality (3.35) implies, immediately, the observability
estimate (3.16). That is, putting together Proposition 3.7 and Proposition 3.8 we have proved
the following sequence of equivalences:

Proposition 3.9. The following assertions are equivalent:

(1) The system (3.5) for any final data (p0, p1, q0) ∈ X ×H1
0 (Ω)×X is observable on ω

with weight ξ.
(2) The system (3.4) is null controllable for any initial data (z0, z1, y0) ∈ L2(Ω) ×

H−1(Ω)× L2(Ω).
(3) The solution of (3.5) satisfy the following improved observability estimate

‖p(0)‖2
H1

0 (Ω) + ‖pt(0)‖2
L2(Ω) + ‖q(0)‖L2(Ω) ≤ C‖∆(ξp)‖2

L2(ω),(3.35)

for any (p0, p1, q0) ∈ X ×H1
0 (Ω)×X.

Therefore, in order to obtain the null controllability in this new formulation, it is enough
to prove the following Theorem.

Theorem 3.10. Suppose that ω fulfills the MGCC and γ > 0. Then the system (3.5) with
final data (p0, p1, q0) in X ×H1

0 (Ω)×X is initially observable on ω with weight ξ.
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Proof. From (3.5) we have that q satisfy

−qt + βq = p,

this is

q(x, t) = eβ(t−T )q0 −
∫ t

T

e−β(s−t)p(x, s)ds.

Since q(x, t) = eβ(t−T )q0(x) is the solution of

−qt + βq = 0,

and ωε0 fulfills the MGCC, we obtain that there exists a constant C > 0 such that (see [10])

‖q0‖2
L2(Ω) ≤ C‖q‖2

L2(ωε0 ).

By standard energy estimates (see e.g. [9]) and the above observability inequality we obtain
that

‖q‖2
L2(Q) ≤ C(‖q‖2

L2(ωε0 ) + ‖p‖2
L2(Q)).(3.36)

On the other hand, since ωε0 satisfies MGCC from [43] we obtain that

‖p‖2
H1(Q) ≤ C

(∫
ωε0

p2
tdxdt+ ‖q‖2

L2(Q)

)
.(3.37)

Combining (3.36) and (3.37) we find that

‖p‖2
H1(Q) + ‖q‖2

L2(Q) ≤ C(‖pt‖2
L2(ωε0 ) + ‖q‖2

L2(ωε0 ) + ‖p‖2
L2(Q)).(3.38)

Using a compactness uniqueness argument, we claim that

‖p‖2
H1(Q) + ‖q‖2

L2(Q) ≤ C(‖pt‖2
L2(ωε0 ) + ‖q‖2

L2(ωε0 )).(3.39)

Indeed, if it was not true, then there would exists a sequence {pi, qi}i∈N belongs to H1(Q)×
L2(Q) such that for all i ∈ N

‖(pi, qi)‖H1(Q)×L2(Q) = 1,(3.40)

‖pit‖2
L2(ωε0 ) + ‖qi‖2

L2(ωε0 ) ≤
1

i
.(3.41)

Using (3.38), (3.40) and (3.41) we have that

1 = ‖pi‖2
H1(Q) + ‖qi‖2

L2(Q) ≤ C(‖pit‖2
L2(ωε0 ) + ‖qi‖2

L2(ωε0 ) + ‖pi‖2
L2(Q)) ≤ C

(
1

i
+ ‖pi‖2

L2(Q)

)
.

(3.42)

On the other hand, from (3.40) we can extract a subsequence, denoted in the same way,
of {pi, qi}i∈N such that (pi, qi) converges weakly to (p, q) in H1(Q)×L2(Q). Thus, it is easy
to see that (p, q) is a weak solution of (3.5). Then, by the weak convergence in H1(Q) we
obtain that pi converges strongly in L2(Q). Combining this with (3.36) and (3.41) we have
qi converges strongly in L2(Q). Also, from (3.42) we deduce that ‖p‖L2(Q) > 0.

Now, as (pi, qi) converges weakly in H1(Q)×L2(Q), by the definition of weak convergence
we obtain that

‖pt‖2
L2(ωε0 ) + ‖q‖2

L2(ωε0 ) ≤ lim inf
i→∞

(‖pit‖2
L2(ωε0 ) + ‖qi‖2

L2(ωε0 )) = 0.(3.43)

Namely, we have that pt = q = 0 in ωε0 and, by (3.38),

‖p‖2
H1(Q) + ‖q‖2

L2(Q) ≤ C‖p‖2
L2(Q).(3.44)
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Since ‖p‖L2(Q) is strictly positive, by (3.44) we conclude that (p, q) is not zero.
Now, let V be a linear subspace of H1(Q)× L2(Q) defined as

V := {(p, q) ∈ H1(Q)× L2(Q) : (p, q) satisfies the two first equation in (3.5),

p|Γ = 0, pt = q = 0 in ωε0}.
It is easy to prove, following the ideas of [34], that V satisfies

V ⊂ H4(Q)×H3(Q),(3.45)

and

dim(V ) <∞.(3.46)

From the definition of V we have that q = 0 in ωε0 . Since ωε0 fulfills the MGCC, we obtain
that q = 0 on Γ. Besides, from (3.45) the pair (∆p,∆q) is also solution of (3.5), namely (∆p)tt − b∆(∆p)− γ(∆p)t − γβ∆p+ γβ2∆q = 0 , in Q,

−(∆q)t + β∆q = ∆p , in Q,
∆p = ∆q = 0 , on Γ.

(3.47)

Even more, since pt = q = 0 in ωε0 , we have that (∆p)t = ∆q = 0 in ωε0 . This implies that
(∆p,∆q) ∈ V .

As ∆p belongs to V and V is a finite dimensional space, there exists λ ∈ C and (p̆, q̆) ∈
V \ {0} such that for any t ∈ (0, T ){

∆p̆(t) = λp̆(t) , in Ω,
p̆(t) = 0 , on ∂Ω.

(3.48)

Now, as (p̆, q̆) solves (3.5) and from (3.48), we get that p̆tt − bλp̆− γp̆t − γβp̆+ γβ2q̆ = 0 , in Q,
−q̆t + βq̆ = p̆ , in Q,
p̆ = p̆ = 0 , on Γ.

(3.49)

Since p̆t = q̆ = 0 in ωε0 , from the first equation in (3.49) we obtain that

p̆ =
γβ2

bλ+ γβ
q̆ = 0, in ωε0 .(3.50)

Let t0 ∈ (0, T ) be fixed and x ∈ ωε0 . Then from (3.49) we obtain that (p̆(·, x), q̆(·, x)) solves p̆tt(t, x)− (bλ+ γβ)p̆(t, x)− γp̆t(t, x) + γβ2q̆(t, x) = 0 , in (0, T ),
−q̆t(t, x) + βq̆(t, x) = p̆(t, x) , in (0, T ),

p̆(t0, x) = 0, p̆t(t0, x) = 0, q̆(t0, x) = 0.
(3.51)

Thus, we have that p̆(t, x) = q̆(t, x) = 0 for any t ∈ (0, T ). Since ωε0 fulfills the MGCC,
we deduce that for any x ∈ Ω and any t ∈ (0, T )

p̆(t, x) = q̆(t, x) = 0.

Namely, p̆ = q̆ = 0 in Q. This implies that V = {0} which is a contradiction with the fact
that (p, q) is not zero. Therefore, we obtain (3.39).

We observe that from the first equation in (3.5) and as γ, β > 0, q satisfies

q = − 1

γβ2
(ptt − b∆p− γpt − γβp).(3.52)

Replacing (3.52) in (3.39), it follows that

‖p‖2
H1(Q) + ‖q‖L2(Q) ≤ C‖p‖H2(ωε0 ).(3.53)



CONTROLLABILITY RESULTS FOR THE MGT-EQUATION 17

Finally, form the energy estimates for (3.5) and (3.53) we obtain

‖p(0)‖2
H1

0 (Ω) + ‖pt(0)‖2
L2(Ω) + ‖q(0)‖L2(Ω) ≤ C‖p‖2

H2(ωε0 ) ≤ C‖ξp‖2
H2(ω).

�

Finally, as we have already announced, we need to prove Theorem 3.4.

Proof of Theorem 3.4. For any (p0, p1, q0) ∈ L2(Ω)×H−1(Ω)× L2(Ω), we take

(P0, P1, Q0) = (A−1p0,A−1p1,A−1q0),(3.54)

where A is the Dirichlet Laplace operator defined in Section 2.
Then, we obtain that (P0, P1, Q0) ∈ X ×H1

0 (Ω)×X. Since (p, q) is the solution of (3.5)
with final data (p0, p1, q0), we obtain

(Bp)tt − b∆(Bp)− γ(Bp)t − γβ(Bp) + γβ2(Bq) = 0 , in Q,
−(Bq)t + β(Bq) = (Bp) , in Q,

Bp = Bq = 0 , on Γ,
(Bp)(T ) = Bp0, (Bp)t(T ) = Bp1, (Bq)(T ) = Bq0 , in Ω,

(3.55)

where B = A−1. From (3.55), we have that (P,Q) = (A−1p,A−1q) is in Ω.
Now, by Theorem 3.10 the system (3.55) is initially observable on ω with weight ξ and final

data (P0, P1, Q0). From Proposition 3.7 we have that the system (3.4) is null controllable
and, by Proposition 3.8, we have that the solution (P,Q) satisfy the observability inequality
(3.35), namely

‖A−1p(0)‖2
H1

0 (Ω) + ‖A−1pt(0)‖2
L2(Ω) + ‖A−1q(0)‖L2(Ω) ≤ C‖∆(ξA−1p)‖2

L2(ω),(3.56)

which implies that

‖p(0)‖2
H−1(Ω) + ‖pt(0)‖2

X′ + ‖q(0)‖X′ ≤ C‖ξp‖2
L2(ω).

�

3.2. Case γ = 0. In this section we give a proof of Theorem 1.3 in the special situation
when γ = 0. The analysis is particularly simple in this case. Indeed, when γ = 0 the system
(3.4) takes the following cascade form

ztt − b∆z = χω(t)u , in Q,
yt + αy = z , in Q,
y = z = 0 , on Γ,

z(0) = z0, zt(0) = z1, y(0) = y0 , in Ω,

(3.57)

where the first equation of (3.57) is uncoupled.
Borrowing the ideas of [10], we investigate the null controllability of the following system

ztt − b∆z = χω(t)ũ , in Q,
yt + αy = χω(t)ṽ + z , in Q,
y = z = 0 , on Γ,

z(0) = z0, zt(0) = z1, y(0) = y0 , in Ω,

(3.58)

where (z0, z1, y0) ∈ X ×H1
0 (Ω)×X.

Note that, roughly speaking, one can first control the wave equation by a suitable control
ũ and then, once this is done, and viewing z as a given source term, we can control the
transport equation by a convenient ṽ.
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Proof of Theorem 1.3 when γ = 0. Denote by T0 the infimum of T > 0 such that ω satisfies
Definition 1.1. Let ω0 be an open set such that

ω0 =
⋃

t∈(0,T ′)

ω(t),

for a time T ′ > T0.
Then, It is well know that the wave equation with this geometrical condition is null

controllable (see [43]). Namely there exists u ∈ L2(0, T ′;L2(Ω)) such that the solution
z = z(x, t) of  ztt − b∆z = χω0u , in Ω× (0, T ′),

z = 0 , on ∂Ω× (0, T ′),
z(0) = z0, zt(0) = z1 , in Ω,

(3.59)

satisfies

z(x, T ′) = zt(x, T
′) = 0, x ∈ Ω.

Now, let T > T ′ and consider

ũ = χω0u, in Ω× (0, T ′)

ũ = 0, in Ω× (T ′, T )

ṽ = 0, in Ω× (0, T ′).

We conclude that the solution of ztt − b∆z = χω(t)ũ , in Ω× (0, T ),
z = 0 , on ∂Ω× (0, T ),

z(0) = z0, zt(0) = z1 , in Ω,
(3.60)

satisfies

z(x, t) = 0, ∀t ∈ [T ′, T ].(3.61)

Next, we have to prove the exactly controllability of the following problem yt + αy = χω(t)v , in Ω× (T ′, T ),
y = 0 , on ∂Ω× (T ′, T ),

y(T ′) = y0 , in Ω.
(3.62)

Again, by a duality argument, this is equivalent to prove that the solution q = q(x, t) of −qt + αq = 0 , in Ω× (T ′, T ),
q = 0 , on ∂Ω× (T ′, T ),

q(T ) = q0 , in Ω,
(3.63)

satisfies the following observability estimate∫
Ω

|q0(x)|2dx ≤ C

∫ T

T ′

∫
Ω

χω(t)(x)|q(x, t)|2dxdt.(3.64)

The solution of (3.63) is given by

q(x, t) = eα(t−T )q0(x),

which implies that∫ T

T ′

∫
Ω

χω(t)(x)|q(x, t)|2dxdt ≥ e2α(T ′−T )

∫
Ω

|q0(x)|2
(∫ T

T ′
χω(t)(x)dt

)
dx.(3.65)
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From Definition 1.1, we can see that for every x ∈ Ω, there is t0 ∈ (T ′, T ) and some η0 > 0
such that for any s ∈ B(x, η0) and any t ∈ (T ′, T )∩ (t0 − η0, t0 + η0) we have s ∈ ω(t). This
means that there exists some η > 0 such that∫ T

T ′
χω(t)(x)dt > η > 0,∀x ∈ Ω.(3.66)

Then, we obtain the desired inequality (3.64). Therefore, the equation (3.62) is exactly con-
trollable on (T ′, T ) with some controls v ∈ C([T ′, T ];L2(Ω)). Now, let y1(x) = e−T

′
y0(x) +∫ T ′

0
es−T

′
z(x, s)ds. Since ṽ = 0 in Ω×(0, T ′), we extend ṽ to (0, T ) such that ṽ ∈ L2(0, T ;L2(Ω))

and the corresponding solution of yt + αy = χω(t)ṽ , in Ω× (T ′, T ),
y = 0 , on ∂Ω× (T ′, T ),

y(T ′) = y1 , in Ω,
(3.67)

satisfies

y(T ) = 0.(3.68)

Namely, from (3.61) and (3.68) we obtain that the pair (ũ, ṽ) is a control function such that
the solution of system (3.58) satisfy (z(T ), zt(T ), y(T )) = (0, 0, 0). However, if we want to
return to the original problem (3.57), we need to apply the operator ∂tt− b∆ in each side of
the second equation of (3.58), which implies that

yttt + αytt − b∆yt − c2∆y = χω(t)ũ+ (∂tt − b∆)(χω(t)ṽ).(3.69)

So, the control function does not belong to L2(ω). Under the MGCC condition, specifically
from the definition of ξ, from [10, 41] we have that

‖q0‖X′ ≤ C

∫ T

T ′
‖(t− T ′)ξq(·, t)‖2

X′dt.(3.70)

Then, using the HUM operator [32] we obtain that the system (3.62) is exactly controllable
on (T ′, T ) with some controls ξv ∈ C1([T ′, T ];X) (since q ∈ C1([T ′, T ];X ′) for any q0 ∈ X ′).
Moreover, differentiating the first equation in (3.63) with respect to time, we obtain that

d

dt
qt = α2q ∈ C1([T ′, T ];X).

Then, in particular, we deduce that ξv ∈ C2([T ′, T ];X).
Finally, since ξṽ ∈ C2([0, T ];X), we have that (∂tt − b∆)(ξṽ) ∈ L2(ω). Therefore, the

right hand side of (3.69) belongs to L2(ω) and this completes the proof.
�

4. Controllability of the nonlinear MGT equation

The classical argument to prove local null controllability results is the combination of the
Implicit Function Theorem with an appropriate result of controllability in the linear case. In
order to prove Theorem 1.4, we need the following definitions and technical Lemmas given
in [15].

We denote by L(X, Y ) the space of continuous linear mappings from X to Y , where X
and Y are Banach spaces.

Definition 4.1. (1) An operator G : X → Y is said to be Hadamard differentiable at
a ∈ X if there exists M ∈ L(X, Y ) such that, for any continuous function r : [0, 1]→
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X for which r′(0+) exists and r(0) = a, the operator F = G ◦ r is differentiable at
0+, with F ′(0+) = Mr′(0+), thus

G(r(t))−G(r(0))−Mr′(0+)t = o(t) as t ↓ 0,

where M is the Hadamard derivative.
(2) An operator G : X → Y is called strongly Hadamard differentiable at a ∈ X if

F = G ◦ r is strongly differentiable at 0+.

Lemma 4.2. Let G : X → Y be an operator such that has a Gâteaux variation δG(x;h) at
all points in a convex neighborhood Ω of x0 ∈ X and all h ∈ X. If δG(· ; ·) is continuous at
(x0, 0), then G is strongly Hadamard differentiable at x0.

Definition 4.3. The linear mapping M : D → Y , where D is a dense subset of X, is called
approximately outer invertible if, for each µ ∈ (0, 1), there exists a bounded linear mapping
Bµ : Y → X and a bound σ(µ) such that

‖(BµMBµ −Bµ)y‖ ≤ µ‖Bµy‖ and ‖Bµy‖ ≤ σ(µ)‖y‖, ∀y ∈ Y.

Then each Bµ is called an approximately outer inverse of M , with bound function σ(µ).

Lemma 4.4. Let H1 and H2 be two real Hilbert spaces and M : H1 → H2 be a compact
linear operator. Then M is approximately outer invertible.

Lemma 4.5 (Implicit Function Theorem). Let X and Y be real Banach spaces, with a ∈ X.
Let S be a closed convex cone in Y . Let G : X → Y be an operator strongly Hadamard
differentiable at a. Let b = G(a) and assume b ∈ S. Let the Hadamard derivative M =
G′(a) : X → Y be a bounded linear operator with approximate outer inverse Bµ and bound
function σ(µ) = k0µ

−k, with k < 1. Then for a sufficiently small µ, whenever c satisfies
−(G(a) + G′(a)c) ∈ S, and ‖c‖ = 1, there exists a solution x = a + yc + η(t) ∈ X to
−G(x) ∈ S, valid for all t < 0 sufficiently small. with x 6= a, with an appropriate choice of
µ = µ(t) ↓ 0 as t ↓ 0, ‖η(t)‖µ(t)=o(t) as t ↓ 0.

Proof of Theorem 1.4. We denote by H1 = X×X×H1
0 (Ω) and by D = X×H1

0 (Ω)×L2(Ω).
Define the mapping G : H1 × L2(ω) → H1, G(y0, u) = (y(T ), yt(T ), ytt(T )), where y0 =
(y0, y1, y2) and y is the solution of the nonlinear MGT equation τyttt + αytt − c2∆y − b∆yt = f(y) + χω(t)u , in Q,

y = 0 , on Γ,
y(0) = y0, yt(0) = y1, ytt(0) = y2 , in Ω,

(4.1)

where f(y) = k(y2)tt.
We claim that G has a Gâteaux derivative δG((y0, u); (h0, v)) at all points

(y0, u) ∈ H1 × L2(ω) and all (h0, v) ∈ D × L2(ω), where h0 = (h0, h1, h2). Indeed, for any
(y0, u) ∈ H1 × L2(ω), (h0, v) ∈ D × L2(ω) and ε > 0, we have that

G(y0 + εh0, u+ εv) = (yε(T ), yεt (T ), yεtt(T )),(4.2)

where yε satisfy the following system τyεttt + αyεtt − c2∆yε − b∆yεt = f(yε) + χω(t)(u+ εv) , in Q,
yε = 0 , on Γ,

yε(0) = y0 + εh0, yεt (0) = y1 + εh1, yεtt(0) = y2 + εh2 , in Ω.
(4.3)
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Let zε =
yε − y
ε

be given. From (4.1) and (4.3) we deduce that
τzεttt + αzεtt − c2∆zε − b∆zεt =

f(y + εzε)− f(y)

ε
+ χω(t)v , in Q,

zε = 0 , on Γ,
zε(0) = h0, zεt (0) = h1, zεtt(0) = h2 , in Ω.

(4.4)

Taking ε to zero, the solution zε of (4.4) converges to z, which solves the system τzttt + αztt − c2∆z − b∆zt = f ′(y)z + χω(t)v , in Q,
z = 0 , on Γ,

z(0) = h0, zt(0) = h1, ztt(0) = h2 , in Ω,
(4.5)

where y is the solution of (4.1) with control u and initial data y0.
Therefore, it is easy to see that the solution z of (4.5) satisfies

δG((y0, u); (h0, v)) = (z(T ), zt(T ), ztt(T )).

Next, we prove that G is of class C1 at ((0, 0); (0, 0)). Indeed, to show that δG is continuous
at ((0, 0); (0, 0)) is equivalent to proving that whenever (y0

j , uj) ∈ H1 × L2(ω) and (h0
j , vj) ∈

D × L2(ω) satisfies

(y0
j , uj)→ (0, 0), in H1 × L2(ω),(4.6)

(h0
j , vj)→ (0, 0), in D × L2(ω),(4.7)

we have that the solution zj of τzjttt + αzjtt − c2∆zj − b∆zjt = f ′(yj)zj + χω(t)vj , in Q,
zj = 0 , on Γ,

zj(0) = hj0, zjt (0) = hj1, zjtt(0) = hj2 , in Ω,
(4.8)

where yj is the solution of τyjttt + αyjtt − c2∆yj − b∆yjt = f(yj) + χω(t)uj , in Q,
yj = 0 , on Γ,

yj(0) = yj0, yjt (0) = yj1, yjtt(0) = yj2 , in Ω,
(4.9)

satisfy

(zj(T ), zjt (T ), zjtt(T ))
j→∞−→ (0, 0, 0) = δG((0, 0); (0, 0)) in D.(4.10)

For this purpose, we claim that when (y0
j , uj)→ (y0, u) in H1 × L2(ω), then the solutions

yj of (4.9) are such that

f ′(yj)− f ′(y)→ 0 in C([0, T ];L2(Ω)).(4.11)

From the well–posedness of the nonlinear equation, see Section 2, we deduce that rj =
yj − y satisfies

‖(rj(t), rjt (t), r
j
tt(t))‖2

D ≤ C(‖y0
j − y0‖2

D + ‖uj − u‖2
L2(ω)), ∀t ∈ [0, T ],(4.12)

where C > 0 is independent of t. Then, in view of (4.12) we have that

(yj, yjt , y
j
tt)→ (y, yt, ytt) in C([0, T ]; (L2(Ω))3).(4.13)

Since the nonlinear term f(y) = 2k(y2)tt, we deduce that f ′ is a continuous function and
f ′(y) ∈ C([0, T ];L2(Ω)). Then, from (4.13) we obtain

f ′(yj(t))→ f ′(y(t)) in L2(Ω), ∀t ∈ [0, T ].(4.14)
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In view of (4.14) and Arzela–Ascoli’s Theorem, (4.11) holds if we prove that

{f ′(yj(t))}j is equicontinuous in C([0, T ];L2(Ω)).(4.15)

From (4.13) we have that the set U = {(yj(t), yjt (t), y
j
tt(t)) : j ∈ N, t ∈ [0, T ]} is rel-

atively compact in (L2(Ω))3. On the other hand, since the mapping f ′ : C([0, T ];X) →
C([0, T ];L2(Ω)) that associates f ′(y) ∈ C([0, T ];L2(Ω)) to any y ∈ C([0, T ];X) is contin-
uous, then is uniformly continuous in U . That is, given ε > 0 there exists δ > 0 such
that

‖f ′(yj(t))− f ′(yj(τ))‖L2(Ω) ≤ ε,(4.16)

provided that

‖(yj(t), yjt (t), y
j
tt(t))− (yj(τ), yjt (τ), yjtt(τ))‖L2(Ω) ≤ δ.(4.17)

Since (yj, yjt , y
j
tt) → (y, yt, ytt) in C([0, T ]; (L2(Ω))3) and y is uniformly continuous from

[0, T ] to L2(Ω), we obtain that there exists n0 ∈ N and δ0 such that (4.17) holds for any
n ≥ n0 and t, τ ∈ [0, T ] such that |t − τ | ≤ δ0. From the uniformly continuity of yj from
[0, T ] to L2(Ω) we deduce that for every k ∈ {i, . . . , n0} there exists δk such that (4.17) holds
with j = k if |t− τ | ≤ δj. Taking δ = min{δ0, δ1, . . . , δn0} we obtain that if |t− τ | ≤ δ then
(4.17) holds. Therefore, we have that (4.15) holds, and finally we obtain (4.11), proving the
claim.

Now, if (y0
j , uj) converges to (0, 0) in H1×L2(ω), from (4.11), (4.12) and (4.13) we deduce

that

‖f ′(yj)‖L∞(0,T ;L2(Ω)) ≤ C,(4.18)

where C > 0 is independent of j. Then, from the well posednees of the equation (4.8), we
have that

‖(zj, zjt , z
j
tt)‖2

C([0,T ];D) ≤ C(‖h0
j‖2
D + ‖vj‖2

L2(ω)).(4.19)

Then, by (4.6), (4.7), (4.18) and (4.19) we obtain that

(zj(T ), zjt (T ), zjtt)(T )→ (0, 0, 0) as j →∞, in D.(4.20)

Moreover, if (h0
j , vj) converges to (h0, v) ∈ U , with U a bounded subset of D×L2(ω), then

the convergence in (4.20) is uniform. That is, the operator G′(0, 0) : H1 × L2(ω) → H1 is
compact.

Finally, since G(0, 0) = (0, 0, 0), from the null controllability of the linear MGT equation
(see Theorem 1.3), for any h0 ∈ D there exists a control v ∈ L2(ω) such thatG′((0, 0); (h0, v)) =
(0, 0, 0). Let a = (0, 0), c = (h0, v) and S = {0} ⊂ L2(ω). Assume that ‖(h0, v)‖H1×L2(ω) = 1.
Then, we obtain that −(G(0, 0) +G′((0, 0); c)) = 0 ∈ S. Thus, G satisfies all the conditions
of the Implicit Function Theorem (Lemma 4.5). That is, there exists ρ > 0 sufficiently small
such that for any y0 ∈ H1 with ‖y0‖H1 ≤ ρ, there exists a control u ∈ L2(ω) such that the
corresponding solution of (4.1) satisfies

(y(T ), yt(T ), ytt(T )) = (0, 0, 0).

�
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5. Conclusions and future work

The paper was devoted to the study of the null controllability property of the MGT
equation. It has been proved that the linear equation fulfills the rest condition at time
T > 0 using a distributed moving control domain. The reason why we use a domain that
moves is due to the existence of the damping term −b∆yt, which implies that the spectrum
has an accumulation point. Using a generalized Implicit Function Theorem and the control
property of the linear equation, we prove local null controllability property for the nonlinear
MGT equation.

As far as we know, this work is the first control study for the MGT equation and present
a novel way to deal with nonlinear control problem. The are still many questions to consider
in connection with the control properties considered in this paper. One of these is the proof
of the observability inequality (3.16). In our case this could be obtained from the regularity
assumptions on the initial conditions and the hypothesis on the control domain ω. Another
approach which can be used is a suitable Carleman estimates for the coupled adjoint system
(3.5). The key is to use the same weight function both for the Carleman inequality of the
wave equation with viscous damping and the ODE. In this context, we refer to [2] and [10]
for Carleman estimates for a coupled parabolic–hyperbolic system and for a heat equation
coupled with an ODE, respectively.

An interesting work would be the study of controllability problems for the MGT equation
with memory terms. For example, the following MGT equation with a viscoelastic term (see
[29])

τyttt + αytt − c2∆y − b∆yt +

∫ t

0

g(t− s)∆y(s)ds = 0.(5.1)

In this case, the correct control property to study is the called memory–type null control-
lability, see [34, 11]. The reason is because, for example, it is well known that the heat
equation without memory is null controllable. However, if we add a memory term the null
controllability does not hold for all initial conditions [20].

As we mentioned in the introduction, when b = 0 and F (t, y, yt, ytt) = ν(y2)t we obtain
the Westervelt equation. The analysis developed in this paper cannot be applied for this
equation, even if we consider the linear case (F = 0), because we have used the critical

coefficient γ = α− c2

b
≥ 0 in all our proofs. An interesting problem would be the analysis of

the controllability of this equation. In the one–dimensional case, the controllability of the
Westervelt equation is part of our forthcoming work.
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