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Abstract. We study the singular perturbation problem

(Eε) ε2u′′ε (t) + u′ε(t) = Auε(t) + (K ∗Auε)(t) + fε(t), t ≥ 0, ε > 0,

for the integrodifferential equation

(E) w′(t) = Aw(t) + (K ∗Aw)(t) + f(t), t ≥ 0,

in a Banach space, when ε → 0+. Under the assumption that A is the generator of a strongly continuous
cosine family and under some regularity conditions on the scalar-valued kernel K we show that problem
(Eε) has a unique solution uε(t) for each small ε > 0. Moreover uε(t) converges to u(t) as ε → 0+, the
unique solution of equation (E).

1. Introduction

The purpose of this paper is the study of linear integro differential equations of convolution type
given by

(1.1)





ε2u′′(t, ε) + u′(t, ε) = Au(t, ε) +
∫ t

0
K(t− s)Au(s, ε)ds + f(t, ε), t ≥ 0

u(0, ε) = u0(ε),
u′(0, ε) = u1(ε).

and

(1.2)





w′(t) = Aw(t) +
∫ t

0
K(t− s)Aw(s)ds + f(t), t ≥ 0

w(0) = w0.

on arbitrary Banach space X. The problem to study the behavior of (1.1) as ε → 0 is called a singular
perturbation problem .

In the above formulation A is a closed linear operator with densely defined domain in X and K is
a real-valued function.

Questions concerning the singular perturbation problem occur frequently in linear viscoelasticity
theory, for instance when A = ∆ is the Laplace operator. In this case, ε = ρ represents the material
density as ρ → 0. For more information on the subject of viscoelasticity theory we refer to the
monographs of Christensen [3], Mainardi [16] and Renardy, Hrusa and Nohel [19].

The singular perturbation problem for (1.1) with K ≡ 0 was first considered by Kisyński [8] in
the case where A is a self adjoint, positive definite operator on a Hilbert space. Latter, Sova [20]
study the problem under the assumptions that A is the generator of a strongly continuous cosine
function. The most precise results for the homogeneous problem are those by Kisyński [9] who applied
the theory of monotonic functions and gave explicit solutions of (1.1). See also [4] and [2] for others
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developments. The treatment of the nonhomogeneous equation is due to Fattorini [5, Chapter VI];
see also the references therein.

When K(t) is vector-valued and different from zero, James H. Liu [12] (see also [6] and [10]) has
treated the problem by considering the integral term, (K ∗Au)(t), as a perturbation of the main term
Au(t) and under the assumption of existence of solutions. Then the problem is treated as in the case
K ≡ 0.

In this article we solve the singular perturbation problem by a new method. In constrast with the
previous works on the subject we do not need to assume the existence of solutions beforehand. The
strategy is to apply the notion of resolvent families to prove existence and uniqueness of solution when
A is the generator of a cosine family.

The key to solve the singular perturbation problem relies on result on convergence of resolvent fam-
ilies due to Prüss [18, Corollary 6.5], which extends the classical Trotter-Kato theorem on convergence
and approximation of C0-semigroups.

The conditions that we impose on the kernel K(t) are taken from the known examples which occur
in several of the concrete applications. For instance, the important class K(t) = be−at with a > 0 and
a + b > 0 is shown to satisfy our assumptions. For this and more examples, see the monograph [18].

We give an explicit representation of the solution. In case that A generates a cosine family we prove
in section 2 that there exists a resolvent family Rε(t) and a sequence of functions aε(t) (ε ≥ 0) such
that u(t, ε) can be written as

u(t, ε) = Rε(t)u0(ε) +
∫ t

0
e(−1/ε2)(t−s)Rε(s)u1(ε)ds +

1
ε2

∫ t

0
e(−1/ε2)(t−s)(Rε ∗ fε)(s)ds.

2. Preliminaries

We assume that X is a complex Banach space, A a closed linear unbounded operator in X with
dense domain D(A), and a ∈ L1

loc(R+) a scalar kernel 6= 0. We consider the Volterra equation

(2.1) u(t) = f(t) +
∫ t

0
a(t− s)Au(s)ds, t ≥ 0,

where f ∈ C(R; X). We recall the following definition which is a fundamental notion in the theory of
linear Volterra equations, see Prüss [18]. Here the symbol ̂ denotes the Laplace transform and ρ(A)
stands for the resolvent set of the operator A.

Definition 2.1. A family {R(t)}t≥0 ⊂ B(X) of bounded linear operators in X is called a resolvent
family for (2.1) if the following three conditions are satisfied.

(R1) R(t) is strongly continuous on R+ and R(0) = I;
(R2) R(t) commutes with A.

(R3) R(t)x = x +
∫ t

0
a(t− s)AR(s)xds for all x ∈ D(A), t ≥ 0.

A resolvent family is called exponentially bounded if there are constants M ≥ 1 and ω ∈ R such
that

||R(t)|| ≤ Meωt, for all t ≥ 0;
the pair (M, ω) is called a type of R(t).

Remark 2.2.

If a(t) ≡ 1 we obtain the concept of C0 semigroup and when a(t) = t, we obtain the theory of
strongly continuous cosine families, related to the abstract Cauchy problem of second order.

A very important tool in the theory of resolvent families is the generation Theorem, which give us
necessary and sufficient conditions in order to have existence of a such family. The result is as follows;
see [18, Theorem 1.3].
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Theorem 2.3. Let A be a closed linear unbounded operator with densely defined domain D(A) ,

defined on a Banach space X and let a ∈ L1
loc(R+) satisfying

∫ ∞

0
e−ωt |a(t)| dt < ∞ . Then (2.1)

admits a resolvent family {R(t)}t≥0 of type (M,ω) if and only if the following two conditions are
satisfied

(K1) â(λ) 6= 0 and 1
â(λ) ∈ ρ(A) , for all λ > ω .

(K2) H(λ) := k̂(λ)(I − â(λ)A)−1 satisfy the inequality

||H(n)(λ)|| ≤ M n! (λ− ω)−(n+1) , λ > ω , n ∈ N0 .

Throughout this paper, the symbol ∗ always denotes the finite convolution. We will follow the same
notations as those given in the book [18].

3. Convergence of resolvents and singular perturbation

We will consider the problems

(3.1) uε(t) = fε(t) +
∫ t

0
aε(t− s)Auε(s)ds, t ≥ 0, ε ≥ 0,

where fε → f0 and aε → a0 in an appropriate sense as ε → 0. Assuming the existence of resolvents
Rε(t) for (3.1) as well as the stability condition

sup
ε>0

||Rε(t)|| ≤ Meωt, t ∈ R+.

It can be shown as in the case of the Trotter-Kato theorem on convergence of C0-semigroups, the
strong convergence Rε(t) → R0(t) in X.

Theorem 3.1. Let {aε}ε≥0 ∈ L1
loc(R+) , and let A be a closed linear and densely defined operator on

X, such that
∫∞
0 e−ωs|aε(s) − a0(s)|ds → 0 as ε → 0. Assume (3.1) admits a resolvent {Rε(t)}t≥0 in

X for each ε > 0 and such that the stability condition

(3.2) ||Rε(t)|| ≤ Meωt, t ∈ R+, ε > 0

holds. Then there is a resolvent R0(t) of type (M, ω) for (3.1) with ε = 0 and

(3.3) Rε(t)x → R0(t)x

as ε → 0 uniformly on compact subsets of R+ ×X.

For a proof, see Prüss [18, Corollary 6.5]. Observe that existence of R0(t) need not to be assumed,
but can be proved.

For ε > 0 we define:

(3.4) aε(t) = 1 + (1 ∗K)(t)− eε(t)− (eε ∗K)(t), t ≥ 0,

where eε(t) := e−
1
ε2

t and for ε = 0

(3.5) a0(t) = 1 + (1 ∗K)(t), t ≥ 0.

We always assume that the Laplace transform âε(λ) exists and is non-zero for all λ > ω, ε > 0 and
some ω ∈ R. Then from (3.4) and (3.5) we easily see that

(3.6) âε(λ) → â0(λ),

as ε → 0 for all λ sufficiently large.
In what follows we denote by K(R, ε0) the set of all functions K ∈ C1(R) which satisfies the following

conditions
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1. K(t) ≥ 0 for all t > 0 and K(0) > 0.
2. K ′(t) ≤ 0 for all t ≥ 0.
3. limt→∞K(t) = 0.
4. There exists ε0 > 0 such that for all 0 < ε ≤ ε0 the function

(3.7) (
1
ε2

K(t) + K ′(t))(eε(t) + (eε ∗K)(t))−K(t)2 is nonnegative.

Example.

A calculation shows that the kernel K(t) = be−at where a > 0, b > 0 belongs to the class K(R, ε0).
In particular, condition (3.7) is satisfied for all 0 < ε ≤ 1√

a+b
.

The following definition is due to Prüss [18, Definition 4.4, p.94].

Definition 3.2. A function a : (0,∞) → R is called a creep function if a(t) is nonnegative, nonde-
creasing and concave.

A creep function a(t) has the standard form

(3.8) a(t) = a0 + a∞t +
∫ t

0
a1(s)ds, t > 0,

where a0 = a(0+) ≥ 0, a∞ = limt→∞
a(t)

t ≥ 0, and a1(t) = ȧ(t) − a∞ is nonnegative, nonincreasing,
limt→∞ a1(t) = 0.

Lemma 3.3. Suppose K ∈ K(R, ε1). Then, there exists ε0 > 0 such that for all 0 < ε < ε0 we have
that aε(t) is a creep function with aε

1(t) log- convex.

Proof. Since aε(t) = (1 − eε(t)) + ((1 − eε) ∗ K)(t), we obtain a′ε(t) = 1
ε2

eε(t) + 1
ε2

(eε ∗ K)(t). It
follows that aε(t) is positive and nondecreasing. Moreover

a′′ε (t) = (
K(0)

ε2
− 1

ε4
)eε(t) +

1
ε2

(eε ∗K ′)(t) < 0

for all ε such that 0 < ε < 1√
K(0)

, and hence aε is creep for small ε > 0. To show that aε
1(t) is

log-convex, we recall that aε can be represented as

aε(t) = aε
0 + aε

∞t + (1 ∗ aε
1)(t),

where aε
0 = aε(0) = 0 for all ε > 0 and 0 ≤ aε∞ = limt→∞

aε(t)
t = limt→∞[a0(t)

t − eε
t − (eε∗K)(t)

t ] ≤
limt→∞

a0(t)
t = limt→∞[1t + 1

t (1 ∗K)(t)] = limt→∞K(t) = 0, by hypothesis. Thus aε(t) = (1 ∗ aε
1)(t)

and hence

(3.9) aε
1(t) = a′ε(t).

Now we prove that a′ε(t) is log-convex. Let fε(t) = log(a′ε(t)), then

f ′′ε (t) =
a′′′ε (t)a′ε(t)− (a′′ε (t))2

(a′ε(t))2
.

Since
ε2a′′ε (t) = −a′ε(t) + K(t)

and
ε2a′′′ε (t) =

1
ε2

a′ε(t)−
1
ε2

K(t) + K ′(t),

we obtain

ε2a′′′ε (t)ε2a′ε(t)− (ε2a′′ε (t))
2 = K(t)a′ε(t) + ε2K ′(t)a′ε(t)−K(t)2

= (
1
ε2

K(t) + K ′(t))(eε(t) + (eε ∗K)(t))−K(t)2.
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Thus, by hypothesis, f ′′ε (t) ≥ 0 for sufficiently small ε > 0. This finishes with the proof.
¤

We recall that an infinitely differentiable function f : (0,∞) → R is called completely monotonic if

(−1)nf (n)(λ) ≥ 0

for all λ > 0, n = 0, 1, 2....

Lemma 3.4. Suppose K ∈ C1(R) satisfies K ′ ≤ 0,K(0) > 0. Then for all 0 < ε < 1√
K(0)

the function

φ(λ) = 1√
λâε(λ)

is completely monotonic.

Proof. Since aε
1(0) = 1

ε2
and aε

0 = 0, aε∞ = 0, from (3.9) we have the identity λ2âε(λ) = λâε
1(λ) =

̂̇a1
ε(λ) + aε

1(0) = ̂̇a1
ε(λ) + 1

ε2
and we can write

1
λ
√

âε(λ)
=

ε

[1− (−ε2 ̂̇a1
ε(λ))]1/2

.

Note that the right hand side is the composition of the absolutely monotonic function 1
(1−x)1/2 and

the function −ε2 ̂̇a1
ε(λ). But under our hypotheses ȧ1

ε(t) = (K(0)
ε2

− 1
ε4

)eε(t) + 1
ε2

(eε ∗K ′)(t) < 0, and
hence −ε2 ̂̇a1

ε(λ) is completely monotonic. Then, from [18, Proposition 4.1, p.91] the assertion follows.
¤

Proposition 3.5. If K ∈ K(R, ε1) then the function hε(λ, t) := 1

λ
√

âε(λ)
e
− 1√

âε(λ)
t

(t > 0, λ > 0) is

completely monotonic in λ for each 0 < ε < ε1.

Proof. From Lemma 3.3 there exists ε0 > 0 such that for all 0 < ε < ε0 we have that aε(t) is a
creep function with aε

1(t) log- convex, it follows from [18, Lemma 4.2] that the function

φ(λ) :=
1√

âε(λ)

is positive with φ′(λ) completely monotonic ( i.e a Bernstein function, see [18, Definition 4.3, p.91]).
Hence, applying [18, Proposition 4.5, p.96] (see also [5, Lemma 5.2, p.195]) we obtain that the function

ψt(λ) = e
−1√
âε(λ)

t
is completely monotonic, for every t > 0, λ > 0 and 0 < ε < ε0.

Finally from Lemma 3.4 and the product theorem we obtain that the function hε(λ, t) is completely
monotonic for every t > 0, λ > 0 and 0 < ε < ε0.

¤
We state the following main result concerning existence of resolvents satisfying the condition (3.2).

Except for stability, the proof is much the same as that of [17, Theorem 5] (see also, [18, Theorem
4.1]).

Theorem 3.6. Let A be the generator of a strongly continuous cosine function on a Banach space X.
Assume K ∈ K(R, ε0) is exponentially bounded. Then, (3.1) admits a resolvent {Rε(t)}t≥0 in X for
each 0 ≤ ε < ε0 and the stability condition

||Rε(t)|| ≤ Meωt, t ∈ R+, ε > 0,

holds, where M, ω are independent of ε.
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Proof. The proof of existence for resolvent families in case ε > 0 follows by the general subordina-
tion principle for resolvents (see the proof of [18, Theorem 4.1]). Since A is the generator of a strongly
continuous cosine family {C(t)}t∈R in X, there is M ≥ 1 and ω0 > 0 such that

||C(t)|| ≤ M cosh(ω0t),

for all t ∈ R.
For all µ > ω0 and all x ∈ X we have

(3.10) (µ−A)−1x =
1√
µ

∫ ∞

0
e−
√

µtC(t)xdt.

For all λ sufficiently large we have that 1
âε(λ) > ω0, since âε(λ) → 0 as λ →∞. Then, from (3.10) we

obtain that 1
âε(λ) ∈ ρ(A) and

(λ− λâε(λ)A)−1x =
1

λaε(λ)
[

1
âε(λ)

−A]−1x

=
1

λ
√

âε(λ)

∫ ∞

0
e
− 1√

âε(λ)
t
C(t)xdt

=
∫ ∞

0
hε(λ, t)C(t)xdt

for all x ∈ X and λ sufficiently large, say for λ > ω1.
In what follows, we will apply Theorem 2.3 to show that problem (3.1) admits a resolvent {Rε(t)}t≥0

in X for all ε > 0. Then we will prove that under our hypothesis the stability condition (3.2) is verified.
The existence of a resolvent R0(t) for (3.1) with ε = 0 then follows by Theorem 3.1.

Let Ln
λ = (−1)n(d/dλ)n/n!, for all n = 0, 1, 2, ... By Proposition 3.5 we have that the function

hε(λ, t) is completely monotonic for all 0 < ε < ε0. Hence, defining

Hε(λ) = (λ− λâε(λ)A)−1,

we have

Ln
λHε(λ) =

∫ ∞

0
C(t)Ln

λhε(λ, t)dt.

In this way we obtain the following estimate

||Ln
λHε(λ)|| ≤ M

∫ ∞

0
cosh(ω1t)Ln

λhε(λ, t)dt

= MLn
λ

∫ ∞

0
cosh(ω1t)hε(λ, t)dt

= MLn
λ{(λ− λâε(λ)ω2

1)
−1}

= MLn
λŝε(λ;−ω2

1),

where sε(t;−ω2
1) is the positive solution (see [18, Proposition 4.5]) of the equation

(3.11) sε(t;−ω2
1) = 1 + ω2

1

∫ t

0
sε(τ − t;−ω2

1)aε(τ)dτ, t > 0.

Next, we claim that there are constants c > 0 and ω0 ∈ R which are not depending on ε, such that

(3.12) sε(t;−ω2
1) ≤ ceω0t, t > 0.

In fact, since K(t) ≥ 0 we have from (3.4) and (3.5) the estimate

aε(t) ≤ a0(t),
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for all t ≥ 0 and ε > 0. Hence

sε(t;−ω2
1) = 1 + ω2

1(sε ∗ aε)(t) ≤ 1 + ω2
1(sε ∗ a0)(t), t ≥ 0.

Therefore, there exists a continuous and non negative function gε(t) such that

(3.13) sε(t;−ω2
1) = 1 + ω2

1(sε ∗ a0)(t)− gε(t), t ≥ 0.

By the variation of parameters formula we get that

(3.14) sε(t;−ω2
1) = (1− gε(t)) + r ∗ (1− gε)(t), t ≥ 0,

is a solution of (3.13), where r(t) is the non negative solution of

r(t)− ω2
1a0(t) = (ω2

1a0 ∗ r)(t), t ≥ 0.

We observe that the function r(t) can be explicitly written as

r(t) =
∞∑

k=1

(ω2
1)

ka∗
k

0 (t), t ≥ 0,

since K(t) is exponentially bounded implies that both a0(t) and that r(t) are exponentially bounded
independently of ε. Hence from (3.14) we obtain that

sε(t;−ω2
1) ≤ 1 + (1 ∗ r)(t), t ≥ 0,

which implies that sε(t,−ω2
1) satisfies (3.12), proving the claim.

Using the above estimate it is not difficult to see that

Ln
λŝε(λ;−ω2

1) ≤ c(λ− ω0)−n−1

for all λ > ω0. Then,

(3.15) ||Ln
λHε(λ)|| ≤ c(λ− ω0)−n−1

for all λ > ω0 and all n = 0, 1, 2, ...
According to Theorem 2.3 we conclude that for all 0 < ε < ε0 the problem (3.1) admits a resolvent

family {Rε(t)}t≥0, which satisfy the stability condition (3.2). This finishes with the proof.
¤

Definition 3.7. We say that u : R+ → X is a solution of (1.1) if u ∈ C2(R+; X), u(t) ∈ D(A) for
t ≥ 0 and (1.1) is satisfied on R+.

The following is the main result of this paper.

Theorem 3.8. Let A be the generator of a strongly continuous cosine function on a Banach space X.
Suppose K ∈ K(R, ε1) is exponentially bounded, and

(H1) u0(ε), w0 ∈ D(A), u0(ε) → w0, u1(ε) → w1 ∈ X, as ε → 0.
(H2) fε(·) ∈ C(R+; D(A)) and fε(t) → f(t) as ε → 0.
Then for each ε > 0 the solution uε(t) of problem (1.1) converges to the unique solution of problem

(1.2) as ε → 0+, and the convergence is uniform on compact intervals of R+.

Proof. Since âε(λ) → â0(λ) as ε → 0 it follows by Theorem 3.6 and Theorem 3.1 that for each
0 ≤ ε < ε0, (3.1) admits a resolvent {Rε(t)}t≥0 in X such that Rε(t) → R0(t), as ε → 0.

We show next that for each ε > 0, the solution uε(t) of equation (1.1) can be represented by means
of the resolvent family as

(3.16) uε(t) = Rε(t)u0(ε) + (eε ∗Rε)(t)(u1(ε)) +
1
ε2

(eε ∗Rε ∗ fε)(t).

First, we consider the integrated equation which is obtained by integrating two times equation (1.1),
and thus we get its equivalent form
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(3.17) ε2(uε(t)− u0(ε)− u1(ε)t) + (1 ∗ uε)(t)− u0(ε)t = ((t + t ∗K) ∗Auε)(t) + (t ∗ fε)(t).

Hence it suffices to verify that uε(t) defined by (3.16) satisfy (3.17). Towards this purpose we will
make use of the resolvent equation (R3), written in abbreviate form as Rε = I + aε ∗ ARε. First we
note that 1

ε2
(1 ∗ eε) = 1− eε, and hence from (3.4) we obtain

(3.18) aε(t) =
1
ε2

[(1 ∗ eε)(t) + (1 ∗ eε ∗K)(t)].

Also from (3.4) we get the identity,

(3.19) (1 ∗ aε)(t) = (t + t ∗K)(t)− (1 ∗ eε + 1 ∗ eε ∗K)(t) = (t + t ∗K)(t)− ε2aε(t).

Using the above identities we obtain that

((t + t ∗K) ∗Auε)(t) = (t ∗Auε)(t) + (t ∗K ∗Auε)(t)
= t ∗ARε(t)u0(ε) + [(t ∗ eε)(t)u1(ε)

+
1
ε2

(t ∗ eε ∗ fε)] ∗ARε(t) + t ∗K ∗ARε(t)u0(ε)

+ [(t ∗K ∗ eε)u1(ε) +
1
ε2

(t ∗K ∗ eε ∗ fε)] ∗ARε(t)

= [t + t ∗K] ∗ARε(t)u0(ε) + [(t ∗ eε) + (t ∗K ∗ eε)] ∗ARε(t)u1(ε)

+
1
ε2

[(t ∗ eε ∗ fε) + (t ∗K ∗ eε ∗ fε)] ∗ARε(t)

= [ε2aε + 1 ∗ aε] ∗ARε(t)u0(ε)
+ [(1 ∗ eε) + (1 ∗K ∗ eε)] ∗ 1 ∗ARε(t)u1(ε)

+
1
ε2

[(1 ∗ eε) + (1 ∗K ∗ eε)] ∗ 1 ∗ fε ∗ARε(t)

= ε2[Rε − I](t)u0(ε) + 1 ∗ [Rε − I](t)u0(ε)
+ ε2aε ∗ 1 ∗ARε(t)u1(ε) + aε ∗ 1 ∗ fε ∗ARε(t)
= ε2Rε(t)u0(ε)− ε2u0(ε) + 1 ∗Rε(t)u0(ε)− tu0(ε)
+ ε21 ∗ [Rε − I](t)u1(ε) + 1 ∗ fε ∗ [Rε − I](t)
= ε2Rε(t)u0(ε)− ε2u0(ε) + 1 ∗Rε(t)u0(ε)− tu0(ε)
+ ε2(1 ∗Rε)(t)u1(ε)− ε2u1(ε)t + (1 ∗ fε ∗Rε)(t)− (t ∗ fε)(t)

Hence,

((t + t ∗K) ∗Auε)(t) + (t ∗ fε)(t) + ε2u1(ε)t + tu0(ε) + ε2u0(ε)
= ε2Rε(t)u0(ε) + 1 ∗Rε(t)u0(ε) + ε2(1 ∗Rε)(t)u1(ε) + (1 ∗ fε ∗Rε)(t)

= (ε2Rε(t) + 1 ∗Rε(t))u0(ε) + ε2(eε +
1
ε2

(1 ∗ eε)) ∗Rε(t)u1(ε)

+ (eε +
1
ε2

(1 ∗ eε)) ∗ fε ∗Rε(t)

= ε2uε(t) + (1 ∗ uε)(t)

which shows that uε(t) is the unique solution to problem (1.1 ) and thus it can be represented by
(3.16).

Next we obtain from the resolvent equation that

(3.20) Rε(t)x = x +
∫ t

0
aε(t− s)ARε(s)xds, for all x ∈ D(A).
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Now we notice that differentiability of aε implies the fact that the map t → Rε(t)x, x ∈ D(A) is also
differentiable. Since (H2) implies that fε(·) ∈ D(A). Thus we have the identity

1
ε2

((eε ∗Rε) ∗ fε)(t) = (Rε ∗ fε)(t)− (eε ∗R′
ε ∗ fε)(t)

which follows by integration by parts.
Hence, we can also represent uε as follows

uε(t) = Rε(t)u0(ε) + (Rε ∗ fε)(t) + (eε ∗Rε)(t)u1(ε)− (eε ∗R′
ε ∗ fε)(t)

We now compute the limit of uε(t) as ε → 0+, and we show that the limit is uniform for t in an
arbitrary interval [0, b]. First by (H1) and Theorem 3.1 we notice that lim

ε→0+
Rε(t)u0(ε) = R0(t)w0. On

the other hand eε(t) → 0 as ε → 0+ and ‖Rε(t)‖ ≤ Meωt(ω > 0) by hypothesis and since by (H1) the
sequence u1(ε) is convergent. It then follows that there is some constant C > 0 such that

‖(eε ∗Rε)(t)u1(ε)‖ ≤ Ceωb

∫ b

0
eε(s)ds → 0

as ε → 0+. Thus (eε ∗Rε)(t)u1(ε) → 0 as ε → 0+.
Analogously,

||eε ∗ (R′
ε ∗ fε)(t)|| ≤

∫ b

0
eε(s)||(R′

ε ∗ fε)(t− s)||ds

≤ sup
t−b≤r≤t

||(R′
ε ∗ fε)(r)||

∫ b

0
eε(s)ds

≤ sup
|r|≤b

||(R′
ε ∗ fε)(r)||

∫ b

0
eε(s)ds → 0

as ε → 0+. Thus eε ∗R′
ε ∗ fε(t) → 0 as ε → 0+.

Hence we have showed that

lim
ε→0+

uε(t) = R0(t)w0 +
∫ t

0
R0(t− s)f(s)ds.

Now let

(3.21) u(t) := R0(t)w0 +
∫ t

0
R0(t− s)f(s)ds.

We will prove that u(t) satisfy equation (1.2) solving the singular perturbation problem. From the
fact that R0(t) is a resolvent family it satisfy the equation

R0(t)x = x +
∫ t

0
a0(t− s)AR0(s)xds,

for all x ∈ D(A).
Since w0 ∈ D(A) by (H2), from (3.21) we get u(0) = w0 and

(a0 ∗Au)(t) = a0 ∗A[R0(t)w0 + (R0 ∗ f)(t)]
= (a0 ∗AR0)(t)w0 + [(a0 ∗AR0) ∗ f ](t)
= (R0(t)− I)w0 + [(R0 − I) ∗ f ](t)
= R0(t)w0 − w0 + (R0 ∗ f)(t)− (1 ∗ f)(t)
= u(t)− w0 − (1 ∗ f)(t)
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Since a0(t) = 1 + (1 ∗ K)(t) we get from the above equality that u′(t) exists and equation (1.2) is
satisfied.

¤
Remark 3.9.

As was mentioned in the introduction, James H. Liu [12] has treated the singular perturbation
problem (1.1) - (1.2) under the assumption of existence of solutions and also imposing the following
set of hypotheses:

(L1) A is the generator of a strongly continuous semigroup and a cosine family of operators in X.
(L2) K ∈ C2(R+).
(L3) fε(·), f(·) ∈ C1(R+; X)
(L4) u0(ε), w0 ∈ D(A), u0(ε) → w0, ε

2u1(ε) → 0, as ε → 0.
(L5) For any T > 0, f(·; ε) → f(·) in L1(0, T ; X) as ε → 0.
In opposition to the condition ε2u1(ε) → 0 the above theorem requires only the convergence of

u1(ε).
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