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Abstract. We construct a duality theory for (a, k) regularized resolvents, ex-
tending some of the known theorems for dual semigroups. We present several
classes of spaces, which in the semigroup case correspond to the Favard class
and the sun-dual space. By duality arguments spectral inclusions theorems for
regularized resolvents are also obtained.

1. Introduction

Duality theory for semigroups was first developed by R.E. Phillips and more

recently the subject has been studied by van Neerven and de Pagter [16] and by

Clement et al. [5]. The duality theory for resolvent families of operators have been

investigated by Jung [8] to study Volterra integral equations of convolution type.

In this paper, we give a first approach to some results on duality theory in the

general context of (a, k) − regularized families of operators. Applications can be

found in different fields such as age-dependent population dynamics, and transport

theory, this will be included in a forthcoming paper.

The (a, k) − regularized resolvent families of operators, introduced in [12] is

a notion which includes, that of r-times integrated solution family as well as k-

convoluted semigroups, r-times integrated cosine families and integral resolvents. It

allows us to study existence of solutions for the integral Volterra equation

u(t) =

∫ t

0

a(t− s)Au(s)ds + f(t), t ≥ 0,

by means of the analysis of the convolution transform (see [12, Theorem 2.7]). Here

A is a linear unbounded operator on a Banach space X, f is an X valued function

defined on R+, and a ∈ L1
loc([0,∞)). Recently, several properties of this class of

families has been studied; see [9, 13, 14, 17].

Throughout this paper we assume that X is a complex Banach space and let

B(X) be the algebra of bounded and linear operators on X. Let a, k ∈ L1
loc([0,∞)).
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Let A be a closed operator with domain D(A). Then a strongly continuous function

R : R+ → B(X) is called (a, k)− regularized resolvent family with generator A if

(i) R(0) = k(0)I

(ii) R(t)x ∈ D(A) and AR(t)x = R(t)Ax for all x ∈ D(A) and t > 0

(iii) (a ∗R)(t)x ∈ D(A) and

(1.1) R(t)x = k(t)x + A(a ∗R)(t)x (t ≥ 0) for all x ∈ X.

Hereafter we assume that the kernels a, and k, are both positive and ρ(A) the

resolvent set of A is non empty.

We notice that the choice of the pair (a, k) classifies different families of strongly

continuous solution operators in B(X). For instance when k(t) = 1 and a is arbitrary,

then (R(t))t≥0 corresponds to a resolvent family. In particular, when k(t) = 1 and

a(t) = tα−1

Γ(α)
with 0 < α ≤ 2, they are the α- times resolvent families studied by

Bazhlekova [1], and corresponds to the solution families for fractional evolution

equations, i.e. evolution equations where the integer derivative with respect to time

is replaced by a derivative of fractional order. If α > 0 and k(t) =
tα

Γ(α + 1)
, and

a(t) = 1, then (R(t))t≥0 corresponds to an α − times integrated semigroup. More

generally if k is arbitrary and a(t) = 1 and then R(t) is a k-convoluted semigroup;

see [3, 4, 7].

2. The Domain of A

We characterize the domain of the generator A of a given (a, k) regularized resol-

vent R(t), when a, k are both positive, and D(A) is not necessarily dense.

We recall that if Y is a closed subspace of X and A is a linear operator on X, then

the part of A in Y is the operator AY defined by

D(AY ) = {y ∈ Y ∩D(A) : Ay ∈ Y }

and AY y = Ay. In what follows we let Y := D(A).

Theorem 2.1. Let R(t) be an (a, k) regularized resolvent, with generator A. Then

(i) For all x ∈ Y

lim
t→0

(a ∗R)(t)x

(a ∗ k)(t)
= x.

(ii) Let x ∈ Y and y ∈ X such that
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(2.1) lim
t→0+

∥∥∥R(t)x− k(t)x

(a ∗ k)(t)
− y

∥∥∥ = 0.

Then x ∈ D(A) and Ax = y. Moreover, if y = 0 then R(t)x = k(t)x (t ≥ 0)

(iii) If X is reflexive, and

(2.2) lim
t→0+

∥∥∥R(t)x− k(t)x

(a ∗ k)(t)

∥∥∥ < ∞.

Then x ∈ D(A).

Proof. Since (a ∗ k)(t) is an increasing function it follow that

(2.3)
(a ∗ a ∗ k)(t)

(a ∗ k)(t)
≤

∫ t

0

a(s)ds → 0 as t → 0.

On the other hand by (1.1) we have that

(a ∗R)(t)x

(a ∗ k)(t)
− x =

(a ∗ a ∗R)(t)Ax

(a ∗ k)(t)
for x ∈ D(A).

Thus by (2.3)
∥∥∥(a ∗ a ∗R)(t)Ax

(a ∗ k)(t)

∥∥∥ ≤ M
(a ∗ a ∗ k)(t)‖Ax‖

(a ∗ k)(t)
→ 0 when t → 0.

Now statement (i) holds for all x ∈ D(A), since
∥∥∥(a ∗R)(t)

(a ∗ k)(t)

∥∥∥ ≤ M for t > 0. To

show (ii) we recall that (a ∗ R)(t)x ∈ D(A) for all x ∈ X (see [12, Lemma 2.2]).

Now by the hypothesis and the resolvent equation (1.1) follows that

A
((a ∗R)(t)

(a ∗ k)(t)

)
x =

(R(t)− k(t)

(a ∗ k)(t)

)
x → y when t → 0.

Since,
((a ∗R)(t)

(a ∗ k)(t)

)
x → x as t → 0 by (i). Hence by the closeness of A we obtain

that x ∈ D(A) and Ax = y. To show (iii) we let

U(s) :=
R(s)− k(s)

(a ∗ k)(s)
,

and then we claim that

(2.4) U(s)(a ∗R)(t) = (R(t)− k(t))
[(a ∗R)(s)

(a ∗ k)(s)

]
.

To show (2.4) we first recall that R(s)R(t) = R(t)R(s) for s, t ≥ 0. Then

(2.5) A(a ∗R)(s)(a ∗R)(t) = A(a ∗R)(t)(a ∗R)(s).
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Now applying (1.1) it follows that(2.5) equals

(R(s)− k(s))(a ∗R)(t) = (R(t)− k(t))(a ∗R)(s)

and hence

(2.6)
R(s)− k(s)

(a ∗ k)(s)
(a ∗R)(t) = (R(t)− k(t))

(a ∗R)(s)

(a ∗ k)(s)

and (2.4) follows. Now (2.2) implies that there exists a sequence (sn) ⊂ R+ such

that

sup
n
‖U(sn)x‖ = sup

n

∥∥∥R(sn)x− k(sn)x

(a ∗ k)(sn)

∥∥∥ < ∞.

Hence by the reflexivity of X there is a subsequence, say (s′n), such that for every

x∗ ∈ X∗

〈x∗, U(s′n)x〉 → 〈x∗, y〉 when n →∞
for some y ∈ X. Hence for t ≥ 0

(2.7) 〈x∗, U(s′n)(a ∗R)(t)x〉 → 〈x∗, (a ∗R)(t)y〉 when n →∞.

On the other side, by (2.4) we also have that

(2.8) 〈x∗, U(s′n)(a ∗R)(t)x〉 = 〈x∗, (R(t)− k(t))
(a ∗R)(s′n)

(a ∗ k)(s′n)
x〉.

Now the right hand side of (2.8) approaches to 〈x∗, (R(t)−k(t))x〉 as n →∞. Then

by (2.7) and (2.8) we get

〈x∗, (a ∗R)(t)y〉 = 〈x∗, (R(t)− k(t))x〉.

for all x∗ ∈ X∗. Thus
(R(t)− k(t))

(a ∗ k)(t)
x =

(a ∗R)(t)y

(a ∗ k)(t)
. Hence we obtain that

(R(t)− k(t))

(a ∗ k)(t)
x → y when t → 0

and the proof of (iii) follows by (ii).

¤
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The following corollary is an extension of [14, Theorem 2.1] when the kernels k

and a are positive. We remark that in [14] the characterization of the domain of A

was given under the hypothesis that k is increasing, and D(A) is dense. Here this

two conditions have been removed.

Corollary 2.2. Let R(t) be an (a, k) regularized resolvent family with generator A

and such that ‖R(t)‖ ≤ Mk(t). Then

D(AY ) = {x ∈ Y : lim
t→0

(R(t)− k(t))

(a ∗ k)(t)
x exists}.

Moreover

(2.9) AY x = lim
t→0

(R(t)− k(t))

(a ∗ k)(t)
x for all x ∈ D(AY ).

Proof. Let

D = {x ∈ Y : lim
t→0

(R(t)− k(t))

(a ∗ k)(t)
x exists}.

Then D ⊆ D(AY ) by (ii) of Theorem 2.1. Now if x ∈ D(AY ) then

lim
t→0

(R(t)− k(t))

(a ∗ k)(t)
x = lim

t→0

(a ∗R)(t)

(a ∗ k)(t))
Ax

= Ax.

by (i) of Theorem 2.1. Hence x ∈ D.

¤

Remark 2.3. We remark that (2.9) was proved for resolvent families by J.-C.Chang

and S.-Y.Shaw [6, Proposition 2.2(i)] and by H. Liu and S.-Y.Shaw for n-times

integrated solution families, [10, Proposition 2.2 (c)]; see also [8, Theorem 2.5].

A direct consequence of Corollary 2.2 and (1.1) is the following Proposition. We

assume that R(t) is defined for all t ∈ R by allowing t < 0 in (1.1).

Proposition 2.4. Let (R(t))t∈R be an (a, k) regularized resolvent with generator A

on a Hilbert space X . Suppose that a and k are positive even functions defined on

R. Then A is skew adjoint if and only if R(−t) = R∗(t) for all t ∈ R.

Proof. Since a and k are even functions, then the convolution a∗k is an odd function

defined on R. Suppose now that R(−t) = R∗(t) for all t ∈ R. Thus by Corollary 2.2

we conclude that A = −A∗. Conversely, assume that A is skew adjoint. Then define
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S(t) = R∗(−t). Hence by taking the adjoint in (1.1), it follows

S(t) = R∗(−t) = k(−t)I + A∗
∫ −t

0

a(−t− s)R∗(s)ds

= k(t)I +

∫ t

0

a(−τ)R∗(−t + τ)dτ

= k(t)I +

∫ t

0

a(τ)S(t− τ)dτ.

But R(t) the unique solution of (1.1)(see [12, Remark 2.4]); thus S(t) = R(t) for all

t ∈ R. ¤

3. A Favard class with kernels

The following corresponds to a natural extension of the Favard class frequently

used in approximation theory for semigroups; see [2].

Definition 3.1. Let a and k be continuous and positive. Let A be the generator of

an (a, k) regularized resolvent {R(t)}t≥0 on X . We define the Favard class of A

with kernels a and k as

(3.1) Fa,k = { x ∈ X : sup
t>0

||R(t)x− k(t)x||
(a ∗ k)(t)

< ∞ }

Remark 3.2.

(1) By the definition it follows that D(A) ⊂ Fa,k . Thus for different pairs of

functions a(t) and k(t) we obtain different Favard classes which may be considered

as interpolation spaces between D(A) and X .

(2) When a(t) ≡ 1, and k(t) ≡ 1 we recall that R(t) corresponds to a bounded

C0−semigroup generated by A. Then the Favard class is;

(3.2) F1,1 = { x ∈ X : sup
t>0

||R(t)x− x||
t

< ∞ },

see e.g., [2]. The proof of the following is immediate.

Proposition 3.3. The Favard class Fa,k , is a Banach space with respect to the

norm |x|Fa,k
= ||x||+ sup

t>0

||R(t)x− k(t)x||
(a ∗ k)(t)

.

We now characterize the Favard class Fa,k.

Theorem 3.4. Let A be a linear and closed operator with dense domain D(A) in

a Banach space X . Suppose that A generates a uniformly bounded (a, k) regularized

resolvent {R(t)}t≥0. Assume, that the Laplace transform â(λ) and k̂(λ) exists for

λ > 0 and satisfy sup
t>0

(1 ∗ a)(t)

(k ∗ a)(t)
< ∞ and limλ→0+ â(0) = ∞ . Then
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Fa,k = {x ∈ X : sup
λ>0

|| 1

â(λ)
A (

1

â(λ)
− A)−1x|| < ∞ }

In particular, Fa,k does not depend on k.

Proof. Since ‖R(t)‖ ≤ M, then R̂(λ) exists for all λ > 0. Moreover,

(3.3) R̂(λ) = k̂(λ)(I − â(λ)A)−1.

Let x ∈ Fa,k then there is Jx > 0 such that
||R(t)x− k(t)x||

(k ∗ a)(t)
≤ Jx for t > 0. Now

for all λ > 0 we have that, AR̂(λ) =
1

â(λ)
(R̂(λ)− k̂(λ)) by (3.3). But

1

â(λ)
(R̂(λ)− k̂(λ))x =

1

â(λ)

∫ ∞

0

e−λs (R(s)− k(s))

(a ∗ k)(s)
(a ∗ k)(s) xds.

Hence ‖AR̂(λ)x‖ ≤ Jxâ(λ)−1(̂a ∗ k)(λ) = Jxk̂(λ). Therefore by (3.3)

sup
λ>0

||A(I − â(λ)A)−1x|| ≤ Jx < ∞ .

Conversely, let x ∈ X be such that supλ>0 ||(I − â(λ)A)−1x|| =: Nx. Now, from

the identity

k̂(λ)−1R̂(λ)− â(λ)k̂(λ)−1AR̂(λ) = I,

we obtain x = k̂(λ)−1R̂(λ)x−â(λ)k̂(λ)−1AR̂(λ)x =: xλ−yλ . But xλ = k̂(λ)−1R̂(λ)x

is in D(A) and ‖Axλ‖ = ‖k̂(λ)−1AR̂(λ)x‖ ≤ Nx. By the resolvent identity (1.1)

follows that

||R(t)xλ − k(t)xλ|| ≤ (a ∗ ||R(· )||)(t) ||Axλ||.
But R(t) is uniformly bounded, hence

(a ∗ ‖R(· )‖(t)‖Axλ‖ ≤ M‖Axλ‖(1 ∗ a)(t)

= M ||k̂(λ)−1AR̂(λ)x||(1 ∗ a)(t)

= M Nx (1 ∗ a)(t).

On the other hand,

||R(t)yλ − k(t)yλ|| ≤ ||R(t)yλ||+ ||k(t)yλ|| ≤ (M + k(t))Nxâ(λ) .

Dividing by (a ∗ k)(t) we have that, for all λ > 0 ,

||R(t)x− k(t)x||
(a ∗ k)(t)

≤ MNx
(1 ∗ a)(t)

(a ∗ k)(t)
+

M + k(t)

(a ∗ k)(t)
Nxâ(λ) .
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Since limλ→0+ â(0) = ∞ we obtain that â(λ) is surjective, hence there exists λt > 0

so that (â(λt))
−1 =

M + k(t)

(k ∗ a)(t)
. Since

(1 ∗ a)(t)

(k ∗ a)(t)
is bounded. Then it follows that

there exits Cx > 0 such that

||R(t)x− k(t)x||
(a ∗ k)(t)

≤ Cx,

for all t > 0.

¤

Remark 3.5. We notice that the spaces Fa,k are also independent of the kernel a,

since a is positive and â(λ) → 0 as λ →∞. Hence for the type of kernels (a, k) we

have considered, the Favard classes as introduced above coincides with F1,1 which

corresponds to the semigroup case. This property for the Favards classes has been

already observed by Jung in the resolvent case that is k(t) ≡ 1; see [8, Proposition

3.3].

4. The sun-dual

We define X¯ := D(A∗)
X∗

, and A¯ the part of A∗ in X¯. Furthermore we let

R¯(t) = R∗(t)|X¯ . Henceforth we assume that A has dense domain in X.

The following is the main result of this section.

Theorem 4.6. Let A be the generator of an (a, k) regularized resolvent R(t) such

that ‖R(t)‖ ≤ Mk(t). Assume that A is densely defined. Then R¯(t) is a strongly

continuous (a, k) regularized resolvent with generator A¯.

Proof. Let H(λ) := k̂(λ)
â(λ)

(1/â(λ) − A)−1, for λ > ω. Since ρ(A) ⊆ ρ(A∗) and

〈x∗, H(λ)x〉 = 〈 k̂(λ)
â(λ)

(1/â(λ) − A∗)−1x∗, x〉. Then for ‖x‖ = 1, ‖x∗‖ = 1 we have

that

|〈
[ k̂(λ)

â(λ)
(1/â(λ)− A∗)−1

](n)

x∗, x〉| ≤ ‖H(n)(λ)‖

≤ Mn!

(λ− ω)n+1
n ∈ N0(4.4)

Moreover

(4.5) |〈
[ k̂(λ)

â(λ)
(1/â(λ)− A∗)−1

]
x∗, x〉| ≤ ‖H(λ)‖‖x‖‖x∗‖
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On the other hand

‖H(λ)‖ = ‖R̂(λ)‖ ≤ Mk̂(λ) for (λ > ω)

since ‖R(t)‖ ≤ Mk(t). Hence, for λ > ω we have ‖H(λ)‖ ≤ Mk̂(λ). Thus from (4.5)

we obtain

(4.6) |〈
[ 1

â(λ)
(1/â(λ)− A∗)−1

]
x∗, x〉| ≤ M‖x‖‖x∗‖ (λ > ω)

Let J(µ) be the restriction of (µ−A∗)−1 to X¯. Then J(λ) has dense range since

Ran(J(λ)) = D(A∗) which is dense in X¯. Now let 1/µ =: â(λ), then (4.6) yields

‖µJ(µ)‖ ≤ M(4.7)

Hence by (4.7) there is µ0 such that sup
µ>µ0

‖µJ(µ)‖ < ∞. Since A is densely defined

then ρ(A∗) = ρ(A), thus A∗ is closed since ρ(A) 6= ∅. Furthermore, J(λ) is a pseudo

resolvent since

J(µ)− J(ν) = (ν − µ)J(µ)J(ν).

Thus J(µ) is the resolvent of a unique closed and densely defined operator A¯ on

X¯. Since for every y∗ ∈ D(A∗
X¯) we have (µ − A¯)−1(µ − A∗)y∗ = y∗ then A¯

is the part of A∗ in X¯, that is A¯ = A∗
X¯ . Hence A¯ is the generator of an

(a, k)-regularized resolvent R†(t) on X¯, by (4.4) and the generation Theorem for

regularized resolvent families of [12]. Since the Laplace transform of R†(t) is given

by

R̂†(λ)y∗ =
k̂(λ)

â(λ)
(1/â(λ)− A¯)−1y∗.

Then,

〈 k̂(λ)

â(λ)
(1/â(λ)− A¯)−1y∗, x〉 = 〈 k̂(λ)

â(λ)
(1/â(λ)− A∗

X¯)−1y∗, x〉

= 〈y∗, k̂(λ)

â(λ)
(1/â(λ)− A)−1x〉.

Since R̂∗(λ) = (R̂(λ))∗, we obtain that,

〈R̂†(λ)y∗, x〉 = 〈y∗, k̂(λ)

â(λ)
(1/â(λ)− A)−1x〉

= 〈y∗, R̂(t)x〉

= 〈R̂∗(λ)y∗, x〉
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for every y∗ ∈ X¯ and x ∈ X. Hence by uniqueness of the Laplace transform follows

that

R†(t) = R∗(t)X¯ = R¯(t).

¤

Remark 4.7. Note that if k ∈ C1(R+) and k(0+) < ∞ then the hypothesis of the

theorem are satisfied. Furthermore, A turns out to be the generator of a resolvent

family; see [12, Proposition 2.5].

Corollary 4.8. Let R(t) be an (a, k) regularized resolvent with generator A and

such that ‖R(t)‖ ≤ Mk(t). Then

(a) X¯ = {x∗ ∈ X∗ : lim
t→s

‖R∗(t)x∗ −R∗(s)x∗‖ = 0},

(b) D(A¯) ⊂ D(A∗) ⊂ X¯,

(c) ‖R∗(t)x∗ − k(t)x∗‖ ≤ (1 ∗ a)(t) sup
0≤τ≤t

‖R(τ)‖‖A∗x∗‖ (x∗ ∈ D(A∗))

(d) ‖R∗(t)x∗ − k(t)x∗‖ ≤ M(a ∗ k)(t)‖A∗x∗‖ (x∗ ∈ D(A∗))

Proof. The proof of (a) and (b) follows by the definition of X¯. To show (c) let

‖x‖ = 1. Then for x∗ ∈ D(A∗)

|〈R∗(t)x∗ − k(t)x∗, x〉| ≤ (a ∗ |〈R∗(· )A∗x∗, x〉|)(t)
= (a ∗ |〈A∗x∗, R(· )x〉|)(t)
≤ ‖A∗x∗‖(a ∗ ‖R(· )‖)(t)
≤ sup

0≤τ≤t
‖R(τ)‖‖A∗x∗‖(1 ∗ a)(t).

Next to show (d) we recall that R(t) satisfy ‖R(t)‖ ≤ Mk(t). Hence by the same

reasoning as above

|〈R∗(t)x∗ − k(t)x∗, x〉| ≤ ‖A∗x∗‖(a ∗ ‖R(· )‖)(t)
≤ M(a ∗ k)(t)‖A∗x∗‖,

and the proof follows.

¤

Theorem 4.9. Let R(t) be an (a, k) regularized resolvent with generator A. Then

A∗ equals to the weak closure of A¯.

Proof. Since A∗ is weakly∗ closed, we will show that

graph(A¯) = {(A¯f ∗, f ∗) ∈ X∗ ×X∗ : f ∗ ∈ D(A¯)}
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is weakly∗ dense in graph(A∗). Let (f, g) ∈ X ×X be such that

(4.8) 〈A¯f ∗, f〉 − 〈f ∗, g〉 = 0, f ∗ ∈ D(A¯)

since (X∗ ×X∗)w∗ can be identified with X ×X. Thus, by (4.8)

〈A¯(a ∗R¯)(t)f ∗, f〉 = 〈(a ∗R¯)(t)f ∗, g〉.
It then follows

〈f ∗, (R(t)− k(t))f〉 = 〈R¯(t)f ∗ − k(t)f ∗, f〉
= 〈A¯(a ∗R¯)(t)f ∗, f〉
= 〈(a ∗R¯)(t)f ∗, g〉.

which implies that

〈f ∗, (R(t)− k(t))f〉 = 〈f ∗, (a ∗R)(t)g〉 for all f ∗ ∈ X∗.

Hence (R(t)− k(t))f = (a ∗R)(t)g. Thus

(4.9)
(R(t)− k(t))f

(a ∗ k)(t)
=

(a ∗R)(t)g

(a ∗ k)(t)
.

Then by Theorem 2.1(i) and Corollary 2.2 it follows from (4.9) that f ∈ D(A) and

Af = g. Therefore the weak∗ continuous functional defined by (f, g) in (4.8) vanishes

for all f ∗ ∈ D(A∗).
¤

5. Spectral properties of resolvent families

For a closed operator A we denote by σ(A), σp(A), σr(A), and σa(A), the spectrum,

the point spectrum, the residual spectrum, and the approximate spectrum of A,

respectively. We recall that σr(A) = σp(A
∗) by the Hahn-Banach theorem, provided

the adjoint A∗ of A is well defined, i.e. A is densely defined.

Proposition 5.1. Let R(t) be an (a, k) regularized resolvent with generator A. Then

σp(R
∗(t)) = σp(R

¯(t)), (t ≥ 0) and σp(A
∗) = σp(A

¯).

Proof. Since an eigenvector of R∗(t) always belongs to X¯, the first identity follows

from R¯(t) = R∗(t)|X¯ .

For the second identity we first recall that D(A∗) ⊂ X¯ by 4.8(b). Hence for all

x∗ ∈ D(A∗) and x ∈ X we have

< R∗(t)x∗ − k(t)x∗, x > = < x∗, R(t)x− k(t)x >

= (a∗ < R∗(· )A∗x∗, x >)(t),
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Now if A∗x∗ = λx∗, then by (1.1) and the above identity show that

<
R∗(t)x∗ − k(t)x∗

(a ∗ k)(t)
− λx∗, x > =

1

(a ∗ k)(t)
(a∗ < R∗(· )λx∗, x >)(t)

− < λx∗, x >

=
λ

(a ∗ k)(t)
(a∗ < R∗(· )x∗ − k(· )x∗, x >)(t).

Hence

‖R∗(t)x∗ − k(t)x∗

(a ∗ k)(t)
− λx∗‖ ≤ |λ|||x∗|| sup

0≤s≤t
||R(s)x− k(s)x||.

Now, we let t → 0, in the last inequality. Hence we obtain that x∗ ∈ D(A¯) and

A¯x∗ = λx∗, thus λ ∈ σp(A
¯).

Conversely, if λ ∈ σp(A
¯) and A¯x∗ = λx∗ for some x¯ ∈ D(A¯), then for all

x ∈ D(A) we have by Theorem 2.1 and Theorem 4.6 that

< x¯, Ax > = lim
t→0

< x¯,
R(t)x− k(t)x

(a ∗ k)(t)
>

= lim
t→0

1

(a ∗ k)(t)
< R¯(t)x¯ − k(t)x¯, x >

= < A¯x¯, x >

= λ < x¯, x > .

This shows that x¯ ∈ D(A∗) and A∗x¯ = λx¯, so λ ∈ σp(A
∗). ¤

Note if k ≡ 1 then R(t) defines a resolvent family. Hence Proposition 5.1 has the

following application.

Corollary 5.2. Let S(t) be a resolvent family with generator A. Then σp(S
∗(t)) =

σp(S
¯(t)), (t ≥ 0) and σp(A

∗) = σp(A
¯).

To state the next the Theorem we take into account the following considerations.

For each λ ∈ C, we denote by s(t, µ), the unique solution of the scalar valued

convolution equation

s(t, λ) = a(t) + λ

∫ t

0

a(t− τ)s(τ, λ)dτ, t ≥ 0.

We also define

r(t, λ) := k(t) + λ

∫ t

0

s(t− τ, λ)k(τ)dτ.

Theorem 5.3. Let R(t) be an (a, k) regularized resolvent with generator A. Then

σ(R(t)) ⊃ r(t, σ(A)), t ≥ 0.
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Proof. Let x ∈ D(A). Then identity (1.1) and

(5.1) R(t)x = k(t)x + (a ∗ AR)(t)x, (t ≥ 0)

show that

(s ∗ (λ− A)R)(t)x = λ(s ∗R)(t)x− (s ∗ AR)(t)x

= λ(s ∗R)(t)x− ([a + λ(a ∗ s)] ∗ AR)(t)x

= λ(s ∗R)(t)x− (a ∗ AR)(t)x− λ(a ∗ s ∗ AR)(t)x

= λ(s ∗R)(t)x− [R− k](t)x− λ(s ∗ [R− k])(t)x

= k(t)x + λ(s ∗ k)(t)x−R(t)x

= r(t, λ)x−R(t)x,

for all λ ∈ C and t ≥ 0. Analogously, using the closedness of A, we prove

(λ− A)

∫ t

0

s(t− τ, λ)R(τ)xdτ = r(t, λ)x−R(t)x

for all x ∈ X.

Suppose r(t, λ) ∈ ρ(R(t)) for some λ ∈ C and t ≥ 0, and denote the inverse of

r(t, λ) − R(t) by Lλ,t. Since Lλ,t commutes with R(t) and hence also with A, we

have

(λ− A)

∫ t

0

s(t− τ, λ)R(τ)Lλ,txdτ = x

for all x ∈ X and ∫ t

0

s(t− τ, λ)R(τ)Lλ,t(λ− A)xdτ = x

for all x ∈ D(A). This shows that the bounded operator Bλ defined by

Bλx =

∫ t

0

s(t− τ, λ)R(τ)Lλ,txdτ

is a two-sided inverse of λ− A. It follows that λ ∈ ρ(A).

¤

Remark 5.4. When a ≡ 1 and k ≡ 1, this is the well known spectral inclusion for C0-

semigroups. If a(t) ≡ t and k ≡ 1 it gives the spectral inclusion for cosine families

(cf.[15]). If a(t) = tα−1(α ≥ 1) and k ≡ 1, it corresponds to the spectral inclusion

for α-times resolvent families studied recently in [11, Theorem 3.2]. All the other

cases, e.g. convoluted semigroups, or even resolvent families, including the case of

α-times resolvent families, are new.

In the following we consider spectral inclusions for the point, residual and approx-

imate point spectrum.



14 CARLOS LIZAMA AND HUMBERTO PRADO

Theorem 5.5. Let R(t) be an (a, k) regularized resolvent with generator A. Then

σp(R(t)) ⊃ r(t, σp(A)), t ≥ 0.

Proof. If λ ∈ σp(A) and x ∈ D(A) is an eigenvector corresponding to λ, the identity

(5.2)

∫ t

0

s(t− τ, λ)R(τ)(λ− A)xdτ = r(t, λ)x−R(t)x

valid for all x ∈ D(A), shows that R(t)x = r(t, λ)x, i.e. r(t, λ) is an eigenvalue of

R(t) with eigenvector x. This proves the inclusion.

¤

The following result give information about the residual spectrum.

Theorem 5.6. Let R(t) be an (a, k) regularized resolvent with generator A. Assume

that A is densely defined. Then

σr(R(t)) ⊃ r(t, σr(A)), t ≥ 0.

Proof. We have σr(R(t)) = σp(R
∗(t)) = σp(R

¯(t)) and σr(A) = σp(A
∗) = σp(A

¯).

The theorem now follows from Theorem 5.5 and Theorem 4.6 applied to the (a, k)-

regularized resolvent R¯(t).

¤

We end this paper with the following result.

Theorem 5.7. Let R(t) be an (a, k) regularized resolvent with generator A. Then

σa(R(t)) ⊃ r(t, σa(A)), t ≥ 0.

Proof. If λ ∈ σa(A), then there is a sequence (xn) ⊂ D(A), ||xn|| = 1 such that

||(λ− A)xn|| → 0 as n →∞, hence from (5.2) we obtain

||r(t, λ)xn −R(t)xn|| = ||(s ∗R)(t)(λ− A)xn|| ≤ M ||(λ− A)xn|| → 0

as n →∞, so we have r(t, λ) ∈ σa(R(t)). ¤
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Departamento de Matemática Universidad de Santiago de Chile, Casilla 307,

Correo-2, Santiago-Chile.

E-mail address: clizama@usach.cl
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