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Abstract. We characterize existence and uniqueness of solutions for
an inhomogeneous abstract delay equation in Hölder spaces. The main
tool is the theory of operator valued Fourier multipliers.

1. Introduction

Partial differential equations with delay are a subject which has been
extensively studied in the last years. In an abstract way they can be written
as

(1.1) u′(t) = Au(t) + Fut + f(t), t ∈ R,

where (A,D(A)) is a (unbounded) linear operator on a Banach space X,
ut(·) = u(t + ·) on [−r, 0], r > 0, and the delay operator F is supposed to
belong to B(C([−r, 0], X), X).

First studies on equation (1.1) goes back to J. Hale [8] and G. Webb [12].
A general and systematic study of linear delay equations with emphasis
on the qualitative behavior and asymptotic properties can be found in the
recent monograph by Bátkai and Piazzera [5]. See also [13]. The problem to
find conditions for all solutions of (1.1) to be in the same space as f arises
naturally from recent studies on maximal regularity and their application
to nonlinear problems in the theory of evolution equations, see the recent
monograph by Denk-Hieber-Prüss [7] and references therein.

Recently, a significant progress has been made in finding sufficient con-
ditions for operator valued functions to be Cα- Fourier multipliers, see [3].
In particular, in [4] the theory of operator-valued Fourier multipliers is ap-
plied to obtain results on the hyperbolicity of delay equations and in [9] to
obtain stability of linear control systems in Banach spaces. Also in [10] exis-
tence and uniqueness of periodic solutions for equation (1.1) via Lp-Fourier
multiplier theorems has been recently obtained.

In this paper we are able to obtain necessary and sufficient conditions in
order to guarantee well-posedness of the delay equation (1.1) in the Hölder
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spaces Cα(R, X) (0 < α < 1), and under the condition that X is a B-
convex space. However we stress that here A is not necessarily the generator
of a C0-semigroup.

We remark that the Fourier multiplier approach used allows to give a
direct treatment of the equation, in contrast with the approach using the
correspondence between (1.1) and the solutions of the abstract Cauchy prob-
lem

U ′(t) = AU(t) + F(t) t ≥ 0,

where A =

(
A F
0 d/dσ

)
. In this case the question of well-posedness of

the delay equation reduces to the question whether or not the operator
(A, D(A)) generates a C0-semigroup; see [5, 6, 11] and references therein.

2. Preliminaries

Let X, Y be Banach spaces and let 0 < α < 1. We denote by Ċα(R, X)
the spaces

Ċα(R, X) = {f : R→ X : f(0) = 0, ||f ||α < ∞}
normed by

||f ||α = sup
t 6=s

||f(t)− f(s)||
|t− s|α .

Let Ω ⊂ R be an open set. By C∞
c (Ω) we denote the space of all C∞-

functions in Ω ⊆ R having compact support in Ω.
We denote by Ff or f̃ the Fourier transform, i.e.

(Ff)(s) :=

∫

R
e−istf(t)dt

(s ∈ R, f ∈ L1(R; X)).

Definition 2.1. Let M : R\{0} → B(X,Y ) be continuous. We say that
M is a Ċα - multiplier if there exists a mapping L : Ċα(R, X) → Ċα(R, Y )
such that

(2.1)

∫

R
(Lf)(s)(Fφ)(s)ds =

∫

R
(F(φ ·M))(s)f(s)ds

for all f ∈ Cα(R, X) and all φ ∈ C∞
c (R\{0}).

Here (F(φ ·M))(s) =
∫
R e−istφ(t)M(t)dt ∈ B(X, Y ). Note that L is well

defined, linear and continuous (cf. [3, Definition 5.2]).
Define the space Cα(R, X) as the set

Cα(R, X) = {f : R→ X : ||f ||Cα < ∞}
with the norm

||f ||Cα = ||f ||α + ||f(0)||.



MAXIMAL REGULARITY 3

Let Cα+1(R, X) be the Banach space of all u ∈ C1(R, X) such that u′ ∈
Cα(R, X), equipped with the norm

||u||Cα+1 = ||u′||Cα + ||u(0)||.
Observe from Definition (2.1) and since

∫

R
(F(φM)(s))(s)ds = 2π(φM)(0) = 0,

that for f ∈ Cα(R, X) we have Lf ∈ Cα(R, X). Moreover, if f ∈ Cα(R, X)
is bounded then Lf is bounded as well (see [3, Remark 6.3]).

The following multiplier theorem is due to Arendt-Batty and Bu [3, The-
orem 5.3].

Theorem 2.2. Let M ∈ C2(R\{0},B(X, Y )) be such that

(2.2) sup
t6=0

||M(t)||+ sup
t 6=0

||tM ′(t)||+ sup
t 6=0

||t2M ′′(t)|| < ∞.

Then M is a Ċα-multiplier.

Remark 2.3.

If X is B-convex, in particular if X is a UMD space, Theorem 2.2 remains
valid if condition 2.2 is replaced by the following weaker condition

(2.3) sup
t 6=0

||M(t)||+ sup
t6=0

||tM ′(t)|| < ∞,

where M ∈ C1(R\{0},B(X, Y )) (cf. [3, Remark 5.5]).

We use the symbol f̂(λ) for the Carleman transform:

f̂(λ) =





∫ ∞

0

e−λtf(t)dt Reλ > 0

−
∫ 0

−∞
e−λtf(t)dt Reλ < 0,

where f ∈ L1
loc(R, X) is of subexponential growth; by this we mean

∫ ∞

−∞
e−ε|t|‖f(t)‖dt < ∞, for each ε > 0.

We remark that if u′ ∈ L1
loc(R, X) is of subexponential growth, then

û′(λ) = λû(λ)− u(0), Reλ 6= 0.
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3. A Characterization

We consider in this section the equation

(3.1) u′(t) = Au(t) + Fut + f(t), t ∈ T,

where A : D(A) ⊆ X → X is a linear, closed operator; f ∈ Cα(R, X) and,
for r > 0, F : C([−r, 0], X) → X is a linear, bounded operator. Moreover
ut is an element of C([−r, 0], X) which is defined as ut(θ) = u(t + θ) for
−r ≤ θ ≤ 0.

Example 3.1. Let µ : [−r, 0] → B(X) be of bounded variation. Let F :
C([−r, 0], X) → X be the bounded operator given by the Riemann-Stieltjes
integral

F (φ) =

∫ 0

−r

φdµ for all φ ∈ C([−r, 0], X).

An important special case consists of operators F defined by

F (φ) =
n∑

k=0

Ckφ(τk), φ ∈ C([−r, 0], X),

where Ck ∈ B(X) and τk ∈ [−r, 0] for k = 0, 1, ..., n. For concrete equations
dealing with the above classes of delays operators see the monograph of
Bátkai and Piazzera [5, Chapter 3].

Definition 3.2. We say that (1.1) is Cα-well posed if for each f ∈ Cα(R, X)
there is a unique function u ∈ Cα+1(R, X) ∩ Cα(R, [D(A)]) such that (1.1)
is satisfied.

Denote by eλ(t) := eiλt for all λ ∈ R, and define the operators {Fλ}λ∈R ⊆
B(X) by

(3.2) Fλx = F (eλx), for all λ ∈ R and x ∈ X.

We define the real spectrum of (3.1) by

σ(∆) = {s ∈ R : isI − Fs − A ∈ B([D(A)], X) is not invertible }.
Proposition 3.3. Let X be a Banach space and let A : D(A) ⊂ X → X
be a closed linear operator. Suppose that (1.1) is Cα-well posed. Then

(i) σ(∆) = ∅,

(ii) {iη(iηI − A− Fη)
−1}η∈R is bounded.

Proof. Let x ∈ D(A) and let u(t) = eiηtx for η ∈ R. Then ut(s) = eitηeisηx.
Thus

(3.3) F (ut) = eitηF (eηx) = eitηFηx.
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Now if (iη − A − Fη)x = 0, then u(t) is a solution of equation (1.1) when
f ≡ 0. Hence by uniqueness follows that x = 0. Now let L : Cα(R, X) →
Cα+1(R, X) be the bounded operator which takes each f ∈ Cα(R, X) to the
unique solution u ∈ Cα+1(R, X). Let y ∈ X and let s0 ∈ R be fixed. Then
define f(t) = eis0ηy, t ∈ R. Let u(t) be the unique solution of (1.1) such that
L(u) = y. Next we claim that v(t) := u(t + s0) and w(t) := eiηs0u(t) both
satisfy equation (1.1), when f(t) = eisoηy. First we notice that

vt(s) = u(t + s0 + s) = ut+s0(s).

Hence F (vt) = F (ut+s0). Then an easy computation shows that v(t) satisfy
equation (1.1). On the other hand,

wt(s) = w(t + s) = eiηs0u(t + s) = eiηs0ut(s).

Hence F (wt) = eis0ηF (ut). Thus

eiηs0u′(t) = eiηs0(Au(t) + F (ut) + y) = Aw(t) + F (wt) + f(t).

Thus w(t) satisfy equation (1.1). By uniqueness again we have that

u(t + s) = eiηsu(t)

for all t, s ∈ R. In particular when t = 0 we obtain that

u(s) = eiηsu(0), s ∈ R.

Now let x = u(0) ∈ D(A). Then u(t) = eiηtx satisfy (1.1), that is by (3.3)

iηu(t) = Au(t) + F (ut) + eiηty = Au(t) + eiηtFηx + eiηty.

In particular if t = 0 we obtain that

iηx = Ax + Fηx + y,

since x = u(0). Thus

(3.4) (iηI − A− Fη)x = y

and hence iηI − A− Fη is bijective. This shows assertion (i) of the Propo-
sition.

Next we notice that u(t) = (iη−A−Fη)
−1y by (3.4). Since ||eη ⊗ x||α =

Kα|η|α||x||. Thus

Kα|η|α||iη(iη − A− Fη)
−1y|| = ||eη ⊗ iη(iη − A− Fη)

−1y||α = ||u′||α

≤ ||u||1+α = ||Lf ||1+α ≤ ||L||||f ||α

≤ ||L||(||f ||α + ||f(0)||)

= ||L||(||eη ⊗ y||α + ||y||

≤ ||L||(Kα|η|α + 1)||y||.
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Hence for ε > 0 follows that

sup
|η|>ε

||iη(iη − A− Fη)
−1y|| ≤ ||L|| sup

|η|>ε

(1 +
1

Kα|η|α ) < ∞.

Recall that a Banach space X has Fourier type p, where 1 ≤ p ≤ 2,
if the Fourier transform defines a bounded linear operator from Lp(R; X)
to Lq(R; X), where q is the conjugate index of p. For example, the space
Lp(Ω), where 1 ≤ p ≤ 2 has Fourier type p; X has Fourier type 2 if and only
if X is a Hilbert space; X has Fourier type p if and only if X∗ has Fourier
type p. Every Banach space has Fourier type 1; X is B-convex if it has
Fourier type p for some p > 1. Every uniformly convex space is B-convex.

Our main result in this paper, establish that the converse of Proposition
3.3 is true.

Theorem 3.4. Let A be a closed linear operator defined on a B-convex
space X . Then the following assertions are equivalent

(i) Equation (1.1) is Cα-well posed.

(ii) σ(∆) = ∅ and sup
η∈R

||iη(iηI − A− Fη)
−1|| < ∞.

Proof.
(ii) ⇒ (i). Define the operator M(t) = (Bt−A)−1, with Bt = itI −Ft .

Note that by hypothesis M ∈ C2(R,B(X, [D(A)])) .
We claim that M is a Cα−multiplier. In fact, by hypothesis it is clear

that supt∈R ||M(t)|| < ∞. On the other hand, we have

M ′(t) = −M(t) B′
t M(t)

with B′
t = iI − F ′

t and F ′
t(x) = F (e′tx) where e′t(s) = iseist. Note that for

each x ∈ X

(3.5) ||Ftx||X ≤ ||F (etx)||X ≤ ||F || ||etx||∞ ≤ ||F || ||x||X ,

and

(3.6) ||F ′
tx||X ≤ ||F (e′tx)||X ≤ ||F || ||e′tx||∞ ≤ r||F || ||x||X .

Hence B′
t is uniformly bounded with respect to t ∈ R and we conclude

from the hypothesis that

(3.7) sup
t∈R

||tM ′(t)|| = sup
t∈R

|| [tM(t)] B′
t M(t)|| < ∞ ,

and hence the claim follows from Theorem 2.2 and Remark 2.3.
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Now, define N ∈ C1(R,B(X)) by N(t) = (id ·M)(t), where id(t) := it
for all t ∈ R. We will prove that N is a Cα−multiplier. In fact, with a
direct calculation, we have

tN ′(t) = itM(t) + it2M ′(t) = itM(t) + i[itM(t)] B′
t [itM(t)]

= N(t) + iN(t) B′
t N(t).

By hypothesis and (3.6) it follows that sup
t∈R

||tN ′(t)|| ≤ sup
t∈R

||N(t)|| +

sup
t∈R

||N(t) B′
t N(t)|| < ∞ , hence from Theorem 2.2 and Remark 2.3 the

claim is proved.
A similar calculation prove that P ∈ C1(R\{0},B(X)) defined by P (t) =

Ft M(t) is a Cα−multiplier.
In fact, we have t P ′(t) = F ′

tN(t) + Ft tM ′(t) , and hence from (3.5), (3.6)
and (3.7) we obtain that sup

t∈R
||P (t)||+ sup

t∈R
||tP ′(t)|| < ∞ .

Let f ∈ Cα(R, X) , since M , N and P are Cα−multiplier, there exist
ū ∈ Cα(R, [D(A)]) , v ∈ Cα(R, X) and w ∈ Cα(R, X), respectively, such
that

(3.8)

∫

R
ū(s)(Fφ)(s)ds =

∫

R
F(φ ·M)(s)f(s) ds ,

(3.9)

∫

R
v(s)(Fψ)(s)ds =

∫

R
F(ψ · id ·M)(s)f(s) ds ,

(3.10)

∫

R
w(s)(Fϕ)(s)ds =

∫

R
F(ϕ · F.M)(s)f(s) ds ,

for all φ , ψ , ϕ ∈ C∞
c (R) .

Note that for x ∈ X and φ ∈ C∞
c (R) we have

(3.11)

F(φF. M)(s) x =

∫

R
e−istφ(t) Ft M(t) x dt =

∫

R
e−istφ(t) F (et M(t) x) dt .

where

∫

R
e−istφ(t) et M(t) x dt ∈ C([−r, 0], X) . Now, for all θ ∈ [−r, 0] we

have

∥∥∥∥
∫

R
e−istφ(t) et(θ) M(t) x dt

∥∥∥∥
X

≤
∫

R
|φ(t) | ||M(t) x ||Xdt.

Since F is bounded, we deduce that

(3.12) F(φ · F. M)(s)x = F (F(φ · e. M)(s) x) .
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Furthermore, observe that for θ ∈ [−r, 0] fixed we have that e·(θ)φ ∈
C∞

c (R). Using (3.8) we obtain

∫

R
ū(s + θ)(Fφ)(s)ds =

∫

R
ū(s + θ)

∫

R
e−istφ(t) dt ds

=

∫

R
ū(s + θ)

∫

R
e−i(s+θ)tet(θ)φ(t) dt ds

=

∫

R
ū(s + θ)(Fe·(θ)φ)(s + θ) ds

=

∫

R
ū(s)(Fe·(θ)φ)(s) ds

=

∫

R
F(e·(θ)φ ·M)(s)f(s) ds,

hence

∫

R
ūs(Fφ)(s)ds =

∫

R
F(e·φ ·M)(s)f(s) ds .

Since the function θ →
∫

R
ūs(θ)(Fφ)(s)ds ∈ C([−r, 0], X) (see [3, p.3]),

due to the boundedness of F and (3.12) it follows that

(3.13)∫

R
F(φ · F.M)(s)f(s)ds =

∫

R
FF(φ · e.M)(s)f(s)ds =

∫

R
Fūs (Fφ)(s)ds,

for all φ ∈ C∞
c (R). Since F·M is Cα−multiplier, we obtain from (3.10)

∫

R
w(s)(Fφ)(s)ds =

∫

R
Fūs (Fφ)(s)ds .

for all φ ∈ C∞
c (R). We conclude that there exists y1 ∈ X satisfying w(t) =

Fūt + y1, proving that Fū· ∈ Cα(R, X).
Choosing φ = id · ψ in (3.8) we obtain from (3.9) that

(3.14)

∫

R
ū(s)F(id · ψ)(s) ds =

∫

R
v(s) (Fψ)(s) ds ,

and it follows from Lemma 6.2 in [3] that ū ∈ Cα+1(R, X) and ū′ = v + y2

for some y2 ∈ X .
Since (id I − F. − A) M = I we have id · M = I + F.M + AM and

replacing in (3.9) gives



MAXIMAL REGULARITY 9

(3.15)∫

R
v(s) (Fφ)(s) ds =

∫

R
F(φ · (I + F.M + AM))(s) f(s) ds

=

∫

R
(Fφ)(s) f(s) ds +

∫

R
F(φ · F. M)(s) f(s) ds

+

∫

R
F(φ · AM)(s) f(s) ds ,

for all φ ∈ C∞
c (R).

Since ū(t) ∈ D(A) and F(φ ·M)(s)x ∈ D(A) for all x ∈ X, using the fact
that A is closed and setting (3.8) and (3.13) in (3.15) we obtain that

(3.16)∫

R
v(s) (Fφ)(s) ds =

∫

R
Fūs (Fφ)(s)ds +

∫

R
Aū(s)(Fφ)(s) f(s) ds

+

∫

R
f(s) (Fφ)(s) ds ,

for all φ ∈ C∞
c (R).

By Lemma 5.1 in [3] this implies that for some y3 ∈ X one has

v(t) = Fūt + Aū(t) + f(t) + y3, t ∈ R .

Consequently, ū′(t) = v(t) + y2 = Fūt + Aū(t) + f(t) + y where y =
y2 + y3 . In particular Aū ∈ Cα(R, X). Now, by hypothesis we can define
x = (A + F )−1y ∈ D(A) , and then is clear that u(t) := ū(t) + x is in
Cα+1(R, X) ∩ Cα(R, [D(A)]) and satisfies (1.1). We have shown that a so-
lution of (1.1) exists.

In order to prove uniqueness, suppose that

(3.17) u′(t) = Au(t) + Fut , t ∈ R,

where u ∈ Cα+1(R, X)∩Cα(R, [D(A)]) and, as showed, Au, Fu· ∈ Cα(R, X).

We claim that û·(λ) ∈ C([−r, 0], X) for Reλ 6= 0. In fact, let Reλ > 0
then
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||e−λtut||∞ = sup
θ∈[−r,0]

||e−λtu(t + θ)||X ≤ sup
θ∈[−r,0]

e−Reλt(1 + |t + θ|α)

≤ e−Reλt(1 + (|t|+ r)α).

Since e−Reλt(1+(|t|+r)α) ∈ L1(R+) applying the dominated convergence
theorem, we obtain the claim. Analogously we obtain the claim for Reλ <
0.

Now, note that for Reλ > 0 and θ ∈ [−r, 0]

∫ ∞

0

e−λtut(θ)dt =

∫ ∞

0

e−λtu(t + θ)dt

=

∫ ∞

θ

e−λ(t−θ)u(t)dt

= eλθ

∫ ∞

θ

e−λtu(t)dt

= eλθ

(∫ ∞

0

e−λtu(t)dt +

∫ 0

θ

e−λtu(t)dt

)

= eλθû(λ) + eλθ

∫ 0

θ

e−λtu(t)dt.

Analogously if Reλ < 0 and θ ∈ [−r, 0] , then

−
∫ 0

−∞
e−λtut(θ)dt = −

∫ 0

−∞
e−λtu(t + θ)dt

= −
∫ θ

−∞
e−λ(t−θ)u(t)dt

= −eλθ

(∫ 0

−∞
e−λtu(t)dt−

∫ 0

θ

e−λtu(t)dt

)

= eλθû(λ) + eλθ

∫ 0

θ

e−λtu(t)dt.

Since F is bounded, we obtain that

(3.18) F̂ u·(λ) = Fû·(λ) = Fgû(λ) + Fgh, for Re(λ) 6= 0

where g(θ) = eλθ and h(θ) =

∫ 0

θ

e−λtu(t)dt . Note that gh ∈ C([−r, 0], X) .

Since û′(λ) = λû(λ)− u(0) for Re(λ) 6= 0 , one has û(λ) ∈ D(A) and

(3.19) û′(λ) = Âu(λ) + F̂ u·(λ) , for Re(λ) 6= 0 .

Using the fact that A is closed, from (3.18) and (3.19) we get



MAXIMAL REGULARITY 11

(λI − Fg − A) û(λ) = u(0) + Fgh for all λ ∈ C \ iR.

Since iR ⊂ ρ(A) , it follows that the Carleman spectrum spC(u) of u is
empty . Hence u ≡ 0 by [2, Theorem 4.8.2] .

We denote by KF (X) the class of operators in X satisfying (ii) in the
above theorem. If A ∈ KF (X) we have u′, Au, Fu· ∈ Cα(R, X), and hence
we deduce the following result.

Corollary 3.5. Let X be B-convex and A ∈ KF (X). Then

(i) (1.1) has a unique solution in Z := Cα+1(R, X) ∩ Cα(R, [D(A)]) if
and only if f ∈ Cα(R, X).

(ii) There exists a constant M > 0 independent of f ∈ Cα(R, X) such
that

(3.20) ‖u′‖Cα(R,X) + ‖Au‖Cα(R,X) + ‖Fu·‖Cα(R,X) ≤ M‖f‖Cα(R,X).

Remark 3.6. The inequality (3.20) is a consequence of the closed graph
theorem and known as the maximal regularity property for equation (1.1).
From it we deduce that the operator L defined by

D(L) = Z

(Lu)(t) = u′(t)− Au(t)− Fut

is an isomorphism onto. In fact, since A is closed, the space Z becomes a
Banach space under the norm

|| u ||Z := ‖u‖Cα(R,X) + ‖u′‖Cα(R,X) + ‖Au‖Cα(R,X).

Such isomorphisms are crucial for the treatment of nonlinear versions of
(1.1).

Indeed, assume X be B-convex and A ∈ KF (X) and consider the semi-
linear problem

(3.21) u′(t) = Au(t) + Fut + f(t, u(t)), t ≥ 0.

Define the Nemytskii’s superposition operator N : Z → Cα(R, X) given
by N(v)(t) = f(t, v(t)) and the bounded linear operator

S := L−1 : Cα(R, X) → Z

by S(g) = u where u is the unique solution of the linear problem

u′(t) = Au(t) + Fut + g(t).
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Then to solve (3.21) we have to show that the operator H : Z → Z defined
by H = SN has a fixed point.

For related information we refer to Amann [1] where results in quasilinear
delay equations involving the method of maximal regularity are presented.

We finish this paper with the following result which give us a useful
criterion to verify condition (ii) in the above theorem.

Theorem 3.7. Let X be a B-convex space and let A : D(A) ⊂ X → X be
a closed linear operator such that iR ⊂ ρ(A) and sups∈R ‖A(isI −A)−1‖ =:
M < ∞. Suppose that

(3.22) ||F || < 1

||A−1||M .

Then for each f ∈ Cα(R, X) there is a unique function u ∈ Cα+1(R, X) ∩
Cα(R, [D(A)]) such that (1.1) is satisfied.

Proof. From the identity

isI − A− Fs = (isI − A)(I − Fs(isI − A)−1) s ∈ R,

it follows that isI − A − Fs is invertible whenever ||Fs(isI − A)−1|| < 1.
Next observe that

(3.23) ||Fs|| ≤ ||F ||,
and hence

||Fs(isI − A)−1|| = ||FsA
−1A(isI − A)−1|| ≤ ||F ||||A−1||M =: α.

Therefore, under the condition (3.22) we obtain that σ(∆) = ∅, and the
identity
(3.24)

(isI−A−Fs)
−1 = (isI−A)−1(I−Fs(isI−A)−1) = (isI−A)−1

∞∑
n=0

[Fs(isI−A)−1]n.

For all n ∈ N we have
‖is(isI − A)−1[Fs(isI − A)−1]n‖

≤ ‖is(isI − A)−1‖[‖FsA
−1A(isI − A)−1‖]n

≤ ‖is(isI − A)−1)[‖FsA
−1‖]n[‖(A(is− A)−1‖]n

≤ ‖is(isI − A)−1‖||A−1||n[‖Fs‖]n[‖A(isI − A)−1‖]n.

By (3.23) we obtain

‖is(isI − A)−1[Fs(isI − A)−1]n‖ ≤ ‖is(isI − A)−1‖||A−1||n||F ||nMn

= ‖is(isI − A)−1‖αn.
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Finally by (3.24), one has

‖is(isI − A− Fs)
−1‖ ≤ ‖is(isI − A)−1‖ 1

1− α
≤ M + 1

1− α
.

This proves that {is(isI−A−Fs)
−1} is bounded and the conclusion follows

from Theorem 3.4.
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