
International Journal of Heat and Mass Transfer 154 (2020) 119677 

Contents lists available at ScienceDirect 

International Journal of Heat and Mass Transfer 

journal homepage: www.elsevier.com/locate/hmt 

The time fractional approach for the modeling of thermal therapies: 

Temperature analysis in laser irradiation 

C. Lizama 

a , M. Trujillo 

b , ∗

a Departamento de Matemática y Ciencia de la Computación, Facultad de Ciencias, Universidad de Santiago de Chile, Santiago, Chile 
b BioMIT, Department of Applied Mathematics, Universitat Politècnica de València, Valencia 46022, Spain 

a r t i c l e i n f o 

Article history: 

Received 4 December 2019 

Revised 26 February 2020 

Accepted 18 March 2020 

Keywords: 

Fractional derivative equation 

Time fractional equation 

Thermal therapies 

Heat equation 

Laser irradiation 

a b s t r a c t 

In this study we assessed the use of the fractional derivative formulation of the heat transmission equa- 

tion (FDHTE) as an alternative to the classical or parabolic heat transfer equation (PHTE) in the math- 

ematical modeling of some thermal therapy processes. We obtained the FDHTE analytical solutions in 

two cases: a general case of heat transfer in a finite bar with different and constant temperature in its 

extremes (without heat source), and the heating by a laser source of a semi-infinite medium which in- 

cludes a heat source and it was considered in thermal therapies to destroy or alter biological tissue. Both 

solutions were obtained analytically and compared with the PHTE results. We also compared the FDHTE 

solution with the results of the hyperbolic heat transfer equation (HHTE), which is another alternative to 

the PHTE, but is only used for problems in which intense heat is applied to materials for very short times. 

The results show that the FDHTE can be used as an alternative to the PHTE in thermal therapy processes 

in which the PHTE theoretical models underestimate or overestimate the temperatures achieved in tissue. 

Unlike the HHTE, the FDHTE is not restricted to special problems only. We have thus laid the groundwork 

for the analytical resolution of the problems considered by the FDHTE. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The parabolic heat transfer equation (PHTE) is commonly used

s the governing equation in a heating theoretical model 

c 
∂T 

∂t 
(x , t) = ∇ · (k ∇T (x , t)) + S(x , t) (1.1)

here T ( x , t ) is temperature at point x at time t, k is the thermal

onductivity, ρ is the density, c is the specific heat and S ( x , t ) is

he heat source in the material. 

Since the beginning of the 20th century, it has been known

hat Fourier’s law of heat transfer in solids, on which the PHTE

s based, leads to two physically unacceptable conclusions: an in-

nite speed of heat conduction and the existence of infinite value

eat flows. However, as the results provided by the PHTE are in

ood agreement with the experimental results in most ordinary

ngineering applications, only theoretical physicists needed to im-

rove the formulation of the heat equation. Due to the advances

n heating technology (such as the increasing use of laser pulses in

aterial processing since the 1960s) new physical situations arose

n which great amounts of heat are applied to materials for very
∗ Corresponding author. 
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hort times. Under these conditions, more significant differences

ere found between the PHTE and the experimental results. Some

tudies proposed the hyperbolic heat transfer equation (HHTE) as

 mathematical formulation that correctly solves these particular

eating situations [9,22,27] . The HHTE assumes a delay in heating

haracterized by the thermal relaxation time ( τ ) 

ρc 

(
∂T 

∂t 
(x , t) + τ

∂ 2 T 

∂t 2 
(x , t) 

)
= ∇ · (k ∇T (x , t)) + S(x , t) + τ

∂S 

∂t 
(x , t) (1.2) 

However, from a theoretical point of view, it has been shown

hat the HHTE violates the second law of thermodynamics. To

vercome this limitation, the relativistic heat conduction equation

2] was formulated, which uses the same formulation as the HHTE

ut with a different physical interpretation of the parameter τ .

he dual phase lag HHTE (DHHTE) approach was also used to

vercome the problems of the single phase lag HHTE ( Eq. (1.2) ).

he DHHTE provides better agreement with the experimental re-

ults in some applications (see e.g. [36] ). In the DHHTE formu-

ation appears a second relaxation time which affects the heat

ux. A Lorentz-covariant heat conduction model has recently been

roposed [23] as a model which obeys Lorentz covariance and

oes not violate the second law of thermodynamics. The Lorentz-

https://doi.org/10.1016/j.ijheatmasstransfer.2020.119677
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l

covariant heat conduction model has the same terms of application

as the HHTE and the relativistic heat conduction model: processes

in which intense heat is applied for very short times. 

An alternative was proposed by Gurtin and Pipkin [12] which is

valid for other cases than briefly applied intense heat. These au-

thors found that the law of heat conduction can be given by a

general non-local dependence on time, obtaining a heat conduc-

tion equation with memory 

ρc 
∂T 

∂t 
(x , t) = 

∫ t 

0 

K(t − s ) ∇ · (k ∇T (x , s )) ds. (1.3)

Fourier’s law is obtained by choosing the kernel function K ( t ) as

the Dirac delta function [12] . 

With a memory proper power law kernel i.e. K(t) = 

t β−1 

�(β) 
, the

flux can be interpreted in terms of fractional integrals and deriva-

tives. This leads to the time fractional heat equation 

ρc 
∂ βT 

∂t β
(x , t) = ∇ · (k ∇T (x , t)) + S(x , t) (1.4)

Thermal therapies are commonly used to destroy tumors or

other types of altered tissue such as arrhythmias, osteoid os-

teoma, corneal curvature, etc. [10,26,30] . Different energy sources

can be used (radiofrequency, laser, microwave, ultrasound) to con-

trol heating in order to alter or destroy biological tissues. Some-

times this thermal therapies are mixed with other alternative tech-

niques such as the addition of nanoparticles [17] . The theoretical

modeling of thermal therapies is commonly used to study the bio-

physical characteristics of these processes and to assess or improve

the suitability of the techniques. As in the theoretical modeling of

the heating of other materials, the PHTE is used as the governing

equation of biological tissues. Specifically, the governing equation

for the heating of biological tissues is called the Bioheat Equation,

which was proposed by Pennes [29] . The Bioheat Equation presents

the same formulation than Eq. (1.1) , but the source S ( x , t ) also in-

cludes metabolic heat generation and heat losses due to blood per-

fusion. Despite the broad use of the Bioheat Equation (i.e. PHTE) in

the theoretical modeling of thermal therapies, in some cases the

theoretical and experimental results revealed differences in terms

of temperature and thermal damage predictions (see for example

[5,24] ). These authors suggest several reasons for these discrep-

ancies, one is that the PHTE simply does not provide an accu-

rate solution. These differences have been found in different types

of problems, and not only in those which involve the application

of high fluxes or short times. For example, in [24] heating times

are around several minutes. This means that the usual alternatives

for the PHTE (the HHTE, the relativistic and Lorentz-covariant heat

conduction models) are not suitable and an appropriate formula-

tion has still to be found. 

The interest of this study was thus to propose an alternative to

the PHTE that better fits with the experimental results of thermal

therapies and which could be of significance for all times and val-

ues of heat fluxes. 

Our hypothesis was that the time fractional derivative formula-

tion of the heat transfer equation (FDHTE) can assume a non-ideal

behavior of heat conduction which differs to the PHTE, and can

provide more accurate theoretical results that better agree with ex-

perimental data. The FDHTE equations have the form (1.4) where

β > 0 plays the role of a tuner that is able to better capture the

experimental data. 

The objective was thus to assess the effect of the FDHTE on the

theoretical modeling of thermal therapies. With this aim, firstly, we

assessed a general heat conduction case to observe how the differ-

ent PHTE and FDHTE formulations affect the solution and also ana-

lyze the necessary tools to obtain an analytic solution by means of

Laplace transform methods ( Section 2.1 ). In this first case no heat

source was considered. Secondly, we studied the laser irradiation
f a semi-infinite medium, with was related with the use of laser

n thermal therapies ( Section 2.2 ). In this second case a heat source

rom the laser irradiation was considered. 

. Mathematical modeling with a time fractional approach 

.1. Heat conduction in a finite bar without heat source 

The first case involved heat conduction in a finite bar of length

 = 1 , with null initial temperature. For t > 0 we applied a con-

tant temperature T 1 in x = 0 , while the extreme x = 1 always re-

ained at null temperature. 

We considered the initial and boundary value problem: 

 

 

 

 

 

 

 

∂ 2 x T (x, t) = 

1 

α
∂ βt T (x, t) , t > 0 , 0 < x < 1 , 0 < β ≤ 2 ;

T (0 , t) = T 1 , t > 0 ;
T (1 , t) = 0 , t > 0 ;
T (x, 0) = 0 , 0 < x < 1 . 

(2.1)

Here, we denote by ∂ βt the time fractional derivative of order β
n the sense of Caputo. We recall that given a differentiable func-

ion f : R + → R we define 

 

β
t f (t) := (g 1 −β ∗ f ′ )(t) := 

∫ t 

0 

g 1 −β (t − τ ) f ′ (τ ) dτ, t > 0 , 

(2.2)

henever 0 < β ≤ 1 and, for f twice differentiable, 

 

β
t f (t) := (g 2 −β ∗ f ′ )(t) := 

∫ t 

0 

g 2 −β (t − τ ) f ′′ (τ ) dτ, t > 0 , 

n case 1 < β ≤ 2. In the above formulation, g γ denotes the stan-

ard kernel 

 γ (t ) := 

t γ −1 

�(γ ) 
, γ > 0 , t > 0 , 

here � denotes the Gamma function. In our formulation, each lo-

al integer derivative f ′ ( t ) (respectively, f ′′ ( t )) at each time position

(0 < τ < s ) in the time interval (0, t ) contributes with weight

 1 −β (t) (respectively, g 2 −β (t) ) to the Caputo fractional derivative

f f ( t ) during the time interval (0, t ). Hence, the Caputo derivative

s a nonlocal quantity, pertaining to a time interval, versus the con-

entional derivative of f ( t ), f ′ ( t ), which is defined for the particular

ime location t . Within this framework, the effect of the initial con-

ition at the initial time location 0 is still accounted for any time

 (0 ≤ t ≤ T ) during a whole simulation period (0, T ) by means

f the fractional time derivative that appears in the above gov-

rning energy Eq. (2.1) in fractional time. It also follows from Eq.

2.2) that this memory effect is modulated by the value of the frac-

ional power β . As shown by Podlubny [31] , as β → 1, the Caputo

ractional time derivative of f ( t ), as given by Eq. (2.2) , converges to

he local time derivative f ′ ( t ) at t . 

From above it follows that the fractional governing equation

2.1) is nonlocal. Accordingly, it can account for the influence of

he initial conditions on the flow process more effectively than

he corresponding local-scale integer-order conventional governing

quations. In fractional differentiation with respect to time, the pa-

ameter β can be physically interpreted as an existence of memory

ffects which correspond to intrinsic dissipation in our system. For

ore information related to the subject of fractional calculus, we

efer the reader to e.g. [3] . Some methods to solve time fractional

odels have been proposed by several authors, see for instance the

eferences [14–16] . 

Note that the case β = 1 is the PHTE formulation of the prob-

em, whereas the FDHTE formulation corresponds to β � = 1. 
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emark 2.1. Using the change of variable x = x, t = αt and 

 ( x , t ) = 

1 

T 1 
T ( x , 

t 

αβ
) , 

e solve the dimensionless problem. We observe that this is pos-

ible only because the change of variable ϕ( τ ) := ατ is linear

nd hence the Caputo fractional derivative obey to the compos-

te rule: D 

β
τ ( f ◦ ϕ)(τ ) = αβD 

β
τ f (ϕ(τ )) . In general, the Caputo frac-

ional derivative fails to have these property. 

Consequently, we have to solve the initial value problem 

 

 

 

∂ 2 x T ( x , t ) = ∂ β
t 

T ( x , t ) , t > 0 , 0 < x < 1 , 0 < β ≤ 2 ;
T ( x , 0) = 0 , 0 < x < 1 ;

∂ t T ( x , 0) = 0 , 0 < x < 1 , ( only if 1 < β ≤ 2) , 

(2.3) 

ith boundary conditions T (0 , t ) = 1 and T (1 , t ) = 0 . One of the

ain features of this formulation, is that the temperature at t = 0

s equal to zero. This is known as an ill-posed problem, because

he solution does not depend on the initial data. From a mathe-

atical point of view, several methods fail to solve this problem,

ince they deal only with well-posed problems. For instance the

emigroup method [28] , based on operator theory, produces the

rivial solution. The reason of this drawback is that mathematically

s customary to assume non-zero initial conditions in most of the

heoretical studies. Therefore, we have to adopt in this paper a di-

ect method, using the Laplace transform as main tool. 

Recall that the Laplace transform of a function f : R + → R is

efined by 

̂ f (s ) := L ( f )(s ) := 

∫ ∞ 

0 

e −st f (t ) dt , 

or all s ∈ C such that Re ( s ) is sufficiently large, say, Re ( s ) > ω ( ω ∈
 ) . 

For example, for Re ( s ) > ω the identities ̂ 

 

β
t f (s ) = s β ̂ f (s ) − s β−1 f (0) , 0 < β ≤ 1 , 

nd ̂ 

 

β
t f (s ) = s β ̂ f (s ) − s β−1 f (0) − s β−2 f ′ (0) , 1 < β ≤ 2 , 

re valid [31, Chapter 4, p.138, formula (4.1)] . 

We first analyze β = 1 . In such case, we claim that the unique

olution of the PHTE problem (2.1) is given by the explicit formula

 (x, t) = T 1 

∞ ∑ 

k =0 

(
Erfc 

(
x + 2 k 

2 

√ 

αt 

)
− Erfc 

(
2 − x + 2 k 

2 

√ 

αt 

))
, (2.4)

here Erfc denotes the complementary error function, defined by 

r f c(z) := 

2 √ 

π

∫ ∞ 

z 

e −t 2 dt, z ∈ R . 

ndeed, taking Laplace transform with respect to t in Eq. (2.3) and

sing the initial condition T ( x , 0) = 0 we get 

 

2 
x ̂

 

T ( x , s ) − s ̂
 

T ( x , s ) = 0 (2.5)

here we denote ̂
 

T ( x , s ) := L [ T ( x , ·)](s ) . Eq. (2.5) is a second order

ifferential equation with constant coefficients whose characteris-

ic equation is λ2 − s = 0 , and so its solution is of the form 

 

 ( x , s ) = A (s ) e 
√ 

s x + B (s ) e −
√ 

s x . (2.6)

rom the boundary conditions T (0 , t ) = 1 and T (1 , t ) = 0 we get
 

 (0 , s ) = 

1 
s and ̂

 

T (1 , s ) = 0 . Thus, we deduce that A ( s ) and B ( s ) are

iven by 

 (s ) = 

e −2 
√ 

s 

(e −2 
√ 

s − 1) s 
B (s ) = 

−1 

(e −2 
√ 

s − 1) s 
. 
herefore, the solution of Eq. (2.5) is 

 

 ( x , s ) = 

e −2 
√ 

s (1+ x ) − e −
√ 

s x 

(e −2 
√ 

s − 1) s 
. 

ince Re ( s ) > ω, we can recast the fraction 

1 

1 −e −2 
√ 

s 
as a geometric

eries of common ratio e −2 
√ 

s < 1 , and the above equation can be

ewritten as: 

 

 ( x , s ) = 

1 

s 

∞ ∑ 

k =0 

[ e −
√ 

s x −2 k 
√ 

s − e −2 
√ 

s + x √ 

s −2 k 
√ 

s ] . 

n order to obtain the inverse Laplace transform of the above ex-

ression, we divide it into two parts: ̂
 

T (x, s ) = C( x , s ) + D ( x , s ) , be-

ng 

( x , s ) := 

∞ ∑ 

k =0 

e −
√ 

s [2 −x +2 k ] 

s 
and D ( x , s ) := 

∞ ∑ 

k =0 

e −
√ 

s [ x +2 k ] 

s 
. 

rom [13, Formula 102, p.1116] we know that the Laplace transform

f the function ψ(τ ) = Er f c( a √ 

τ
) is given by 

̂ 

 (s ) = 

e −2 a 
√ 

s 

s 
, Re (a ) > 0 . 

herefore, the inverse Laplace transform of C and D are: 

L 

−1 (C)( x , t ) = 

∞ ∑ 

k =0 

Er f c 

( 

2 − x + 2 k 

2 

√ 

t 

) 

, 

L 

−1 (D )( x , t ) = 

∞ ∑ 

k =0 

Er f c 

( 

x + 2 k 

2 

√ 

t 

) 

. 

ince T ( x , t ) = L 

−1 (D )( x , t ) − L 

−1 (C)( x , t ) , returning to dimension

ariables, we obtain the solution of the problem given by the for-

ula (2.4) and proves the claim. 

In what follows, we need to recall the Wright function, that we

enote by W λ, μ. It was introduced and investigated by E. Maitland

right in a series of notes starting from 1933 in the framework

f the theory of partitions; see [34] . This entire function is de-

ned by the series representation, convergent in the whole com-

lex plane: 

 λ,μ(z) = 

∞ ∑ 

n =0 

z n 

n !�(λn + μ) 
, λ > −1 , μ ∈ C . 

or 0 < ν < 1 and μ ≥ 0 the function ψ ν , μ in two variables de-

ned by 

 ν,μ(t, a ) := t μ−1 W −ν,μ(−at −ν ) , t > 0 , a ∈ C , 

s called scaled Wright function, and was introduced in [1, Sec-

ion 3] in connection with subordination principles. Among others,

his function satisfy the following property [1, Theorem 3] : 

 ∞ 

0 

e −st ψ ν, 1 (t, a ) dt = 

e −as ν

s 
, s > 0 , a > 0 , 0 < ν < 1 . (2.7)

n particular, we have the following precise description of the func-

ion ψ ν ,1 

 ν, 1 (t, a ) = 

∞ ∑ 

j=0 

(−1) j a j t −ν j 

j!�(1 − ν j) 
, a, t > 0 , 0 < ν < 1 . 

ince �(1) = 1 , we obtain using the Euler’s reflection formula 

ψ ν, 1 (t, a ) = 1 + 

∞ ∑ 

j=1 

(−1) j a j t −ν j 

j! 

sin (πν j)�(ν j) 

π
, 

a, t > 0 , 0 < ν < 1 . 
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Fig. 1. Schematic representation of the model geometry considered in the study of 

the tissue laser irradiation. 

I  

c  

1

∂

S  

b

T̂

R

T̂

U

T

G  

t

2

 

t  

c  

t  

c  

e  

r  

m  

a  

t  

P

 

l  

w  

s

 

S  
Then, by using Legendre duplication formula for the Gamma func-

tion, we arrive at the following representation 

ψ ν, 1 (t, a ) = 1 + 

2 √ 

π

∞ ∑ 

j=1 

(−1) j a j t −ν j 

j! 

sin ( jπν) 

2 

2 ν j 

�(2 ν j) 

�(ν j + 

1 
2 
) 
, 

a, t > 0 , 0 < ν < 1 . (2.8)

In case ν = 1 / 2 we have 

Er f c( 
a 

2 

√ 

t 
) = ψ 1 / 2 , 1 (t, a ) (2.9)

Although the formula (2.8) is a proper mathematical generalization

of (2.9) , we observe that the series (2.8) is very unstable for com-

puter simulations. This task will be treated in what follows. 

There is another representation in terms of known functions.

This can be derived observing that by [1, (v) of Theorem 3] we

have 

ψ ν, 1 (t, a ) = 

∫ t 

0 

f a,ν (s ) ds, t ≥ 0 , 

where f a, ν ( s ) is the Lévy density function, which according to [35 ,

p.263, Formula (17) with θ = π ] is given by 

f a,ν (s ) = 

1 

π

∫ ∞ 

0 

e −sr −ar ν cos (πν) sin ( ar ν sin ( πν)) dr 

Therefore 

ψ ν, 1 (t, a ) = 

1 

π

∫ ∞ 

0 

e −ar ν cos (πν) sin (ar ν sin (πν)) 

[
1 − e −tr 

r 

]
dr 

= 1 − 1 

π

∫ ∞ 

0 

e −tr −ar ν cos (πν) sin (ar ν sin (πν)) 

r 
dr 

= 

1 

πν

∫ ∞ 

0 

e −a cos (πν) s sin (a sin (πν) s ) 

s 
ds 

− 1 

πν

∫ ∞ 

0 

sin (ar sin (πν)) 

r 
e −tr 1 /ν−ar cos (πν) dr 

= 1 − 1 

πν

∫ ∞ 

0 

sin (ar sin (πν)) 

r 
e −tr 1 /ν−ar cos (πν) dr, 

where we used the identity 

1 

πν

∫ ∞ 

0 

e −a cos (πν) s sin (a sin (πν) s ) 

s 
ds = 1 , (2.10)

which is valid only for 0 < ν ≤ 1 
2 since we should have

cos ( πν) > 0 in order to guarantee the convergence of the integral

in (2.10) . 

We observe that, for our purposes, our interest is the case

ν > 1/2 and therefore the above representation for ψ ν ,1 , although

valid, is not enough. 
An equivalent representation, taking θ = 0 in [35, p.263, For-

mula (17)] and then valid for 0 < ν < 1 is 

ψ ν, 1 (t, a ) = 

1 

2 
+ 

1 

πν

∫ ∞ 

0 

[
e −a cos (πν/ 2) r 

] sin (tr 1 /ν − ar sin (πν/ 2)) 

r 
dr. 

(2.11)

It happens that, when we tuning the parameter μ, that represents
the fractional derivative in the explicit solution of the models, the
above representation turns out to be very stable for computational
simulations. This very important fact, will be made clear for the
reader in the remaining of this paper. 

Using (2.11) , we claim that the unique solution of the PDHTE

problem (2.1) in case 0 < β < 2 is given by the following formula

T (x, t) = T 1 

∞ ∑ 

k =0 

[ ψ β/ 2 , 1 (α
βt, x + 2 k ) − ψ β/ 2 , 1 (α

βt, 2 − x + 2 k )] . 

(2.12)
ndeed, taking Laplace transform in Eq. (2.3) and using the initial

onditions T ( x , 0) = 0 and ∂ t T ( x , 0) = 0 (the last one only in case

 < β < 2) we get 

 

2 
x ̂

 

T (x, s ) − s β
̂ 

T ( x , s ) = 0 . 

ince the characteristic equation is λ2 − s β = 0 , using the given

oundary conditions, we deduce that the solution is 

 

 ( x , s ) = 

e −2 s β/ 2 (1+ x ) − e −s β/ 2 x 

(e −2 s β/ 2 − 1) s 
. 

ewriting the fraction 

1 

1 −e −2 s β/ 2 
as a geometric series, we obtain 

 

 ( x , s ) = 

∞ ∑ 

k =0 

e −s β/ 2 [ x +2 k ] − e −s β/ 2 [2 −x +2 k ] 

s 
. 

sing the formula (2.7) we conclude that 

 ( x , t ) = 

∞ ∑ 

k =0 

[ ψ β/ 2 , 1 ( t , x + 2 k ) − ψ β/ 2 , 1 ( t , 2 − x + 2 k )] . 

oing back to the dimensional variables, we obtain the represen-

ation of the solution given in (2.12) . 

.2. Laser irradiation 

The second case in study dealt with a type of thermal therapy

hat uses a laser to irradiate biological tissue. Radiofrequency, mi-

rowaves and laser are among the techniques based on raising the

emperature above 50 ◦C to alter or destroy biological tissues. Laser

an better focus heating on the target zone, although it is more

xpensive than radiofrequency or microwaves. However, the accu-

acy required for example in thermokeratoplasty make laser the

ost suitable heat source. As using intense heat for short times

lso makes the problem interesting from the HHTE viewpoint, in

his case we compared the FDHTE solution with those obtained by

HTE and HHTE. 

In laser irradiation, a laser beam is directly applied to the bio-

ogical tissue, as can be seen in Fig. 1 . The most interesting result

as the temperature of the biological tissue in the laser beam axis,

o that a 1-dimensional analysis can be conducted. 

The main difference with the heat conduction case of

ection 2.1 is that the source S ( x, t ) which appears in the governing
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quation is not zero. We assumed the same expression for all the

ormulations considered (PHTE, HHTE and FDHTE) obtained from

eer–Lambert’s law 

(x, t) = (1 − R ) bE 0 e 
−bx [ H(t) − H(t − �t) ] , (2.13)

here R is Fresnel surface reflectance, b is the absorption coeffi-

ient, E 0 is the incident irradiance on the tissue surface. The laser

eam has a pulse duration �t , and H ( t ) represents the Heaviside

unction used to model it. 

Expression (2.13) should be included in the governing equations

1.1), (1.2) and (1.4) in order to solve the thermal coupled problem. 

.2.1. PHTE and HHTE solutions 

This problem was solved in [33] in which the solution of the

roblem for the PHTE and HHTE formulations was obtained. The

olution was also based on the Laplace transform in Eq. (2.4) . The

ost important feature of the formulation is the Dirac’s distribu-

ion in the HHTE governing equation as the temporal derivative of

he heat source S ( x, t ) which includes Heaviside functions. 

.2.2. FDHTE solution 

Substituting in Eq. (1.4) the heat source (2.13) and after to a

imensionless procedure, one arrives at the governing equation of

he problem from the viewpoint of the FDHTE 

 

 

 

 

 

∂ βt V F (x, t) = α∂ 2 x V F (x, t) + S(x, t) t > 0 , x > 0 , 0 < β ≤ 2
V F (x, 0) = 0 , x > 0 ;
lim 

x →∞ 

V F (x, t) = 0 , t > 0 ;
∂ x V F (0 , t) = B (V F (0 , t) + C) , t > 0 . 

(2.14) 

here V F (x, t) = T (x, t) − T 0 and C = T 0 − T a , i.e. the initial temper-

ture of the tissue is not zero, but we made a change of vari-

ble for simplicity of the theoretical treatment. As it is shown

n Fig. 1 the domain is a semi-infinite fragment of homogeneous

sotropic biological tissue. The laser incidence is produced at x = 0

nd we consider the heating process produced along the x -axis. At

he surface x = 0 the tissue is affected by free convection of the

urrounding air (last condition in (2.14) ). 

We finally arrive to the main theoretical result of this paper:

e claim that the unique solution of the problem (2.14) in case

 < β < 2 has the form 

 (x, t) = T 0 + F 1 (x, t) −
4 ∑ 

j=2 

F j (x, t) + F 5 (x, t) , (2.15)

here F i are defined below. Indeed, following the same steps as in

33, Section 3.2] we arrive at 

 F (x, t) = L 

−1 [ f 1 (x, ·)](t) −
4 ∑ 

j=2 

L 

−1 [ f j (x, ·)](t) + L 

−1 [ f 5 (x, ·)](t) 

here f 1 (x, s ) = 

Me −bx 

s (s − αb 2 ) 
, f 2 ( x, s ) = f 1 (x, s ) e −�ts , f 3 (x, s ) =

BCe 
−x s 

β/ 2 √ 
α

s (B + 

s β/ 2 √ 

α
) 
, f 4 (x, s ) = 

M(b + B ) e 
−x s 

β/ 2 √ 
α

s (B + 

s β/ 2 √ 

α
)(s − αb 2 ) 

and f 5 (x, s ) =

f 4 (x, s ) e −�ts . Additionally, we observe that we can rewrite

f 4 (x, s ) = 

M(b + B ) 

BC(s − αb 2 ) 
f 3 ( x, s ) . Consequently, we obtain 

 F (x, t) = F 1 (x, t) −
4 ∑ 

j=2 

F j (x, t) + F 5 (x, t) , 

here, following [33] , we have 

 1 (x, t) = Me −bx 
(

e ab 2 t − 1 

ab 2 

)
F 2 (x, t) = H(t − �t) F 1 (x, t − �t) ;
 4 (x, t) = 

M(b + B ) 

BC 

∫ t 

0 

e αb 2 (t−τ ) F 3 (x, τ ) dτ, 

nd 

 5 (x, t) = H(t − �t) F 4 (x, t − �t) . 

oreover 

 3 (x, t) = 

√ 

αBC 

∫ t 

0 

(t − τ ) β/ 2 −1 E β/ 2 ,β/ 2 (−
√ 

αB ( t − τ ) 
β/ 2 ) ψ β/ 2 , 1 

×
(

τ, 
x √ 

α

)
dτ, 

here 

 β/ 2 ,β/ 2 (z) = 

∞ ∑ 

n =0 

z n 

�( β
2 

n + 

β
2 
) 
. 

s a Mittag–Leffler function, which proves the claim. 

emark 2.2. We emphasize that the use in F 3 ( x, t ) of the repre-

entation for ψ β/2,1 given by the formula (2.11) will be essential in

he computational simulations obtained later in this paper. 

. Results and discussion 

We first compared the PHTE and FDHTE solutions for the heat

onduction problem in a finite bar (see Section 2.1 ) to assess the

ain differences between both formulations. Then, we assess the

esults of the FDHTE solution obtained for laser irradiation of bio-

ogical tissue ( Section 2.2 ) and we compared them with the results

btained in [33] for an analogous problem from the viewpoint of

he PHTE. Since the specific characteristics of this problem implied

hort times and high heat flux, a comparison with the HHTE solu-

ion obtained in [33] was also showed. 

.1. Heat conduction with null initial temperature 

Aluminum was used to represent the solutions obtained in

ection 2.1 , i.e. α = 85 × 10 −9 m 

2 /s and 25 ◦C as the initial bar

emperature. Fig. 2 shows the temperature distribution through-

ut the bar x ∈ [0, 1] m at t = 100 s for different β values ( β =
 . 9 , 0 . 95 , 1 , 1 . 05 and 1.1). The case β = 1 corresponds to the PHTE

olution. As shown in Fig. 2 the FDHTE solutions provide different

emperature profiles to the PHTE, since obeys other heat transmis-

ion behaviors. When β < 1, the heat transmission by means of

he FDHTE ( β = 0 . 95 and β = 0 . 9 ) is slower than the PHTE, and

n the case β > 1, the heat transmission in the FDHTE ( β = 1 . 05 ,

= 1 . 1 ) is faster than in the PHTE. As the speed at which the tem-

erature arrives at each point of the bar changes according to the

alue of β , we noted that the FDHTE formulation is an alternative

o use in thermal problems in which the PHTE results overestimate

r underestimate the experimental temperatures profiles. 

Fig. 3 shows the temperature evolution from 0 up to 10 0 0

 at point x = 0 . 4 m for PHTE ( β = 1 ) and FDHTE ( β = 0 . 95 ,

= 0 . 9 , β = 1 . 05 and β = 1 . 1 ). Although the time considered in

ig. 3 is quite high, differences were found between FDHTE and

HTE solutions. In [4] the HHTE solution of the problem studied in

ection 2.1 was obtained. The HHTE solution is represented at the

ame point and time interval as used in Fig. 3 and the tempera-

ure evolution exactly coincides with those obtained for the PHTE.

o find any differences between the PHTE and HHTE time intervals

n the order of 10 −9 s using τ = 10 −13 s were used (i.e. the ther-

al relaxation time of aluminum), which shows the suitability of

he FHDE as an alternative to the PHTE, as it is not only valid for

hort times. 
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Fig. 2. Temperature distribution along the finite bar for PHTE ( β = 1 and FDHTE ( β = 0 . 95 , β = 0 . 9 , β = 1 . 05 and β = 1 . 1 ) at time t = 100 s. The solutions corresponds to 

the case of the heat conduction in a finite bar. 

Fig. 3. Temperature evolution from 0 to 10 0 0 s at point x = 0 . 4 m for PHTE ( β = 1 ) and FDHTE ( β = 0 . 95 , β = 0 . 9 , β = 1 . 05 and β = 1 . 1 ). The solutions corresponds to the 

case of the heat conduction in a finite bar. 
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3.2. Laser irradiation 

We were interested in comparing PHTE and FDHTE solutions in

the problem related with a thermal therapy, which corresponds to

the case of laser irradiation. We used for the PHTE solution the ob-

tained in [33] , in which authors solved an analogous problem, but

applied for a specific treatment. The characteristics of the laser ir-

radiation (short pulse for heating and great amount of heat applied

by the laser source) make that the consideration of the HHTE as an
lternative to the PHTE has sense, and this fact allows us to assess

hat is the role of the FDHTE. 

To compare the FDHTE with the PHTE and HHTE solutions, we

eproduced Fig. 2 in [33] and adding the FDHTE solution, with

he same laser pulse length ( �t = 200 ns), incident radiance E 0 =
 × 10 8 W/m 

2 , initial temperature 35 ◦C and material characteristics

ited in [33] . 

Fig. 4 shows the temperature evolution on the surface x = 0

uring the heating and cooling phases, i.e at time intervals [0,200]
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Fig. 4. Temperature evolution at surface x = 0 during the heating and cooling phases for PHTE, HHTE ( τ = 0 . 1 , τ = 10 ) and FDHTE ( β = 1 . 1 , β = 1 . 2 and β = 1 . 5 ). The 

solutions corresponds to the case of laser irradiation. 

Fig. 5. Temperature evolution at point x = 10 −5 m in the temporal interval [0,0.3] s for PHTE, HHTE ( τ = 0 . 1 , τ = 10 ) and FDHTE ( β = 1 . 2 ). The solutions corresponds to the 

case of laser irradiation. 
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s and [200 × 10 −9 , 1 ] s, respectively. This figure is similar to Fig. 2

f [33] , with the addition of the FDHTE solution with β = 1 . 1 , 1 . 2

nd 1.5 and only the extreme values of τ for the HHTE solu-

ion ( τ = 0 . 1 and 10 s). From Fig. 4 two main results can be ex-

racted: (1) there is no significant difference between the models

uring the heating phase; and (2) there are differences in the way

he heat is transmitted during cooling between the PHTE, HHTE

nd FDHTE. In the heating phase the heat source term has a pre-

ominant effect over the other terms in the heat equations, so

hat the differences between the PHTE, HHTE and FDHTE regarding

he temporal derivatives formulation are negligible. When the heat

ource is switched off the differences between the models are in

he form of temperature distribution and evolution. As the PHTE

ssumes an infinite heat conduction speed, there is an ideal heat

ransmission in the tissue and cooling is faster. The HHTE follows

he same heat transmission behavior as the PHTE, but consider-

ng a delay in the heat flux. For this reason, when τ = 0 . 1 s the

emperature drop is slower at the beginning of the cooling period

up to 0.5 s), after which both solutions are similar. In the case of
= 10 s there is no convergence at Fig. 4 , but that the tempera-

ure differences between HHTE and PHTE decrease with time. With

he FDHTE, higher temperatures are obtained for β > 1 than those

btained by PHTE, but with different behavior to HTTE. In the case

f the FDHTE the differences are observed gradually with cooling,

nd not only at the beginning. The temperature profiles provided

y the HHTE show an abrupt drop (see Fig. 4 in [33] ), however,

hile those of the FDHTE solutions gradually decrease. 

We used only β ∈ [1, 2] for the FDHTE, since the aim was to

ompare it with both the PHTE ( β = 1 ) and HHTE models, which

se second partial derivative of temperature with respect to time. 

In Fig. 5 we have reproduced some curves of Fig. 3 of [33] to

ssess differences between models in a point different to the sur-

ace. Specifically, Fig. 5 shows the evolution of temperature at

oint x = 10 −5 m in the temporal interval [0,0.3] s for PHTE, HHTE

 τ = 0 . 1 , τ = 10 s) and FDHTE ( β = 1 . 2 ). With this curves we can

emark the differences in behaviour of the three heat conduction

odels. It is observed that PHTE assumes an higher speed of heat

onduction than the FDHTE, and that HHTE differs from the PHTE
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in a delay of the heat transmission, which is clearly showed as an

abrupt drop in the curve corresponding to τ = 10 s. 

Figs. 4 and 5 show that the FDHTE solutions differ from the

PHTE during the cooling phase. These differences in temperature

are greater if the β value increases. In Fig. 4 these differences in

the cooling phase are in the range of 2–10 ◦ C, which means be-

tween 3 and 17%. As the PHTE solution obtained in [33] were not

compared with experimental data, we cannot state whether the

FDHTE solution was closer to the experimental data than the PHTE.

However, this was not the aim of this study. Our effort was focused

in exploring a new approach for the heat transfer modeling of the

thermal therapies which could be applied in cases in which the

PHTE overestimates or underestimates the temperature values. 

3.3. Theoretical considerations 

The fractional partial differential equation has been analyzed by

a number of authors in the context of biomedical engineering [6–

8] . In the present study the time fractional derivative considered

was the Caputo fractional derivative of order β ∈ (0, 2], which was

more suitable. One of our contributions is that, in contrast with

earlier works, the FDHTE Eq. (1.4) are solved analytically, obtain-

ing an explicit formula valid for the full range 0 < β ≤ 2 which

is stable in computer simulations. In this line of research, as far

as we know, only the recent paper [11] has dealt with the case of

skin tissue. Our proposal makes it unnecessary to use numerical

treatments of the fractional model, as used in most of the refer-

ences on the subject, e.g. [18–21,32] , and provide an exact solution

of the problem. 

One limitation of using of analytical solutions is the time

needed to compute the results. Numerical computations are

quicker than analytical. Although with numerical methods we can-

not obtain the exact analytical solution, the errors can be negligible

when they are well-formulated. So, it is a feature to consider for

future works. Moreover, in order to compare experimental and the-

oretical results, theoretical models have to include realistic charac-

teristics of the process. In the case of thermal therapies this im-

plies to consider non linear problems (some characteristics of tis-

sue depend on temperature or also the vaporization phenomenon)

and complex geometries. These features make that problems have

to be solved mainly using numerical methods. The analytical solu-

tions are restricted to study some theoretical considerations, such

us the exposed in this work. We point out that the novelty of the

present study was not related with a better approximation to ex-

perimental results. Our main achievement was to study an alter-

native approach to the PHTE in thermal therapies, and to have an

analytical solution for a problem of laser irradiation from the FD-

HTE viewpoint. 

4. Concluding remarks 

In this work we propose the FDHTE as an alternative to the

PHTE in some thermal therapies problems in which the PHTE over-

estimates or underestimates the experimental temperatures. The

advantage of the FDHTE over the HHTE and other alternatives to

the PHTE (relativistic equation or Lorentz covariance equation) is

that the FDHTE is not restricted to problems in which intense heat

is applied for short times. PHTE accuracy can be improved by ad-

justing the β parameter in the FDHTE. 

The heat source term plays an important role in the formula-

tion for thermal therapies. As seen by the results of the laser ir-

radiation, the characteristics of the heat source make the use of

PHTE or alternatively FDHTE have sense. It is not related with the

fact of the kind of source like in HHTE, it is a more complex bal-

ance between application times of the source (heating and cool-

ing phases), characteristics of the material, type of source (laser,
F, microwave, ultrasounds). So, if we have solved a specific prob-

em using the PHTE and we observe that computational tempera-

ure distributions and evolution curves are always above or under

he experimental ones, we can try to solve the problem under the

iewpoint of the FDHTE because it can provide an accurate com-

utational solution by adjusting the β parameter. 

On the other hand, we have solved analytically the considered

roblems using the FDHTE and established a theoretical scheme for

he time fractional approach of a broad type of problems. 
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