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Abstract. Let A be a closed linear operator defined on a complex Banach

space X. We show a novel representation, using strongly continuous families
of bounded operators defined on N0, for the unique solution of the following

time-stepping scheme

(∗)

 C∇αun = Aun + fn, n ≥ 2;
u0 = u0;

u1 = u1;

as well as its convergence with rates to the solution of the abstract fractional
Cauchy problem

(∗)


∂αt u(t) = Au(t) + f(t), t > 0;

u(0) = u0;
u′(0) = u1;

in the superdiffusive case 1 < α < 2. Here, C∇αun is the Caputo-like fractional

difference operator of order α.

1. Introduction. The theory of one parameter C0-semigroups of linear operators
has many different applications in mathematical physics, probability theory, en-
gineering, biological processes, applications in the theory of linear and nonlinear
partial differential equations, problems in control theory and dynamical systems,
and in some methods for numerical analysis, among others. Typically, in these
applications, the phenomena can be described as an abstract evolution equation of
first order

u′(t) = Au(t) + F (t), t > 0, (1.1)

subject to the initial condition u(0) = u0. Here A is a closed linear operator (typical-
ly A corresponds to the Laplacian), F is a linear or nonlinear term and u0 belongs
to a Banach space. If A generates a C0-semigroup of linear operators {T (t)}t≥0,
then the solution u to problem (1.1) can be written as the well known variation of
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parameters formula

u(t) = T (t)u0 +

∫ t

0

T (t− s)F (s)ds,

see for instance [2, 12]. This last formula, can be used (according to the properties of
T (t)) to study the solution u of the problem (1.1), including its asymptotic behavior,
its regularity properties or some numerical treatments to find an approximation of
u. However, there are many interesting phenomena, including for example, problems
in viscoelasticity, heat conduction in materials with memory, geological exploration,
problems involving linear viscoelastic rods, beams or plates and many others, where
the model of a first order evolution equation is not completely satisfactory. Instead,
as has been widely reported in the last years, fractional differential equations (FDEs)
provide a more natural framework to describe these phenomena. Unfortunately, the
theory of C0-semigroups can no longer be used to describe the evolution of FDEs.
Therefore, the theory of one-parameter resolvent families of operators has become
a powerful tool to describe the dynamics of the solution for this class of fractional
models. See for instance, [4, 10, 13, 18, 25, 29] and references therein.

Resolvent families of operators, which can be considered as an extension of the
theory of semigroups, have been marked by an increased interest, mainly due to its
applications not only to the study of linear and nonlinear FDEs but also integro–
differential equations. As we previously intimated, these families of operators can
be used to write the solution to FDEs as a variation of parameters formula. More
specifically, the solution to the superdiffusion equation ∂αt u(t) = Au(t) + f(t), t ≥ 0,

u(0) = u0,
u′(0) = u1,

(1.2)

where 1 < α ≤ 2, f represents a loading term, A is a closed linear operator defined
in a Banach space X, u0, u1 ∈ X, and, ∂αt denotes the Caputo fractional derivative
of u, can be written as

u(t) = Sα,1(t)u0 + (g1 ∗ Sα,1)(t)u1 + (gα−1 ∗ Sα,1 ∗ f)(t), t ≥ 0, (1.3)

where {Sα,1(t)}t≥0 is the resolvent family generated by A (see [25, Chapter 3]) and
for β > 0 the function gβ(t) is defined by gβ(t) := tβ−1/Γ(β) (here Γ(·) denotes the
Gamma function).

The problem (1.2) has been widely studied in the last years, since it can adequate-
ly capture the dynamics of anomalous processes, as for instance in the modeling of
mechanical wave propagation in viscoelastic media. See for instance [3, 5, 6, 7, 13,
22, 21, 34] and references therein. However, for various practical purposes, it is not
only useful but necessary to study its discrete version.

The existence of discrete solutions to abstract fractional difference equations in
the form of

C∇αun = Aun + fn, n ∈ N,
where A is a closed linear operator, fn is a given sequence and C∇αun is a discrete
counterpart of the Caputo fractional derivative, has been marked in the last decades
by a great deal of interest. See for instance [8, 9, 10, 15, 16, 19, 24, 27, 30, 33] for
some developments. Note that the meaning of the fractional difference operator

C∇αun can vary, depending on the time discretization method used [19].
Recently, in [31] the author analytically studies the time discretization scheme

for the model (1.2) based on the backward Euler method in the case 0 < α < 1.
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In [31] it was shown that if A is the generator of a resolvent family {Sα,α(t)}t≥0,
then the analytical solution of the scheme can be represented in terms of certain
resolvent families of operators defined on N0 by a suitable transformation of the
family {Sα,α(t)}t≥0 using the probability mass function, with variance t/τ defined
by

ρτn(t) := e−
t
τ

(
t

τ

)n
1

τn!
, t ≥ 0, n ∈ N0,

for a positive step size τ > 0. In addition, error estimates were provided in case A
is a sectorial operator.

However, the extension of the results in [31] for the important case of superdi-
fussion, i.e. 1 < α < 2, was left open.

The objective of this work is to answer this problem. We provide a suitable
framework to apply the theory of resolvent families of operators in order to find
necessary conditions on A to have an analytical representation of the solutions of
the following scheme

(∗)

 C∇αun = Aun + fn, n ≥ 2,
u0 = u0,
u1 = u1,

(1.4)

where A is a closed linear operator defined in a Banach space X, the initial condi-
tions u0, u1 belong to X, 1 < α < 2, and the sequence fn is a given vector-valued
sequence. Here, C∇αun represents a discretization of the Caputo fractional deriv-
ative ∂αt u(t) at time t = τn, which is defined by

C∇αun :=

n∑
j=2

k2−α
τ (n− j) (uj+1 − 2uj + uj−1)

τ2
,

where, un :=
∫∞

0
ρτn(t)u(t)dt, and kβτ (n) := τβΓ(β+n)

Γ(β)Γ(n+1) for all n ∈ N0 and β > 0.

More concretely, we show that ifA is the generator of a resolvent family {Sα,1(t)}t≥0,
then the solution to (1.4) can be written as (see Theorem 3.1 below)

un = Snα,1u0 + τ(g1 ? Sα,1)nu1 + τ2(gα−1 ? Sα,1 ? f)n,

where Snα,1 is defined as

Snα,1x :=

∫ ∞
0

ρτn(t)Sα,1(t)xdt,

for all x ∈ X and for β > 0,

(gβ ? Sα,1)nx :=

n∑
j=0

kβτ (n− j)Sjα,1x, n ∈ N0.

We also analyze the difference ‖u(tn) − un‖, where u is the solution to (1.2) and
un solves the difference equation (1.4) and we show that, given suitable conditions
on α, there exists a constant C = C(T ) > 0 (independent of the solution, the data
and the step size) such that, for 0 < tn ≤ T, there holds

‖u(tn)− un‖ ≤ Cτtαε−1
n (‖Aεu0‖+ ‖Aεu1‖+ ‖Aεf‖) ,

where 0 < ε < 1 satisfies αε < 1 and u0, u1 and f(t) belong to the domain of Aε.
Of course, this result shows, in particular, that if τ → 0 then ‖u(tn)− un‖ → 0.

The paper is organized as follows. In Section 2 we give preliminaries on resolvent
families, sectorial operators and continuous and discrete fractional calculus. Section
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3 treats the existence of solutions to the Caputo fractional difference equation (1.4).
Here, given a time step size τ > 0, we study the connection between the continuous
and the discrete resolvent families {Sα,1(t)}t≥0 and {Snα,1}n∈N0

, as well as, its con-
sequences on the representation of solutions to (1.4). In Section 4 we study error
estimates for ‖u(tn) − un‖ and we give sufficient conditions on the initial data in
order to obtain ‖u(tn) − un‖ → 0 as τ → 0. Finally, in Section 5 we give some
numerical experiments to illustrate the theoretical results.

2. Resolvent families, continuous and discrete fractional calculus.

2.1. Resolvent families. Given a Banach space X ≡ (X, ‖ · ‖), B(X) denotes the
Banach space of all bounded and linear operators from X into X. For a closed linear
operator A defined on X, its resolvent set is denoted by ρ(A), the resolvent operator
is defined by R(λ,A) = (λ−A)−1 for all λ ∈ ρ(A) and σ(A) denotes the spectrum
of A. A family of operators {S(t)}t≥0 ⊂ B(X) is called exponentially bounded if
there exist real numbers M > 0 and ω ∈ R such that

‖S(t)‖ ≤Meωt, t ≥ 0.

We observe that if {S(t)}t≥0 ⊂ B(X) is exponentially bounded, then the Laplace
transform of S(t)

Ŝ(λ)x :=

∫ ∞
0

e−λtS(t)xdt,

exists for all Reλ > ω.
In the following we recast the main ingredients of operator theory that we will

use. For an up to date review of the following concepts and their interplay with
fractional differential equations in the continuous setting, we refer the reader to the
recent reference [25].

Definition 2.1. Let 1 ≤ α ≤ 2 and 0 < β ≤ 2 be given. A closed linear operator
A defined in a Banach space X is called the generator of an (α, β)-resolvent family
if there exist ω ≥ 0 and a strongly continuous and exponentially bounded function
Sα,β : R+ → B(X) such that {λα : Reλ > ω} ⊂ ρ(A) and

λα−β(λα −A)−1x =

∫ ∞
0

e−λtSα,β(t)xdt,

for all Reλ > ω and x ∈ X. The family {Sα,β(t)} is also called the (α, β)-resolvent
family generated by A.

Given µ > 0, we define gµ(t) := tµ−1

Γ(µ) for all t > 0, where Γ denotes the Gamma

function. If we take a(t) := gα(t) and k(t) := gβ(t), where α, β > 0 then the family
{Sα,β(t)} corresponds to an (a, k)-regularized family according to [23]. Moreover,
from [23, Lemma 2.2 and Proposition 2.5] we deduce the following properties.

Proposition 1. Let 1 ≤ β ≤ α ≤ 2 be given. Let {Sα,β(t)}t≥0 ⊂ B(X) be the
(α, β)-resolvent family generated by A. Then,

1. Sα,β(0) = I, where I denotes the identity operator in X.
2. For all x ∈ D(A) and t ≥ 0 we have Sα,β(t)x ∈ D(A) and ASα,β(t)x =

Sα,β(t)Ax.

3. For x ∈ X and t ≥ 0 we have
∫ t

0
gα(t− s)Sα,β(s)xds ∈ D(A) and

Sα,β(t)x = gβ(t)x+A

∫ t

0

gα(t− s)Sα,β(s)xds. (2.1)
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Moreover, the function t 7→ Sα,β(t) satisfies the following functional equation
(see [1, 21, 26]):

Sα,β(s)(gα ∗ Sα,β)(t)− (gα ∗ Sα,β)(s)Sα,β(s)

= gβ(s)(gα ∗ Sα,β)(t)− gβ(t)(gα ∗ Sα,β)(s),

for all t, s ≥ 0. If an operator A with domain D(A) generates a resolvent family
Sα,β(t), then for all x ∈ D(A) we have

Ax = lim
t→0+

Sα,β(t)x− gβ(t)x

gα+β(t)
.

For example, we notice that if α = β = 1, then S1,1(t) corresponds to a C0-
semigroup, and if α = 2, β = 1, then S2,1(t) is a strongly continuous cosine family
of operators. Analogously, if α = β = 2, then S2,2(t) is a strongly continuous sine
family. See [2] for further details. If α > 0 and β = 1, then Sα,1(t) is the solution
operator introduced by Bazhlekova in [3, Definition 2.3].

Definition 2.2. We say that a function v : R+ → X is a strong solution to equation
(1.2) if v(t) ∈ D(A) for all t ≥ 0 and satisfies (1.2).

Taking formally the Laplace transform in (1.2) we obtain

(λα −A)û(λ) = λα−1u0 + λα−2u1 + f̂(λ),

for all Re(λ) > 0. If λα ∈ ρ(A), then

û(λ) = λα−1(λα −A)−1u0 + λα−2(λα −A)−1u1 + (λα −A)−1f̂(λ), (2.2)

where u0, u1 ∈ X. By the uniqueness of the Laplace transform and Definition 2.1,
we obtain that if A generates a resolvent family {Sα,1(t)}t≥0, then for all λα ∈ ρ(A)
we have

1. λα−1(λα −A)−1 = Ŝα,1(λ),

2. λα−2(λα−A)−1 = Ŝα,2(λ)⇐⇒λα−2(λα−A)−1 = 1
λλ

α−1(λα−A)−1 = ĝ1(λ)Ŝα,1(λ),
and

3. (λα−A)−1 = Ŝα,α(λ)⇐⇒ (λα−A)−1 = 1
λα−1λ

α−1(λα−A)−1 = ĝα−1(λ)Ŝα,1(λ).

The identity (2.2), the relations (1)-(2) and the uniqueness of the Laplace transform
imply that the unique solution to (1.2) is given by

u(t) = Sα,1(t)u0 + (g1 ∗ Sα,1)(t)u1 + (gα−1 ∗ Sα,1 ∗ f)(t), t ≥ 0. (2.3)

We notice that, since u0, u1 merely belong to X, we can not prove (by Proposition
1) that the function u(t) defined by (2.3) belongs to D(A) in order to obtain a
strong solution. Thus, we need to introduce the following definition of solution.

Definition 2.3. Let A be the generator of a resolvent family {Sα,1(t)}t≥0. We say
that a function u : R+ → X is a mild solution to equation (1.2) if u satisfies (2.3)
for all t ≥ 0.

We recall that a closed linear operator A : D(A) ⊂ X → X is said to be
sectorial of angle θ if there are constants ω ∈ R, M > 0 and θ ∈ (π/2, π) such that
ρ(A) ⊃ Σθ,ω := {z ∈ C : z 6= ω : | arg(z − ω)| < θ} and

‖(z −A)−1‖ ≤ M

|z − ω|
for all z ∈ Σθ,ω.
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In this case, we write A ∈ Sect(θ, ω,M). We notice that we may assume, without
lost of generality, that ω = 0. In fact, otherwise we can take the operator A − ωI,
which is also sectorial. In that case, we write A ∈ Sect(θ,M) and we denote the
sector Σθ,0 as Σθ. More details and further information on sectorial operators can
be found in [12, 17].

For a given linear and closed operator A whose resolvent set contains the semi
real axis (−∞, 0] and 0 ≤ ε ≤ 1, Xε will denote the domain of the fractional power
Aε, that is Xε := D(Aε) endowed with the norm ‖x‖ε := ‖Aεx‖ (see for example
the monograph [28]). Examples of such operators are sectorial operators with ω ≥ 0.
It is a well known fact that if 0 < ε < 1, and x ∈ D(A), then there exists a constant
κ ≡ κε > 0 such that (see [28])

‖Aεx‖ ≤ κ‖Ax‖ε‖x‖1−ε. (2.4)

2.2. Continuous and discrete fractional calculus. For α > 0, let m = dαe
be the smallest integer m greater than or equal to α. Let f : R+ → X be a Cm-
differentiable function. The Caputo fractional derivative of order α is defined by

∂αt f(t) :=

∫ t

0

gm−α(t− s)f (m)(s)ds.

An easy computation shows that if α = m ∈ N, then ∂mt f = dmf
dtm . Moreover,

if 1 < α < 2, then the Laplace transform of ∂αt f verifies ∂̂αt f(λ) = λαf̂(λ) −
λα−1f(0)− λα−2f ′(0). More details on fractional calculus can be found in [29].

The set of non-negative integer numbers is denoted by N0 and the non-negative
real numbers by R+

0 . Define pn(t) := tn

n! e
−t, n ∈ N0. We notice that pn(t) ≥ 0 for

all t ≥ 0, n ∈ N0, and ∫ ∞
0

pn(t)dt = 1, for all n ∈ N0.

Take τ > 0 fixed and n ∈ N0, and define the corresponding approximation to the
identity ρτn by

ρτn(t) :=
1

τ
pn(

t

τ
) = e−

t
τ

(
t

τ

)n
1

τn!
.

Given a bounded and locally integrable function u : R+
0 → X, we define the vector-

valued sequence (un)n by

un :=

∫ ∞
0

ρτn(t)u(t)dt, n ∈ N0. (2.5)

It is well known that for each f ∈L1(R) we have f ∗ρτn→f as τ→0 in the L1-norm.
However, pointwise convergence cannot be assured a priori. One of our main results
shows that un is an approximation of u(tn), where tn is defined by tn=nτ.

Remark 1. A calculation shows that

un = P(uτ )(n),

where uτ (t) := u(τt) and P denotes the Poisson transform [24], which is defined for
a vector valued function f : R+ → X by

P(f)(n) :=

∫ ∞
0

pn(t)f(t)dt.
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The space of all vector-valued functions v : R+
0 → X is denoted by F(R+

0 ;X).
The backward Euler operator ∇τ : F(R+

0 ;X)→ F(R+
0 ;X) is defined by

∇τvn :=
vn − vn−1

τ
, n ∈ N.

For m ≥ 2, ∇mτ : F(R+
0 ;X)→ F(R+

0 ;X) is defined recursively as

(∇mτ v)n := ∇m−1
τ (∇τv)n, n ≥ m (2.6)

where ∇1
τ ≡ ∇τ and ∇0

τ is the identity operator. For n < m, (∇mτ v)n is defined as
0. We call to ∇mτ the backward difference operator of order m. An easy computation
shows that if v ∈ F(R+

0 ;X) then

(∇mτ v)n =
1

τm

m∑
j=0

(
m

j

)
(−1)jvn−j , n ∈ N.

As in [16, Chapter 1, Section 1.5] we define (by convention)

−k∑
j=0

vj = 0

for all k ∈ N.
Now, we introduce the following sequence

kατ (n) := τ

∫ ∞
0

ρτn(t)gα(t)dt, n ∈ N0, α > 0. (2.7)

An easy computation shows that

kατ (n) =
ταΓ(α+ n)

Γ(α)Γ(n+ 1)
= τ

Γ(α+ n)

Γ(n+ 1)
gα(τ), n ∈ N0, α > 0. (2.8)

Remark 2. It is easy to check using (2.7) and a change of variables that

kατ (n) = ταkα(n),

where kα(n) ≡ kα1 (n) in the notation introduced in [24].

Definition 2.4. [31] Let α>0. The αth−fractional sum of v∈F(N0;X) is defined
by

(∇−ατ v)n :=

n∑
j=0

kατ (n− j)vj , n ∈ N0. (2.9)

Remark 3. Using remark 2 and the definition of αth−fractional sum ∆−α intro-
duced in [24] (which corresponds to (2.9) with τ = 1), we observe that

(∇−ατ v)n = (∆−αv)n.

Definition 2.5. [31] Let α ∈ R+ \ N0. The Caputo fractional backward difference
operator of order α, C∇α : F(N0;X)→ F(N0;X), is defined by

(C∇αv)n := ∇−(m−α)
τ (∇mτ v)n, n ∈ N0,

where m− 1 < α < m.
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In this definition, if α ∈ N0, then the fractional backward difference operators

C∇α is defined as the backward difference operator ∇ατ . Moreover, if 0 < α <
1, then C∇α+1vn = C∇α(∇1v)n. However, C∇α+1vn 6= C∇1(C∇αv)n, (see [31,
Proposition 2.6]).

Let u : [0,∞)→ X be a twice differentiable and bounded function. Since

dρτn(t)

dt
=

1

τ

(
ρτn−1(t)− ρτn(t)

)
,

for all n ≥ 1, and u is a bounded function, then the integration by parts implies
that

(u′)n =
1

τ
(un − un−1) = ∇τun,

for all n≥1.On the other hand, since ∂α+1
t f=∂αt ∂

1
t f and C∇α+1vn= C∇α(C∇1v)n,

for 0 < α < 1, we obtain the following result, which can be obtained directly from
[31, Theorem 2.7] and relates the Caputo fractional derivative and the Caputo
fractional backward difference operator.

Remark 4. In case 0 < α < 1 a calculation shows that for any f : N0 → X with
f(−1) = 0 we have the identity

(C∇αf)n =
1

τα
(∆αf)n−1,

and in case 1 < α < 2 we have

(C∇αf)n =
1

τα
(∆αf)n−2,

under the assumption that f(−1) = f(−2) = 0.

Proposition 2. Let 1 < α < 2. If u : [0,∞) → X is a twice differentiable and
bounded function, then ∫ ∞

0

ρτn(t)∂αt u(t)dt = C∇αun,

for all n ∈ N.

Given a family of operators {S(t)}t≥0 ⊂ B(X), we define the sequence

Snx :=

∫ ∞
0

ρτn(t)S(t)xdt, n ∈ N0, x ∈ X. (2.10)

On the other hand, if c : R+ → C is a continuous and bounded function we define

cn :=

∫ ∞
0

ρτn(t)c(t)dt, n ∈ N0,

and the discrete convolution between c and S by

(c ? S)n :=

n∑
k=0

cn−kSk, n ∈ N0.

Similarly, for a vector-valued function f : R+ → X, we define the sequence fn as

fn :=

∫ ∞
0

ρτn(t)f(t)dt, n ∈ N0. (2.11)

We recall the following result, which corresponds to an extension of [24].
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Theorem 2.6. [31] Let c : R+ → C be Laplace transformable such that ĉ(1/τ)
exists, and let {S(t)}t≥0 ⊂ B(X) be strongly continuous and Laplace transformable

such that Ŝ(1/τ) exists. Then, for all x ∈ X,∫ ∞
0

ρτn(t)(c ∗ S)(t)xdt = τ(c ? S)nx, n ∈ N0.

Similarly, we have the following results.

Proposition 3. [31] Let α > 0. Let {S(t)}t≥0 ⊂ B(X) be strongly continuous and

Laplace transformable such that Ŝ(1/τ) exists. Then, for all x ∈ X,∫ ∞
0

ρτn(t)(gα ∗ S)(t)xdt =

n∑
j=0

kατ (n− j)Sjx, n ∈ N0.

Proposition 4. [31] Let f : R+ → X be Laplace transformable such that f̂(1/τ)
exists, and let {S(t)}t≥0 ⊂ B(X) be strongly continuous and Laplace transformable

such that Ŝ(1/τ) exists. Then,

(S ∗ f)nx =

∫ ∞
0

ρτn(t)(S ∗ f)(t)xdt = τ(S ? f)nx = τ

n∑
j=0

Sn−jf j , n ∈ N0.

With the above ingredients we can easily prove the following result that we will
be useful later.

Lemma 2.7. Let {S(t)}t≥0 ⊂ B(X) be a family of exponentially bounded linear

operators such that Ŝ(1/τ) exists. If f : R+ → X, a : R+ → C, and â(1/τ) and

f̂(1/τ) exist, then

τ2(a ? S ? f)n =

∫ ∞
0

ρτn(t)(a ∗ S ∗ f)(t)dt,

for all n ∈ N0, where (a?S?f)n := (a?(S?f))n. Moreover, (a?(S?f))n = ((a?S)?f)n

for all n ∈ N0.

Proof. Since (a∗S∗f)(t) = (a∗(S∗f))(t) for all t ≥ 0, the Theorem 2.6, Proposition
4 and the definition of discrete convolution imply that∫ ∞

0

ρτn(t)(a ∗ S ∗ f)(t)dt = τ(a ? (S ∗ f))n = τ2
n∑
k=0

an−k(S ? f)k = τ2(a ? (S ? f))n,

for all n ∈ N0.

3. A fractional difference equation. In this section we study the following frac-
tional difference equation of order α ∈ (1, 2) :

C∇αun = Aun + fn, (3.1)

for all n ≥ 2 under the initial condition u0 = u0, and u1 = u1, where u0, u
1 ∈ X.

We first assume that A is a sectorial operator, u0, u1 ∈ D(A) ∩ ker(A) and
f0 = f1 = 0.

As u0, u1 ∈ ker(A), by Definition (2.6), (∇2
τu)0 = (∇2

τu)1 = 0, and thus C∇αu0 =
∇−(2−α)(∇2u)0 = 0 and C∇αu1 = ∇−(2−α)(∇2u)1 = 0. Since f0 = f1 = 0, we have

C∇αun = ∇−(2−α)
τ (∇τu)n =

n∑
j=0

k2−α
τ (n− j)(∇2

τu)j
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=

n−1∑
j=2

k2−α
τ (n− j)(∇2

τu)j + τ−α(un − 2un−1 + un−2),

for all n ≥ 2. Therefore, for all n ≥ 2, the scheme (3.1) is equivalent to

(τ−α −A)un = 2τ−αun−1 − τ−αun−2
n−1∑
j=2

k2−α
τ (n− j)(∇2

τu)j + fn. (3.2)

This is an implicit scheme, which means that to obtain un we need to find un−1, un−2,
..., u0. If order to solve (3.2), we need to invert the operator (τ−α−A), which is
possible, because A is a sectorial operator and therefore, we can take τ small enough
(for instance max{0, ω}τα < 1) in order to obtain that (τ−α−A) is an invertible
operator.

Using this fact, we can provide an explicit description of the solution in terms
of certain sequences of bounded and linear operators. This is the content of the
following result.

Theorem 3.1. Let τ > 0. Let A be the generator of a bounded (α, 1)-resolvent
family {Sα,1(t)}t≥0 with ‖Sα,1(t)‖ ≤ Meωt, where ω < 1

τ . If u0, u1 ∈ X and f is
bounded, then fractional difference equation (3.1) admits a solution given by

un = Snα,1u0 + τ(g1 ? Sα,1)nu1 + τ2(gα−1 ? Sα,1 ? f)n (3.3)

for all n ≥ 2 and u0 = u0, u
1 = u1.

Proof. Since {Sα,1(t)}t≥0 is exponentially bounded, we obtain Snα,1x ∈ D(A) for all
n ∈ N0 and x ∈ X, as in the proof of [24, Theorem 4.4] and [31, Theorem 2.8]. On
the other hand, Proposition 1 implies that

Sα,1(t)x = x+A

∫ t

0

gα(t− s)Sα,1(s)xds,

for all t ≥ 0 and x ∈ X. Multiplying this identity by ρτj (t) and then integrating over
[0,∞) we obtain by Proposition 3 that

Sjα,1x =

∫ ∞
0

ρτj (t)Sα,1(t)xdt =

∫ ∞
0

ρτj (t)xdt+A

∫ ∞
0

ρτj (t)(gα ∗ Sα,1)(t)xdt

= x+A

j∑
l=0

kατ (j − l)Slα,1x, (3.4)

j ≥ 0. Now, by definition we have for all n ≥ 2 that

C∇α(Sα,1x)n = ∇−(2−α)
τ ∇2

τ (Sα,1x)n =

n∑
j=0

k2−α
τ (n− j)(∇2

τSα,1x)j . (3.5)

By (3.4), we obtain

(∇2
τSα,1x)j =

1

τ2
(Sjα,1x− 2Sj−1

α,1 x+ Sj−2
α,1 x)

=
A

τ2

[ j∑
l=0

kατ (j − l)Slα,1x− 2

j−1∑
l=0

kατ (j − 1− l)Slα,1x

+

j−2∑
l=0

kατ (j − 2− l)Slα,1x
]
,
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for all j ≥ 2. Next, for t ≥ 0, we define Rα(t) := (gα ∗Sα,1)(t). By Proposition 3 we
obtain that

Rjα =

j∑
l=0

kατ (j − l)Slα,1,

for all j ≥ 0.
Analogously, since (g2−α ∗ gα)(t) = g2(t) = (g1 ∗ g1)(t), we obtain by Proposition

3 that
n∑
j=0

k2−α
τ (n− j)

j∑
l=0

kατ (j − l)Slα,1x =

n∑
j=0

k2−α
τ (n− j)Rjα

=

∫ ∞
0

ρτn(t)(g2−α ∗Rα)(t)xdt

=

n∑
j=0

k1
τ (n− j)(g1 ∗ Sα,1)jx,

for all n ≥ 2. By definition, we have k1
τ (n) = τ for all n, and, once again, by

Proposition 3 we obtain

(g1 ∗ Sα,1)jx =

∫ ∞
0

ρτj (t)(g1 ∗ Sα,1)(t)xdt =

j∑
l=0

k1
τ (j − l)Slα,1x = τ

j∑
l=0

Slα,1x,

which implies that

n∑
j=0

k2−α
τ (n− j)

j∑
l=0

kατ (j − l)Slα,1x = τ2
n∑
j=0

j∑
l=0

Slα,1x. (3.6)

Since
∑−k
j=0 v

j = 0 for all k ∈ N, by using the function Rα, we have that

n∑
j=0

k2−α
τ (n− j)

j−1∑
l=0

kατ (j − 1− l)Slα,1x =

n∑
j=1

k2−α
τ (n− j)

j−1∑
l=0

kατ (j − 1− l)Slα,1x

=

n∑
j=1

k2−α
τ (n− j)Rj−1

α x.

And, as above we obtain

n∑
j=0

k2−α
τ (n− j)

j−1∑
l=0

kατ (j − 1− l)Slα,1x = τ2
n−1∑
j=0

j∑
l=0

Slα,1x. (3.7)

for all n ≥ 2. Similarly, for all n ≥ 2 we have

n∑
j=0

k2−α
τ (n− j)

j−2∑
l=0

kατ (j − 2− l)Slα,1x = τ2
n−2∑
j=0

j∑
l=0

Slα,1x. (3.8)

By (3.5)–(3.8) we obtain

C∇α(Sα,1x)n =
A

τ2

n∑
j=0

k2−α
τ (n− j)

[
j∑
l=0

kατ (j − l)Slα,1x

−2

j−1∑
l=0

kατ (j − 1− l)Slα,1x+

j−2∑
l=0

kατ (j − 2− l)Slα,1x

]
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= A

 n∑
j=0

j∑
l=0

Slαx− 2

n−1∑
j=0

j∑
l=0

Slα,1x+

n−2∑
j=0

j∑
l=0

Slα,1x


= ASnαx,

for all n ≥ 2 and x ∈ X. Therefore

C∇αSnα,1u0 = ASnα,1u0. (3.9)

On the other hand, by definition we have

C∇α(τ(g1?Sα,1)n)x=∇−(2−α)
τ ∇2

τ (τ(g1?Sα,1))nx=τ

n∑
j=0

k2−α
τ (n−j)∇2

τ (g1?Sα,1)jx.

Since ∇2
τ (g1?Sα,1)j = 1

τ2

[
(g1 ? Sα,1)j − 2(g1 ? Sα,1)j−1 + (g1 ? Sα,1)j−2

]
for all j ≥

2, and (g1 ? Sα,1)jx = 1
τ (g1 ∗ Sα,1)jx, (by Theorem 2.6), we have

C∇α(τ(g1 ? Sα,1)n)x =
1

τ2

n∑
j=0

k2−α
τ (n− j)

[
(g1 ∗ Sα,1)jx− 2(g1 ∗ Sα,1)j−1x

+ (g1 ∗ Sα,1)j−2x
]
. (3.10)

Moreover, by Proposition 1 we have (g1 ∗ Sα,1)(t)x = (g1 ∗ g1)(t)x + A(g1 ∗ gα ∗
Sα,1)(t)x, for all t ≥ 0 and x ∈ X. Multiplying this equation by ρτj (t) and integrating
over [0,∞) we obtain by Proposition 3 that

(g1 ∗ Sα,1)jx =

∫ ∞
0

ρτj (t)(g1 ∗ Sα,1)(t)xdt = τjx+A

j∑
l=0

kα+1
τ (j − l)Slα,1x,

for all j ≥ 0. Hence,

(g1 ∗ Sα,1)jx− 2(g1 ∗ Sα,1)j−1x+ (g1 ∗ Sα,1)j−2x

= A

[
j∑
l=0

kα+1
τ (j−l)Slα,1x−2

j−1∑
l=0

kα+1
τ (j−1−l)Slα,1x+

j−2∑
l=0

kα+1
τ (j−2−l)Slα,1x

]
,

for all j ≥ 2. If Qα(t) := (gα+1 ∗ Sα,1)(t) we obtain by Proposition 3 that if j ≥ 0,

then Qjαx =
∑j
l=0 k

α+1
τ (j − l)Slα,1x. Since (g2−α ∗Qα)(t) = (g1 ∗ g1 ∗ g1 ∗ Sα,1)(t),

we obtain

n∑
j=0

k2−α
τ (n− j)

j∑
l=0

kα+1
τ (j − l)Slα,1x =

n∑
j=0

k2−α
τ (n− j)Qjα

=

∫ ∞
0

ρτn(t)(g2−α ∗Qα)(t)xdt

= τ2
n∑
j=0

j∑
l=0

(g1 ∗ Sα,1)lx.

Since
∑−k
j=0 v

j = 0 for all k ∈ N, we obtain as above that

n∑
j=0

k2−α
τ (n− j)

j−1∑
l=0

kα+1
τ (j − 1− l)Slα,1x = τ2

n−1∑
j=0

j∑
l=0

(g1 ∗ Sα,1)lx
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and
n∑
j=0

k2−α
τ (n− j)

j−2∑
l=0

kα+1
τ (j − 2− l)Slα,1x = τ2

n−2∑
j=0

j∑
l=0

(g1 ∗ Sα,1)lx.

Therefore,

C∇α(τ(g1 ? Sα,1)n)x =
A

τ2

n∑
j=0

k2−α
τ (n− j)

[
j∑
l=0

kα+1
τ (j − l)Slα,1x

− 2

j−1∑
l=0

kα+1
τ (j − 1− l)Slα,1x+

j−2∑
l=0

kα+1
τ (j − 2− l)Slα,1x

]

=A

[
n∑
j=0

j∑
l=0

(g1 ∗ Sα,1)lx− 2

n−1∑
j=0

j∑
l=0

(g1 ∗ Sα,1)lx

+

n−2∑
j=0

j∑
l=0

(g1 ∗ Sα,1)lx

]
=A(g1 ∗ Sα,1)nx,

for all n ≥ 2 and x ∈ X. Since (g1 ∗ Sα,1)nx = τ(g1 ? Sα,1)nx we obtain

C∇α(τ(g1 ? Sα,1)n)u1 = A(τ(g1 ? Sα,1)nu1), n ≥ 2. (3.11)

Finally, by definition we have

C∇α(τ2(gα−1 ? Sα,1 ? f)n) = ∇−(2−α)
τ ∇2

τ (τ2(gα−1 ? Sα,1 ? f))n

=

n∑
j=0

k2−α
τ (n− j)∇2

τ (τ2(gα−1 ? Sα,1 ? f)j),

for all n ≥ 2. Since

∇2
τ (gα−1 ? Sα,1 ? f)j =

1

τ2

[
(gα−1 ? Sα,1 ? f)j − 2(gα−1 ? Sα,1 ? f)j−1

+ (gα−1 ? Sα,1 ? f)j−2
]
,

for all j ≥ 2 and by Lemma 2.7 we have that for each j ≥ 0, (gα−1 ? Sα,1 ? f)j =
1
τ2 (gα−1 ∗ Sα,1 ∗ f)j , we have

∇2
τ (τ2(gα−1 ? Sα,1 ? f)j) =

1

τ2

[
(gα−1 ∗ Sα,1 ∗ f)j − 2(gα−1 ∗ Sα,1 ∗ f)j−1

+ (gα−1 ∗ Sα,1 ∗ f)j−2
]
,

for all j ≥ 2. By Proposition 1 we get

(gα−1 ∗ Sα,1 ∗ f)(t) = (gα ∗ f)(t) +A(gα−1 ∗ gα ∗ Sα,1 ∗ f)(t),

and multiplying this equation by ρτj (t) and integrating over [0,∞) we obtain by 3
that

(gα−1 ∗ Sα,1 ∗ f)j =

j∑
l=0

kατ (j − l)f l +A

j∑
l=0

kατ (j − l)(gα−1 ∗ Sα,1 ∗ f)l, j ≥ 0.

Hence

C∇α(τ2(gα−1 ? Sα,1 ? f)n) =

n∑
j=0

k2−α
τ (n− j)∇2

τ (τ2(gα−1 ? Sα,1 ? f)j)
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=
1

τ2

n∑
j=0

k2−α
τ (n− j)

[
j∑
l=0

kατ (j − l)f l

− 2

j−1∑
l=0

kατ (j − 1− l)f l +

j−2∑
l=0

kατ (j − 2− l)f l
]

+
A

τ2

n∑
j=0

k2−α
τ (n− j)

[
j∑
l=0

kατ (j − l)(gα−1 ∗ Sα,1 ∗ f)l

− 2

j−1∑
l=0

kατ (j − 1− l)(gα−1 ∗ Sα,1 ∗ f)l

+

j−2∑
l=0

kατ (j − 2− l)(gα−1 ∗ Sα,1 ∗ f)l

]
,

for all n ≥ 2.
On the other hand, we notice that defining h(t) := (gα ∗ f)(t), we have hj =∫∞

0
ρτj (t)(gα ∗ f)(t)dt =

∑j
l=0 k

α
τ (j − l)f l, which implies (by similar computations

as above) that

n∑
j=0

k2−α
τ (n− j)

j∑
l=0

kατ (j − l)f l = τ2
n∑
j=0

j∑
l=0

f l,

n∑
j=0

k2−α
τ (n− j)

j−1∑
l=0

kατ (j − 1− l)f l = τ2
n−1∑
j=0

j∑
l=0

f l,

and
n∑
j=0

k2−α
τ (n− j)

j−2∑
l=0

kατ (j − 2− l)f l = τ2
n−2∑
j=0

j∑
l=0

f l.

Thus,

1

τ2

n∑
j=0

k2−α
τ (n−j)

[
j∑
l=0

kατ (j− l)f l−2

j−1∑
l=0

kατ (j−1− l)f l+
j−2∑
l=0

kατ (j−2− l)f l
]

= fn,

for all n ≥ 2. Similarly, if Tα(t) := (gα ∗ (gα−1 ∗Sα,1 ∗ f))(t) then T jα =
∑j
l=0 k

α
τ (j−

l)(gα−1 ∗ Sα,1 ∗ f)l, and therefore

n∑
j=0

k2−α
τ (n− j)

j∑
l=0

kατ (j − l)(gα−1 ∗ Sα,1 ∗ f)l = τ2
n∑
j=0

j∑
l=0

(gα−1 ∗ Sα,1 ∗ f)l,

n∑
j=0

k2−α
τ (n− j)

j−1∑
l=0

kατ (j − 1− l)(gα−1 ∗ Sα,1 ∗ f)l = τ2
n−1∑
j=0

j∑
l=0

(gα−1 ∗ Sα,1 ∗ f)l,

and

n∑
j=0

k2−α
τ (n− j)

j−2∑
l=0

kατ (j − 2− l)(gα−1 ∗ Sα,1 ∗ f)l = τ2
n−2∑
j=0

j∑
l=0

(gα−1 ∗ Sα,1 ∗ f)l.
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Thus,

A

τ2

n∑
j=0

k2−α
τ (n− j)

[
j∑
l=0

kατ (j − l)(gα−1 ∗ Sα,1 ∗ f)l

− 2

j−1∑
l=0

kατ (j − 1− l)(gα−1 ∗ Sα,1 ∗ f)l +

j−2∑
l=0

kατ (j − 2− l)(gα−1 ∗ Sα,1 ∗ f)l

]
= A(gα−1 ∗ Sα,1 ∗ f)n.

Since (gα−1 ∗ Sα,1 ∗ f)n = τ2(gα−1 ? Sα,1 ? f)n we conclude that

C∇α(τ2(gα−1 ? Sα,1 ? f)n) = fn +A(τ2(gα−1 ? Sα,1 ? f)n), (3.12)

for all n ≥ 2. We conclude that if we define the sequence (un)n∈N0
by un :=

Snα,1u0 + τ(g1 ? Sα,1)nu1 + τ2(gα−1 ? Sα,1 ? f)n), for n ≥ 2 and u0 := u0, u
1 := u1,

then by (3.9), (3.11) and (3.12) we have that

C∇α(un) = C∇α
(
Snα,1u0 + τ(g1 ? Sα,1)nu1 + τ2(gα−1 ? Sα,1 ? f)n)

)
= Aun + fn,

for all n ≥ 2, that is, (un)n∈N0
solves the equation

C∇αun = Aun + fn, n ≥ 2,

under the initial conditions u0 = u0, and u1 = u1.

4. Error estimates. In this section we compare the mild solution u to the Caputo
fractional Cauchy problem (1.2) at tn and the solution un of one solution of the
fractional difference equation (3.1). More concretely, we study the norm difference
‖u(tn)−un‖, where u is the mild solution to Problem (1.2) and un solves the discrete
difference equation (3.1).

For a closed operator A ∈ Sec(θ,M), we will consider the following path Γt : For
π
2 < θ < π, we take φ such that 1

2φ <
π
2α < φ < θ. Next, we define Γt (see Figure

1) as the union Γ1
t ∪ Γ2

t , where

Γ1
t :=

{
1

t
eiψ/α : −φ < ψ < φ

}
and Γ2

t :=

{
re±iφ/α :

1

t
≤ r
}
.

Figure 1. Plot of path Γt.

The next result will be useful to prove the main theorem in this section. A similar
result can be found in [11, 31]. We give its proof for the sake of completeness.



TIME DISCRETIZATION AND CONVERGENCE TO SUPERDIFFUSION EQUATION 587

Lemma 4.1. Let A ∈ Sec(θ,M) and Γ be the complex path defined above. If µ ≥ 0,
then there exist positive constants Cα, depending only on α such that∫

Γt

∣∣∣∣eztzµ
∣∣∣∣ |dz| ≤ Cαtµ−1,

for all t > 0, where

Cα :=

(
2φ

∫ φ

−φ
ecos(ψ/α)dψ +

2

− cos(φ/α)

)
.

Proof. On Γ1
t we have∫

Γ1
t

∣∣∣∣eztzµ
∣∣∣∣ |dz| ≤ 2φ

∫ φ

−φ

e(t
cos(ψ/α)

t )∣∣∣ e(iµψ/α)

tµ

∣∣∣ 1

t
dψ = 2φ

∫ φ

−φ
ecos(ψ/α)dψtµ−1.

On the other hand, since 1
2φ < π

2α < φ we obtain π
2 < φ

α < π, and thus

cos(φ/α) < 0, which implies that on Γ2
t we have∫

Γ2
t

∣∣∣∣eztzµ
∣∣∣∣ |dz| ≤ 2

∫ ∞
1
t

ert cos(φ/α)

rµ
dr ≤ 2tµ

∫ ∞
0

ert cos(φ/α)dr = 2
tµ−1

− cos(φ/α)
.

We conclude that∫
Γt

∣∣∣∣eztzµ
∣∣∣∣ |dz| ≤

(
2φ

∫ φ

−φ
ecos(ψ/α)dψ +

2

− cos(φ/α)

)
tµ−1.

Take A ∈ Sec(θ,M). If z = 1
t e
iφ/α, then zα = 1

tα e
iφ and arg(zα) = φ < θ. This

implies that zα ∈ ρ(A). If we take the complex path Γ ≡ Γt defined in Lemma 4.1,
then, by the inversion formula of the Laplace transform, we can write

Sα,1(t) =
1

2πi

∫
Γ

eztzα−1(zα −A)−1dz, t > 0. (4.1)

Let 0 < ε < 1 be given. The space of all continuous function f : [0,∞)→ D(Aε)
endowed with the norm ‖f‖ε := supt≥0 ‖f(t)‖ε = supt≥0 ‖Aεf(t)‖ will be denoted
by C([0,∞), D(Aε)).

Our main result is the following theorem.

Theorem 4.2. Let 1 < α < 2 and A ∈ Sect(θ,M) which generates an (α, 1)-
resolvent family {Sα,1(t)}t≥0. Let 0 < ε < 1 such that 0 < αε < 1 and α(ε + 1) <
2. Suppose that f ∈ C([0,∞), D(Aε)). Let Γ be the complex path defined above.
If u0, u1 ∈ D(Aε), then for each T > 0 there exists a constant C = C(T ) > 0
(independent of the solution, the data and the step size) such that, for 0 < tn ≤ T,
there holds

‖un − u(tn)‖ ≤ Cτtαε−1
n (‖u0‖ε + ‖u1‖ε + ‖f‖ε) . (4.2)

Proof. Since A generates a resolvent family {Sα,1(t)}t≥0, the solution to (1.2) and
(3.1) are given, respectively, by

u(t) = Sα,1(t)u0 + (g1 ∗ Sα,1)(t)u1 + (gα−1 ∗ Sα,1 ∗ f)(t),

and
un = Snα,1u0 + τ(g1 ? Sα,1)nu1 + τ2(gα−1 ? Sα,1 ? f)n.

Now, we fix n ∈ N such that 0 < tn ≤ T, where tn := τn. Then, we have

‖un − u(tn)‖ ≤ ‖(Sα,1(tn)− Snα,1)u0‖+ ‖((g1 ∗ Sα,1)(tn)− τ(g1 ? S
n
α,1))u1‖
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+‖(gα−1 ∗ Sα,1 ∗ f)(tn)− τ2(gα−1 ? Sα,1 ? f)n‖ := I1 + I2 + I3.

Now, we estimate I1, I2 and I3. Since
∫∞

0
ρτn(t)dt = 1, we can write

(Sα,1(tn)− Snα,1)u0 =

∫ ∞
0

ρτn(t)((Sα,1(tn)− Sα,1(t))u0dt,

and therefore

I1 ≤
∫ ∞

0

ρτn(t)‖(Sα,1(t)− Sα,1(tn))u0‖dt.

Now, if Γ = Γtn , by (4.1) we can write

(Sα,1(t)− Sα,1(tn))u0 =
1

2πi

∫
Γ

(ezt − eztn)

z
zα(zα −A)−1u0dz.

On the other hand, we have A(zα −A)−1 = A1−ε(zα −A)−1Aε and

zα(zα −A)−1 = A(zα −A)−1 + I = A1−ε(zα −A)−1Aε + I. (4.3)

Thus,

(Sα,1(t)− Sα,1(tn))u0 =
1

2πi

∫
Γ

(ezt − eztn)

z
u0dz

+
1

2πi

∫
Γ

(ezt − eztn)

z
A1−ε(zα −A)−1Aεu0dz.

The function h(z) := (ezt−eztn )
z has a unique removable singularity at z = 0.

Since t ≥ tn, h(z) can be analytically extended to the region enclosed by the path
ΓR := ΓRtn where ΓR is the path given in Figure 2, and therefore

1

2πi

∫
ΓR

(ezt − eztn)

z
u0dz = 0.

Since
1

2πi

∫
Γ

(ezt − eztn)

z
u0dz = lim

R→∞

1

2πi

∫
ΓR

(ezt − eztn)

z
u0dz,

we get
1

2πi

∫
Γ

(ezt − eztn)

z
u0dz = 0.

On the other hand, since A is a sectorial operator, we get by (2.4)

‖A1−ε(zα −A)−1Aεx‖ ≤ κ(M + 1)
‖Aεx‖
|zα|ε

, (4.4)

for all x ∈ D(Aε), which implies that

‖(Sα,1(t)− Sα,1(tn))u0‖ ≤
κ(M + 1)

2π

∫
Γ

|ezt − eztn |
|z|

1

|z|αε
|dz|‖Aεu0‖.

The mean value theorem for complex-valued functions ensures the existence of t0, t1
with 0 < tn < t0 < t1 < t satisfying

|ezt − eztn |
|z|

≤ (t− tn)
(
|et0z|+ |et1z|

)
. (4.5)

By Lemma 4.1 and (4.5) we conclude that

‖(Sα,1(t)− Sα,1(tn))u0‖ ≤
κ(M + 1)

2π
(t− tn)Cα(tαε−1

0 + tαε−1
1 )‖Aεu0‖.
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Figure 2. Plot of path ΓR.

Since 0 < tn < t0 < t1 and 0 < αε < 1 we have tαε−1
1 < tαε−1

0 < tαε−1
n , which

implies that

‖(Sα,1(t)− Sα,1(tn))u0‖ ≤
κ(M + 1)

π
Cα(t− tn)tαε−1

n ‖Aεu0‖.

Now, an easy computation shows that∫ ∞
0

ρτn(t)(t− tn)dt = τ, (4.6)

for all n ∈ N, and thus

I1 ≤
∫ ∞

0

ρτn(t)‖(Sα,1(t)− Sα,1(tn))u0‖dt ≤ D1τt
αε−1
n ‖Aεu0‖,

for all n ∈ N, where D1 := κ(M+1)
π Cα. We conclude that

I1 ≤ D1τt
αε−1
n ‖Aεu0‖. (4.7)

Now, to estimate I2 we notice that by Theorem 2.6 we can write

‖(g1 ∗ Sα,1)(tn)− τ(g1 ? Sα,1)n‖ =

∥∥∥∥∫ ∞
0

ρτn(t)[(g1 ∗ Sα,1)(tn)− (g1 ∗ Sα,1)(t)]dt

∥∥∥∥ .
Since ̂(g1 ∗ Sα,1)(z) = 1

z2 z
α(zα−A)−1, the inversion theorem for the Laplace trans-

form and (4.3) allow us to write

(g1 ∗ Sα,1)(t)x− (g1 ∗ Sα,1)(tn)u1 =
1

2πi

∫
Γ

(ezt − eztn) ̂(g1 ∗ Sα,1)(z)u1dz

=
1

2πi

∫
Γ

ezt − eztn
z2

u1dz

+
1

2πi

∫
Γ

ezt − eztn
z2

A1−ε(zα −A)−1Aεu1dz.

Since ‖u1‖ ≤ ‖Aεu1‖, by (4.4)-(4.5) and Lemma 4.1, we have

‖(g1 ∗ Sα,1)(tn)u1 − (g1 ∗ Sα,1)(t)u1‖



590 CARLOS LIZAMA AND RODRIGO PONCE

≤ 1

2π

∫
Γ

|ezt − eztn |
|z|2

‖u1‖|dz|

+
1

2π

∫
Γ

|eztn − ezt|
|z|

1

|z|
‖A1−ε(zα −A)−1Aεu1‖|dz|

≤ (t− tn)

π
Cα‖Aεu1‖+

κ(M + 1)

2π
(t− tn)Cα(tαε0 + tαε1 )‖Aεu1‖.

Since αε > 0 and t0 < t1 < t we have

‖(g1 ∗ Sα,1)(tn)u1 − (g1 ∗ Sα,1)(t)u1‖

≤ (t− tn)

π
Cα‖Aεu1‖+

κ(M + 1)Cα
π

(t− tn)tαε‖Aεu1‖.

On the other hand, an easy computation shows that if γ > 0, then∫ ∞
0

ρτn(t)tγdt =
τγ

n!
Γ(n+ γ + 1), (4.8)

for all n ∈ N, and therefore∫ ∞
0

ρτn(t)(t− tn)tγdt =
τγ+1

n!
Γ(n+ γ + 2)− τγ

n!
Γ(n+ γ + 1)tn =: cγn. (4.9)

We notice that cγn can be written as

cγn =
tγ+1
n Γ(n+ γ + 2)

nγ+1 · n!
− tγ+1

n Γ(n+ γ + 1)

nγ · n!

=
tγ+1
n

nγ · n!

(
Γ(n+ γ + 2)

n
− Γ(n+ γ + 1)

)
= τ(γ + 1)(n+ γ)tγn

Γ(n+ γ)

Γ(n+ 1)

1

nγ
.

Since Γ(n+γ)
Γ(n+1) < nγ−1 for all 0 < γ < 1 and n ∈ N (see for instance [14]), we have

cγn < τ(γ + 1)(n+ γ)tγnn
γ−1 1

nγ
= τ(γ + 1)tγn

(
1 +

γ

n

)
≤ 2τ(γ + 1)tγn, (4.10)

for all n∈N. Hence, if γ=αε, then the hypothesis implies that cαεn ≤2τ(αε+1)tαεn =
2τtn(αε+1)tαε−1

n ≤2τ(αε+1)Ttαε−1
n . Therefore, by (4.6), (4.9) and (4.10) we obtain

I2 ≤
∫ ∞

0

ρτn(t)‖(g1 ∗ Sα,1)(tn)u1 − (g1 ∗ Sα,1)(t)u1‖dt

≤Cα
π

∫ ∞
0

ρτn(t)(t− tn)dt‖Aεu1‖+
κ(M + 1)Cα

π

∫ ∞
0

ρτn(t)(t− tn)tβεdt‖Aεu1‖

≤
(
CαT

1−αε

π
+

2κ(M + 1)Cα(αε+ 1)T

π

)
τtαε−1
n ‖Aεu1‖.

We conclude that

I2 ≤ D2τt
αε−1
n ‖Aεu1‖, (4.11)

where

D2 :=
CαT

1−αε

π
+

2κ(M + 1)Cα(αε+ 1)T

π
.

Finally, we estimate the integral I3. By Lemma 2.7 we can write

I3 =

∥∥∥∥∫ ∞
0

ρτn(t)[(gα−1 ∗ Sα,1 ∗ f)(t)− (gα−1 ∗ Sα,1 ∗ f)(tn)]dt

∥∥∥∥ .
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Moreover, we have

(gα−1 ∗ Sα,1 ∗ f)(t)− (gα−1 ∗ Sα,1 ∗ f)(tn)

=

∫ tn

0

[(gα−1 ∗ Sα,1)(t− r)− (gα−1 ∗ Sα,1)(tn − r)]f(r)dr

+

∫ t

tn

(gα−1 ∗ Sα,1)(t− r)f(r)dr

:= J1 + J2.

To estimate J1 we notice that ̂(gα−1 ∗ Sα,1)(z)=(zα−A)−1, which implies by (4.3)
that

(gα−1 ∗ Sα,1)(t)x− (gα−1 ∗ Sα,1)(s)x

=
1

2πi

∫
Γ

(ezt − ezs) ̂(gα−1 ∗ Sα,1)(z)xdz (4.12)

=
1

2πi

∫
Γ

(ezt − ezs)
zα

A1−ε(zα −A)−1Aεxdz +
1

2πi

∫
Γ

(ezt − ezs)
zα

dz,

for all x ∈ D(Aε) and t > s > 0. Since q(z) := (ezt−ezs)
zα has a unique removable

singularity at z = 0, we can prove that the second integral in this last equality is
equal to zero (following the same method used to prove that

∫
Γ
h(z)u0dz = 0). By

(4.4) we obtain

‖(gα−1 ∗ Sα,1)(t)x− (gα−1 ∗ Sα,1)(s)x‖ ≤ κ(M + 1)

2π

∫
Γ

|ezt − ezs|
|z|α(ε+1)

‖Aεx‖|dz|.

Once again,applying the mean value theorem for complex-valued functions, we ob-
tain the existence of t′0, t

′
1 with 0 < s < t′0 < t′1 < t such that

|ezt − ezs|
|z|

≤ (t− s)
(
|et
′
0z|+ |et

′
1z|
)
.

Hence, by Lemma 4.1 we get

‖(gα−1 ∗ Sα,1)(t)x− (gα−1 ∗ Sα,1)(s)x‖

≤ κ(M + 1)

2π
(t− s)

∫
Γ

|ezt′0 |+ |ezt′1 |
|z|α(ε+1)−1

‖Aεx‖|dz|

≤ κ(M + 1)

2π
(t− s)Cα(t

′β(ε+1)−2
0 + t

′β(ε+1)−2
1 )‖Aεx‖.

By hypothesis, t
′β(ε+1)−2
0 < sβ(ε+1)−2 and t

′α(ε+1)−2
1 < sα(ε+1)−2, because 0 < s <

t′0 < t′1 < t. Thus,

‖(gα−1 ∗ Sα,1)(t)x− (gα−1 ∗ Sα,1)(s)x‖ ≤ κ(M + 1)

π
Cα(t− s)sα(ε+1)−2‖Aεx‖,

for all x ∈ D(Aε) and 0 < s < t. Replacing t by t− r and s by tn − r we have

‖J1‖ ≤
∫ tn

0

‖[(gα−1 ∗ Sα,1)(t− r)− (gα−1 ∗ Sα,1)(tn − r)]f(r)‖dr

≤ κ(M + 1)

π
Cα(t− tn)

∫ tn

0

(tn − r)α(ε+1)−2‖Aεf(r)‖dr

≤ κ(M + 1)

π
Cα(t− tn)‖f‖ε(g1 ∗ gα(ε+1)−1)(tn)Γ(α(ε+ 1)− 1)
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=
κ(M + 1)Tα

π(α(ε+ 1)− 1)
Cα(t− tn)‖f‖εtαε−1

n .

By (4.6) we have

‖J1‖ ≤
∫ ∞

0

ρτn(t)

∫ tn

0

‖[(gα−1 ∗ Sα,1)(t− r)− (gα−1 ∗ Sα,1)(tn − r)]f(r)‖drdt

≤κ(M + 1)TαCα
π(α(ε+ 1)− 1)

‖f‖ετtαε−1
n .

Now, we estimate J2. For t > 0 and x ∈ D(Aε) we have as in (4.12) that

(gα−1 ∗ Sα,1)(t)x =
1

2πi

∫
Γ

ezt

zα
A1−ε(zα −A)−1Aεxdz +

1

2πi

∫
Γ

ezt

zα
xdz.

The inequality (4.4) and Lemma 4.1 imply that

‖(gα−1 ∗ Sα,1)(t)x‖ ≤κ(M + 1)

2π

∫
Γ

|ezt|
|z|α(ε+1)

‖Aεx‖|dz|+ 1

2π

∫
Γ

|ezt|
|z|α
‖x‖|dz|

≤κ(M + 1)

2π
Cαt

α(ε+1)−1‖Aεx‖+
Cα
2π

tα−1‖Aεx‖,

for all x ∈ D(Aε) and t > 0. Replacing t by t− r we get∫ t

tn

‖(gα−1 ∗ Sα,1)(t− r)f(r)‖dr

≤ κ(M + 1)

2π
Cα‖f‖ε

∫ t

tn

(t− r)α(ε+1)−1dr +
Cα
2π
‖f‖ε

∫ t

tn

(t− r)α−1dr.

Since
∫ t
tn

(t − r)α(ε+1)−1dr =
∫ t

0
(t − r)α(ε+1)−1dr −

∫ tn
0

(t − r)α(ε+1)−1dr and the

function x 7→ xα(ε+1)−1 is increasing, we obtain for tn ≤ t that∫ t

tn

(t− r)α(ε+1)−1dr ≤ 1

α(ε+ 1)
(tα(ε+1) − tα(ε+1)

n ).

Similarly, we obtain
∫ t
tn

(t− r)α−1dr ≤ 1
α (tα − tαn). Thus∫ t

tn

‖(gα−1 ∗ Sα,1)(t− r)f(r)‖

≤ κ(M + 1)

2πα(ε+ 1)
Cα‖f‖ε(tα(ε+1) − tα(ε+1)

n ) +
Cα
2πα
‖f‖ε(tα − tαn).

On the other hand, by (4.8)∫ ∞
0

ρτn(t)(tα(ε+1) − tα(ε+1)
n )dt =

τα(ε+1)

n!
Γ(n+ α(ε+ 1) + 1)− tα(ε+1)

n .

Next, we notice that

dn :=
τα(ε+1)

n!
Γ(n+ 1 + α(ε+ 1))

=ττα(ε+1)−1 Γ(n+ 1 + α(ε+ 1)− 1)

Γ(n+ 2)
× (n+ 1)(n+ α(ε+ 1))

<tntn+1t
α(ε+1)−2
n+1 + α(ε+ 1)τt

α(ε+1)−1
n+1
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for all n ∈ N, because 0 < α(ε + 1) − 1 < 1 and Γ(n+1+η)
Γ(n+2) < (n + 1)η−1 for all

n ∈ N and 0 < η < 1. Moreover, the map x 7→ xα(ε+1)−2 is a decreasing function

on [1,∞), and therefore t
α(ε+1)−2
n+1 ≤ tα(ε+1)−2

n for all n ∈ N. This implies that

t
α(ε+1)−1
n+1 = (n+ 1)τt

α(ε+1)−2
n+1 ≤ (n+ 1)τtα(ε+1)−2

n

≤ tα(ε+1)−1
n + τtα(ε+1)−2

n ≤ 2tα(ε+1)−1
n ,

and thus

dn < tntn+1t
α(ε+1)−2
n+1 + α(ε+ 1)τt

α(ε+1)−1
n+1 ≤ tn+1t

α(ε+1)−1
n + 2α(ε+ 1)τtα(ε+1)−1

n ,

for all n ∈ N. Since 0 < tn ≤ T and

tn+1t
α(ε+1)−1
n − tα(ε+1)

n = tα(ε+1)
n

(
tn+1

tn
− 1

)
= tα(ε+1)

n

(
tn+1 − tn

tn

)
= τtα(ε+1)−1

n ,

we obtain∫ ∞
0

ρτn(t)(tα(ε+1) − tα(ε+1)
n )dt ≤ dn − tα(ε+1)

n

≤ τtα(ε+1)−1
n + 2α(ε+ 1)τtα(ε+1)−1

n

≤ (1 + 2α(ε+ 1))τTαtαε−1
n .

Analogously, we can prove that∫ ∞
0

ρτn(t)(tα − tαn)dt ≤ (1 + 2α)τTα(1−ε)tαε−1
n .

Therefore,

‖J2‖ ≤
∫ ∞

0

ρτn(t)

∫ t

tn

‖(gα−1 ∗ Sα,1)(t− r)f(r)‖drdt

≤ κ(M + 1)

2πα(ε+ 1)
Cα‖f‖ε

∫ ∞
0

ρτn(t)(tα(ε+1) +
Cα
2πα
‖f‖ε

∫ ∞
0

ρτn(t)(tα − tαn)dt

≤ κ(M + 1)

2πα(ε+ 1)
Cα(1 + 2α(ε+ 1))Tατtαε−1

n ‖f‖ε

+
(1 + 2α)Cα

2πα
Tα(1−ε)τtαε−1

n ‖f‖ε.

We conclude that

I3 ≤ ‖J1‖+ ‖J2‖ ≤ D3‖f‖ετtαε−1
n , (4.13)

where

D3 :=
κ(M + 1)TαCα

π

(
1

(α(ε+ 1)− 1)
+

1 + 2α(ε+ 1)

2α(ε+ 1)

)
+

(1 + 2α)Cα
2πα

Tα(1−ε).

Summarizing, by (4.7), (4.11) and (4.13), we obtain

‖un − u(tn)‖ ≤ D1τt
αε−1
n ‖Aεu0‖+D2τt

αε−1
n ‖Aεu1‖+D3‖f‖ετtαε−1

n

≤ C(‖Aεu0‖+ ‖Aεu1‖+ ‖f‖ε)τtαε−1
n ,

where the constant C = C(T ) is defined by

C := max{D1, D2, D3}.

The proof is finished.
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5. Some Experiments. In this section, we illustrate the exact solution u(t) at
tn to the fractional differential equation (1.2) and the approximated solution un to
the Caputo difference equation (3.1) given in Theorem 3.1. Suppose that A = ρI
for some ρ > 0. Then, the Laplace transform of the resolvent family {Sα,1(t)}t≥0

satisfies

Ŝα,1(λ) =
λα−1

λα − ρ
,

for all Re(λ) > ρ1/α. By [18, Formula 17.6], we obtain that

Sα,1(t) = Eα,1(ρtα), (5.1)

where, for p, q, r > 0, Ep,q(z) is the Mittag-Leffler defined by

Ep,q(z) :=

∞∑
j=0

zj

Γ(pj + q)
, z ∈ C.

Therefore, the solution to ∂αt u(t) = ρu(t) + f(t), t ≥ 0,
u(0) = u0

u′(0) = u1,
(5.2)

is given by

u(t) = Sα,1(t)u0 + (g1 ∗ Sα,1)(t)u1 + +(gα−1 ∗ Sα,1 ∗ f)(t), (5.3)

where {Sα,1(t)}t≥0 is given in (5.1). Now, we consider the exact and approximated
solution to (5.2) on the interval [0, 4]. We take τ = 4/N for N = 40, N = 80 and
N = 100. In Figure 3 we have the exact solution u to the initial value problem
(5.2) given by (5.3) evaluated at tn = nτ, that is, u(tn) for 2 ≤ n ≤ N, and the
approximated solution (un)Nn=2 given by

un =

∫ ∞
0

ρτn(t)
[
Sα,1(t)u0 + (g1 ∗ Sα,1)(t)u1 + (gα−1 ∗ Sα,1 ∗ f)(t)

]
dt.

To illustrate the theoretical results, we take u0 = u1 = 1 and f(t) = t2e−t for all
t ∈ [0, 4] and in the numerical computations we consider α = 1.5.

Figure 3. Exact (line) and approximated (circles) solution u and
un, respectively, for N = 40, N = 80 and N = 100. Here we take
α = 1.5.
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Next, we illustrate Theorem 4.2 where we compare u(tn) and un for 2 ≤ n ≤ N,
where N ∈ N is given integer number. In Figure 4 we have the error en := |u(tn)−
un| for 2 ≤ n ≤ N, where N = 40, 80 and N = 100. As before, we take α = 1.5,
u0 = u1 = 1 and f(t) = t2e−t for all t ∈ [0, 4]. We notice that, as in Theorem 4.2,
the error en behaves as τ = 4/N.

Figure 4. Plot of en for N = 40, N = 80 and N = 100. Here we
take α = 1.5.

Acknowledgments. The authors thank the reviewers for their useful comments
and remarks.

REFERENCES

[1] L. Abadias and P. J. Miana, A Subordination Principle on Wright Functions and Regularized
Resolvent Families, J. Funct. Spaces, 2015 (2015), 9 pp.

[2] W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace transforms and

Cauchy problems, Monogr. Math., vol. 96, Birkhäuser, Basel, 2011.
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