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A B S T R A C T

In this paper we find the fundamental solution of the semi-discrete diffusion convection equation
with decay, and we show that under a certain combination of the parameters of the equation
said fundamental solution constitutes a uniformly continuous semigroup of operators in the
Lebesgue spaces 𝓁𝑝(Z), 1 ≤ 𝑝 ≤ ∞.

1. Introduction

In this article we study a semi-discrete version of the one-dimensional equation
{

𝑢𝑡(𝑡, 𝑥) − 𝛼𝑢𝑥𝑥(𝑡, 𝑥) + 𝑐𝑢𝑥(𝑡, 𝑥) + 𝜆𝑢(𝑡, 𝑥) = 𝑓 (𝑡, 𝑢(𝑡, 𝑥)), 𝑡 ≥ 0, 𝑥 ∈ R,
𝑢(0, 𝑥) = 𝜙(𝑥) 𝑥 ∈ R,

(1.1)

given by
{

𝑢𝑡(𝑡, 𝑛) − 𝛼𝛥𝑑𝑢(𝑡, 𝑛) + 𝑐∇𝑑𝑢(𝑡, 𝑛) + 𝜆𝑢(𝑡, 𝑛) = 𝐹 (𝑡, 𝑢(𝑡, 𝑛)), 𝑡 ≥ 0, 𝑛 ∈ Z,
𝑢(0, 𝑛) = 𝜑(𝑛), 𝑛 ∈ Z.

(1.2)

Here, 𝛥𝑑𝑓 (𝑛) ∶= 𝑓 (𝑛+1)−2𝑓 (𝑛)+𝑓 (𝑛−1) denotes the discrete Laplacian and ∇𝑑𝑓 (𝑛) ∶= 𝑓 (𝑛)−𝑓 (𝑛−1) is the discrete nabla operator.
We assume that 𝛼 > 0 and 𝑐, 𝜆 ∈ R are arbitrary real numbers.

For the case 𝑐, 𝜆 > 0 Eq. (1.1) is known as the one-dimensional diffusion convection equation with decay [1] and models the
transport, dispersion and decay of a chemical solute with concentration 𝑢(𝑡, 𝑥). In the case 𝑐 = 0, with 𝑓 (𝑡, 𝑢) = −𝑟𝑢2 and 𝜆 = −𝑟, 𝑟 > 0,
it is known as the Fisher–KPP equation and was originally studied by R. Fisher [2] in connection with population dynamics. If 𝑐, 𝜆 < 0
satisfy −𝜆 < 𝑐2

2𝛼 < 1 and 𝑓 ≡ 0, then the system (1.1) appears as a non-trivial example of PDE whose semigroup associated with the
solution is chaotic [3, Example 4.12].

For 𝑐 = 𝜆 = 0 and 𝐹 ≡ 0 the semi-discrete diffusion equation (1.2) has been studied by many authors (see [4] and the references
therein) and it is well known, see e.g. [5], that it admits an explicit solution that has the form 𝑢(𝑡, 𝑛) = 𝑒𝛼𝑡𝛥𝑑𝜑(𝑛) where

𝑒𝑡𝛥𝑑𝜑(𝑛) ∶=
∑

𝑚∈Z
𝑒−2𝑡𝐼𝑛−𝑚(2𝑡)𝜑(𝑚), 𝑡 ≥ 0, 𝑛 ∈ Z, (1.3)
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and 𝐼𝑘, 𝑘 ∈ Z, denotes the modified Bessel function.
We observe that if 𝜆 ≠ 0 but 𝑐 = 0, then it is easy to see that the unique solution of (1.2) is given by

𝑢(𝑡, 𝑛) = 𝑒−𝜆𝑡𝑒𝛼𝑡𝛥𝑑𝜑(𝑛), 𝑡 ≥ 0, 𝑛 ∈ Z, (1.4)

because it constitutes a simple translation by 𝜆𝐼 of the discrete Laplace operator 𝛥𝑑 .
Explicit solutions for semi-discrete equations are an interesting object of study and have received increasing interest in recent

ears [6–12]. For instance, Slavik [13] studied the asymptotic behavior of bounded solutions to the one-dimensional diffusion
q. (1.2) (𝜆 = 𝑐 = 0, 𝐹 ≡ 0) and Lizama and Roncal [4] proved existence and uniqueness results of almost periodic solutions for
1.2) with 𝑐 = 𝜆 = 0 and, for 𝜆 < −4, 𝑐 = 0 well-posedness on periodic Hölder spaces [4, Theorem 1.7]. The study of semilinear
ersions of (1.2) for 𝑐 = 0 has an older date. To name a few, it appears in the semi-discrete version of the Fisher’s equation [14]
ith 𝜆 = −𝑟 < 0 and 𝑐 = 0 or the Nagumo equation with 0 < 𝜆 < 1∕2 and 𝑐 = 0, see [15].

However, in the case 𝑐 ≠ 0 the analysis of the semi-discrete diffusion convection equation with decay (1.2) as well as the
description of an explicit solution together with a study of its qualitative properties seems to be an open problem.

In this article, we solve this problem by proving that an explicit solution of the homogeneous problem (1.2), that is, 𝐹 ≡ 0, has
he explicit form

𝑢(𝑡, 𝑛) =
∑

𝑚∈Z

(

1 + 𝑐
𝛼

)(𝑛−𝑚)∕2
𝑒−
(

2𝛼 + 𝑐 + 𝜆
)

𝑡𝐼𝑛−𝑚(2𝑡
√

𝛼(𝛼 + 𝑐))𝜑(𝑚), 𝑡 ≥ 0, 𝑛 ∈ Z. (1.5)

s an interesting consequence, we note that different combinations of the parameters 𝛼 > 0 and 𝑐, 𝜆 ∈ R provide new insights into
he qualitative and dynamic behavior of the solution. In particular, we find a set of parameters where we have stability (in time 𝑡)
iven by

𝛺𝛼 ∶=
{

(𝑐, 𝜆) ∶ 𝛼 + 𝑐 > 0, 2𝛼 + 𝑐 + 𝜆 > 0, 𝑐2 + 2𝑐𝜆 + 𝜆2 + 4𝛼𝜆 > 0
}

, 𝛼 > 0.

e also find that under the conditions 𝛼 + 𝑐 > 0 and 𝜆 ≥ 0 the formula (1.5) constitutes a generalization of the semigroup (1.3),
nd has 𝛼𝛥𝑑 − 𝑐∇𝑑 − 𝜆𝐼 as its infinitesimal generator.

It should be noted that Slavík and Stehlík [16] already investigated an explicit solution form for the linear counterpart of Eq. (1.2)
n the case of general time scales. In this reference, continuous time is considered as a special case, and in this special case (and
ith a unitary initial condition) the form of the explicit solution is given, and under conditions similar as those given in the set 𝛺𝛼 ,

ome properties have been obtained.

. Main results

By a solution of (1.2) we understand the existence of a sequence 𝑢(𝑡, 𝑛) that satisfies (1.2). Our first main result in this article is
he following theorem.

heorem 2.1. A solution of the semi-discrete diffusion convection equation with decay

⎧

⎪

⎨

⎪

⎩

𝑢𝑡(𝑡, 𝑛) = 𝛼𝛥𝑑𝑢(𝑡, 𝑛) − 𝑐∇𝑑𝑢(𝑡, 𝑛) − 𝜆𝑢(𝑡, 𝑛), 𝑡 ≥ 0, 𝑛 ∈ Z;

𝑢(0, 𝑛) = 𝜑(𝑛), 𝑛 ∈ Z,
(2.1)

as the form

𝑢(𝑡, 𝑛) = 𝑤(𝑡, 𝑛)
(

1 + 𝑐
𝛼

)𝑛∕2
𝑒−
(

2𝛼 + 𝑐 + 𝜆 − 2
√

𝛼(𝛼 + 𝑐)
)

𝑡 (2.2)

here 𝑤(𝑡, 𝑛) is a solution of the diffusion equation

⎧

⎪

⎨

⎪

⎩

𝑤𝑡(𝑡, 𝑛) =
√

𝛼(𝛼 + 𝑐)𝛥𝑑𝑤(𝑡, 𝑛), 𝑡 ≥ 0, 𝑛 ∈ Z;

𝑤(0, 𝑛) =
(

1 + 𝑐
𝛼

)−𝑛∕2
𝜑(𝑛), 𝑛 ∈ Z.

(2.3)

Proof. Define 𝑋(𝑡) ∶= 𝑒−𝛾𝑡 where 𝛾 ∶= 2𝛼 + 𝑐 + 𝜆 − 2
√

𝛼(𝛼 + 𝑐), and 𝑌 (𝑛) ∶= 𝜇𝑛 where 𝜇 ∶=
√

𝛼+𝑐
𝛼 . Then, from (2.2) we obtain that

𝑢𝑡(𝑡, 𝑛) = 𝑤𝑡(𝑡, 𝑛)𝑌 (𝑛)𝑋(𝑡) − 𝛾𝑤(𝑡, 𝑛)𝑌 (𝑛)𝑋(𝑡). (2.4)

Now, it is easy to see that given two arbitrary sequences 𝑓 (𝑛) and 𝑔(𝑛), the following identities hold:

∇𝑑 (𝑓𝑔)(𝑛) = ∇𝑑𝑓 (𝑛)𝑔(𝑛) + 𝑓 (𝑛 − 1)∇𝑑𝑔(𝑛),

and

𝛥 (𝑓𝑔)(𝑛) = (𝛥 𝑓 )(𝑛)𝑔(𝑛 + 1) + 2(∇ 𝑓 )(𝑛)(∇ 𝑔)(𝑛 + 1) + 𝑓 (𝑛 − 1)(𝛥 𝑔)(𝑛).
2

𝑑 𝑑 𝑑 𝑑 𝑑
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Therefore, we have that

𝛥𝑑𝑢(𝑡, 𝑛) = 𝑋(𝑡)
[

𝛥𝑑𝑤(𝑡, 𝑛)𝑌 (𝑛 + 1) + 2∇𝑑𝑤(𝑡, 𝑛)∇𝑑𝑌 (𝑛 + 1) +𝑤(𝑡, 𝑛 − 1)𝛥𝑑𝑌 (𝑛)
]

(2.5)

and

∇𝑑𝑢(𝑡, 𝑛) = 𝑋(𝑡)
[

∇𝑤𝑑 (𝑡, 𝑛)𝑌 (𝑛) +𝑤(𝑡, 𝑛 − 1)∇𝑑𝑌 (𝑛)
]

(2.6)

where

𝛥𝑑𝑌 (𝑛) = 𝑌 (𝑛 − 1)(𝜇 − 1)2 and ∇𝑑𝑌 (𝑛) = 𝑌 (𝑛 − 1)(𝜇 − 1). (2.7)

Replacing (2.7) into (2.5) and (2.6), and using (2.4), we obtain that

𝑢𝑡(𝑡, 𝑛) − 𝛼𝛥𝑑𝑢(𝑡, 𝑛) + 𝑐∇𝑑𝑢(𝑡, 𝑛) + 𝜆𝑢(𝑡, 𝑛)

= 𝑋(𝑡)
[

𝑤𝑡(𝑡, 𝑛)𝑌 (𝑛) − 𝛾𝑤(𝑡, 𝑛)𝑌 (𝑛) − 𝛼𝛥𝑑𝑤(𝑡, 𝑛)𝑌 (𝑛 + 1)

− 2𝛼∇𝑑𝑤(𝑡, 𝑛)𝑌 (𝑛)(𝜇 − 1) − 𝛼𝑤(𝑡, 𝑛 − 1)𝑌 (𝑛 − 1)(𝜇 − 1)2 + 𝑐∇𝑑𝑤(𝑡, 𝑛)𝑌 (𝑛) + 𝑐𝑤(𝑡, 𝑛 − 1)𝑌 (𝑛 − 1)(𝜇 − 1) + 𝜆𝑤(𝑡, 𝑛)𝑌 (𝑛)
]

= 𝑋(𝑡)𝑌 (𝑛)
[

𝑤𝑡(𝑡, 𝑛) − 𝛼𝜇𝛥𝑑𝑤(𝑡, 𝑛) −𝑤(𝑡, 𝑛)[𝛾 + 2𝛼(𝜇 − 1) − 𝑐 − 𝜆] +𝑤(𝑡, 𝑛 − 1)[2𝛼(𝜇 − 1) − 𝛼𝜇−1(𝜇 − 1)2 − 𝑐 + 𝑐𝜇−1(𝜇 − 1)]
]

where using (2.3) and the identity 𝛼𝜇 =
√

𝛼(𝛼 + 𝑐) we obtain that

𝑤𝑡(𝑡, 𝑛) − 𝛼𝜇𝛥𝑑𝑤(𝑡, 𝑛) = 0, 𝛾 + 2𝛼(𝜇 − 1) − 𝑐 − 𝜆 = 0,

and

2𝛼(𝜇 − 1) − 𝛼𝜇−1(𝜇 − 1)2 − 𝑐 + 𝑐𝜇−1(𝜇 − 1) = 1
𝜇
[2𝛼𝜇(𝜇 − 1) − 𝛼(𝜇 − 1)2 − 𝑐] = 𝛼

𝜇
[𝜇2 − 𝛼 + 𝑐

𝛼
] = 0,

proving the first part of (2.1). Finally, setting 𝑡 = 0 in (2.2) we obtain by (2.3) that 𝑢(0, 𝑛) = 𝜑(𝑛). It proves the theorem. □

Remark 2.2. Note that 2𝛼 + 𝑐 + 𝜆 − 2
√

𝛼(𝛼 + 𝑐) > 0 if and only if the pair (𝑐, 𝜆) belongs to the set 𝛺𝛼 ∶=
{

(𝑐, 𝜆) ∶ 𝛼 + 𝑐 >

0, 2𝛼 + 𝑐 + 𝜆 > 0, 𝑐2 + 2𝑐𝜆 + 𝜆2 + 4𝛼𝜆 > 0
}

.

This set is represented by the shadow sector below

Substituting the solution of (2.3) given by means of the formula (1.3) into (2.2) we obtain the following explicit formula for the
solution of (2.1)

𝑢(𝑡, 𝑛) =
∑

𝑚∈Z

(

1 + 𝑐
𝛼

)(𝑛−𝑚)∕2
𝑒−
(

2𝛼 + 𝑐 + 𝜆
)

𝑡𝐼𝑛−𝑚(2𝑡
√

𝛼(𝛼 + 𝑐))𝜑(𝑚), 𝑡 ≥ 0, 𝑛 ∈ Z. (2.8)

Define

𝑆𝑡(𝑛) ∶= 𝑒−
(

2𝛼 + 𝑐 + 𝜆 − 2
√

𝛼(𝛼 + 𝑐)
)

𝑡𝑇𝑡(𝑛), 𝑡 ≥ 0, 𝑛 ∈ Z, (2.9)

where

𝑇 (𝑛) ∶= 𝑒−2𝑡
√

𝛼(𝛼+𝑐)𝐼 (2𝑡
√

𝛼(𝛼 + 𝑐)). (2.10)
3

𝑡 𝑛
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Given 𝜑 ∈ 𝓁𝑝(Z) where 1 ≤ 𝑝 ≤ ∞, by Young’s convolution inequality we know that 𝜓 ∗ 𝜑 ∈ 𝓁𝑝(Z) whenever 𝜓 ∈ 𝓁1(Z). Using [17,
ormula 5.8.3 (2)] we obtain for 𝜇 ∶= (1 + 𝑐

𝛼 )
1∕2 > 0 the following identity

∑

𝑚∈Z
𝜇𝑚𝐼𝑚(2𝑡

√

𝛼(𝛼 + 𝑐)) = 𝑒(2𝛼+𝑐)𝑡, (2.11)

where 𝐼𝑘(𝑡) ≥ 0. Hence, the sequence 𝜇𝑛𝑆𝑡(𝑛) belongs to 𝓁1(Z) and therefore, for any 𝑡 ≥ 0, we can define a family of operators
𝑡 ∶ 𝓁𝑝(Z) → 𝓁𝑝(Z) by

𝑡𝜑(𝑛) ∶=
∑

𝑚∈Z
𝜇𝑛−𝑚𝑆𝑡(𝑛 − 𝑚)𝜑(𝑚), 𝑛 ∈ Z. (2.12)

We recall from [4, Theorem 1.1] that in the case 𝜆 = 𝑐 = 0 the family {𝑡}𝑡≥0 is a 𝐶0-semigroup (in fact, an analytic semigroup)
n 𝓁𝑝(Z) for all 1 ≤ 𝑝 ≤ ∞ with bounded generator 𝛼𝛥𝑑 . We observe that in such a case the one parameter family {𝑡}𝑡≥0 is even a

uniformly continuous semigroup (see e.g., [18]). We broadly generalize this classical result in the following theorem.

Theorem 2.3. Suppose that

𝛼 + 𝑐 > 0 and 𝜆 ≥ 0. (2.13)

Then {𝑡}𝑡≥0 defined in (2.12) is a uniformly continuous semigroup on 𝓁𝑝(Z), 1 ≤ 𝑝 ≤ ∞, with bounded generator 𝐴 ∶= 𝛼𝛥𝑑 − 𝑐∇𝑑 − 𝜆𝐼

roof. First, we observe that 𝐼0(0) = 1 and 𝐼𝑘(0) = 0 for 𝑘 ≠ 0 proving that 0𝜑 = 𝜑. Second, from the identity

𝐼𝑛(𝑡 + 𝑠) =
∑

𝓁∈Z
𝐼𝑛−𝓁(𝑡)𝐼𝓁(𝑠), 𝑛 ∈ Z, 𝑡, 𝑠 ∈ R,

it follows that

𝑡(𝑠𝜑)(𝑛) =
∑

𝑚∈Z
𝜇𝑛−𝑚𝑆𝑡(𝑛 − 𝑚)(𝑠𝜑)(𝑚) =

∑

𝑚∈Z
𝜇𝑛−𝑚𝑆𝑡(𝑛 − 𝑚)

∑

𝑘∈Z
𝜇𝑚−𝑘𝑆𝑠(𝑚 − 𝑘)𝜑(𝑘) =

∑

𝑚∈Z

∑

𝑘∈Z
𝜇𝑛−𝑘𝑆𝑡(𝑛 − 𝑚)𝑆𝑠(𝑚 − 𝑘)𝜑(𝑘)

=
∑

𝑘∈Z
𝜇𝑛−𝑘

(

∑

𝑚∈Z
𝑆𝑡(𝑛 − 𝑚)𝑆𝑠(𝑚 − 𝑘)

)

𝜑(𝑘) =
∑

𝑘∈Z
𝜇𝑛−𝑘

(

∑

𝑚∈Z
𝑆𝑡((𝑛 − 𝑘) − (𝑚 − 𝑘))𝑆𝑠(𝑚 − 𝑘)

)

𝜑(𝑘)

=
∑

𝑘∈Z
𝜇𝑛−𝑘𝑆𝑡+𝑠(𝑛 − 𝑘)𝜑(𝑘) = (𝑡+𝑠𝜑)(𝑛).

It shows that the family {𝑡}𝑡≥0 is a semigroup (in fact, a group). We next show the uniform continuity. Note that 𝑆𝑡(𝑚) ≥ 0 for each
𝑚 ∈ Z, and 𝜇 > 0 by the hypothesis (2.13). Moreover, the following identity

∑

𝑚∈Z
𝜇𝑚𝑆𝑡(𝑚) =

∑

𝑚∈Z
𝜇𝑚𝑒−(2𝛼+𝑐+𝜆)𝑡𝐼𝑚(2𝑡

√

𝛼(𝛼 + 𝑐)) = 𝑒−𝜆𝑡 ≤ 1, (2.14)

olds (see (2.11)). In particular, 1 − 𝑆𝑡(0) ≥
∑

𝑛∈Z⧵{0} 𝜇
𝑛𝑆𝑡(𝑛) ≥ 0. Also, observe that for any 𝜑 ∈ 𝓁𝑝(Z),

𝑡𝜑(𝑛) − 𝜑(𝑛) =
∑

𝑚∈Z
𝜇𝑛−𝑚[𝑆𝑡(𝑛 − 𝑚) − 𝑆0(𝑛 − 𝑚)]𝜑(𝑚) = (𝐾𝑡 ∗ 𝜑)(𝑛)

ith 𝐾𝑡(𝑗) ∶= 𝜇𝑗 [𝑆𝑡(𝑗) − 𝑆0(𝑗)], 𝑗 ∈ Z. Then, by Young’s convolution inequality we obtain

‖𝑡𝜑 − 𝜑‖𝑝 ≤ ‖𝐾𝑡‖1‖𝜑‖𝑝, 1 ≤ 𝑝 ≤ ∞, (2.15)

here, using (2.14), we obtain

‖𝐾𝑡‖1 =
∑

𝑛∈Z
|𝜇𝑛(𝑆𝑡(𝑛) − 𝑆0(𝑛))| =

∑

𝑛∈Z⧵{0}
|𝜇𝑛𝑆𝑡(𝑛)| + |𝑆𝑡(0) − 1| ≤ 1 − 𝑆𝑡(0) + |𝑆𝑡(0) − 1| = 2(1 − 𝑆𝑡(0)).

herefore, for any 𝜑 ∈ 𝓁𝑝(Z) satisfying ‖𝜑‖𝑝 ≤ 1 we obtain from (2.15) that

‖𝑡 − 𝐼‖ ≤ 2(1 − 𝑆𝑡(0)) = 2
(

1 − 𝑒−(2𝛼+𝑐+𝜆)𝑡𝐼0(2𝑡
√

𝛼(𝛼 + 𝑐))
)

→ 0 as 𝑡→ 0, (2.16)

roving the claim.
Finally, we show that the generator of {𝑡}𝑡≥0 is 𝐴. Indeed, from the identity 𝐼 ′𝑘(𝑧) =

1
2 [𝐼𝑘+1(𝑧) + 𝐼𝑘−1(𝑧)] combined with (2.9)

nd (2.10) it follows that

𝑆′
𝑡 (𝑘) = − 𝛾𝑒−𝛾𝑡𝑇𝑡(𝑘) + 𝑒−𝛾𝑡

√

𝛼(𝛼 + 𝑐)
[

𝐼𝑘+1(2𝑡
√

𝛼(𝛼 + 𝑐)) − 2𝐼𝑘(2𝑡
√

𝛼(𝛼 + 𝑐)) + 𝐼𝑘−1(2𝑡
√

𝛼(𝛼 + 𝑐))
]

,

here 𝛾 ∶= 2𝛼+𝑐+𝜆−2
√

𝛼(𝛼 + 𝑐). Hence, using the property that 𝐼𝑘(0) = 𝛿0(𝑘), the Kronecker delta, and recalling that 𝜇 = (1+ 𝑐
𝛼 )

1∕2

e obtain for each 𝜑 ∈ 𝓁𝑝(Z)

𝐴𝜑(𝑛) =  ′
𝑡𝜑(𝑛)|𝑡=0 =

∑

𝑚∈Z
𝜇𝑛−𝑚𝑆′

𝑡 (𝑛 − 𝑚)|𝑡=0𝜑(𝑚)

=
∑

𝜇𝑛−𝑚
[

−𝛾𝛿0(𝑛 − 𝑚) +
√

𝛼(𝛼 + 𝑐)
(

𝛿0(𝑛 − 𝑚 + 1) − 2𝛿0(𝑛 − 𝑚) + 𝛿0(𝑛 − 𝑚 − 1)
)]

𝜑(𝑚)
4

𝑚∈Z
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o

C
b

r

T

w

R
a

= −𝛾𝜑(𝑛) +

√

𝛼(𝛼 + 𝑐)
𝜇

𝜑(𝑛 + 1) − 2
√

𝛼(𝛼 + 𝑐)𝜑(𝑛) + 𝜇
√

𝛼(𝛼 + 𝑐)𝜑(𝑛 − 1)

= −(2𝛼 + 𝑐 + 𝜆)𝜑(𝑛) + 𝛼𝜑(𝑛 + 1) + (𝛼 + 𝑐)𝜑(𝑛 − 1) = 𝛼𝛥𝑑𝜑(𝑛) − 𝑐∇𝑑𝜑(𝑛) − 𝜆𝜑(𝑛).

This completes the proof. □

From semigroups theory, we immediately obtain the following corollary that gives more precise information about the regularity
f the solutions in the discrete variable.

orollary 2.4. Under the assumption (2.13), for every 𝜑 ∈ 𝓁𝑝(Z), 1 ≤ 𝑝 ≤ ∞, there exists a unique solution 𝑢(𝑡, ⋅) ∈ 𝓁𝑝(Z) of (2.1) given
y 𝑢(𝑡, 𝑛) = 𝑡𝜑(𝑛), 𝑡 ≥ 0, 𝑛 ∈ Z.

Combining Remark 2.2 with [5, Proposition 2] we obtain the following result that gives an interesting information about the
egularity of the kernel of the semigroup {𝑡}𝑡≥0 or, in other words, the discrete Green function 𝑆𝑡(𝑛) defined in (2.9).

heorem 2.5. For any pair (𝑐, 𝜆) ∈ 𝛺𝛼 with 𝜆 ≥ 0 and 𝑚 ∈ Z, the following estimates hold:

‖𝑆∙(𝑚)‖𝐿∞(0,∞) ≤
𝐶1

|𝑚| + 1
and ‖∇𝑑𝑆∙(𝑚)‖𝐿∞(0,∞) ≤

𝐶2

|𝑚|2 + 1
,

here 𝐶1 and 𝐶2 are positive constants independent of 𝑚 ∈ Z.

emark 2.6. From semigroups theory, it follows that under the hypothesis (2.13), Theorem 2.3 allows finding the solution of (1.2)
s a fixed point in 𝓁𝑝(Z) of the mapping

(𝑢)(𝑡) ∶= 𝑡𝜑 + ∫

𝑡

0
𝑡−𝑠𝑠(𝑢)𝑑𝑠,

where 𝑠(𝑢)(𝑛) ∶= 𝐹 (𝑠, 𝑢(𝑠, 𝑛)).
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