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Abstract. Under the assumption that A is the generator of a twice integrated cosine family and K
is a scalar valued kernel, we solve the singular perturbation problem

(Eε) ε2u′′ε (t) + u′ε(t) = Auε(t) + (K ∗Auε)(t) + fε(t), (t ≥ 0)(ε > 0),

when ε → 0+, for the integrodifferential equation

(E) w′(t) = Aw(t) + (K ∗Aw)(t) + f(t), (t ≥ 0),

on a Banach space. If the kernel K verifies some regularity conditions, then we show that problem (Eε)
has a unique solution uε(t) for each small ε > 0. Moreover uε(t) converges as ε → 0+, to the unique
solution u(t) of equation (E).

1. Introduction

Let A be a closed and densely defined linear operator on a Banach space X and let K be a real-
valued function. In this paper we analyze the existence and uniqueness of solutions of the linear
Volterra equations of convolution type given by

(1.1)





ε2u′′(t, ε) + u′(t, ε) = Au(t, ε) +
∫ t

0
K(t− s)Au(s, ε)ds + f(t, ε), t ≥ 0

u(0, ε) = u0(ε),
u′(0, ε) = u1(ε),

and we show that the solution uε(t) of (1.1) converges as ε → 0 to the unique solution of

(1.2)





w′(t) = Aw(t) +
∫ t

0
K(t− s)Aw(s)ds + f(t), t ≥ 0

w(0) = w0.

The problem concerning the behavior of (1.1) as ε → 0 is called a singular perturbation problem.
Applications frequently occur in linear viscoelasticity theory. For example in the case that A = ∆
then, ε = ρ represents the material density as ρ → 0; see the monograph by Hrusa and Nohel [11] for
more information on the subject. About the singular perturbation problem see [1, 2, 4, 5, 8] for recent
developments.

In this article we address the question concerning the behavior of (1.1) as ε → 0 under the assump-
tion that A is the generator of a twice integrated cosine family. In a recent work [8] we have studied
this problem under the hypothesis that A is the generator of a cosine family.

To our knowledge the singular perturbation problem when A generates a twice integrated cosine
family has not been previously considered in the literature. This case provides many important appli-
cations. For instance, an immediate consequence of our main theorem of section 4 occurs when A = ∆
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is the Laplace operator on Lp(RN ). We recall that if N = 1 and 1 ≤ p < ∞ or N ≥ 2 and p = 2 then
A is the generator of a strongly continuous cosine family, however in all the other cases this is not
longer true. Actually, A = ∆ generates an twice integrated cosine family on Lp(RN ) when N ≤ 5 and
1 < p < ∞. This result was proved by Keyantuo in [3].

The two main features of this work are, on one side we do not need to assume the existence of
solutions beforehand in opposition with the previous works on the subject (see [4, 5]), on the other,
we apply the notion of k−regularized resolvent families to prove existence and uniqueness of solution
when A is the generator of a 2-times integrated cosine family. Moreover, under the assumption that A
generates a twice integrated cosine family we show in section 3 that there is a kε− regularized resolvent
Sε(t) where kε := 1 ∗ aε for all ε ≥ 0, which is twice differentiable and such that the solution of (1.1)
is given by the formula

u(t, ε) =
∫ t

0
r′ε(t− s)S′′ε (s)u0(ε)ds + ε2S′′ε (t)u0(ε) + ε2

∫ t

0
r′0(t− s)S′′ε (s)u1(ε)ds

+
∫ t

0
r′0(t− s)(S′′ε ∗ fε)(s)ds,

where aε(t) and rε(t) are defined below by equations (3.3) and (4.1) respectively. On the other
hand, the key to solve the singular perturbation problem relies on a result due to Lizama [7], about
approximation of k−regularized resolvent families, which is an extension of the classical Trotter-Kato
theorem on convergence and approximation of C0-semigroups. The conditions on the kernel K(t) in
(1.1) are motivated from some of the known examples which take place in many applications. For
instance, if K(t) = be−at with a > 0 and a+ b > 0 then K(t) is shown to satisfy our assumptions. For
this and more examples see the monograph [10].

2. Preliminaries

We first recall the definition of generator for a k-regularized resolvent family; see [6]. Here the
symbol ̂ denotes the Laplace transform and ρ(A) stands for the resolvent set of the operator A.

Definition 2.1. Let a, k ∈ L1
loc(R+) be such that there exists â(λ) and k̂(λ) for all λ > ω and â(λ) 6= 0

for λ > ω. We will say that a closed linear operator A , defined in a Banach space X is the generator
of a k-regularized resolvent family {R(t)}t≥0 ⊆ B(X) if

(i) t → R(t)x is continuous for all x ∈ X and there exists M ≥ 0 such that ||R(t)|| ≤ Meωt , for
all t ≥ 0 .

(ii)
1

â(λ)
∈ ρ(A) for all λ > ω .

(iii) k̂(λ)(I − â(λ)A)−1x =
∫ ∞

0
e−λsR(s)x ds for all x ∈ X and all λ > ω .

Remark 2.2.

It follows from [6, Proposition 3.1], that R(t) commutes with A and satisfies the equation

R(t)x = k(t)x +
∫ t

0
a(t− s)AR(s)xds,

for all x ∈ D(A), t ≥ 0. Then R(t) is called a k-regularized family for the equation

(2.1) u(t) = f(t) +
∫ t

0
a(t− s)Au(s)ds, t ≥ 0,

where f ∈ C(R; X). We remark that in the above definition, if k(t) ≡ 1 we recover the notion of
resolvent family, which is a fundamental concept in the theory of linear Volterra equations, see Prüss
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[10]. In particular, when a(t) = t, we obtain the theory of strongly continuous cosine families, related
to the abstract Cauchy problem of second order. If k(t) = t2 and a(t) = t, then R(t) corresponds to
a 2-times integrated cosine function.

The following generation Theorem gives the necessary and sufficient conditions on an operator A
to be the generator of k-regularized resolvent family; see [6] for further details.

Theorem 2.3. Let A be a closed linear unbounded operator with densely defined domain D(A) ,

defined on a Banach space X and let a ∈ L1
loc(R+) be satisfying

∫ ∞

0
e−ωt |a(t)| dt < ∞ . Then A is

the generator of a k-regularized resolvent family {R(t)}t≥0 such that ||R(t)|| ≤ Meωt for all t ≥ 0 , if
and only if the following two conditions are satisfied

(K1) â(λ) 6= 0 and 1
â(λ) ∈ ρ(A) , for all λ > ω .

(K2) H(λ) := k̂(λ)(I − â(λ)A)−1 satisfy the inequality

||H(n)(λ)|| ≤ M n! (λ− ω)−(n+1) , λ > ω , n ∈ N0 .

3. Convergence of Resolvents

We will consider the problems

(3.1) uε(t) = fε(t) +
∫ t

0
aε(t− s)Auε(s)ds, t ≥ 0, ε ≥ 0,

where fε → f0 and aε → a0 in an appropriate sense as ε → 0. Assuming the existence of resolvents
Rε(t) for (3.1) as well as the stability condition

(3.2) sup
ε>0

||Rε(t)|| ≤ Meωt, t ∈ R+.

Then it has been shown in [7] that Rε(t) → R0(t) strongly in X as ε → 0. A particular case of this is
the following.

Theorem 3.1. Suppose that {kε}ε≥0 ∈ L1
loc(R+) and let {aε}ε≥0 ∈ ACloc(R+) be of type (M, ω), ω ≥ 0,

such that âε(µ) 6= 0 for µ > ω, and
∫∞
0 e−ωs|ȧε(s)|ds < ∞. Let A be a closed linear and densely defined

operator on X. Assume that problem (3.1) admits a kε−resolvent family {Sε(t)}t≥0 in X for each ε > 0
and that the stability condition (3.2) holds. Suppose also aε(t) → a0(t) and kε(t) → k0(t) as ε → 0.
Then there is a k0−regularized resolvent {S0(t)}t≥0 of type (M,ω) for the problem (3.1) with ε = 0
and

Sε(t)x → S0(t)x
as ε → 0 uniformly on compact subsets of R+ ×X.

Throughout this paper, the symbol ∗ always denotes the finite convolution. We will follow the same
notation as it is given in the monograph [10].

For ε > 0 we define:

(3.3) aε(t) = 1 + (1 ∗K)(t)− eε(t)− (eε ∗K)(t), t ≥ 0,

where eε(t) := e−
1
ε2

t and for ε = 0

(3.4) a0(t) = 1 + (1 ∗K)(t), t ≥ 0.

We always assume that the Laplace transform âε(λ) exists and is non-zero for all λ > ω, ε > 0 and
some ω ∈ R. Then from (3.3) and (3.4) we easily see that

(3.5) âε(λ) → â0(λ),



4 CARLOS LIZAMA AND HUMBERTO PRADO

as ε → 0 for all λ sufficiently large.
In what follows we denote by K(R, ε0) the set of all functions K ∈ C1(R) which satisfies the following

conditions
1. K(t) ≥ 0 for all t > 0 and K(0) > 0.
2. K ′(t) ≤ 0 for all t ≥ 0.
3. limt→∞K(t) = 0.
4. There exists ε0 > 0 such that for all 0 < ε ≤ ε0 the function

(3.6) (
1
ε2

K(t) + K ′(t))(eε(t) + (eε ∗K)(t))−K(t)2 is nonnegative.

Remark 3.2.

The above class K was introduced in [8]. A typical example is K(t) = be−at where a > 0, b > 0.

We recall that an infinitely differentiable function f : (0,∞) → R is called completely monotonic if

(−1)nf (n)(λ) ≥ 0

for all λ > 0, n = 0, 1, 2.... The following result was proved in [8, Proposition 3.5].

Proposition 3.3. If K ∈ K(R, ε1) then the function hε(λ, t) := 1

λ
√

âε(λ)
e
− 1√

âε(λ)
t

(t > 0, λ > 0) is

completely monotonic in λ for each 0 < ε < ε1.

We state the following main result concerning the existence of resolvents satisfying the condition
(3.2). Its proof follows the same reasoning as that of [9, Theorem 5] (see also, [10, Theorem 4.1]).

Theorem 3.4. Let A be the generator of a 2-times integrated cosine function {S(t)}t≥0 on a Banach
space X such that

(3.7) ‖S(t)‖ ≤ M cosh(w0t), t ≥ 0,

for some constants M > 0, w0 ∈ R. Assume K ∈ K(R, ε0) is exponentially bounded. Then, the
problem (3.1) admits a (1 ∗ aε) - regularized family {Sε(t)}t≥0 for all 0 ≤ ε < ε0 such that for x ∈ X
Sε(t)x → S0(t)x where the convergence is uniform on compact subsets of R+.

Proof. By definition, it follows from (3.7) that for all x ∈ X, (w0,∞) ⊂ ρ(A) and

(λ−A)−1x =
√

λ

∫ +∞

0
e−
√

λtS(t)xdt , λ > w0.

We claim that A is the generator of an kε-regularized family Sε(t) for problem (3.1), where kε(t) :=
(1 ∗ aε)(t), t ≥ 0.

In fact, since âε(λ) → 0 as λ →∞ we have that 1
âε(λ) > w0 for all λ sufficiently large, say λ > w1.

We set for x ∈ X and ε > 0,

Jε(λ)x :=
k̂ε(λ)
âε(λ)

[
1

âε(λ)
−A

]−1

x,

whenever λ > w1. Thus, for x ∈ X,

Jε(λ)x =
1

λ
√

âε(λ)

∫ +∞

0
e
− 1√

âε(λ)
t
S(t)xdt

=
∫ +∞

0
hε(λ, t)S(t)xdt.

where hε(λ, t) := 1

λ
√

âε(λ)
e
− 1√

âε(λ)
t
, λ > w1, t ≥ 0.
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Now, thanks to Proposition 3.3 we can now follow the same steps as those given in the proof of [8,
Theorem 2.8]. Therefore there are constants C > 0 and w2 ∈ R which are independent of ε > 0 such
that

(3.8) ‖Ln
λJε(λ)‖ ≤ C

(λ− w2)n+1
, n ∈ N.

Hence for all 0 < ε < ε0, A is the generator of an 1∗aε - regularized resolvent family Sε(t), by Theorem
2.3. Moreover,

(3.9) ‖Sε(t)‖ ≤ Cew0t , t ≥ 0 .

Since aε(t) → a0(t) almost everywhere and kε(t) = (1 ∗ aε)(t) → (1 ∗ a0)(t) = k0(t) as ε → 0+, we
obtain from Theorem 3.1 that A is the generator of an (1 ∗ a0)−regularized resolvent family S0(t),
such that lim

ε→0+
Sε(t)x = S0(t)x for all x ∈ X and t ≥ 0. Moreover, the convergence in uniform on

compact subsets of R+.
¤

4. Singular Perturbation

Definition 4.1. We say that u : R+ → X is a solution of (1.1) if u ∈ C2(R+; X), u(t) ∈ D(A) for
t ≥ 0 and (1.1) is satisfied on R+.

Before proceeding to the main Theorem of this paper we state the next Lemma and some of its
consequences.

In what follows, we denote K∗(1) := K and K∗(n) := K ∗K∗(n−1), for n ≥ 2.

Lemma 4.2. Suppose that K(t) is continuous and exponentially bounded and define

(4.1) rε(t) := ε2(1 +
∑

n≥1

(−1)n(1 ∗K∗(n)))(t) + t +
∑

n≥1

(−1)n(t ∗K∗(n))(t),

for ε ≥ 0, t ≥ 0. Then,
(i) The series (4.1) is absolutely convergent for t ≥ 0 and uniformly convergent on compact intervals.

Moreover, there is M ≥ 1, w ∈ R+ such that

|rε(t)| ≤ Mewt , t ≥ 0.

(ii) Let r0(t) := t +
∑

n≥1

(−1)n(t ∗K∗(n))(t), t ≥ 0 then lim
ε→0+

rε(t) = r0(t) uniformly in t ≥ 0.

(iii) For ε ≥ 0, rε(t) satisfy

(4.2) (rε ∗ aε)(t) =
t2

2
, t ≥ 0.

(4.3) (rε ∗ a0)(t) =
t2

2
+ ε2t , t ≥ 0.

(iv) For each ε ≥ 0, rε ∈ C1(R+) and

(4.4) ε2a0(t) + (r′ε ∗ a0)(t) = t + ε2,

in particular for ε = 0

(4.5) (r′0 ∗ a0)(t) = t.
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Proof. Since K(t) es exponentially bounded, there is M > 0 and w ≥ 0 such that ‖K(t)‖ ≤ Mewt.
Then,

|(1 ∗K)(t)| ≤ M(ewt ∗ ewt)(t) = Mtewt

and inductively,

|(1 ∗K∗(n))(t)| ≤ Mn

n!
tnewt for n = 1, 2, . . . .

Thus

1 +
∑

n≥1

|(1 ∗K∗(n))(t)| ≤ ewt + ewt
∑

n≥1

Mntn

n!
= e(w+M)t.

On the other hand
|(t ∗K)(t)| ≤ M(ewt ∗ ewt)(t) = Mtewt

and
|(t ∗K∗(n))(t)| ≤ Mn

n!
tnewt for n = 1, 2, ...

Thus
t +

∑

n≥1

|(t ∗K∗(n))(t)| ≤ e(w+M)t,

and hence rε(t) is exponentially bounded and then claim (i) follows. The proof of (ii) is immediate.

To show (iii) notice that r̂ε(λ) = ε2

1+K̂(λ)
+ 1

λ2(1+K̂(λ))
, λ > w and âε(λ) = 1+K̂(λ)

λ2ε2+λ
, λ > w. Then

r̂ε(λ)âε(λ) = 1
λ3 and the proof of (4.2) follows by uniqueness of the Laplace transform, and by the

same reasoning we show (4.3). The claim (iv) is obvious.
¤

Remark 4.3.

A direct consequence of the above Lemma are the following identities, which we will be needed in the
proof of Theorem 3.6 below.

(A1) (r′ε ∗ aε)(t) = t− ε2aε(t)

(A2) (r′ε ∗ a′ε)(t) = 1− ε2a′ε(t)

(A3) (r′ε ∗ a′′ε )(t) = −ε2a′′ε (t)−
r′ε(t)
ε2

(A4) (r0 ∗ a0)(t) =
t2

2

(A5) r0(t) + (r′0 ∗K)(t) = 1

(A6) r′′0(t) + K(t) + (r′′0 ∗K)(t) = 0

(A7) r′ε(t) + (K ∗ r′ε)(t) + ε2K = 1
Proof. To show (A1), we notice that (rε ∗ aε)(t) = t2/2 by equation (4.2), then (rε ∗ aε)′(t) = t
and since rε(0) = ε2 it then follows that (r′ε ∗ aε)(t) = t − ε2aε(t). Now from (A1), we get that
(r′ε ∗ aε)′(t) = 1 − ε2a′ε(t) and since aε(0) = 0 we obtain (A2). In order to prove (A3), we recall that

a′ε(t) =
1
ε2

eε(t)+
1
ε2

(eε ∗K)(t) and hence a′ε(0) = 1/ε2, and now the proof follows by differentiation on

both sides of (A2). To show (A4) we recall that (r′0 ∗ a0)(t) = t by equation (4.5) and since r0(0) = 0
then (A4) follows by the fact that (1 ∗ r′0 ∗ a0)(t) = 1 ∗ t = t2/2. The proof of (A5),(A6) uses (4.5)
and (A7)uses (4.4) and the fact that a′0(t) = K(t) and then we apply the same reasoning as when we
show the previous identities.

¤
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Remark 4.4.

In the proof of the next Theorem we also will make use some properties concerning the behavior
under convolution of the function eε(t) = e−

1
ε2

t as ε → 0+. That is, given a scalar valued function f
belonging to C(R+), and t ≥ 0, the following properties are true:

(B1) |(eε ∗ f)(t)| ≤ t sup{|f(s)| : 0 ≤ s ≤ t}, for all ε > 0,

(B2) lim
ε→0+

(eε ∗ f)(t) = 0,

Before to proceed to the following theorem observe that a calculation yields

(4.6) a′ε(t) =
1
ε2

eε(t) +
1
ε2

(eε ∗K)(t).

and

(4.7) a′′ε (t) = (
K(0)

ε2
− 1

ε4
)eε(t) +

1
ε2

(eε ∗K ′)(t).

We are now ready to state and proof the main theorem of this paper.

Theorem 4.5. Let A be the generator of a 2-times integrated cosine family on a Banach space X.
Suppose that K ∈ K(R, ε0) is exponentially bounded, and
(H1) u0(ε), u1(ε), w0 ∈ D(A), u0(ε) → w0 and u1(ε) → w1 ∈ X, as ε → 0+.
(H2) Au0(ε) → 0 and there is C ≥ 0 such that ‖Au1(ε)‖ ≤ C for every ε > 0.
(H3) fε(·) ∈ C1(R+; D(A)), and as ε → 0+ fε(t) → f(t) point-wise and f ′ε(·) → f ′(·) in L1([0, b], D(A))

for every b ≥ 0.

Then problem (1.1) has a unique solution uε(t) for all 0 < ε < ε0 which converges to the unique
solution u(t) of problem (1.2). Moreover the convergence is uniform on compact intervals of R+.

Proof We claim that the solution uε(t), ε > 0 of equation (1.1) can be represented by means of the
(1 ∗ aε)-regularized resolvent family Sε(t) given in Theorem 3.1.

We note first that since K is continuous then aε ∈ C2([0, +∞)) and from Remark 2.2 follows

(4.8) Sε(t)x = (1 ∗ aε)(t)x + (aε ∗ASε)(t)x, x ∈ D(A);

thus, for u0 ∈ D(A), and ε ≥ 0 Sε(t)u0 ∈ C2([0, +∞);X). Hence from equation (4.8) and since
aε(0) = 0 it follows

(4.9) S′ε(t)u0 = aε(t)u0 + (a′ε ∗ASε)(t)u0.

Furthermore we have that

(4.10) S′′ε (t)u0 = a′ε(t)u0 +
1
ε2

ASε(t)u0 + (a′′ε ∗ASε)(t)u0,

since a′ε(0) = 1
ε2

by (4.6). Next we define for each ε > 0, t ≥ 0,

(4.11) uε(t) := (r′ε ∗ S′′ε )(t)u0 + ε2S′′ε (t)u0 + ε2(r′0 ∗ S′′ε )(t)u1 + (r′0 ∗ S′′ε ∗ fε)(t)

where u0 := u0(ε), u1 := u1(ε). We claim that uε(t) satisfy the integrated equation

ε2(uε(t)− u0 − u1t) + (1 ∗ uε)(t)− tu0 = A(t ∗ uε)(t) + (K ∗A(t ∗ uε))(t) + (t ∗ fε)(t).

Towards this end we define,

L1(t) := (r′ε ∗ S′′ε )(t)u0 , L2(t) := S′′ε (t)u0

L3(t) := (r′0 ∗ S′′ε )(t)u1 , L4(t) := (r′0 ∗ S′′ε ∗ fε)(t).
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Then applying (4.10), we get that

L1(t) = r′ε ∗ [a′ε +
1
ε2

ASε + a′′ε ∗ASε](t)u0

= [r′ε ∗ a′ε + r′ε ∗
1
ε2

ASε − (ε2a′′ε +
r′ε
ε2

) ∗ASε](t)u0,

since (r′ε ∗ a′ε)(t) = 1 − ε2a′ε(t) and (r′ε ∗ a′′ε )(t) = −ε2a′′ε (t) − r′ε(t)
ε2

, by (A2) and (A3) of Remark 4.3.
Thus

(4.12) L1(t) = u0 − ε2a′ε(t)u0 − ε2(a′′ε ∗ASε)(t)u0.

On the other hand a′ε(t) = − sε(t)
ε2

and a′′ε (t) = − s′ε(t)
ε2

, where

sε(t) := −eε(t)− (eε ∗K)(t).

Thus,

L3(t) = (r′0 ∗ S′′ε )(t)u1 = (−r′0 ∗
sε

ε2
+ r′0 ∗

ASε

ε2
− r′0 ∗

s′ε
ε2
∗ASε)(t)u1

and

L4(t) = (r′0 ∗ S′′ε ∗ fε)(t)

= (−r′0 ∗
sε

ε2
∗ fε)(t) + (r′0 ∗

ASε

ε2
∗ fε)(t)− (r′0 ∗

s′ε
ε2
∗ASε ∗ fε)(t).

Hence

ε2(uε(t)− u0 − u1t) = ε2L1(t) + ε4L2(t) + ε4L3(t) + ε2L4(t)− ε2u0 − ε2u1t

= ε2ASε(t)u0 − ε2(r′0 ∗ sε)(t)u1 + ε2(r′0 ∗ASε)(t)u1

− ε2(r′0 ∗ s′ε ∗ASε)(t)u1 − (r′0 ∗ sε ∗ fε)(t) + (r′0 ∗ASε ∗ fε)(t)
− (r′0 ∗ s′ε ∗ASε ∗ fε)(t)− ε2u1t.

Since S′ε(0) = 0, we obtain that

(1 ∗ uε)(t) = (r′ε ∗ S′ε)(t)u0 + ε2S′ε(t)u0 + ε2(r′0 ∗ S′ε)(t)u1 + (r′0 ∗ S′ε ∗ fε)(t);

We now recall that (r′ε ∗ aε)(t) = t− ε2aε(t) and (r′ε ∗ a′ε)(t) = 1− ε2a′ε(t) by equations (A1) and (A2)
respectively, thus we have that

(r′ε ∗ S′ε)(t)u0 = (r′ε ∗ aε)(t)u0 + (r′ε ∗ a′ε ∗ASε)(t)u0

= tu0 − ε2aε(t)u0 + ((1− ε2a′ε) ∗ASε)(t)u0

= tu0 + (1 ∗ASε)(t)u0 − ε2aε(t)u0 − ε2(a′ε ∗ASε)(t)u0

and hence

(1 ∗ uε)(t) = tu0 + (1 ∗ASε)(t)u0 − ε2aε(t)u0 − ε2(a′ε ∗ASε)(t)u0

+ ε2aε(t)u0 + ε2(a′ε ∗ASε)(t)u0 + ε2(r′0 ∗ a)(t)u1

+ ε2(r′0 ∗ sε)(t)u1 − (r′0 ∗ sε ∗ASε)(t)u1

+ (r′0 ∗ a ∗ fε)(t) + (r′0 ∗ sε ∗ fε)(t) + (r′0 ∗ a′ε ∗ASε ∗ fε)(t).
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From the fact that ε2s′ε(t) + sε(t) = −K(t) and a′ε(t)− s′ε(t) = K(t), we obtain that

Vε(t) := ε2(uε(t)− u0 − u1t) + (1 ∗ uε)(t)− tu0

= ε2ASε(t)u0 + (1 ∗ASε)(t)u0 + ε2(r′0 ∗ASε)(t)u1

+ ε2(r′0 ∗K ∗ASε)(t)u1 + ((r′0 + r′0 ∗ (a′ε − s′ε)) ∗ASε ∗ fε)(t) + (t ∗ fε)(t)
= ε2ASε(t)u0 + (1 ∗ASε)(t)u0 + ε2(r′0 ∗ASε)(t)u1

+ ε2(r′0 ∗K ∗ASε)(t)u1 + ((r′0 + r′0 ∗K) ∗ASε ∗ fε)(t) + (t ∗ fε)(t)
= ε2ASε(t)u0 + (1 ∗ASε)(t)u0 + ε2((r′0 + r′0 ∗K) ∗ASε)(t)u1

+ ((r′0 + r′0 ∗K) ∗ASε ∗ fε)(t) + (t ∗ fε)(t).

On the other hand we have that

Wε(t) := A(t ∗ uε)(t) + (K ∗A(t ∗ uε))(t) + (t ∗ fε)(t)
= (r′ε ∗ASε)(t)u0 + ε2ASε(t)u0 + (K ∗ r′ε ∗ASε)(t)u0

+ ε2(K ∗ASε)(t)u0 + ε2(r′0 ∗ASε)(t)u1 + ε2(K ∗ r′0 ∗ASε)(t)u1

+ ((r′0 + r′0 ∗K) ∗ASε ∗ fε)(t) + (t ∗ fε)(t)
= ((r′ε + K ∗ r′ε + ε2K) ∗ASε)(t)u0 + ε2ASε(t)u0

+ ε2((r′0 + r′0 ∗K) ∗ASε)(t)u1 + ((r′0 + r′0 ∗K) ∗ASε ∗ fε)(t) + (t ∗ fε)(t),

and since r′ε(t) + (K ∗ r′ε)(t) + ε2K(t) = 1 by (A7) we get that Vε(t) = Wε(t). Thus we have proved
that uε(t) satisfy equation (1.1) and it can be represented by (4.11).

Now when u0 = u(ε) in (4.11) we show that uε(t) converges towards

u(t) := w0 + (S′0 ∗ f)(t) + (r′′0 ∗ S′0 ∗ f)(t)

as ε → 0+, where w0 = lim
ε→0+

u0(ε). We recall that lim
ε→0+

Sε(t)uε(0) = S0(t)w0 by Theorem 3.1. On the

other hand

uε(t) = (r′ε ∗ S′′ε )(t)u0(ε) + ε2S′′ε (t)u0(ε) + ε2(r′0 ∗ S′′ε )(t)u1(ε) + (r′0 ∗ S′′ε ∗ fε)(t)

by equation (4.11); now, for this representation of uε(t) we are going to compute the limit of each
term of the sum separately, and that the convergence is uniform on an interval Ib := [0, b]. First we
notice that

(r′ε ∗ S′′ε )(t)u0(ε) = u0(ε)− ε2a′ε(t)u0(ε)− ε2(a′′ε ∗ASε)(t)u0(ε)
by equation (4.12). We claim that

(4.13) lim
ε→0+

(r′ε ∗ S′′ε )(t)u0(ε) = w0.

Since ε2a′ε(t) ≤ ε2(1 + t‖K‖∞) by (B1). Thus lim
ε→0+

ε2a′ε(t) = 0 uniformly for t ∈ Ib. Hence it suffices

to show that

(4.14) lim
ε→0+

ε2(a′′ε ∗ASε)(t)u0(ε) = 0.

To this end, we recall that a′′ε (t) ≤ 0 and a′ε(t) ≥ 0 thus ε2
∫ b
0 |a′′ε (s)|ds = 1− ε2a′ε(b) ≤ 1. Moreover

‖ε2(a′′ε ∗ASε)(t)u0(ε)‖ ≤ ε2‖Au0(ε)‖
∫ b

0
|a′′ε (s)|‖Sε(b− s)‖ds

≤ Meωb‖Au0(ε)‖ε2
∫ b

0
|a′′ε (s)|ds

≤ Meωb‖Au0(ε)‖.
for t ∈ Ib. Thus the limit (4.14) follows by assumption (H2).
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We now show that

(4.15) lim
ε→0+

ε2S′′ε (t)u0(ε) = 0.

Since we have already proved that lim
ε→0+

ε2(a′′ε ∗ASε)(t)u0(ε) = 0. Then by considering the fact that

ε2S′′ε (t)u0(ε) = ε2a′ε(t)u0(ε) + ASε(t)u0(ε) + ε2(a′′ε ∗ASε)(t)u0(ε),
and since ε2a′ε(t)u0(ε) tends to 0, the proof of (4.15) follows.

Next we show that

(4.16) lim
ε→0+

ε2(r′0 ∗ S′′ε )(t)u1(ε) = 0.

Since S′ε(0) = 0 and r′0(0) = 1 it follows that (r′0 ∗ S′′ε )(t) = S′ε(t) + (r′′0 ∗ S′ε)(t), then we remark that

(4.17) ‖ε2S′ε(t)u1(ε)‖ ≤ |ε2aε(t)|‖u1(ε)‖+ ‖ε2(a′ε ∗ Sε)(t)Au1(ε)‖,
and we notice that

‖ε2(a′ε ∗ Sε)(t)Au1(ε)‖ ≤ Meωb‖Au1(ε)‖ε2
∫ b

0
|a′ε(s)|ds

by the stability condition (3.2), and since this last integral and the sequence of functions |ε2aε(t)|‖u1(ε)‖
both converge to 0 uniformly for t ∈ Ib, it then follows that ‖ε2S′ε(t)u1(ε)‖ → 0 uniformly for t ∈ [0, b],

hence ‖r′′0‖∞
∫ b

0
ε2‖S′ε(s)u1(ε)‖ds → 0. On the other hand for t ∈ Ib we have that,

‖ε2(r′′0 ∗ S′ε)(t)u1(ε)‖ ≤ ‖r′′0‖∞
∫ b

0
ε2‖S′ε(s)u1(ε)‖ds,

and hence the proof of (4.16) follows.
Next we claim that

(4.18) lim
ε→0+

(r′0 ∗ S′′ε ∗ fε)(t) = (r′′0 ∗ S′0 ∗ f)(t) + (S′0 ∗ f)(t)

To this end we notice that we can write

(r′0 ∗ S′′ε ∗ fε)(t) = (S′ε ∗ fε)(t) + (r′′0 ∗ S′ε ∗ fε)(t).

Moreover,
(S′ε ∗ fε)(t) = Sε(t)(fε(0)) + (Sε ∗ f ′ε)(t).

Now in order to compute the limit of (Sε ∗ f ′ε)(t) as ε → 0+, we recall that f ′ε → f ′ in L1([0, b]; D(A)),
by (H3). Hence we obtain that

(4.19)
∫ t

0
‖Sε(t− s)(f ′ε(s)− f ′(s)‖ds ≤ Meωb

∫ b

0
‖f ′ε(s)− f ′(s)‖ds → 0,

as ε → 0+. Moreover, for t ∈ [0, b]
∫ t

0
‖(Sε(t− s)− S0(t− s))(f ′(s))‖ds ≤ b sup

0≤s≤b
‖(Sε(s)− S0(s))(f ′(t− s))‖.

Since Sε(t)(f ′(t)) → S0(t)(f ′(t)) as ε → 0+ uniformly for t ∈ [0, b] by Theorem 3.1, implying that
sup0≤s≤b ‖(Sε(s)− S0(s))(f ′(s))‖ → 0 and hence

(4.20)
∫ t

0
‖(Sε(t− s)− S0(t− s))(f ′(s))‖ds → 0
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as ε → 0+, uniformly for t ∈ Ib. Thus from the triangle inequality we have that

lim
ε→0+

(Sε ∗ f ′ε)(t) = (S0 ∗ f ′)(t)

by applying the estimates (4.19) and (4.20). Hence we have shown that

lim
ε→0+

(S′ε ∗ fε)(t) = lim
ε→0+

(Sε(t)(fε(0)) + (Sε ∗ f ′ε)(t)

= S0(t)(f(0)) + (S0 ∗ f ′)(t).

Next, we calculate the limit of (r′′0 ∗ S′ε ∗ fε)(t) as ε → 0+. First we notice that

(r′′0 ∗ S′ε ∗ fε)(t) = (r′′0 ∗ Sε(t))(fε(0)) + (r′′0 ∗ Sε ∗ f ′ε)(t).

Since (r′′0 ∗ Sε(t))(fε(0)) → (r′′0 ∗ S0)(t)(f(0), we only have to compute the limit of (r′′0 ∗ Sε ∗ f ′ε)(t).

Hence we define Aε(t) :=
∫ t

0
‖(Sε ∗ (f ′ε − f ′))(s)‖ds and Bε(t) :=

∫ t

0
‖((Sε − S0) ∗ f ′)(s)‖ds. Then

(4.21) ‖(r′′0 ∗ Sε ∗ f ′ε)(t)− (r′′0 ∗ S0 ∗ f ′)(t)‖ ≤ ‖r′′0‖∞(Aε(t) + Bε(t)).

Since

Aε(t) ≤ bMeωb

∫ b

0
‖f ′ε(τ)− f ′(τ)‖dτ

by the stability condition (3.2). Then lim
ε→0+

Aε(t) = 0 by (4.19). On the other side we have that

Bε(t) ≤
∫ b

0
‖((Sε − S0) ∗ f ′)(s)‖ds.

Since ((Sε − S0) ∗ f ′)(s) → 0 uniformly on Ib by (4.20) implying that Bε(t) → 0 as ε → 0+. Thus
(r′′0 ∗ S′ε ∗ fε)(t) → (r′′0 ∗ S0)(t)(f(0)) + (r′′0 ∗ S0 ∗ f ′)(t), and hence

lim
ε→0+

(r′0 ∗ S′′ε ∗ fε)(t) = S0(t)(f(0)) + (S0 ∗ f ′)(t) + (r′′0 ∗ S0)(t)(f(0) + (r′′0 ∗ S0 ∗ f ′)(t).

Moreover, it is not hard to prove that

S0(t)(f(0)) + (S0 ∗ f ′)(t) + (r′′0 ∗ S0)(t)(f(0) + (r′′0 ∗ S0 ∗ f ′)(t) = (r′′0 ∗ S′0 ∗ f)(t) + (S′0 ∗ f)(t),

and this concludes with the proof of (4.18). Hence, we have shown that lim
ε→0+

uε(t) = u(t), where

(4.22) u(t) := w0 + (r′′0 ∗ S′0 ∗ f)(t) + (S′0 ∗ f)(t).

We remark that u(t) can also be represented as

(4.23) u(t) = S′0(t)w0 + (r′′0 ∗ S0)(t)w0 + (r′′0 ∗ S′0 ∗ f)(t) + (S′0 ∗ f)(t).

Since A is closed then Aω0 = 0 by (H2). Thus S′0(t)ω0 = a0(t)ω0. On the other hand we recall that
(r′0 ∗a0)(t) = t by (4.5) then by differentiating on both sides follows that (r′′0 ∗a0)(t) = 1−a0(t). Hence

(r′′0 ∗ S′0)(t)w0 = (r′′0 ∗ a0)(t)w0

= (1− a0(t))w0.

Therefore,

u(t) = w0 + (S0 ∗ f)(t) + (r′′0 ∗ S0 ∗ f)(t)
= a0(t)w0 + (1− a0(t))w0 + (r′′0 ∗ S′0 ∗ f)(t) + (S′0 ∗ f)(t)
= S′0(t)w0 + (r′′0 ∗ S′0)(t)w0 + (r′′0 ∗ S′0 ∗ f)(t) + (S′0 ∗ f)(t),

proving the representation (4.23).
To finish the proof, we claim that u(t) satisfy the integrated equation

(4.24) u(t)− w0 = A(1 ∗ u)(t) + A(K ∗ 1 ∗ u)(t) + (1 ∗ f)(t).
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Once we have shown that u(t) is a solution of the integrated equation we obtain that u′(t) exists and
equation (1.2) is satisfied.

We notice, from identity (4.23) follows that

(1 ∗ u)(t) = S0(t)w0 + (r′′0 ∗ S0)(t)w0 + (r′′0 ∗ S0 ∗ f)(t) + (S0 ∗ f)(t)

and since r′′0(t) + K(t) + (r′′0 ∗K)(t) = 0, then the right hand side of the integrated equation (4.24)
equals to

J(t) := A(1 ∗ u)(t) + K ∗A(1 ∗ u)(t) + (1 ∗ f)(t)
= (r′′0 ∗AS0 ∗ f)(t) + (AS0 ∗ f)(t) + (r′′0 ∗K ∗AS0 ∗ f)(t) + (K ∗AS0 ∗ f)(t) + (1 ∗ f)(t)
= (r′′0 ∗AS0 ∗ f)(t) + (AS0 ∗ f)(t) + ((r′′0 ∗K) + K) ∗AS0 ∗ f)(t) + (1 ∗ f)(t)
= (r′′0 ∗AS0 ∗ f)(t) + (AS0 ∗ f)(t)− (r′′0 ∗AS0 ∗ f)(t) + (1 ∗ f)(t)
= (AS0 ∗ f)(t) + (1 ∗ f)(t)

Since (r′′0 ∗a)(t) = 1−a0(t) and hence we have that (r′′0 ∗S′0∗f)(t)+(S′0∗f)(t) = (AS0∗f)(t)+(1∗f)(t).
Then we can write (4.22) as u(t)−w0 = AS0(t) + (AS0 ∗ f)(t) + (1 ∗ f)(t); hence we have shown that
u(t)− w0 = J(t), and the proof is now finished.

¤

References

[1] R. Chill, A. Haraux. An optimal estimate for the difference of solutions of two abstract evolution equations. J. Differ.
Equations. 193 (2) (2003), 385-395.

[2] K.-J. Engel. On singular perturbations on second order Cauchy problems . Pacific J. Math. 152 (1) (1992), 79-91.
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