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Abstract. In this paper we give a necessary and sufficient conditions for the existence
and uniqueness of periodic solutions of inhomogeneous abstract fractional differential
equations with delay. The conditions are obtained in terms of R-boundedness of operator-
valued Fourier multipliers determined by the abstract model.

1. Introduction

Recent investigations in physics, engineering, biological sciences and other fields have
demonstrated that the dynamics of many systems are described more accurately using
fractional differential equations, and that fractional differential equations with delay are
often more realistic to describe natural phenomena than those without delay (see [22],
[24], [23], [3], [16] and [18]).

The aim of this paper is the study of existence of periodic solutions for the equation

(1.1) Dα
t u(t) = Au(t) + Fut + f(t), t ∈ [0, 2π], 1 ≤ α ≤ 2,

where (A,D(A)) is a (unbounded) linear operator on a Banach space X, ut(·) = u(t + ·)
on [−r, 0], r > 0, and the delay operator F is supposed to belong to B(Lp([−r, 0];X),X)
for some 1 ≤ p < ∞. The state space Lp([−r, 0];X) is a typical choice with regards to
certain applications (e.g. to control theory, or to numerical methods, see [13]).

In case α = 1, equation (1.1) with periodic boundary condition in the Lebesgue vector-
valued spaces has been studied in the article [19] and, in scales of Besov and Triebel-
Lizorkin spaces, by Bu and Fang [8]. The case α = 2 has been recently treated in the
article [7], simultaneously in the scale of Lebesgue, Besov and Triebel-Lizorkin vector
valued spaces. Time fractional differential equations with periodic boundary conditions
have recently been treated in the paper [15]. To the knowledge of the authors, time
fractional evolution equations with periodic boundary conditions and delay have not been
studied until now. One of the difficulties is to determine the right definition of fractional
derivative to be used in this case. We consider here the framework of the so-called Liouville-
Grünwald-Letnikov fractional derivative, studied in [6] (see also [12] and [17]) in the scalar
case and used in [15] in the vector-valued case.

With the above definition, in this paper we succeed to find necessary and sufficient
conditions for the existence and uniqueness of periodic solution of (1.1) in the vector-
valued Lebesgue space Lp(0, 2π;X), 1 < p < ∞ (see Theorem 3.5 below).
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Considering the scalar case:

(1.2) Dα
t u(t) = ρu(t) + u(t − τ) + f(t), t ∈ [0, 2π], 1 ≤ α ≤ 2,

where ρ ∈ R, we show that if τ = 2π then the unique periodic solution is explicitly given
by

(1.3) u(t) =
∫ t

−∞
(t − s)α−1Eα,α((1 + ρ)(t − s)α)f(s)ds

where Eα,α denotes the Mittag- Leffler function. If 0 < τ < 2π, our characterization in
the finite-dimensional case (Corollary 3.9) shows the interesting fact that the number of
non-periodic solutions of (1.2), except for those in the set {(−1, τ)/τ ∈ [0, 2π]}, is greater
than 4 for α∗ < α < 2, but is exactly 4 for all 1 < α < α∗, where α∗ ≈ 1, 8163. This
property reveals a distinguished behavior of fractional differential equations with delay
which is not present in the case without delay (cf. [15]).

This paper is organized as follows: Section 2 collects some results about the Liouville-
Grünwald-Letnikov fractional derivative of a function f ∈ Lp(0, 2π;X) and operator-
valued Fourier multipliers in vector-valued Lebesgue spaces. Section 3 is devoted to our
main abstract result (Theorem 3.5) and some important consequences, that are new even
in the scalar case (Corollary 3.9). After that, we discuss periodic solutions of the scalar
equation (1.2), and then we establish an abstract criteria in case X is a UMD space
(Theorem 3.14).

2. Preliminaries

Let X,Y be complex Banach spaces. We denote by B(X,Y ) be the space of all bounded
linear operators from X to Y . When X = Y , we write simply B(X). For a linear operator
A on X, we denote its domain by D(A) and its resolvent set by ρ(A), and for λ ∈ ρ(A),
we write R(λ,A) = (λI − A)−1 = (λ − A)−1.

We shall identify the spaces of (vector or operator-valued) functions defined on [0, 2π]
to their periodic extensions to R. Thus, throughout, we consider the space Lp(0, 2π;X),
1 ≤ p ≤ ∞ of all 2π-periodic Bochner measurable X-valued functions f such that the
restriction of f to [0, 2π] is p-integrable (essentially bounded if p = ∞).

In the paper [6], Butzer and Westphal studied the fractional derivative directly as a
limit of a fractional difference quotient. In the case of periodic functions, it enables one to
set up a fractional calculus in the Lp setting with the usual rules, as well as the connection
with the classical Weyl fractional derivative (see [20]).

Let α > 0. Given f ∈ Lp(0, 2π;X), (1 ≤ p < ∞) the Riemann difference

(2.1) Δα
t f(x) :=

∞∑
j=0

(−1)j
(

α

j

)
f(x − tj)

(where
(

α

j

)
=

α(α − 1) · · · (α − j − 1)
j!

is the binomial coefficient ) exists almost every-

where and

(2.2) ‖Δα
t f‖Lp(0,2π;X) ≤

∞∑
j=0

|
(

α

j

)
|‖f‖Lp(0,2π;X) = O(1)
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since
(α

j

)
= O(j−j−1) as j → ∞.

The following definition is the direct extension of [6, Definition 2.1] to the vector-valued
case. See also [15] for their connection with fractional differential equations.

Definition 2.1. Let X be a complex Banach space, α > 0 and 1 ≤ p < ∞. If for
f ∈ Lp(0, 2π;X) there exists g ∈ Lp(0, 2π;X) such that limt→0+ t−αΔα

t f = g in the
Lp(0, 2π;X) norm, then g is called the αth Liouville-Grünwald-Letnikov derivative of f in
the mean of order p. We use the notation g = Dαf.

Example 2.2. The αth fractional derivative of eiax for any real a is given by (ia)αeiax. In
particular, Dα sinx = sin(x + π

2α) and Dα cos x = cos(x + π
2 α).

We also have the following properties.

Proposition 2.3. For f ∈ Lp(0, 2π;X), 1 ≤ p < ∞, α, β > 0 we have
(i) If Dαf ∈ Lp(0, 2π;X), then Dβf ∈ Lp(0, 2π;X) for all 0 < β < α,
(ii) DαDβf = Dα+βf whenever one of the two sides is well defined.

Proof. The proof is the same as in the scalar case, which is given in [6, Proposition 4.1].

We recall that the Fourier series of f ∈ Lp(0, 2π;X)(1 ≤ p < ∞) is defined for k ∈ Z by

f̂(k) =
1
2π

∫ 2π

0
e−ikt(t)f(t)dt.

In what follows we denote by Hα,p(0, 2π;X) the vector-valued function space

Hα,p(0, 2π;X) := {u ∈ Lp(0, 2π;X) : there exists v ∈ Lp(0, 2π;X) such that
v̂(k) = (ik)αû(k), for all k ∈ Z}.

By [6, Theorem 4.1] we also have

Hα,p(0, 2π;X) = {u ∈ Lp(0, 2π;X) : Dαu ∈ Lp(0, 2π;X)}.
Note that if 1 < α ≤ 2, then for u ∈ Hα,p(0, 2π;X), it follows that u(0) = u(2π) and

Dα−1u(0) = Dα−1u(2π).
Let Φα be the function defined by

(2.3) Φα(t) =
∑

k∈Z\{0}

eikt

(ik)α
, t ∈ R \ 2πZ, α > 0

where (ik)α = |k|αe
πiα
2

sgnk. Note that Φα ∈ L1(0, 2π) (see [25] for more details) and hence
for u ∈ Lp(0, 2π;X), 1 ≤ p < ∞ and α > 0 , we can define

(2.4) Iαu(t) =
1
2π

∫ 2π

0
u(t − s)Φα(s)ds.

The following lemma from [15], is essentially contained in [6, Theorem 4.1].

Lemma 2.4. Let 1 ≤ p < ∞ and let u,w ∈ Lp(0, 2π;X). The following statements are
equivalent
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(i)
∫ 2π

0
w(t)dt = 0 and there exists x ∈ X such that

(2.5) u(t) = x +
1
2π

∫ 2π

0
w(t − s)Φα(s)ds a.e. on [0, 2π],

(ii) ŵ(k) = (ik)αû(k) for all k ∈ Z.

We will need the following definition of operator-valued Fourier multipliers.

Definition 2.5. For 1 ≤ p ≤ ∞, α ≥ 0 we say that a sequence {Mk}k∈Z ⊂ B(X,Y ) is
an (Lp,Hα,p)-multiplier, if for each f ∈ Lp(0, 2π;X) there exists u ∈ Hα,p(0, 2π;Y ) such
that

û(k) = Mkf̂(k) for all k ∈ Z.

In particular, in case α = 0 (therefore Hα,p = H0,p = Lp) the definition coincides with
the one contained in [2, Proposition 1.1]. The proof of the following lemma is similar to
that of [2, Lemma 2.2] taking into account Lemma 2.4 above.

Lemma 2.6. Let 1 ≤ p < ∞, α > 0 and (Mk)k∈Z ⊂ B(X). The following assertions are
equivalent

(i) (Mk)k∈Z is an (Lp,Hα,p)-multiplier;

(ii) ((ik)αMk)k∈Z is an (Lp, Lp)- multiplier.

A Banach space X is said to be UMD, if the Hilbert transform is bounded on Lp(R;X)
for some (and then all) p ∈ (1,∞). Here the Hilbert transform H of a function f ∈ S(R;X),
the Schwartz space of rapidly decreasing X-valued functions, is defined by

Hf :=
1
π

PV (
1
t
) ∗ f.

These spaces are also called HT spaces. It is a well known theorem that the set of Banach
spaces of class HT coincides with the class of UMD spaces. This has been shown by
Bourgain[4] and Burkholder [5].

Definition 2.7. Let X and Y be Banach spaces. A family of operators T ⊂ B(X,Y ) is
called R-bounded, if there is a constant C > 0 and p ∈ [1,∞) such that for each N ∈
N, Tj ∈ T , xj ∈ X and for all independent, symmetric, {−1, 1}-valued random variables
rj on a probability space (Ω,M, μ) the inequality

(2.6) ||
N∑

j=1

rjTjxj||Lp(Ω,Y ) ≤ C||
N∑

j=1

rjxj||Lp(Ω,X)

is valid. The smallest such C is called R-bound of T , we denote it by Rp(T ).

Several properties of R-bounded families can be founded in the recent monograph of
Denk-Hieber-Prüss [10, Section 3].

We remark that large classes of classical operators are R-bounded (cf. [11] and references
therein). Hence, this assumption is not too restrictive for the applications that we consider
in this article.
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The following theorem, due to Arendt and Bu [2, Theorem 1.3], is the discrete analogue
of the operator-valued version of Mikhlin’s theorem due to Weis [21] and play an important
role in the following sections.

Theorem 2.8. Let X,Y be UMD spaces and let {Mk}k∈Z ⊆ B(X,Y ). If the sets {Mk}k∈Z

and {k(Mk+1−Mk)}k∈Z are R-bounded, then {Mk}k∈Z is an Lp-multiplier for 1 < p < ∞.

3. Periodic solutions

We consider in this section the equation

(3.1) Dαu(t) = Au(t) + Fut + f(t), t ∈ [0, 2π], 1 < α ≤ 2,

where A : D(A) ⊆ X → X is a linear, closed operator; f ∈ Lp(0, 2π;X), p ≥ 1. Setting
r2π := 2πN, for some N ∈ N, F : Lp([−r2π, 0];X) → X is a linear, bounded operator and
ut is an element of Lp([−r2π, 0];X) which is defined as ut(θ) = u(t + θ) for −r2π ≤ θ ≤ 0.

Next, we define the notion of strong solution of the fractional differential equation with
delay (1.1) and the associated concept of well-posedness.

Definition 3.1. Let 1 ≤ p < ∞. A function u is called a strong Lp-solution of (1.1) if
u ∈ Hα,p(0, 2π;X) ∩ Lp(0, 2π;D(A)) and equation (1.1) holds for almost all t ∈ [0, 2π].

Definition 3.2. Let 1 ≤ p < ∞. We say that problem (1.1) is strongly Lp-well posed
(or has maximal regularity) if for every f ∈ Lp(0, 2π;X) there exists a unique strong
Lp-solution of (1.1).

The concept of maximal regularity has received much attention in recent years. It is
connected to the question of closedness of the sum of two closed operators. It has proven
very efficient in the treatment of non linear problems in partial differential equations,
especially semilinear and quasilinear ones (see for example [9]).

Denote by eλ(t) := eiλt for all λ ∈ R, and define the operators {Bλ}λ∈R ⊆ B(X) by

(3.2) Bλx = F (eλx), for all λ ∈ R and x ∈ X.

Defining the real spectrum of (3.1) by

σ(Δ) = {s ∈ R : (is)αI − Bs − A ∈ B(D(A),X) is not invertible },
and denote ρ(Δ) = R \ σ(Δ). We prove the following result.

Proposition 3.3. Lets A be a closed linear operator defined on a UMD space X and
1 < α ≤ 2. Suppose that Z ⊂ ρ(Δ). Then the following assertions are equivalent.

(i) {(ik)α((ik)αI − Bk − A)−1}k∈Z is an (Lp, Lp)-multiplier for 1 < p < ∞.

(ii) {(ik)α((ik)αI − Bk − A)−1}k∈Z is R-bounded.

Proof. By [2, Proposition 1.11] it follows that (i) implies (ii). Conversely, define Mk =
(ik)α(Nk −A)−1, where Nk := (ik)αI −Bk. By Theorem 2.8 is sufficient to prove that the
set {k(Mk+1 − Mk)}k∈Z is R-bounded. From the proof of [19, Proposition 3.2] we have
that the set {Bk}k∈Z is R-bounded.

Let ak = 1/(ik)α, k = 0. Next we note the following identity
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k[Mk+1 − Mk] = kak+1Mk+1Bk+1Mk − kakMk+1BkMk + k
ak+1 − ak

ak
Mk+1[Mk − I]

−k(ak+1 − ak)Mk+1BkMk.

Observe that for γ > 0 we have that |(i(k + 1))γ − (ik)γ | can be estimated by (ik)γ−1

uniformly in k according to the definition of |(ik)γ | and the mean value theorem. This
implies that {k(ak+1 − ak)} and {k ak+1−ak

ak
} are bounded sequences. Since {kak} also

is bounded for α > 1, taking into account that the products and sums of R-bounded
sequences is R-bounded (see [10]), the proof is finished.

Proposition 3.4. Let X be a Banach space and let A : D(A) ⊂ X → X be a closed linear
operator. Suppose that for every f ∈ Lp(0, 2π;X), there exists a unique strong Lp-solution
of (3.1) for 1 < p < ∞. Then

(i) Z ⊂ ρ(Δ),

(ii) {(ik)α((ik)αI − Bk − A)−1}k∈Z is R-bounded.

Proof. Follows the same lines of [19, Proposition 3.3].

Our main result in this paper, establish that the converse of Proposition 3.4 is true,
provided X is an UMD space.

Theorem 3.5. Let X be a UMD space and let A : D(A) ⊂ X → X be a closed linear
operator. Then the following assertions are equivalent for 1 < p < ∞ and 1 < α ≤ 2.

(i) For every f ∈ Lp(0, 2π;X), there exists a unique strong Lp-solution of (3.1);

(ii) Z ⊂ ρ(Δ) and {(ik)α((ik)αI − Bk − A)−1}k∈Z is R-bounded.

Proof. Let f ∈ Lp(0, 2π;X). Define Nk = ((ik)αI −Bk −A)−1. By Proposition 3.3, the
family {Mk := (ik)αNk}k∈Z is an (Lp, Lp)-multiplier. By Lemma 2.6, it is equivalent to the
fact that the family {Nk}k∈Z is an (Lp,Hα,p)-multiplier, i.e. there exists u ∈ Hα,p(0, 2π;X)
such that

(3.3) û(k) = Nkf̂(k) = ((ik)αI − Bk − A)−1f̂(k).

In particular, u ∈ Lp(0, 2π;X) and there exists v ∈ Lp(0, 2π;X) such that

(3.4) v̂(k) = (ik)αû(k),

Moreover, Dαu ∈ Lp(0, 2π;X) and D̂αu(k) = v̂(k).
We claim that the family {BkNk}k∈Z is an (Lp, Lp)-multiplier. In fact, it is clear that

{BkNk}k∈Z is R-bounded. On the other hand, since {Bk}k∈Z is R-bounded (see the proof
of [19, Proposition 3.2]) the identity

k(Bk+1Nk+1 − BkNk) = kak+1Bk+1Mk+1 − kakBkMk

shows that {k(Bk+1Nk+1 − BkNk)}k∈Z is also R-bounded. Then the claim follows from
Theorem 2.8.
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By Fejer’s theorem (see [14]) one has in Lp([−r2π, 0];X)

ut(θ) = u(t + θ) = lim
n→∞

1
n + 1

n∑
m=0

m∑
k=−m

eikteikθû(k).

Hence in Lp(0, 2π;X) we obtain

ut = lim
n→∞

1
n + 1

n∑
m=0

m∑
k=−m

eiktekû(k).

Then, since F is linear and bounded

Fut = lim
n→∞

1
n + 1

n∑
m=0

m∑
k=−m

eiktF (ekû(k)) = lim
n→∞

1
n + 1

n∑
m=0

m∑
k=−m

eiktBkû(k)

By (3.3) and (3.4) we have

D̂αu(k) = (ik)αû(k) = Aû(k) + Bkû(k) + f̂(k)

for all k ∈ Z. Then using that A is closed we conclude that u(t) ∈ D(A) (cf. [2, Lemma
3.1]) and, from the uniqueness theorem of Fourier coefficients, that (3.1) is valid for a.a.
t ∈ [0, 2π].

To show uniqueness, let u ∈ Lp(0, 2π;D(A)) ∩ Hα,p(0, 2π;X) be such that Dαu(t) =
Au(t) + Fut, t ∈ [0, 2π], then û(k) ∈ D(A) and (ik)αû(k) = Aû(k) + Bkû(k). Since
Z ∩ σ(Δ) = ∅ this implies that û(k) = 0 for all k ∈ Z and thus u = 0.

The solution u(·) given in Theorem 3.5 actually satisfies the following maximal regularity
property.

Corollary 3.6. In the context of Theorem 3.5, if condition (ii) is fulfilled, we have
Dαu,Au, Fu(·) ∈ Lp(0, 2π;X). Moreover, there exists a constant C > 0 independent of
f ∈ Lp(0, 2π;X) such that

(3.5) ||Dαu||Lp(0,2π;X) + ||Au||Lp(0,2π;X) + ||Fu(·)||Lp(0,2π;X) ≤ C||f ||Lp(0,2π;X).

Remark 3.7.

From the inequality (3.5) we deduce that the operator L defined by:

(Lu)(t) = Dα(t) − Au(t) − Fut with domain D(L) = Hα,p(0, 2π;X) ∩ Lp(0, 2π;D(A)),

is an isomorphism onto. Indeed, since A is closed, the space Hα,p(0, 2π;X)∩Lp(0, 2π;D(A))
becomes a Banach space under the norm

|||u||| := ||u||p + ||Dαu||p + ||Au||p.

We remark that such isomorphisms are crucial for the handling of nonlinear evolution
equations (see [1]).

In the case of a Hilbert space, Theorem 3.5 takes a particularly simple form.
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Corollary 3.8. Let H be Hilbert space and let A : D(A) ⊂ H → H be a closed linear
operator. Then the following assertions are equivalent for 1 < p < ∞ and 1 < α ≤ 2.

(i) For every f ∈ Lp(0, 2π;H), there exists a unique strong Lp-solution of (3.1);

(ii) Z ⊂ ρ(Δ) and

(3.6) sup
k∈Z

||(ik)α((ik)αI − Bk − A)−1|| < ∞.

Proof. This is a consequence of Plancherel’s Theorem.

For future reference, we state separately the finite dimensional case, i.e. H = C
n.

Corollary 3.9. Let 1 < p < ∞, 1 < α ≤ 2 and f ∈ Lp(0, 2π; Cn). A necessary and
sufficient condition for the existence of a unique strong Lp-solution of (3.1) is that

det((ik)αI − Bk − A) = 0, for all k ∈ Z

where A is a n × n matrix and (Bk)k is a sequence of n × n matrices.

Example 3.10.

Set X = C and 1 < α < 2. For ρ ∈ R\{−1} consider the fractional differential equation
with delay

(3.7) Dα
t x(t) = ρx(t) + x(t − 2π) + f(t), t ∈ [0, 2π].

Defining Fx := x(2π) we obtain the abstract form (1.1) with A = ρ. Note that Bk =
e2πik = 1 for all k ∈ Z, and hence we only have to examine the sequence sk := (ik)α−1−ρ.
Since ρ ∈ R \ {−1}, we observe that sk = 0 for all k ∈ Z and hence Corollary 3.9 implies
the existence of a unique solution x ∈ Lp(0, 2π). In this case we can show explicitly that
solution, noting that the Laplace transform of the function

M(t) := tα−1Eα,α((1 + ρ)tα),

where Eα,α denotes the Mittag-Leffler function, can be extended to the imaginary axis
and is given by

L(M)(ik) =
1

(ik)α − (1 + ρ)
, k ∈ Z.

It follows, that the explicit form of the periodic solution is

(3.8) x(t) =
∫ t

−∞
M(t − s)f(s)ds.

Indeed, note that the Fourier transform of (3.8) is given by the product of the Laplace
transform of M (evaluated in the imaginary axis) and the Fourier transform of f . Then,
an straightforward calculation, shows that it coincides with the Fourier transform of the
given equation (3.9). The claim then follows from the uniqueness of Fourier coefficients.

Example 3.11.

Again, set X = C and 1 < α < 2. We consider the fractional differential equation with
delay

(3.9) Dα
t x(t) = ax(t) + x(t − τ) + f(t), t ∈ [0, 2π],
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where τ ∈ [0, 2π] and a ∈ R. Defining Fx := x(τ) we obtain the abstract form (1.1) with
A = a. Note that Bk = eiτk for all k ∈ Z, and hence we have to examine the zeroes of the
sequence fα(m) := (im)α − eiτm − a, m ∈ Z. Define the set

(3.10) Mα = {(a, τ) ∈ R × [0, 2π] / fα(m) = 0 for some m ∈ Z}.
Note that (−1, τ) ∈ Mα for all τ ∈ [0, 2π], since in such case fα(0) = 0.
For s > 0, �s� denotes the largest integer less than or equal to s. Fixed n :=

⌊
1

sin1/α(απ/2)

⌋
∈

N, observe that there exists numbers τ1 = τ1(α), ..., τ4n = τ4n(α) ∈ [0, 2π] such that for
each |m| ≤ n, m = 0, we have

sin(mτj) = |m|α sin(απ/2).

Now define aj = nα cos(απ/2) − cos(τjn); j = 1, ...4n. Then (aj , τj) ∈ Mα \ {(−1, τ)/τ ∈
[0, 2π]}. It is then easy to prove that

Mα = {(−1, τ)/τ ∈ [0, 2π]} ∪ {(aj , τj)}j=1,...,4n

is the set of zeroes of the function fα in Z. Some concrete examples are:

M3/2 = {(−1, τ)/τ ∈ [0, 2π]} ∪ {(0, 3π/4), (0, 5π/4), (−
√

2, π/4), (−
√

2, 7π/4)},

M5/4 = {(−1, τ)/τ ∈ [0, 2π]}
∪{(0, 5π/8), (0, 11π/8), (−2 cos(3π/8), 3π/8), (−2 cos(3π/8), 13π/8)},

M7/4 = {(−1, τ)/τ ∈ [0, 2π]}
∪{(0, 7π/8), (0, 9π/8), (−2 cos(π/8), π/8), (−2 cos(π/8), 15π/8)},

M9/5 = {(−1, τ)/τ ∈ [0, 2π]}
∪{(0, 9π/10), (0, 11π/10), (−2 cos(π/10), π/10), (−2 cos(π/10), 19π/10)},

M19/10 = {(−1, τ)/τ ∈ [0, 2π]}
∪{(0, 19π/20), (0, 21π/20), (−2 cos(π/20), π/20), (−2 cos(π/20), 39π/20),

(a+
2 ,

π

2
− β2

2
), (a+

2 ,
π

2
+

β2

2
), (a−2 , π − β2

2
), (a−2 ,

β2

2
)}

M195/10 = {(−1, τ)/τ ∈ [0, 2π]}
∪{(0, 195π/200), (0, 205π/200), (−2 cos(5π/200), 5π/200),

(−2 cos(5π/200), 395π/200), (a+
2 ,

π

2
− β2

2
), (a+

2 ,
π

2
+

β2

2
), (a−2 , π − β2

2
), (a−2 ,

β2

2
),

(a+
3 ,

π

3
− β3

3
), (a+

3 ,
π

3
+

β3

3
), (a−3 ,

2π
3

− β3

3
), (a−3 ,

β3

3
)}

where βj = arcsin(jα sin(απ/2)) and a±j = jα cos(απ/2) ± cos(βj) , j = 2, 3.
We then conclude from the above and Corollary 3.9 that for all (a, τ) /∈ Mα there exists

a unique periodic solution of equation (3.9).

Remark 3.12. It is remarkable that the number of points in the set M∗ = Mα\{(−1, τ)/τ ∈
[0, 2π]} is exactly the same (=4) until the value approximate α∗ ≈ 1.816373004 correspond-
ing to the unique root of 2α sin(απ/2)−1 = 0 in the open interval 1 < α < 2, and increases
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as α approach to 2. It reflects the surprising fact that the probability, in some sense, to find
periodic solutions of the equation (3.9) decreases for α (> α∗) near to 2 but, however, is
the same for α ∈ (1, α∗). In the following figure shows the pairs (a, τ) in the case α = 1.95.

τ

a

2π

π

π/2
π/3

0−1

•
•

•

•

••
•

•••
•
•

Example 3.13.

Let A be a closed linear operator defined on a Hilbert space H and suppose that
{(ik)α}k∈Z ⊂ ρ(A) and supk ||A((ik)α − A)−1|| =: M < ∞. From the identity

(ik)αI − A − Bk = (I − Bk((ik)α − A)−1)((ik)α − A)

it follows that (ik)αI − A − Bk is invertible whenever ||Bk((ik)α − A)−1|| < 1.
Next observe that ||Bk|| ≤ r2π

1/p||F ||. Hence

||Bk((ik)α − A)−1|| = ||BkA
−1A((ik)α − A)−1|| ≤ r2π

1/p||F ||||A−1||M =: ξ

Therefore, under the condition

(3.11) ||F || <
1

||A−1||Mr2π
1/p

we obtain that Z ∩ σ(Δ) = ∅, and the identity

((ik)αI − A − Bk)−1 = ((ik)α − A)−1(I − Bk((ik)α − A)−1)(3.12)

= ((ik)α − A)−1
∞∑

n=0

[Bk((ik)α − A)−1]n.

It follows that

||(ik)α((ik)αI − A − Bk)−1|| ≤ ||(ik)α((ik)α − A)−1||
∞∑

n=0

||Bk((ik)α − A)−1||n ≤ 1 + M

1 − ξ
,

and hence condition (ii) in Corollary 3.8 is satisfied.

The above example can be adapted to obtain the following criterion in case of UMD
spaces.

Theorem 3.14. Let X be a UMD space and let A : D(A) ⊂ X → X be a closed linear
operator such that {(ik)α}k∈Z ⊂ ρ(A) and Rp({A((ik)α − A)−1}k∈Z) =: M < ∞. Suppose
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that

(3.13) ||F || <
1

(2r2π)1/p||A−1||M
.

Then for every f ∈ Lp(0, 2π;X), there exists a unique strong Lp-solution of (3.1).

Proof. Follows the same lines of [19, Theorem 3.9].

To close this paper, and as an application, we want to compare the periodic problem

(3.14) Dαu(t) = Au(t) + f(t), t ∈ [0, 2π)

with the delay equation (3.1). As a direct consequence of Theorem 3.14 and [15, Theorem
3.1] we have the following result.

Corollary 3.15. Assume that X is a UMD space. Let 1 < p < ∞. If for each f ∈
Lp(0, 2π;X) there is a unique strong Lp-solution of equation (3.14) and condition (3.13)
is satisfied, then for all f ∈ Lp(0, 2π;X) there is a unique strong Lp-solution of equation
(3.1).
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[2] W. Arendt, S. Bu. The operator-valued Marcinkiewicz multiplier theorem and maximal regularity.
Math. Z. 240 (2002), 311-343.

[3] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab. Existence results for fractional order func-
tional differential equations with infinite delay. J. Math. Anal. Appl., (2008), 13401350.

[4] J. Bourgain. Some remarks on Banach spaces in which martingale differences sequences are uncon-
ditional. Arkiv Math. 21(1983), 163-168.

[5] D.L. Burkholder. A geometrical condition that implies the existence of certain singular integrals on
Banach-space-valued functions. In: Conference on Harmonic Analysis in Honour of Antoni Zygmund,
Chicago 1981, W. Becker, A.P. Calderón, R. Fefferman, P.W. Jones (eds), Belmont, Cal. Wadsworth
(1983), 270-286.

[6] P.L. Butzer, U. Westphal. An access to fractional differentiation via fractional difference quotients.
116-14, Lecture Notes in Math. 457, Springer, Berlin, 1975.

[7] S.Q. Bu, Y. Fang. Maximal regularity of second order delay equations in Banach spaces. Sci. China
Math. 53 (2010), no. 1, 51–62.

[8] S.Q. Bu, Y. Fang. Periodic solutions of delay equations in Besov spaces and Triebel-Lizorkin spaces.
Taiwanese J. Math.13 (2009), no. 3, 1063–1076.

[9] R. Chill, S. Srivastava. Lp maximal regularity for second order Cauchy problems. Math. Z. 251 (4)
(2005), 751–781.

[10] R. Denk, M. Hieber, J. Prüss. R-boundedness, Fourier Multipliers and Problems of Elliptic and
Parabolic Type, Mem. Amer. Math. Soc. 166 (788), 2003.

[11] M. Girardi, L. Weis. Criteria for R-boundedness of operator families. Lecture Notes in Pure and
Appl. Math., 234 Dekker, New York, 2003, 203–221.
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