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Abstract
The three concepts of exact, null and approximate controllabilities are analyzed from
the exterior of the Moore–Gibson–Thompson equation associated with the fractional
Laplace operator subject to the nonhomogeneous Dirichlet type exterior condition.
Assuming that b > 0 and α − τc2

b > 0, we show that if 0 < s < 1 and Ω ⊂ R
N

(N ≥ 1) is a bounded domain with a Lipschitz continuous boundary ∂Ω , then there
is no control function g such that the following system

⎧
⎪⎨

⎪⎩

τuttt + αutt + c2(−Δ)su + b(−Δ)sut = 0 in Ω × (0, T ),

u = gχO in (RN \ Ω) × (0, T ),

u(·, 0) = u0, ut (·, 0) = u1, utt (·, 0) = u2 in Ω,

is exactly or null controllable in time T > 0. However, we prove that for 0 < s < 1,
the system is approximately controllable for every g ∈ H1((0, T ); L2(O)), where
O ⊂ R

N \ Ω is an arbitrary non-empty open set.
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1 Inroduction

In the present work we investigate the controllability properties of the following third
order nonlocal partial differential equation:

⎧
⎪⎨

⎪⎩

τuttt + αutt + c2(−Δ)su + b(−Δ)sut = 0 in Ω × (0, T ),

u = gχO in (RN \ Ω) × (0, T ),

u(·, 0) = u0, ut (·, 0) = u1, utt (·, 0) = u2 in Ω,

(1.1)

that we call a nonlocal version of the so called Moore-Gibson-Thompson (MGT)
equation [34–36]. In (1.1), Ω ⊂ R

N is a bounded open set with a Lipschitz continu-
ous boundary ∂Ω , τ > 0, α, b > 0 and c are real numbers, (−Δ)s (0 < s < 1) is the
fractional Laplace operator (see (2.2)), u = u(x, t) is the state to be controlled, χO
stands for the characteristic function for O, and g = g(x, t) is the control function
which is localized in a nonempty open set O ⊂ R

N \ Ω . Beyond the possible appli-
cations, our main reason for studying this model comes mainly from a mathematical
interest, in order to analyze a possible dependence of the fractional order s with the
controllability of the equation.

The local Jordan–Moore–Gibson-Thompson equation, i.e. (1.1) with s = 1 and
with source nonlinear term f (ut , utt ,∇u,∇ut ), arises frommodeling high amplitude
sound waves (in that case g is prescribed at the boundary ∂Ω). The classical nonlinear
acoustics models include Kuznetsov’s equation, theWestervelt equation, and the Kok-
hlov - Zabolotskaya - Kuznetsov equation. We refer to [8, 11, 30–32, 34, 35, 42] and
the references therein for the derivation of the local version of the MGT equation.
A complete analysis concerning well-posedness, regularity, stability and asymptotic
behavior of solutions has been established in the above mentioned references. The
physical meaning of the parameters τ , c and b are the following: c > 0 is the speed
of sound, b = δ + τc2, where δ ≥ 0 is the diffusivity of sound, and τ is a positive
constant accounting for relaxation.

Despite the wide range of applications of the local MGT equation, such as the
medical and industrial use of high intensity ultrasound in lithotripsy, thermotherapy,
ultra-sound cleaning, etc., there is only one work about their controllability properties
[39]. In that work, the authors proved that the local MGT equation can be controlled
using an interior control function supported on a moving subset of the domain Ω , in
such a way that it can visit all the domain. In other words, it is impossible to get an
interior null controllability to the local MGT equation when the control function is
localized in a fixed subset of the domain. This poor control property is closely related to
the fact that the damping term bΔut , in the local case, generates accumulation points in
the spectrum. The boundary control problem will have the same issues. Consequently,
and due to the nature of the applications, it is reasonable to ask if the dynamics of the
model can be controlled by means of external forces.
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For external controls, the fractional case seems to be more suitable to handle
because, on the one hand, for the fractional case the associated stationary (time inde-
pendent) system, hence, the evolution equation (1.1), is ill-posed if the control function
g is prescribed at the boundary ∂Ω and, on the other hand, it has been very recently
shown byWarma [40] that for nonlocal PDEs associated with the fractional Laplacian,
the exterior control, as in (1.1), is the right notion that replaces the classical boundary
control problems, that is, when the control function is localized on a subset ω of the
boundary ∂Ω .

It is worthwhile to recall that fractional order operators have emerged as a modeling
alternative in various branches of science. They usuallymodel anomalous phenomena.
For instance, a number of stochastic models explaining anomalous diffusion have been
introduced in the literature; among them we quote the fractional Brownian motion,
the continuous time random walk, the Lévy flights, the Schneider grey Brownian
motion, and more generally, random walk models based on evolution equations of
single and distributed fractional order in space (see e.g. [14, 24, 41, 50, 59]). In general,
a fractional diffusion operator corresponds to a diverging jump length variance in the
random walk. We refer to [12, 52] and the references therein for a complete analysis,
the derivation, and applications of the fractional Laplace operator. For further details
we also refer to [17, 19] and their references.

Mathematical control theory is a broad topic which has been widely investigated
during the past decades. The foundations of modern control theory date back among
others, to the early works of Bellman in the context of dynamical programming [3],
Kalman in filtering techniques and the algebraic approach to linear systems [28,
29], and Pontryagin with the maximum principle for nonlinear optimal control prob-
lems [45].

The field of controllability of Partial Differential Equations (PDEs) started to evolve
with seminal contributions like those by Fattorini and Russell [15], who introduced the
use of biorthogonal sequences to control one-dimensional heat equations. The survey
paper [49] by Russell that collected a wide spectrum of methods and results, describes
rather precisely the evolution of the field until then.

The area flourished again with the contributions by J.-L. Lions, gathered in [38].
There, it was shown, in a systematic manner, that PDEs controllability problems can
be reduced to the dual problem of observability of the corresponding adjoint system,
which amounts to prove quantitative versions of unique continuation results. This
opened the opportunity to apply and further develop different techniques that became
some of the key tools in the area, such as multipliers, microlocal analysis, Carleman
inequalities, non-harmonic Fourier series, etc. This opened also a path towards the
development of novel numerical methods to tackle these issues [22, 23, 60]. For
further information about basic facts on control theory we refer to [37, 61] and their
references.

In the present paper,we shall show that ifb > 0 and (u0, u1, u2)belongs to a suitable
Banach space, then for every function g ∈ H1((0, T ); L2(O)), the system (1.1) has
a unique weak solution (u, ut , utt ) satisfying the regularity u ∈ C([0, T ]; L2(Ω)) ∩
C2([0, T ];W−s,2(Ω)). In that case, the set of reachable states can be defined as
follows:
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R((u0, u1, u2), T ) :=
{
(u(·, T ), ut (·, T ), utt (·, T )) : g ∈ H1((0, T ); L2(O))

}
.

The classical three notions of controllability for this system can then be defined as
follows [37, 61]:

– We shall say that the system (1.1) is null controllable in time T > 0 if

(0, 0, 0) ∈ R((u0, u1, u2), T ).

– The system will be said exactly controllable in time T > 0 if

R((u0, u1, u2), T ) = L2(Ω) × W−s,2(Ω) × W−s,2(Ω).

– Finally, we will say that the system is approximately controllable in time T > 0 if

R((u0, u1, u2), T ) is dense in L2(Ω) × W−s,2(Ω) × W−s,2(Ω).

From the above definitions, it is easy to see that null or exact controllability implies
the approximate controllability. But as usual the converse is not always true. We refer
to Section 2 for the definition of the function spaces involved.

Our first main result states that if b > 0 and α− τc2
b > 0, then the system (1.1) is not

exactly or null controllable in time T > 0.However,we obtain that the system is indeed
approximately controllable in any time T > 0 and for every g ∈ H1((0, T ); L2(O))

whereO is an arbitrary nonempty open subset ofRN \Ω , which is indeed our second
main contribution. We remark that this is the best possible conclusion that can be
obtained regarding the controllability property of the system (1.1). These two results
are stated in Theorems 7 and 9.

We observe that in our study of the controllability properties, we shall always
assume that b > 0, otherwise if b = 0, then the system (1.1) is ill-posed (see Section 3
for more details).

As far as we know, the present work is the first one that provides new insights about
the exterior controllability properties for the fractional MGT equation.

Let us mention that the well-posedness of an abstract version of (1.1) (with g = 0)
where (−Δ)s is replaced with a generic self-adjoint operator A with dense domain
D(A) in a Hilbert space H , has been completely examined in several papers by using
semigroups method (see e.g. [8, 11, 30–32, 34–36, 42] and the references therein).
An interesting result provided in [31] is the fact that if b = 0, then the local MGT
equation is ill–posed. Another important fact proved in [10], is that, if α − τc2

b < 0,
then the local MGT equation exhibits a chaotic behavior. These two facts also occur in
the fractional case investigated in the present paper. For that reason, we shall assume
that b > 0 and α − τc2

b > 0.
We note that nonlinear models and some versions including memory terms have

been also intensively studied by Lasiecka andWang [34–36] where they have obtained
some fundamental and beautiful results.

In spite that (−Δ)s , with zero exterior condition, is a self-adjoint operator in L2(Ω)

with dense domain and has a compact resolvent (see Sect. 2), and hence it enters in
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the framework of semigroups theory, it should be noted that in (1.1) we have a non
zero exterior condition which does not satisfy the conditions contained in the above
references. For this reason, in the present article we shall also include new results
of existence and regularity of solutions to our nonhomogeneous system (1.1). To do
this, we shall exploit a new technique which has been developed in [40, 57, 58] to
solve fractional wave equations and strong damping wave equations. This original
method shall allow us not only to prove well-posedness but also to have an explicit
representation of solutions in terms of series which is crucial for the analysis of the
controllability properties of the system.

To summarize, themain novelties of the present paper can be formulated as follows.

(1) For the first time, a nonlocal version of the MGT equation associated with the
fractional Laplace operator with a non-zero exterior condition has been studied.
Some well-posedness results and an explicit representation of solutions in terms
of series of the nonhomogeneous exterior value nonlocal evolution system (1.1)
have been established.

(2) We have shown that the system is not null or exactly controllable in any time
T > 0.

(3) The unique continuation property of solutions to the adjoint system associated
with (1.1) has been established. This result can be obtained by using the recently
and technical result about the strong unique continuation property of the elliptic
problem associated with the fractional Laplace operator contained in [20, 21].
However, we give a second alternative proof which is interesting on its own, and is
based by a careful exploitation of the unique continuation property for eigenvalues
problems associated with the operator (−Δ)sD recently obtained in [53], and by
using some powerful tools of complex analysis.

(4) The final important result is the approximate controllability of the system which
is a direct consequence of the unique continuation property of the dual system. In
fact, we have shown that the two notions are equivalent as in the classical case of
the heat and wave equations.

(5) Notice that even if we have a third order evolution equation, our control function
g belongs only to H1((0, T ); L2(O)). For that reason a notion of very weak or
solutions by transposition has been introduced in order to deal with the existence
and regularity of solutions to the system (1.1).

The rest of the paper is structured as follows. In Sect. 2 we introduce the function
spaces needed throughout the paper, give a rigorous definition of the fractional Lapla-
cian and recall some known results that will be used in the proofs of our main results.
The well-posedness and the explicit representation of solutions to the system (1.1) and
the associated dual system are contained in Sect. 3. Finally, in Sect. 4 we state and
prove our main results, namely, Theorems 7 and 9.

2 Preliminaries

In this section we give some notations and recall some well-known results that are
needed throughout the paper.
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We start with the main tools used to study the controllability properties of PDEs.
As we said in the introduction, the null controllability of the system (1.1) consists to
study if there is a control function g such that the associated unique solution u of the
system satisfies u(·, T ) = ut (·, T ) = utt (·, T ) = 0 in Ω . By [38], this problems is
related to the dual problem of observability of the corresponding adjoint system.

The approximate controllability of the system can be also characterized by using
the associated adjoint system (3.30). More precisely, one can show that the system is
approximately controllable if and only if the associated adjoint system satisfies the
unique continuation property.We refer to themonographs [37, 61] and their references
for more specific and abstract results in this direction. For the special case investigated
here, the above mentioned result will be proved in Remark 7.

Next, we introduce the fractional order Sobolev spaces. Given 0 < s < 1 and
Ω ⊂ R

N an arbitrary open set, we let

Ws,2(Ω) :=
{

u ∈ L2(Ω) :
∫

Ω

∫

Ω

|u(x) − u(y)|2
|x − y|N+2s dxdy < ∞

}

,

and we endow it with the norm

‖u‖Ws,2(Ω) :=
(∫

Ω

|u(x)|2 dx +
∫

Ω

∫

Ω

|u(x) − u(y)|2
|x − y|N+2s dxdy

) 1
2

.

We set

Ws,2
0 (Ω) :=

{
u ∈ Ws,2(RN ) : u = 0 in R

N \ Ω
}
,

and denote byW−s,2(Ω) its dual with respect to the pivot space L2(Ω). We notice that
ifΩ is a bounded open setwith aLipschitz continuous boundary and 0 < s 	= 1/2 < 1,

thenWs,2
0 (Ω) = D(Ω)

Ws,2(Ω)
with equivalent norms. But if s = 1/2, even for smooth

domains, then Ws,2
0 (Ω) is a proper subspace of D(Ω)

Ws,2(Ω)
(see e.g. [25,Chapter

1]) and their references. The corresponding result for general bounded open sets is
contained in [53].

For more information on fractional order Sobolev spaces, we refer to [12, 25, 27,
53].

Next, we give a rigorous definition of the fractional Laplace operator. Let

L1
s (R

N ) :=
{

u : RN → R measurable and
∫

RN

|u(x)|
(1 + |x |)N+2s dx < ∞

}

.

For u ∈ L1
s (R

N ) and ε > 0 we set

(−Δ)sεu(x) := CN ,s

∫

{y∈RN : |x−y|>ε}
u(x) − u(y)

|x − y|N+2s dy, x ∈ R
N ,
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where CN ,s is a normalization constant given by

CN ,s := s22sΓ
( 2s+N

2

)

π
N
2 Γ (1 − s)

. (2.1)

The fractional Laplacian (−Δ)su is defined for u ∈ L1
s (R

N ) by the following singular
integral:

(−Δ)su(x) := CN ,s P.V.
∫

RN

u(x) − u(y)

|x − y|N+2s dy = lim
ε↓0(−Δ)sεu(x), x ∈ R

N , (2.2)

provided that the limit exists for a.e. x ∈ R
N . The fractional Laplacian can be also

defined as the pseudo-differential operator with symbol |ξ |2s . For more details on the
fractional Laplace operator we refer to [6, 7, 12, 16–18, 53, 54] and their references.

Next, let Ω ⊂ R
N be a bounded open set with a Lipschitz continuous boundary,

and consider the following Dirichlet problem:

{
(−Δ)su = 0 in Ω,

u = g in R
N \ Ω.

(2.3)

Definition 1 Let g ∈ Ws,2(RN \ Ω) and g̃ ∈ Ws,2(RN ) be such that g̃|RN \Ω = g. A

function u ∈ Ws,2(RN ) is said to be a weak solution of (2.3) if u − g̃ ∈ Ws,2
0 (Ω) and

∫

RN

∫

RN

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy = 0, ∀ v ∈ Ws,2
0 (Ω).

The following existence result is taken from [26] (see also [21]).

Proposition 1 For every g ∈ Ws,2(RN \Ω), there is a unique u ∈ Ws,2(RN ) satisfying
(2.3) in the sense of Definition 1. In addition, there is a constant C > 0 such that

‖u‖Ws,2(RN ) ≤ C‖g‖Ws,2(RN \Ω). (2.4)

Now, we consider the selfadjoint operator in L2(Ω) given by

D((−Δ)sD) :=
{
u ∈ Ws,2

0 (Ω) : (−Δ)su ∈ L2(Ω)
}

, (−Δ)sDu := ((−Δ)su)|Ω.

(2.5)

Then (−Δ)sD is the realization of (−Δ)s in L2(Ω) with the condition u = 0 in
R

N \ Ω . It is well-known (see e.g. [9, 52, 56]) that (−Δ)sD has a compact resolvent
and its eigenvalues form a non-decreasing sequence of real numbers 0 < μ1 ≤ μ2 ≤
· · · ≤ μn ≤ · · · satisfying limn→∞ μn = ∞. In addition, the eigenvalues are of finite
multiplicity. Let (ϕn)n∈N be the orthonormal basis of eigenfunctions associated with
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(μn)n∈N. Then ϕn ∈ D((−Δ)sD) for every n ∈ N, (ϕn)n∈N is total in L2(Ω) and
satisfies

{
(−Δ)sϕn = μnϕn in Ω,

ϕn = 0 in R
N \ Ω.

(2.6)

With this setting, for every real number γ ≥ 0, we can define the γ -powers of (−Δ)sD
as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D([(−Δ)sD]γ ) :=
{

u ∈ L2(Ω) :
∞∑

n=1

∣
∣μ

γ
n (u, ϕn)L2(Ω)

∣
∣2 < ∞

}

,

[(−Δ)sD]γ u :=
∞∑

n=1

μ
γ
n (u, ϕn)L2(Ω)ϕn .

(2.7)

Using (2.7), we can easily show that D([(−Δ)sD] 12 ) = Ws,2
0 (Ω) and for u ∈ Ws,2

0 (Ω)

we have that

‖u‖2
Ws,2

0 (Ω)
=

∞∑

n=1

∣
∣
∣
∣μ

1
2
n (u, ϕn)L2(Ω)

∣
∣
∣
∣

2

, (2.8)

defines an equivalent norm on Ws,2
0 (Ω). If u ∈ D((−Δ)sD), then

‖u‖2D((−Δ)sD) = ‖(−Δ)sDu‖2L2(Ω)
=

∞∑

n=1

∣
∣μn (u, ϕn)L2(Ω)

∣
∣2 .

In addition, for u ∈ W−s,2(Ω), we have that

‖u‖2
W−s,2(Ω)

=
∞∑

n=1

∣
∣
∣
∣μ

− 1
2

n (u, ϕn)L2(Ω)

∣
∣
∣
∣

2

. (2.9)

In that case, using the so called Gelfand triple (see e.g. [2]) we have the following
continuous embeddings Ws,2

0 (Ω) ↪→ L2(Ω) ↪→ W−s,2(Ω).
Next, for u ∈ Ws,2(RN ) we introduce the nonlocal normal derivative Nsu of u

defined by

Nsu(x) := CN ,s

∫

Ω

u(x) − u(y)

|x − y|N+2s dy, x ∈ R
N \ Ω, (2.10)

whereCN ,s is the constant given in (2.1). By [21,Lemma3.2], for everyu ∈ Ws,2(RN ),
we have that Nsu ∈ Ws,2

loc (RN \ Ω). If in addition (−Δ)su ∈ L2(Ω), then Nsu ∈
L2(RN \ Ω).

The following unique continuation property, recently obtained in [56,Theorem
3.10], shall play an important role in the proof of our main results.
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Lemma 1 Letμ > 0 be a real number andO ⊂ R
N \Ω an arbitrary non-empty open

set. If ϕ ∈ D((−Δ)sD) satisfies

(−Δ)sDϕ = μϕ in Ω and Nsϕ = 0 in O,

then ϕ = 0 in RN .

Remark 1 The following important identity has been recently proved in [56,Remark
3.9]. Let g ∈ Ws,2(RN \Ω) andUg ∈ Ws,2(RN ) the associated unique weak solution
of the Dirichlet problem (2.3). Then

∫

RN \Ω
gNsϕn dx = −μn

∫

Ω

ϕnUg dx, (2.11)

where we recall that (ϕn) and (μn) denote the eigenfunctions and eigenvalues of the
operator (−Δ)sD .

For more details on the Dirichlet problem associated with the fractional Laplace
operator we refer the interested reader to [4–7, 26, 46, 47, 53, 56] and their references.

The following integration by parts formula is contained in [13,Lemma 3.3] for
smooth functions. The version given here can be obtained by using a simple density
argument (see e.g. [56]).

Proposition 2 Let u ∈ Ws,2(RN ) be such that (−Δ)su ∈ L2(Ω). Then for every
v ∈ Ws,2(RN ),

CN ,s

2

∫ ∫

R2N \(RN \Ω)2

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy

=
∫

Ω

v(−Δ)su dx +
∫

RN \Ω
vNsu dx . (2.12)

We conclude this section with the following observation.

Remark 2 If u = 0 in RN \ Ω or v = 0 in RN \ Ω , then

∫ ∫

R2N \(RN \Ω)2

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy

=
∫

RN

∫

RN

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy,

so that for such functions, the identity (2.12) becomes

CN ,s

2

∫

RN

∫

RN

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy

=
∫

Ω

v(−Δ)su dx +
∫

RN \Ω
vNsu dx . (2.13)
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3 Series representation of solutions

In this section we prove the existence of solutions (very weak) to the system (1.1)
and obtain a representation in terms of series of weak solutions to the associated dual
system. Evolution equations with non-homogeneous boundary or exterior conditions
are in general not so easy to solve, since one cannot apply directly semigroups method
due to the fact that the associated operator is in general not a generator of a semigroup.
For this reason, we shall givemore details in the proofs. The representation of solutions
of the dual system in terms of series will be used in the proofs of our main results.

Throughout the remainder of the paper, without any mention, τ > 0, α, b > 0,
c and 0 < s < 1 are real numbers and Ω ⊂ R

N denotes a bounded open set with
a Lipschitz continuous boundary. Given a measurable set E ⊂ R

N , we shall denote
by (·, ·)L2(E) the scalar product in L2(E). We shall denote by 〈·, ·〉− 1

2 , 12
the duality

pairing between W−s,2(Ω) and Ws,2
0 (Ω).

We also recall that we have assumed that b > 0 and α − τc2
b > 0.

3.1 Existence of solutions to the system (1.1)

Before we start the study of solutions to the system (1.1) we give an important result
taken from [31].

Let A be a self-adjoint positive operator on a Hilbert space H such that D(A) ⊂ H
is dense in H . Consider the operatormatrixP with domain D(P) = D(A)×D(A)×H
given by

P :=
⎛

⎝
0 −I 0
0 0 −I

c2
τ
A b

τ
A α

τ
I

⎞

⎠ . (3.1)

Let

H := D(A
1
2 ) × D(A

1
2 ) × H

be endowed with the graph norm. The following result is taken from [31,Theorem
1.2].

Theorem 1 The operator −P defined in (3.1) generates a strongly continuous group
inH.

Next, let (u0, u1, u2) ∈ Ws,2
0 (Ω) ×Ws,2

0 (Ω) × L2(Ω) and consider the following
two systems:

⎧
⎪⎨

⎪⎩

τvt t t + αvt t + c2(−Δ)sv + b(−Δ)svt = 0 in Ω × (0, T ),

v = g in (RN \ Ω) × (0, T ),

v(·, 0) = 0, vt (·, 0) = 0, vt t (·, 0) = 0 in Ω,

(3.2)
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and
⎧
⎪⎨

⎪⎩

τwt t t + αwt t + c2(−Δ)sw + b(−Δ)swt = 0 in Ω × (0, T ),

w = 0 in (RN \ Ω) × (0, T ),

w(·, 0) = u0, wt (·, 0) = u1, wt t (·, 0) = u2 in Ω.

(3.3)

Then, it is clear that u := v + w solves the system (1.1). In addition, let

W :=
⎛

⎝
w

wt

wt t

⎞

⎠ and W0 :=
⎛

⎝
u0
u1
u2

⎞

⎠ .

Then the system associated to w can be rewritten as the following first order Cauchy
problem:

{
Wt + AW = 0 in Ω × (0, T ),

W (·, 0) = W0 in Ω,
(3.4)

where the operatormatrixAwith domain D(A) = D((−Δ)sD)×D((−Δ)sD)×L2(Ω)

is given by

A :=
⎛

⎝
0 −I 0
0 0 −I

c2
τ

(−Δ)sD
b
τ
(−Δ)sD

α
τ
I

⎞

⎠ . (3.5)

Let

H := D([(−Δ)sD] 12 ) × D([(−Δ)sD] 12 ) × L2(Ω) = Ws,2
0 (Ω) × Ws,2

0 (Ω) × L2(Ω)

be endowed with the graph norm

‖W0‖2H = ‖[(−Δ)sD] 12 u0‖2L2(Ω)
+ ‖[(−Δ)sD] 12 u1‖2L2(Ω)

+ ‖u2‖2L2(Ω)
.

Notice that the operator (−Δ)sD enters in the framework of [31]. Therefore, we
have the following result which is a direct application of Theorem 1.

Theorem 2 The operator −A defined in (3.5) generates a strongly continuous group
in H. As a consequence, for every W0 := (u0, u1, u2) ∈ H, the system (3.4) has a
unique strong solution W given by W (t) = e−tAW0, where (e−tA)t≥0 is the strongly
continuous semigroup on H generated by −A.

Knowing that the system (3.4) is well-posed (by Theorem 2), we are interested to
have an explicit representation of solutions. We define the real numbers m1,m2 as
follows:

m1 := τ
−C1 − √

C2

8b3
, m2 := τ

−C1 + √
C2

8b3
, (3.6)
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with

C1 := 27 − 18

(
b

τ

)

−
(
b

τ

)2

, C2 := C1 − 64

(
b

τ

)3

.

Each pair {μn, ϕn} of eigenvalues and eigenfunctions of (−Δ)sD generates a system
of eigenvalues {λn, j }n∈N, j = 1, 2, 3, of A given as the roots of the following cubic
equation:

τλ3n, j + αλ2n, j + (μnb)λn, j + μnc
2 = 0. (3.7)

From the work of Pellicer and Solà–Morales [44,Proposition 2], where the spectral
properties ofA was derived, we can obtain the representation of solutions in terms of
series. The proof is based on the spectral theorem of selfadjoint operators. Therefore,
for sake of brevity, the proof is omitted.

Proposition 3 Let (u0, u1, u2) ∈ Ws,2
0 (Ω)×Ws,2

0 (Ω)×L2(Ω). Then the uniqueweak
solution w of the system (3.4) can be written in a series representation as follows:

(a) If 1
9 < τ

b < 1, then w is given by

w(x, t) =
∞∑

n=1

(
An(t)(u0, ϕn)L2(Ω) + Bn(t)(u1, ϕn)L2(Ω) + Cn(t)(u2, ϕn)L2(Ω)

)
ϕn(x),

(3.8)

where

An(t) := λn,2λn,3

ξn,1
eλn,1t − λn,1λn,3

ξn,2
eλn,2t + λn,1λn,2

ξn,3
eλn,3t , (3.9)

Bn(t) := −λn,2 + λn,3

ξn,1
eλn,1t + λn,1 + λn,3

ξn,2
eλn,2t − λn,1 + λn,2

ξn,3
eλn,3t , (3.10)

Cn(t) := 1

ξn,1
eλn,1t − 1

ξn,2
eλn,2t + 1

ξn,3
eλn,3t , (3.11)

and

ξn,1 := (λn,1 − λn,2)(λn,1 − λn,3)

ξn,2 := (λn,1 − λn,2)(λn,2 − λn,3) (3.12)

ξn,3 := (λn,1 − λn,3)(λn,2 − λn,3).

(b) If 0 < τ
b < 1

9 and there exists n1 or n2 such that μn1 = m1 or μn2 = m2, then the
solution w can be written as

w(x, t) =
∑

n∈M

(
An(t)(u0, ϕn)L2(Ω) + Bn(t)(u1, ϕn)L2(Ω) + Cn(t)(u2, ϕn)L2(Ω)

)
ϕn(x)
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+
(
a f (n1,n2),1e

λ f (n1,n2),1t + a f (n1,n2),2e
λ f (n1,n2),2t+

a f (n1,n2),3te
λ f (n1,n2),2t

)
ϕn f (n1,n2)

(x), (3.13)

where M = N \ {n1, n2},

f (n1, n2) =
{
n1 if μn1 = m1,

n2 if μn2 = m2,

and (a f (n1,n2),1, a f (n1,n2),2, a f (n1,n2),3) are given by

⎛

⎝
1 1 0

λ f (n1,n2),1 λ f (n1,n2),2 1
λ2f (n1,n2),1

λ2f (n1,n2),2
2λ f (n1,n2),2

⎞

⎠

⎛

⎝
a f (n1,n2),1
a f (n1,n2),2
a f (n1,n2),3

⎞

⎠ =
⎛

⎝
u0, f (n1,n2)
u1, f (n1,n2)
u2, f (n1,n2)

⎞

⎠ ,

and An, Bn,Cn are given by (3.9), (3.10) and (3.11), respectively.

(c) If τ
b = 1

9 and there exists n1 such that μn1 = 3c4

b2
, then we obtain

w(x, t)

=
∑

n∈L

(
An(t)(u0, ϕn)L2(Ω) + Bn(t)(u1, ϕn)L2(Ω) + Cn(t)(u2, ϕn)L2(Ω)

)
ϕn(x)

+
(
an1,1e

λn1,1t + an1,2te
λn1,1t + an1,1t

2eλn1,1t
)

ϕn1(x), (3.14)

where L = N \ {n1}, (an1,1, an1,2, an1,3) are given by

⎛

⎝
1 0 0

λn1,1 1 0
λ2n1,1 2λn1,1 2

⎞

⎠

⎛

⎝
an1,1
an1,2
an1,3

⎞

⎠ =
⎛

⎝
u0,n1
u1,n1
u2,n1

⎞

⎠ .

For the sake of simplicity, throughout the remainder of the paper, we assume that
1
9 < τ

b < 1. The other two cases given in [44,Proposition 2] can be naturally extended
in the context of the representation of solutions.

Now, since our control function g belongs to H1((0, T ); L2(RN \ Ω)), we do not
have enough regularity to have weak solutions. For this reason we need a new notion
of solutions to the system (3.2), that we shall call very weak solutions or solutions by
transposition.

To do this, let z be the weak solution of the following backward problem:

⎧
⎪⎨

⎪⎩

−τ zttt + αztt + c2(−Δ)s z − b(−Δ)s zt = f in Ω × (0, T ),

z = 0 in (RN \ Ω) × (0, T ),

z(·, T ) = 0, zt (·, T ) = 0, ztt (·, T ) = 0 in Ω,

(3.15)

where f ∈ L2((0, T ); L2(Ω)). Following the arguments in Theorem 2, we have that
(3.15) has a unique weak solution (z, zt , ztt ) ∈ C([0, T ];Ws,2

0 (Ω) × Ws,2
0 (Ω) ×
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L2(Ω)). Multiplying (3.2) by z and using the integration by parts formula (2.13), we
obtain

∫ T

0

∫

Ω

v f dxdt = −
∫ T

0

∫

RN \Ω

(
c2g + bgt

)
Ns zdxdt .

Since z ∈ Ws,2
0 (Ω) and (−Δ)s z ∈ L2(Ω), it follows thatNs z ∈ L2((0, T ); L2(RN \

Ω)).

Definition 2 Let g ∈ H1((0, T ); L2(RN \ Ω)). The solution by transposition (or
very weak solution) of (3.2) is defined as the unique function v ∈ L2(RN × (0, T ))

satisfying the identity

∫ T

0

∫

Ω

v f dxdt = −
∫ T

0

∫

RN \Ω
(c2g + bgt )Ns zdxdt, (3.16)

for every f ∈ L2((0, T ) × Ω), where z is the unique weak solution of (3.15) with the
source term f .

The following result shows the existence and uniqueness of solutions.

Theorem 3 Let g ∈ H1((0, T ); L2(RN \ Ω)). Then there exists a unique solution by
transposition to (3.2) according to Definition 2.

Proof We prove the result in three steps.

Step 1 Let η ∈ L2(Ω × (0, T )) be a given function and consider the following dual
problem:

⎧
⎪⎨

⎪⎩

−τwt t t + αwt t + c2(−Δ)sw − b(−Δ)swt = η in Ω × (0, T ),

w = 0 in (RN \ Ω) × (0, T ),

w(·, T ) = 0, wt (·, T ) = 0, wt t (·, T ) = 0 in Ω.

(3.17)

From Theorem 2, one can easily deduce that the system (3.17) has a unique
weak solution (w,wt , wt t ) ∈ C([0, T ];Ws,2

0 (Ω) × Ws,2
0 (Ω) × L2(Ω)). In

addition, since w ∈ L2((0, T );Ws,2
0 (Ω)) and (−Δ)sw ∈ L2(Ω), we have

that Nsw ∈ L2((0, T ); L2(RN \ Ω)).
Step 2 Now, we consider the map

Λ : L2(Ω × (0, T )) → L2((0, T ); L2(RN \ Ω)), η �→ Λη := −Nsw.

By definition, we have that Λ is linear and continuous. Since g belongs to
H1(0, T ; L2(RN \Ω)), we have that (c2g+bgt ) ∈ L2((0, T ); L2(RN \Ω)).
Therefore, letting v := Λ∗(c2g + bgt ), we obtain

∫ T

0

∫

Ω

vηdxdt =
∫ T

0

∫

Ω

(Λ∗(c2g + bgt ))ηdxdt

123



Exterior controllability properties...

= −
∫ T

0

∫

RN \Ω
(c2g + bgt )Nswdxdt .

We have constructed a solution by transposition v ∈ L2(Ω × (0, T )) to the
system (3.2).

Step 3 Now we show the uniqueness of solutions. Let us assume that (3.2) has two
solutions by transposition v1, v2 with the same exterior datum g. Then, it
follows from (3.16) that

∫ T

0

∫

Ω

(v1 − v2)η dxdt = 0,

for every η ∈ L2(Ω × (0, T )). It follows from the fundamental lemma of the
calculus of variations that v1 = v2 a.e. in (0, T ) × Ω . Since v1 = v2 = g
in (0, T ) × R

N \ Ω , we can conclude that v1 = v2 a.e. in (0, T ) × R
N . The

proof is complete.

��
It follows from Proposition 3 that the system (1.1) has a unique solution by trans-

position u given by u := v + w where w is the unique weak solution of (3.4) and v

the unique solution by transposition of (3.2).
We conclude this section by giving a representation of u. To do this, we need some

preparation. We rely on the book by Tucsnak and Weiss [51,Chapter 2] to do that.

Remark 3 We have the following observations.

(a) We consider the following elliptic problem

(−Δ)sϕ = 0 in Ω, ϕ = g in R
N \ Ω. (3.18)

By a solution ϕ by transposition (or very weak solution) of (3.18) we mean a
function ϕ ∈ L2(RN ) such that ϕ = g in RN \ Ω and the equality

∫

Ω

ϕ(−Δ)sφ dx =
∫

RN \Ω
gNsφ dx,

holds, for every φ ∈ D((−Δ)sD). It has been shown in [1,Theorem 3.5] that
for every g ∈ L2(RN \ Ω), equation (3.18) has a unique solution ϕ defined by
transposition. Therefore, the Dirichlet map D : L2(RN \ Ω) → L2(Ω) given by

Dg = u ⇐⇒ (−Δ)su = 0 in Ω and u = g in RN \ Ω, (3.19)

is well–defined.
(b) Next, let us denote by A := (−Δ)sD , with D(A) := D((−Δ)sD). That is, A is

the realization in L2(Ω) of the fractional Laplace operator with zero Dirichlet
exterior condition defined in (2.5). The operator A can be extended to a bounded
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operator from Ws,2
0 (Ω) into W−s,2(Ω). Its extension is a self-adjoint positive

operator on W−s,2(Ω). If there is no confusion we use the same notation A.
Then, the operator −A : D(A) ⊂ Ws,2

0 (Ω) → W−s,2(Ω) generates a strongly
continuous submarkovian semigroup (S(t))t≥0 onW−s,2(Ω)which coincideswith
the semigroup
(e−t(−Δ)sD )t≥0 on L2(Ω) (see e.g. [9]).

(c) Let (D(A))� denote the dual space of D(A) so that we have the following contin-
uous and dense embeddings:

D(A) ↪→ W−s,2(Ω) ↪→ (D(A))�.

The semigroup S can be also extended to (D(A))� and its generator is an extension
of A which is also a self-adjoint positive operator on (D(A))�.

The following definitions are inspired by [51,Section 4.2 and 4.3].

Definition 3 (a) An operator B ∈ L(L2(RN \ Ω); (D(A))�) is called an admissible
control operator for the semigroup (S(t))t≥0, if for some τ > 0, Rang(Φτ ) ⊂
W−s,2(Ω), where for g ∈ L2((0, T ); L2(RN \ Ω)) we have set

Φτ g(t) :=
∫ t

0
S(t − τ)Bg(τ ) dτ.

(b) An operator E ∈ L(D(A), L2(RN \Ω)) is called an admissible observation oper-
ator for the semigroup (S(t))t≥0, if for some τ > 0,Ψτ has a continuous extension
to W−s,2(Ω), where for u0 ∈ D(A),

(Ψτu0)(t) :=
{
ES(t)u0 if t ∈ [0, τ ],
0 if t > τ.

Equivalently, E ∈ L(D(A), L2(RN \Ω)) is an admissible observation operator for
the semigroup (S(t))t≥0, if and only if for some τ > 0, there exists a constant Kτ ≥ 0
such that

∫ τ

0
‖ES(t)z0‖2L2(RN \Ω)

dt ≤ K 2
τ ‖z0‖2D(A). (3.20)

With the previous notations, we consider the control operator B ∈ L(L2(RN \
Ω); (D(A))�) defined by

Bg := ADg,

where D : L2(RN \ Ω) → L2(Ω) is the nonlocal Dirichlet map defined in (3.19).
Then, B is an admissible control operator for the semigroup (S(t))t≥0 in the sense of
Definition 3. In addition, the operator B∗ : L(D(A); L2(RN \ Ω)) is given by

B
∗ϕ = −Ns(A

−1ϕ), ∀ϕ ∈ L2(Ω). (3.21)
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Besides, it follows from [51,Theorem 4.4.3] that B∗ is an admissible observation
operator for the semigroup (S(t))t≥0.

Remark 4 We observe the following facts.

(a) Recall that from Theorem 2 we have that the operator −A defined in (3.5), with
D(A) := D((−Δ)sD) × D((−Δ)sD) × L2(Ω), generates a strongly continuous

semigroup (T(t))t≥0 := (e−tA)t≥0 inH := Ws,2
0 (Ω) × Ws,2

0 (Ω) × L2(Ω).
(b) LetA be the extension of the operator (−Δ)sD given inRemark 3(b) and letA be the

associated operator where (−Δ)sD is replaced with A. It follows from Theorem 1

that the operator −A : D(A) → D(A
1
2 ) × D(A

1
2 ) × W−s,2(Ω) generates a

strongly continuous semigroup (T(t))t≥0 on D(A
1
2 )×D(A

1
2 )×W−s,2(Ω)which

coincides with the semigroup (e−t(−A)t≥0 on H.
(c) Let (D(A))� denote the dual space of D((−Δ)sD). Let A be the extension of

the operator (−Δ)sD given in Remark 3(c) and let A be the associated operator
where (−Δ)sD is replaced with A. It follows from Theorem 1 that the operator

−A : D(A) → D(A
1
2 ) × D(A

1
2 ) × (D(A))� generates a strongly continuous

semigroup (T(t))t≥0 on D(A
1
2 ) × D(A

1
2 ) × (D(A))� which coincides with the

above semigroups on each subspace of H.

Throughout the following, if there is no confusion, we shall only denote by T any
of the above mentioned three semigroups.

Finally, we introduce the notion of an exterior control system, which is inspired
from the local case (see [51,Chapter 10]). Let V , Z , X be three Hilbert spaces such
that Z ↪→ X , with continuous embedding. We shall call V the input space, Z the
solution space, and X the state space. Let us consider the system

z′(t) = Lz(t), Gz(t) = w(t), (3.22)

where L and G are appropriate operators that we shall introduce below.

Definition 4 An exterior control system on U , X and Z is a pair of operators (L,G),
where

L ∈ L(Z , X), G ∈ L(Z , V ), (3.23)

such that the following conditions holds. There exists a constant β ∈ C such that

(i) G is onto;
(ii) ker(G) is dense in X ;
(iii) β I − L restricted to ker(G) is onto; and
(iv) ker(β I − L) ∩ ker(G) = {0}.

From the previous considerations, for the MGT equation we consider as control
spaceV := L2(RN \Ω), the state spacewill be X := L2(Ω)×W−s,2(Ω)×W−s,2(Ω)

and the solution space Z := W × Ws,2
0 (Ω) × V , where W = Ws,2

0 (Ω) + DV .
We recall that D is the nonlocal Dirichlet operator defined in (3.19). We observe
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that if f ∈ W , then f can be written as f = f0 + v, where f0 ∈ Ws,2
0 (Ω) and

v ∈ L2(RN \ Ω). Therefore, from the definition of the Dirichlet map D, we have
that (−Δ)s f = (−Δ)s f0 ∈ W−s,2(Ω). Thus, the operators L ∈ L(Z , X) and G ∈
L(Z ,U ) given by

L

⎡

⎣
f1
f2
f3

⎤

⎦ :=
⎡

⎣
f2
f3

− c2
τ

(−Δ)s f1 − b
τ
(−Δ)s f2 − α

τ
f3

⎤

⎦ , G

⎡

⎣
f1
f2
f3

⎤

⎦ := f1
∣
∣
∣
RN \Ω,

(3.24)

for every ( f1, f2, f3) ∈ Z are well defined.
We have the following result.

Theorem 4 The pair (L,G) is a well–posed exterior control system on V , Z and X.
The associated control adjoint operators are given by

Bg =
⎛

⎝
0
0

c2Bg

⎞

⎠ , ∀g ∈ V , (3.25)

and

B∗
⎛

⎝
ϕ1
ϕ2
ϕ3

⎞

⎠ = −c2Ns(A
−1 f3), ∀(ϕ1, ϕ2, ϕ3) ∈ D(A), (3.26)

respectively. Moreover, the control operator B is an admissible control operator for
the semigroup generates by −A, in the sense of Definition 3.

Proof Let f1 ∈ W , that is, f1 = f0 +Dv where f0 ∈ Ws,2
0 (Ω) and v ∈ L2(RN \ Ω).

Then,

G

⎡

⎣
f1
0
0

⎤

⎦ = ( f0 + Dv)

∣
∣
∣
RN \Ω = v.

Thus, we obtain that G is onto in V . Besides, ker(G) = D(A) and L
∣
∣
∣
ker(G)

= A.

To prove the conditions (ii)-(iv) in Definition 4, we observe that they are satisfied for
β = 0, since 0 ∈ ρ(A), where ρ(A) denotes the resolvent set of A. This shows that
the pair (L,G) defines an exterior control system.

Now, to prove the formula for B, we need to solve the fractional exterior elliptic
system for ( f1, f2, f3) ∈ Z . Namely,

L

⎡

⎣
f1
f2
f3

⎤

⎦ = 0, G

⎡

⎣
f1
f2
f3

⎤

⎦ = v, ∀v ∈ L2(RN \ Ω).
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It is immediate that f2 = f3 = 0 and f1 ∈ Ws,2
0 (Ω) satisfies

(−Δ)s f1 = 0 in Ω, f1 = v in R
N \ Ω.

From the well–posedness of the elliptic problem, we have that f1 = Dv. From
[51,Proposition 10.1.2], we have that for every β ∈ ρ(A),

(β I − A)−1Bv =
⎡

⎣
Dv

0
0

⎤

⎦ .

Now, taking β = 0 and applying A in both sides, we obtain the formula for B.
The formula for the adjoint B∗ of B, follows from the definition of B and (3.21).
Finally, we prove that B is an admissible control operator. We observe that from

the definition of B∗ and A, we have that

B∗A
⎛

⎝
f1
f2
f3

⎞

⎠ = −c2

τ
Ns(c

2 f1 + b f2) + c2α

τ
B

∗ f3, ∀( f1, f2, f3) ∈ D(A).

On the other hand, it is not difficult to show that (see (3.53)) the solutionW of (3.4)
satisfies the estimate

∫ T

0
‖NsW (·, t)‖2L2(RN \Ω)

dt ≤ C‖( f1, f2, f3‖2D(A) (3.27)

for every W0 = ( f1, f2, f3) ∈ D(A).
Let us now denote by C := B∗A ∈ L(D(A), L2(RN \ Ω)). From (3.27),

(3.20) and the admissibility for B∗, we obtain that C is an admissible observation
operator for (T(t))t≥0, and hence also for the associated inverse semigroup. Since
(T(t))t≥0 is a group, it follows that C is admissible for (T∗(t))t≥0. The previous fact
implies that B∗ := CA−1 is an admissible observation operator for (T∗(t))t≥0 in
L2(Ω) × W−s,2(Ω) × W−s,2(Ω). Using [51,Theorem 4.4.3], we can deduce that B
is an admissible control operator for (T(t))t≥0. The proof is finished. ��

We can deduce from the results above that the nonlocal Dirichlet exterior control
problem (1.1) can be rewritten as the following first order Cauchy problem:

{
Ut + AU = Bg, t > 0,

U (0) = U0.
(3.28)

Finally, we have the following exterior control semigroup formula for the solution U
of (3.28).

Theorem 5 Let B ∈ L(L2(RN \Ω), D(A)) be the operator given in (3.25). Then, the
Cauchy problem (3.28) (hence, (1.1)) has a unique (very weak solution (or a solution
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by transposition) U ∈ L2(Ω × (0, T ))∩C([0, T ]; L2(Ω)×W−s,2(Ω)×W−s,2(Ω))

given for every U0 ∈ L2(Ω) ×W−s,2(Ω) ×W−s,2(Ω) and g ∈ L2((0, T ); L2(RN \
Ω)) by

U (·, t) = T(t)U0 +
∫ t

0
T(t − τ)Bg(·, τ ) dτ. (3.29)

Remark 5 If the exterior data enjoy more time–regularity, then we obtain more regular
solutions. That is, from [51,Lemma 4.2.8], if g belongs to H1((0, T ); L2(RN \ Ω))

and satisfies g(0) = 0, thenU ∈ L2(Ω×(0, T ))∩C([0, T ]; Z)∩C1([0, T ]; L2(Ω)×
W−s,2(Ω) × W−s,2(Ω)), where the Hilbert space Z is given by

Z = D(A) + (β I − A)−1B
(
L2(RN \ Ω)

)
,

with β ∈ ρ(A).

3.2 Series solutions of the dual system

Now, we consider the dual system associated to (3.3). That is, the backward system

⎧
⎪⎨

⎪⎩

−τψt t t + αψt t + c2(−Δ)sψ − b(−Δ)sψt = 0 in Ω × (0, T ),

ψ = 0 in (RN \ Ω) × (0, T ),

ψ(·, T ) = ψ0, −ψt (·, T ) = ψ1, ψt t (·, T ) = ψ2 in Ω.

(3.30)

Let

ψ0,n := (ψ0, ϕn)L2(Ω), ψ1,n := (ψ1, ϕn)L2(Ω), and ψ2,n := (ψ2, ϕn)L2(Ω).

Throughout this subsection we will denote

Dn(t) := An(t), En(t) := −Bn(t) and Fn(t) := Cn(t),

where An(t), Bn(t) and Cn(t) are given in (3.9), (3.10) and (3.11), respectively.
Our notion of weak solutions to (3.30) is as follows.

Definition 5 Let (ψ0, ψ1, ψ2) ∈ Ws,2
0 (Ω) × Ws,2

0 (Ω) × L2(Ω). A function
(ψ,ψt , ψt t ) is said to be a weak solution of (3.30), if for a.e. t ∈ (0, T ), the fol-
lowing properties hold:

– Regularity and final data:

ψ ∈ C1([0, T ];Ws,2
0 (Ω)) ∩ C2([0, T ]; L2(Ω)) ∩ C3((0, T );W−s,2(Ω)),

(3.31)

ψ(·, T ) = ψ0, ψt (·, T ) = ψ1 and ψt t (·, T ) = ψ2 in Ω .
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– Variational identity: For every w ∈ Ws,2
0 (Ω) and a.e. t ∈ (0, T ), we have

〈τψt t t + αψt t + (−Δ)s(c2ψ − bψt ), w〉− 1
2 , 12

= 0.

We begin with the following technical lemma, which is consequence of λn,1 < 0
and Re(λn, j ) < 0, for j = 2, 3, implying that

∣
∣eλn, j t

∣
∣ ≤ 1 for j = 1, 2, 3. We omit

the proof for brevity.

Lemma 2 There is a constant C > 0 (independent of n) such that for every t ∈ [0, T ]
and n ∈ N,

max

⎧
⎪⎨

⎪⎩
|Dn(t)|2 , |D′

n(t)|2,
∣
∣
∣
∣
∣
∣

D′′
n (t)

μ
1
2
n

∣
∣
∣
∣
∣
∣

2

,

∣
∣
∣
∣
∣
∣

D′′
n (t)

μ
3
2
n

∣
∣
∣
∣
∣
∣

2
⎫
⎪⎬

⎪⎭
≤ C, (3.32)

max

⎧
⎪⎨

⎪⎩
|En(t)|2 , |E ′

n(t)|2,
∣
∣
∣
∣
∣
∣

E ′′
n (t)

μ
1
2
n

∣
∣
∣
∣
∣
∣

2

,

∣
∣
∣
∣
∣
∣

E ′′
n (t)

μ
3
2
n

∣
∣
∣
∣
∣
∣

2
⎫
⎪⎬

⎪⎭
≤ C, (3.33)

max

⎧
⎪⎨

⎪⎩

∣
∣
∣
∣μ

1
2
n Fn(t)

∣
∣
∣
∣

2

, |μn Fn(t)|2 , |μ
1
2
n F

′
n(t)|2, |F ′′

n (t)|2,
∣
∣
∣
∣
∣
∣

F ′′
n (t)

μ
1
2
n

∣
∣
∣
∣
∣
∣

2
⎫
⎪⎬

⎪⎭
≤ C . (3.34)

Using the previous lemma, we obtain the following existence result.

Theorem 6 For every (ψ0, ψ1, ψ2) ∈ Ws,2
0 (Ω)×Ws,2

0 (Ω)× L2(Ω), the dual system
(3.30) has a unique weak solution (ψ,ψt , ψt t ) given by

ψ(x, t) =
∞∑

n=1

(
ψ0,nDn(T − t) + ψ1,n En(T − t) + ψ2,n Fn(T − t)

)
ϕn(x), (3.35)

where Dn(t), −En(t) and Fn(t) are given in (3.9), (3.10) and (3.11), respectively. In
addition the following assertions hold.

(a) There is a constant C > 0 such that for all t ∈ [0, T ],

‖ψ(·, t)‖2
Ws,2

0 (Ω)
+ ‖ψt (·, t)‖2Ws,2

0 (Ω)
+ ‖ψt t (·, t)‖2L2(Ω)

≤ C

(

‖ψ0‖2Ws,2
0 (Ω)

+ ‖ψ1‖2Ws,2
0 (Ω)

+ ‖ψ2‖2L2(Ω)

)

, (3.36)

and

‖ψt t t (·, t)‖2W−s,2(Ω)
≤ C

(

‖ψ0‖2Ws,2
0 (Ω)

+ ‖ψ1‖2Ws,2
0 (Ω)

+ ‖ψ2‖2L2(Ω)

)

. (3.37)

(b) We have that ψ ∈ L∞((0, T ); D((−Δ)sD)).
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(c) The mapping

[0, T ) � t �→ Nsψ(·, t) ∈ L2(RN \ Ω),

can be analytically extended to the half-plane ΣT := {z ∈ CC : Re(z) < T }.
Here, Nsψ is the nonlocal normal derivative of ψ defined in (2.10).

Proof Let

ψ0 =
∞∑

n=1

ψ0,nϕn, ψ1 =
∞∑

n=1

ψ1,nϕn, ψ2 =
∞∑

n=1

ψ2,nϕn . (3.38)

The proof of the theorem is divided in several steps.

Step 1 Proceeding as in the proof of Proposition 3, we easily get that

ψ(x, t) =
∞∑

n=1

[
Dn(T − t)ψ0,n + En(T − t)ψ1,n + Fn(T − t)ψ2,n

]
ϕn(x),

(3.39)

where Dn(t) = An(t), En(t) = −Bn(t) and Fn(t) = Cn(t). In addition,
a simple calculation gives ψ(x, T ) = ψ0(x), ψt (x, T ) = −ψ1(x) and
ψt t (x, T ) = ψ2(x) for a.e. x ∈ Ω .
Let us show that ψ satisfies the regularity and variational identity require-
ments. Let 1 ≤ n ≤ m and set

ψm(x, t) :=
m∑

n=1

[
Dn(T − t)ψ0,n + En(T − t)ψ1,n + Fn(T − t)ψ2,n

]
ϕn(x).

For every m, m̃ ∈ N with m > m̃ and t ∈ [0, T ], we have that

‖ψm(x, t)−ψm̃(x, t)‖2
Ws,2

0 (Ω)

≤2
m∑

n=m̃+1

∣
∣
∣μ

1
2
n Dn(T − t)ψ0,n

∣
∣
∣
2 + 2

m∑

n=m̃+1

∣
∣
∣μ

1
2
n En(T − t)ψ1,n

∣
∣
∣
2

+ 2
m∑

n=m̃+1

∣
∣
∣μ

1
2
n Fn(T − t)ψ2,n

∣
∣
∣
2
. (3.40)

Using (3.32), (3.33) and (3.34) we get from (3.40) that, for every m, m̃ ∈ N

with m > m̃, and t ∈ [0, T ],

‖ψm(x, t) − ψm̃(x, t)‖2
Ws,2

0 (Ω)
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≤ C

⎛

⎝
m∑

n=m̃+1

∣
∣
∣μ

1
2
n ψ0,n

∣
∣
∣
2 +

m∑

n=m̃+1

∣
∣
∣μ

1
2
n ψ1,n

∣
∣
∣
2 +

m∑

n=m̃+1

∣
∣
∣ψ2,n

∣
∣
∣
2

⎞

⎠ −→ 0,

as m, m̃ → ∞. We have shown that

∞∑

n=1

[
Dn(T − t)ψ0,n + En(T − t)ψ1,n + Fn(T − t)ψ2,n

]
ϕn −→ ψ(·, t)

in Ws,2
0 (Ω) and that the convergence is uniform in t ∈ [0, T ]. Hence, ψ ∈

C([0, T ];Ws,2
0 (Ω)). Using (3.32), (3.33) and (3.34) again, we get that there

is a constant C > 0 such that for every t ∈ [0, T ],

‖ψ(·, t)‖Ws,2
0 (Ω)

≤ C
(
‖ψ0‖Ws,2

0 (Ω)
+ ‖ψ1‖Ws,2

0 (Ω)
+ ‖ψ2‖L2(Ω)

)
. (3.41)

Step 2 Next, we show that ψt ∈ C([0, T ];Ws,2
0 (Ω)). Indeed, we have

(ψm)t (x, t) = −
m∑

n=1

[
D′
n(T − t)ψ0,n + E ′

n(T − t)ψ1,n + F ′
n(T − t)ψ2,n

]
ϕn(x).

Proceeding as above, we obtain that

∞∑

n=1

[
D′
n(T − t)ψ0,n + E ′

n(T − t)ψ1,n + F ′
n(T − t)ψ2,n

]
ϕn −→ ψt (·, t)

in Ws,2
0 (Ω) and the convergence is uniform in t ∈ [0, T ]. As in the previous

case, using (3.32), (3.33) and (3.34), we get that there is a constant C > 0
such that for every t ∈ [0, T ],

‖ψt (·, t)‖2L2(Ω)
≤ C

(
‖ψ0‖2Ws,2

0 (Ω)
+ ‖ψ1‖2Ws,2

0 (Ω)
+ ‖ψ2‖2L2(Ω)

)
. (3.42)

Step 3 Next, we claim that ψt t ∈ C([0, T ]; L2(Ω)). A simple calculation shows that

∂t tψm(x, t) =
m∑

n=1

[
D′′
n (T − t)ψ0,n + E ′′

n (T − t)ψ1,n + F ′′
n (T − t)ψ2,n

]
ϕn(x).

As in Step 1, we obtain that for every m, m̃ ∈ N with m > m̃ and t ∈ [0, T ],
we have

‖∂t tψm(x, t) − ∂t tψm̃(x, t)‖2L2(Ω)
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≤ C

⎛

⎝
m∑

n=m̃+1

∣
∣
∣μ

1
2
n ψ0,n

∣
∣
∣
2 +

m∑

n=m̃+1

∣
∣
∣μ

1
2
n ψ1,n

∣
∣
∣
2 +

m∑

n=m̃+1

∣
∣
∣ψ2,n

∣
∣
∣
2

⎞

⎠

−→ 0 as m, m̃ → ∞. (3.43)

Again, we can deduce that

∞∑

n=1

[
D′′
n (T − t)ψ0,n + E ′′

n (T − t)ψ1,n + F ′′
n (T − t)ψ2,n

]
ϕn −→ ψt t (·, t)

in L2(Ω) and the convergence is uniform in t ∈ [0, T ]. In addition, using
(3.32), (3.33) and (3.34), we get that there is a constant C > 0 such that for
every t ∈ [0, T ],

‖ψt t (·, t)‖2L2(Ω)
≤ C

(
‖ψ0‖2Ws,2

0 (Ω)
+ ‖ψ1‖2Ws,2

0 (Ω)
+ ‖ψ2‖2L2(Ω)

)
. (3.44)

Finally, the estimate (3.36) follows from (3.41), (3.42) and (3.44).
Step 4: We show that ψt t t ∈ C([0, T );W−s,2(Ω)). Using (2.9), (3.32), (3.33) and

(3.34), we get that for every t ∈ [0, T ], the following inequality hold:

‖(−Δ)sDψ(·, t)‖2
W−s,2(Ω)

≤ C
(
‖ψ0‖2Ws,2

0 (Ω)
+ ‖ψ1‖2Ws,2

0 (Ω)
+ ‖ψ2‖2L2(Ω)

)
.

(3.45)

Using (2.9), (3.32), (3.33) and (3.34) again, we get that there is a constant
C > 0 such that for every t ∈ [0, T ],

‖(−Δ)sDψt (·, t)‖2W−s,2(Ω)
≤ C

(
‖ψ0‖2Ws,2

0 (Ω)
+ ‖ψ1‖2Ws,2

0 (Ω)
+ ‖ψ2‖2L2(Ω)

)
.

(3.46)

Finally, using (2.9), (3.32), (3.33) and (3.34), we get that

‖ψt t (·, t)‖2W−s,2(Ω)
≤ C

(
‖ψ0‖2Ws,2

0 (Ω)
+ ‖ψ1‖2Ws,2

0 (Ω)
+ ‖ψ2‖2L2(Ω)

)
. (3.47)

Proceeding as above, we can deduce that the series converges in W−s,2(Ω)

and the convergence is uniform in any compact subset of [0, T ). This shows
that ψt t t ∈ C([0, T );W−s,2(Ω)).
Sinceψt t t (·, t) = −αψt t (·, t)−c2(−Δ)sDψ(·, t)+b(−Δ)sDψt (·, t), it follows
from (3.45), (3.46) and (3.47) that

‖ψt t t (·, t)‖2W−s,2(Ω)
≤ C

(
‖ψ0‖2Ws,2

0 (Ω)
+ ‖ψ1‖2Ws,2

0 (Ω)
+ ‖ψ2‖2L2(Ω)

)
.

We have also shown (3.37).
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Step 5 We claim that ψ ∈ L∞((0, T ); D((−Δ)sD)). It follows from the estimate
(3.36) thatψ ∈ L∞((0, T ); L2(Ω)). Since D((−Δ)sD)×D((−Δ)sD)×L2(Ω)

is dense inWs,2
0 (Ω)×Ws,2

0 (Ω)×L2(Ω), it suffices to consider (ψ0, ψ1, ψ2) ∈
D((−Δ)sD) × D((−Δ)sD) × L2(Ω). Proceeding as above we get

‖ψ(·, t)‖2D((−Δ)sD) = ‖(−Δ)sDψ(·, t)‖2L2(Ω)

≤2
∞∑

n=1

(∣
∣
∣Dn(T − t)μnψ0,n

∣
∣
∣
2 +

∣
∣
∣En(T − t)μnψ1,n

∣
∣
∣
2 +

∣
∣
∣μn Fn(T − t)ψ2,n

∣
∣
∣
2
)

.

(3.48)

It follows from (3.48), (3.32), (3.33) and (3.34) that

‖ψ(·, t)‖2D((−Δ)sD) ≤ C
(
‖ψ0‖2D((−Δ)sD) + ‖ψ1‖2D((−Δ)sD) + ‖ψ2‖2L2(Ω)

)
.

Thus, ψ ∈ L∞((0, T ); D((−Δ)sD)) and we have shown the claim.
Step 6 It is not difficult to see that the mapping [0, T ) � t → ψ(·, t) ∈ L2(RN \ Ω)

can be analytically extended to ΣT . We also recall that for every t ∈ [0, T )

fixed, we have that ψ(·, t) ∈ D((−Δ)sD). Therefore, Nsψ(·, t) exists and
belongs to L2(RN \ Ω).

We claim that

Nsψ(x, t) =
∞∑

n=1

(
Dn(T − t)ψ0,n + En(T − t)ψ1,n + Fn(T − t)ψ2,n

)
Nsϕn(x),

(3.49)

and that the series is convergent in L2(RN \ Ω) and the convergence is uniform in
t ∈ [0, T ). Indeed, let η > 0 be fixed but arbitrary and let t ∈ [0, T −η]. Let n,m ∈ N

with n > m. SinceNs : D((−Δ)sD) → L2(RN \ Ω) is bounded, using (3.32), (3.33)
and (3.34), we have that there is a constant C > 0 such that

∥
∥
∥
∥
∥

∞∑

n=m+1

(
Dn(T − t)ψ0,n + En(T − t)ψ1,n + Fn(T − t)ψ2,n

)
Nsϕn

∥
∥
∥
∥
∥

2

L2(RN \Ω)

≤C

( ∞∑

n=m+1

|ψ0,n |2 +
∞∑

n=m+1

|ψ1,n |2 +
∞∑

n=m+1

|ψ2,n |2
)

−→ 0 as m → ∞. (3.50)

Thus, Ns is given by (3.49) and the series is convergent in L2(RN \ Ω) uniformly in
any compact subset of [0, T ).
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Besides,weobtain the following continuous dependence on the data for the nonlocal
normal derivative. Let m ∈ N and consider

ψm(x, t) =
m∑

n=1

(
Dn(T − t)ψ0,n + En(T − t)ψ1,n + Fn(T − t)ψ2,n

)
Nsϕn(x).

(3.51)

Using the fact that the operator Ns : D((−Δ)sD) → L2(RN \ Ω) is bounded, the

continuous embedding Ws,2
0 (Ω) ↪→ L2(Ω), (3.32), (3.33) and (3.32), we get that

there is a constant C > 0 such that for every t ∈ (0, T ),

‖ψm(·, t)‖L2(RN \Ω) ≤ C
(
‖ψ0‖2Ws,2(Ω)

+ ‖ψ1‖2Ws,2(Ω)
+ ‖ψ2‖2L2(Ω)

)
. (3.52)

It follows from (3.52) and (3.50) that

‖Nsψ(·, t)‖2L2(RN \Ω)
≤ C

(
‖ψ0‖2Ws,2(Ω)

+ ‖ψ1‖2Ws,2(Ω)
+ ‖ψ2‖2L2(Ω)

)
. (3.53)

Next, since the functions Dn(z), En(z) and Fn(z) are entire functions, it follows that
the function

m∑

n=1

[
Dn(T − z)ψ0,n + En(T − z)ψ1,n + Fn(T − z)ψ2,n

]
Nsϕn

is analytic in ΣT .
Let σ > 0 be fixed but arbitrary. Let z ∈ CC satisfy Re(z) ≤ T − σ . Then,

proceeding as above by using (3.32), (3.33) and (3.34), we get

∥
∥
∥
∥
∥

∞∑

n=m+1

ψ0,nDn(T − z)Nsϕn

∥
∥
∥
∥
∥

2

L2(RN \Ω)

+
∥
∥
∥
∥
∥

∞∑

n=m+1

ψ1,n En(T − z)Nsϕn

∥
∥
∥
∥
∥

2

L2(RN \Ω)

+
∥
∥
∥
∥
∥

∞∑

n=m+1

ψ2,n Fn(T − z)Nsϕn

∥
∥
∥
∥
∥

2

L2(RN \Ω)

≤C
∞∑

n=m+1

∣
∣
∣
∣μ

1
2
n ψ0,n

∣
∣
∣
∣

2

+
∞∑

n=m+1

∣
∣
∣
∣μ

1
2
n ψ1,n

∣
∣
∣
∣

2

+ C
∞∑

n=m+1

|ψ2,n|2 −→ 0 as m → ∞.

We have shown that

Nsψ(·, z) =
∞∑

n=1

ψ0,nDn(T − z)Nsϕn +
∞∑

n=1

ψ1,n En(T − z)Nsϕn
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+
∞∑

n=1

ψ2,n Fn(T − z)Nsϕn, (3.54)

and that the series is convergent in L2(RN \ Ω) uniformly in any compact subset of
ΣT . Thus, Nsψ given in (3.54) is also analytic in ΣT . The proof is finished. ��

4 Controllability results

In this section we state and prove the main results of the article. We begin with the
proof of the lack of null/exact controllability of the system (1.1). For this purpose, we
will use the following concept of controllability.

Definition 6 The system (1.1) is said to be spectrally controllable, if any finite linear
combination of eigenfunctions

u0 =
M∑

n=1

u0,nϕn, u1 =
M∑

n=1

u1,nϕn, u2 =
M∑

n=1

u2,nϕn,

can be steered to zero by a control function g.

Next, let (u, ut , utt ) and (ψ,ψt , ψt t ) be the very weak and weak solutions of (1.1)
and (3.30), respectively. Multiplying the first equation in (1.1) by ψ , then integrating
by parts over (0, T ) × Ω, and using the formulas (2.12)-(2.13), we get

∫

Ω

(
τ(uttψ − utψt + uψt t ) + α(utψ − uψt ) + bu(−Δ)sψ

)∣
∣
∣
t=T

t=0
dx

= −
∫ T

0

∫

O

(
c2g(x, t) + bgt (x, t)

)
Nsψ(x, t) dxdt . (4.1)

Using the identity (4.1) and a density argument to pass to the limit, we obtain the
following criteria of null controllability (see for instance [61] for an abstract version).

Lemma 3 The system (1.1) is null controllable in time T > 0, if and only if for each
initial condition (u0, u1, u2) ∈ L2(Ω)×W−s,2(Ω)×W−s,2(Ω), there exists a control
function g ∈ H1((0, T ); L2(O)) such that the unique weak solution (ψ,ψt , ψt t ) of
the dual system (3.30) satisfies

− τ 〈u2, ψ(·, 0)〉− 1
2 , 12

+ τ 〈u1, ψt (·, 0)〉− 1
2 , 12

− τ 〈u0, ψt t (·, 0)〉− 1
2 , 12

− α〈u1, ψ(·, 0)〉− 1
2 , 12

+ α(u0, ψt (·, 0))L2(Ω) − b(u0, (−Δ)sψ(·, 0))L2(Ω)

= −
∫ T

0

∫

O

(
c2g(x, t) + bgt (x, t)

)
Nsψ(x, t)dxdt, (4.2)

for every (ψ0, ψ1, ψ2) ∈ D((−Δ)sD) × D((−Δ)sD) × L2(Ω) ↪→ Ws,2
0 (Ω) ×

Ws,2
0 (Ω) × L2(Ω).
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Using Lemma 3, we obtain the following negative controllability result.

Theorem 7 Let b > 0 and α − τc2
b > 0. Then, the system (1.1) is not exactly or null

controllable in any time T > 0.

Proof Using Definition 6, we shall prove that no non-trivial finite linear combination
of eigenfunctions can be driven to zero in finite time.

We first write the initial data in Fourier series

u0 =
∞∑

n=1

u0,nϕn, u1 =
∞∑

n=1

u1,nϕn, u2 =
∞∑

n=1

u2,nϕn, (4.3)

and we suppose that there exists M ∈ N such that

u0,n = u1,n = u2,n = 0, ∀ n ≥ M . (4.4)

Assume that the system (1.1) is spectrally controllable. Then, there exists a control
function g such that the very weak solution (u, ut , utt ) of (1.1) with u0, u1, u2 given
by (4.3)–(4.4) satisfy u(·, T ) = ut (·, T ) = utt (·, T ) = 0 in Ω . From Lemma 3 we
have that

− τ 〈u2, ψ(·, 0)〉− 1
2 , 12

+ τ 〈u1, ψt (·, 0)〉− 1
2 , 12

− τ 〈u0, ψt t (·, 0)〉− 1
2 , 12

− α〈u1, ψ(·, 0)〉− 1
2 , 12

+ α(u0, ψt (·, 0))L2(Ω) − b(u0, (−Δ)sψ(·, 0))L2(Ω)

= −
∫ T

0

∫

O

(
c2g(x, t) + bgt (x, t)

)
Nsψ(x, t)dxdt, (4.5)

for every weak solution (ψ,ψt , ψt t ) of the dual system (3.30).
We consider the following trajectories:

ψ(x, t) = eλn, j (T−t)ϕn(x), j = 1, 2, 3. (4.6)

Replacing (4.6) in (4.5) we obtain, for any n ∈ [1, M − 1], the following system:

−τu2,ne
λn, j T + τu1,nλn, j e

λn, j T − τu0,nλ
2
n, j e

λn, j T − αeλn, j T
(
u1,n − u0,nλn, j

)

−bu0,nμne
λn, j T

= −
∫ T

0

∫

O
(c2g(x, t) + bgt (x, t))e

λn, j (T−t)Nsϕn(x)dxdt . (4.7)

Multiplying (4.7) with e−λn, j T , for each j = 1, 2, 3, we obtain a moment problem
which consists to find a function g that satisfies

−τu2,n + τu1,nλn, j − τu0,nλ
2
n, j − α

(
u1,n − u0,nλn, j

)
− bu0,nμn
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= −
∫ T

0

∫

O
(c2g(x, t) + bgt (x, t))e

−λn, j tNsϕn(x)dxdt . (4.8)

Next, inspired by the works [43, 58], we define the complex-valued function

F(z) =
∫ T

0

(∫

O
(c2g(x, t) + bgt (x, t))Nsϕn(x)dx

)

eizt dt . (4.9)

According to the Paley–Wiener theorem, F is an entire function. Due to (4.4), from
(4.8) we obtain that F satisfies F(iλn, j ) = 0, for all n ≥ M . Besides, we know that

λn,1 → − τc2
b as n → ∞ (see [44,Proposition 2]). Then, F is zero in a set with a finite

accumulation point. This implies that F ≡ 0. It follows from (4.8) and (4.9) that

⎛

⎝
αλn,1 − τλ2n,1 − bμn τλn,1 − α −τ

αλn,2 − τλ2n,2 − bμn τλn,2 − α −τ

αλn,3 − τλ2n,3 − bμn τλn,3 − α −τ

⎞

⎠

︸ ︷︷ ︸
B

⎛

⎝
u0,n
u1,n
u2,n

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ .

Calculating, we get that

det(B) = τ 3(λn,1 − λn,2)(λn,1 − λn,3)(λn,2 − λn,3) 	= 0.

Hence, the matrix B is invertible and we can then conclude that u0,n = u1,n = u2,n =
0, for n < M . Thus, the trivial state is the only one that can be steered to zero.
That is, the system is not spectrally controllable. Therefore, we can conclude that
the null controllability also fails. Besides, since the exact controllability implies the
null controllability, we obtain that the system is not exactly controllable. The proof is
finished. ��

Since (1.1) is not exactly or null controllable ifb > 0 andα− τc2
b > 0,we shall study

if it can be approximately controllable. It is straightforward to verify that the study of
the approximate controllability of (1.1) can be reduced to the case u0 = u1 = u2 = 0.
We refer to [33, 40, 48, 55, 61] for more details.

It is awell–known result that the approximate controllability is a direct consequence
of the unique continuation property of solutions to the adjoint system (3.30).

Remark 6 Let us mention that it has been recently proved in [20, 21] that the fractional
Laplacian satisfies the elliptic strong unique continuation property, that is, if u ∈
W−r ,2(RN ) := (Wr ,2(RN ))�, for some r > 0, is such that u = (−Δ)su = 0 in some
nonempty open set O ⊂ R

N , then u ≡ 0 in RN .

Now, we can state and prove the unique continuation property of solutions to the
adjoint system (3.30).

Theorem 8 Let (ψ0, ψ1, ψ2) ∈ Ws,2
0 (Ω) × Ws,2

0 (Ω) × L2(Ω) and let (ψ,ψt , ψt t )

be the unique weak solution of (3.30). Let O ⊂ R
N \ Ω be an arbitrary nonempty

open set. If Nsψ = 0 in O × (0, T ), then ψ = 0 in Ω × (0, T ).
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Proof Let O ⊂ R
N \ Ω be an arbitrary nonempty open set. We give two alternative

proofs.
Alternative 1: Suppose that Nsψ = 0 in O × (0, T ). Since ψ = 0 in (RN \ Ω) ×

(0, T )), using the definition of Ns (see (2.10)), we have that

Nsψ = (−Δ)sψ = 0 in O × (0, T ). (4.10)

It follows from Remark 6 that ψ ≡ 0 in R
N × (0, T ). The proof is finished. Notice

that the proof of the result given in Remark 6 is very technical. For that reason we
shall give a second alternative which is a direct proof of our result and it also avoids
any technicality.

Alternative 2: Suppose that Nsψ = 0 in O × (0, T ). Then, from Theorem 6, for
all (x, t) ∈ O × (0, T ), we have that

Nsψ(x, t) =
∞∑

n=1

(
Dn(T − t)ψ0,n + En(T − t)ψ1,n + Fn(T − t)ψ2,n

)
Nsϕn(x)

= 0. (4.11)

Since Nsψ can be analytically extended to ΣT , it follows that for all (x, t) ∈ O ×
(−∞, T ),

Nsψ(x, t) =
∞∑

n=1

(
Dn(T − t)ψ0,n + En(T − t)ψ1,n + Fn(T − t)ψ2,n

)
Nsϕn(x)

= 0. (4.12)

Let {μk}k∈N be the set of all eigenvalues of the operator (−Δ)sD and let {ϕk j }1≤ j≤mk

be the orthonormal basis for ker(μk − (−Δ)sD), where mk is the multiplicity of μk .
Then, (4.12) can be rewritten as

Nsψ(x, t) =
∞∑

k=1

⎛

⎝
mk∑

j=1

ψ0,k jNsϕk j (x)

⎞

⎠ Dk(T − t)

+
∞∑

k=1

⎛

⎝
mk∑

j=1

ψ1,k jNsϕk j (x)

⎞

⎠ Ek(T − t) (4.13)

+
∞∑

k=1

⎛

⎝
mk∑

j=1

ψ2,k jNsϕk j (x)

⎞

⎠ Fk(T − t) = 0, (4.14)

for every (x, t) ∈ O × (−∞, T ).
Let z ∈ C with Re(z) = η > 0 and let m ∈ N. Using the fact that {ϕk j } j∈N is an

orthonormal system, the operator Ns : D((−Δ)sD) ⊂ Ws,2(RN ) → L2(RN \ Ω) is
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bounded, and the continuous dependence on the data of Ns (see (3.53)), and letting

φm(·, t) :=
m∑

k=1

⎛

⎝
mk∑

j=1

ψ0,k jNsϕk j (x)

⎞

⎠ ez(t−T )Dk(T − t)

+
m∑

k=1

⎛

⎝
mk∑

j=1

ψ1,k jNsϕk j (x)

⎞

⎠ ez(t−T )Ek(T − t)

+
m∑

k=1

⎛

⎝
mk∑

j=1

ψ2,k jNsϕk j (x)

⎞

⎠ ez(t−T )Fk(T − t),

we obtain that there is a constant C > 0 (independent of m) such that

‖φm(·, t)‖L2(RN \Ω) ≤ Ceη(t−T )
(
‖ψ0‖Ws,2(Ω) + ‖ψ1‖Ws,2(Ω) + ‖ψ2‖L2(Ω)

)
.

(4.15)

We note that the right hand side of (4.15) is integrable over (−∞, T ) and

∫ T

−∞
eη(t−T )(‖ψ0‖Ws,2(Ω) + ‖ψ1‖Ws,2(Ω) + ‖ψ2‖L2(Ω))dt

= 1

η

(
‖ψ0‖Ws,2(Ω) + ‖ψ1‖Ws,2(Ω) + ‖ψ2‖L2(Ω)

)
.

By the Lebesgue dominated convergence theorem, we can deduce that for all x ∈
R

N \ Ω and Re(z) > 0

∫ T

−∞
ez(t−T )

⎡

⎣
∞∑

k=1

⎛

⎝
mk∑

j=1

ψ0,k jNsϕk j (x)

⎞

⎠ Dk(T − t)

+
∞∑

k=1

⎛

⎝
mk∑

j=1

ψ1,k jNsϕk j (x)

⎞

⎠ Ek(T − t)

+
∞∑

k=1

⎛

⎝
mk∑

j=1

ψ2,k jNsϕk j (x)

⎞

⎠ Fk(T − t)

⎤

⎦ dt

=
∞∑

k=1

mk∑

j=1

(
Gk(z)ψ0,k j + Hk(z)ψ1,k j + Ik(z)ψ2,k j

)
Nsϕk j (x), (4.16)
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where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Gk(z) = λk,2λk,3

ξk,1(z − λk,1)
− λk,1λk,3

ξk,2(z − λk,2)
+ λk,1λk,2

ξk,3(z − λk,3)

Hk(z) = − λk,2 + λk,3

ξk,1(z − λk,1)
+ λk,1 + λk,3

ξk,2(z − λk,2)
− λk,1 + λk,2

ξk,3(z − λk,3)

Ik(z) = 1

ξk,1(z − λk,1)
− 1

ξk,2(z − λk,2)
+ 1

ξk,3(z − λk,3)
.

(4.17)

and ξk,1, ξk,2 and ξk,3 are given in (3.12). From (4.13) and (4.16) we obtain that for
Re(z) > 0 and a.e. x ∈ O,

∞∑

k=1

mk∑

j=1

(
Gk(z)ψ0,k j + Hk(z)ψ1,k j + Ik(z)ψ2,k j

)
Nsϕk j (x) = 0. (4.18)

Using the analytic continuation property in z, we obtain that (4.18) holds for every
z ∈ C \ {λk,1, λk,2, λk,3}k∈N.

Next, we take a small circle about λk,h , for some h ∈ {1, 2, 3}, but not including
{λl, j }l 	=k, j 	=h ,with j ∈ {1, 2, 3}. Then, integrating over that circleweget the following
for a.e. x ∈ O:

mk∑

j=1

[
λk j ,2λk j ,3

ξk j ,1
ψ0,k j − λk j ,2 + λk j ,3

ξk j ,1
ψ1,k j + 1

ξk j ,1
ψ2,k j

]

Nsϕk j (x) = 0, (4.19)

mk∑

j=1

[−λk j ,1λk j ,3

ξk j ,2
ψ0,k j + λk j ,1 + λk j ,3

ξk j ,2
ψ1,k j − 1

ξk j ,2
ψ2,k j

]

Nsϕk j (x) = 0,

(4.20)
mk∑

j=1

[
λk j ,1λk j ,2

ξk j ,3
ψ0,k j − λk j ,1 + λk j ,2

ξk j ,3
ψ1,k j + 1

ξk j ,3
ψ2,k j

]

Nsϕk j (x) = 0. (4.21)

Let

ψ1
k :=

mk∑

j=1

[
λk j ,2λk j ,3

ξk j ,1
ψ0,k j − λk j ,2 + λk j ,3

ξk j ,1
ψ1,k j + 1

ξk j ,1
ψ2,k j

]

ϕk j ,

ψ2
k =

mk∑

j=1

[−λk j ,1λk j ,3

ξk j ,2
ψ0,k j + λk j ,1 + λk j ,3

ξk j ,1
ψ1,k j − 1

ξk j ,2
ψ2,k j

]

ϕk j ,

ψ3
k =

mk∑

j=1

[
λk j ,1λk j ,2

ξk j ,3
ψ0,k j − λk j ,1 + λk j ,2

ξk j ,3
ψ1,k j + 1

ξk j ,3
ψ2,k j

]

ϕk j .

It follows from (4.19), (4.20) and (4.21) that Nsψ
1
k = Nsψ

2
k = Nsψ

3
k = 0 in O.

Since {ϕk j } j∈N satisfies μkϕk j = (−Δ)sDϕk j , for every j ∈ {1, . . . ,mk}, it follows
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from the definition of ψ l
k , with l = 1, 2, 3, that

(−Δ)sψ l
k = μkψ

l
k in Ω and Nsψ

l
k = 0 in O, l = 1, 2, 3.

From Lemma (1), we can deduce that ψ l
k = 0, for every k ∈ N and l = 1, 2, 3. Since

the system {ϕk j }1≤ j≤mk is linearly independent in L2(Ω), we have that

⎛

⎜
⎜
⎜
⎜
⎜
⎝

λk,2λk,3

ξk,1
−λk,2 + λk,3

ξk,1

1

ξk,1−λk,1λk,3

ξk,2

λk,1 + λk,3

ξk,2
− 1

ξk,2
λk,1λk,2

ξk,3
−λk,1 + λk,2

ξk,3

1

ξk,3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
A

⎛

⎝
ψ0,k
ψ1,k
ψ2,k

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ .

A simple calculation shows that the determinant of the matrix A is given by

det(A) = i

2 Im(λk,2)
[
(Re(λk,2) − λk,1)2 + (Im(λk,2))2

] 	= 0.

Since the matrix A is invertible, we can deduce that

ψ0,k = ψ1,k = ψ2,k = 0, k ∈ N.

This implies that ψ0 = ψ1 = ψ2 = 0 a.e. in Ω . Since the solution (ψ,ψt , ψt t ) of the
adjoint system is unique, it follows that ψ = 0 in Ω × (0, T ). The proof is finished. ��

The last main result concerns the approximate controllability of (1.1). This result
is a direct consequence of the unique continuation property for the adjoint system
(Theorem 8).

Theorem 9 The system (1.1) is approximately controllable in any time T > 0 and
g ∈ H1((0, T ); L2(O)), whereO ⊂ R

N \ Ω is an arbitrary nonempty open set. That
is,

R((0, 0, 0), T )
L2(Ω)×W−s,2(Ω)×W−s,2(Ω) = L2(Ω) × W−s,2(Ω) × W−s,2(Ω).

Proof Let (u, ut , utt ) be the unique weak solution of (1.1) with u0 = u1 = u2 = 0.
Let (ψ,ψt , ψt t ) be the unique weak solution of (3.30) with final data (ψ0, ψ1, ψ2) ∈
D((−Δ)sD) × D((−Δ)sD) × L2(Ω) ↪→ Ws,2

0 (Ω) × Ws,2
0 (Ω) × L2(Ω). Using (4.1)

we can deduce that

τ 〈utt (·, T ), ψ0〉− 1
2 , 12

+ 〈ut (·, T ), αψ0 + τψ1〉− 1
2 , 12

+
(
u(·, T ), αψ1 + τψ2

+b(−Δ)sψ0

)

L2(Ω)
= −

∫ T

0

∫

O

(
c2g(x, t) + bgt (x, t)

)
Nsψ(x, t)dxdt . (4.22)
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Since D((−Δ)sD) × D((−Δ)sD) × L2(Ω) is dense inWs,2
0 (Ω) ×Ws,2

0 (Ω) × L2(Ω),
to prove that the set

{
(u(·, T ), ut (·, T ), utt (·, T )) : g ∈ H1((0, T ); L2(O))

}

is dense in L2(Ω)×W−s,2(Ω)×W−s,2(Ω), it suffices to show that if (ψ0, ψ1, ψ2) ∈
D((−Δ)sD) × D((−Δ)sD) × L2(Ω) is such that

τ 〈utt (·, T ), ψ0〉− 1
2 , 12

+ 〈ut (·, T ), αψ0 + τψ1〉− 1
2 , 12

+
(
u(·, T ), αψ1 + τψ2 + b(−Δ)sψ0

)

L2(Ω)
= 0, (4.23)

for every g ∈ H1((0, T ); L2(O)), then ψ0 = ψ1 = ψ2 = 0.
Indeed, let (ψ0, ψ1, ψ2) ∈ D((−Δ)sD) × D((−Δ)sD) × L2(Ω) satisfy (4.23). It

follows from (4.22) and (4.23) that

∫ T

0

∫

O

(
c2g(x, t) + bgt (x, t)

)
Nsψ(x, t)dxdt = 0,

for every g ∈ H1((0, T ); L2(O)). Recall that b > 0. By the fundamental lemma of
the calculus of variations, we can deduce that

Nsψ = 0 in O × (0, T ).

It follows from Theorem 8 that ψ = 0 in Ω × (0, T ). Since the solution (ψ,ψt , ψt t )

of (3.30) is unique, we can conclude that ψ0 = ψ1 = ψ2 = 0 in Ω . The proof is
finished. ��

We conclude the paper by observing that from the proof of the previous theorem,
we can show the equivalence between the approximate controllability of the system
and the unique continuation property proved in Theorem 8 as in the classical case of
the heat and wave equations.

Remark 7 The system (1.1) is approximately controllable in time T > 0 if and only
if the solution ψ of the associated adjoint system (3.30) satisfies the following:

(ψ solution of (3.30), Nsψ
∣
∣O×(0,T )

= 0) �⇒ ψ0 = ψ1 = ψ2 = 0 in Ω.

Indeed, consider the following mapping:

F : H1((0, T ); L2(O)) → L2(Ω) × W−s,2(Ω) × W−s,2(Ω),

g �→
(
u(·, T ), ut (·, T ), utt (·, T )

)
,

where u is the unique very weak solution of (1.1) with u0 = u1 = u2 = 0. Then it is
easy to see that the system (1.1) is approximately controllable in time T > 0 if and
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only if the range of F , that is, Ran(F) is dense in L2(Ω) × W−s,2(Ω) × W−s,2(Ω).
This is equivalent to Ker(F�) = {(0, 0, 0)}, where F� is the adjoint of F . It follows
from the proof of Theorem 9 that F� is the mapping given by

F� : Ws,2
0 Ω) × Ws,2

0 (Ω) × L2(Ω) → L2((0, T ) × O),

(ψ0, ψ1, ψ2) �→ Nsψ
∣
∣
ω×(0,T )

,

where ψ is the unique solution of the adjoint system (3.30). Again Ker(F�) =
{(0, 0, 0)} is the unique continuation principle, namely,

(ψ solution of (3.30), Nsψ
∣
∣O×(0,T )

= 0) �⇒ ψ0 = ψ1 = ψ2 = 0 in Ω.

The proof is finished.
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