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Abstract. In this paper we study the structure of various classes of spaces of vector-
valued functions M(R; X) ranging between periodic functions and bounded continuous
functions. Some of these functions are introduced here for the first time. We propose a
general operator theoretical approach to study a class of semilinear integro-differential
equations. The results obtained are new and they recover, extend or improve variety of
recent works.

1. Introduction

The rapid development of the theory of integro-differential equations in infinite - dimen-
sional spaces has been strongly promoted by the large number of applications in physics,
engineering and biology. Abstract integro-differential equations are still in a state of flux,
with new basic results continuously emerging. Questions like existence of solutions, con-
tinuous dependence, perturbations, and general asymptotic behavior are at present an
active area of research.

In this paper, we consider the following integro-differential equation

(1.1) u′(t) = Au(t) +
∫ t

−∞
a(t− s)Au(s)ds + f(t, u(t)),

where A is a closed linear operator defined in a Banach space X and a ∈ L1
loc(R+) is an

scalar-valued kernel. Equations of this kind arise, for example, in the study of heat flow in
materials of fading memory type as well as some equations of population dynamics. For
more information on this subject see the papers [10, 37, 38, 18] and the monograph [40]
(particularly Chapter II, Section 9) and the references therein.

Suppose that we know something about the asymptotic behavior of the forcing function
f(t, x). For example, f could be bounded or asymptotically periodic. What conditions do
we need on the operator A and the kernel a in order to conclude that the solution u of
(1.1) exists and has the same asymptotic behavior as f?.

Among others, Da Prato and Lunardi [38] studied this problem for equation (1.1) in the
linear case (see also Da Prato-Lunardi [39], Clément-Da Prato [9]) under several conditions
on A and a(·). The results of Da Prato et.al. were then used by Sforza [42] to derive global
existence and uniqueness results for the associated semilinear problem. A key assumption
in all the above mentioned works is that A generates an analytic semigroup (not necessarily
strongly continuous). However, they also treat more general operator valued kernels.
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In this paper, we will answer the stated problem in various spaces of vector-valued
functions M(R;X) ranging between periodic functions and bounded continuous functions.
Our approach provide a unified treatment for most of the more important classes of vector-
valued functions that have recently appeared in the literature like almost automorphic,
pseudo-almost automorphic, asymptotically periodic and almost periodic, to mention a
few examples of the spaces to be considered.

We first present and analyze the structure of a hierarchy of spaces of functions M(R;X)
between periodic functions and bounded continuous functions. We note that some of these
spaces, which appears naturally in our study, are introduced here for the first time. Then
we propose an operator theoretical approach to study the structure of bounded solutions
for (1.1) in these function spaces. It reveals the way in that regularized families of bounded
linear operators [29] can be used in order to produce ad-hoc concepts of mild solutions
for abstract integro-differential equations. Finally, we apply the proposed method to the
semilinear history value problem (1.1) giving new results as well as recovering, improving
and extending a vast class of recent studies.

We hope that the methods outlined in this paper can serve as guidelines to obtain
similar results for other abstract differential equations that are of recent interest, like e.g.
fractional differential equations, delay equations, etc.

2. Preliminaries: The function spaces

Let X be a Banach space. We denote

BC(X) := {f : R → X : f is continuous, ||f ||∞ := sup
t∈R

||f(t)|| < ∞}.

Let Pω(X) := {f ∈ BC(X) : ∃ ω > 0, f(t + ω) = f(t) ∀t ∈ R} be the space of all
vector-valued periodic functions. For the space of almost periodic functions (in the sense
of Bohr), we set AP (X) which consists of all functions f ∈ BC(X) such that for each
ε > 0 there exists a ω > 0 such that every subinterval of R of length ω contains at least
one point τ such that ||f(t+ τ)− f(t)||∞ ≤ ε. This definition is equivalent to the so-called
Bochner’s criterion (cf. [32] Theorem 3.1.8), namely, f ∈ AP (X) if and only if for every
sequence of reals (s′n) there exists a subsequence (sn) such that (f(· + sn)) is uniformly
convergent on R. Almost periodic functions are uniformly continuous on R. (cf. [32]
Theorem 3.1.4). A simple example is f(t) = 2 + sin(t) + sin(

√
2t). Observe that AP (X) is

a Banach space with the norm || · ||∞ and

Pω(X) ⊂ AP (X).

Note that the function f(t) above is not periodic, thus the inclusion is strict.
The space of compact almost automorphic functions will be denoted by AAc(X). Recall

that a continuous bounded function f belongs to AAc(X) if and only if for all sequence
(s′n) of real numbers there exists a subsequence (sn) ⊂ (s′n) such that limt→∞ f(t + sn) =:
f(t) and limt→∞ f(t−sn) = f(t) uniformly over compact subsets of R. Clearly the function
f above is continuous on R. Therefore f is uniformly continuous [34]. In other other
words compact almost automorphic functions are uniformly continuous on R. We have
that AAc(X) is a Banach space under the norm || · ||∞ and

Pω(X) ⊂ AP (X) ⊂ AAc(X) ⊂ BC(X).
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The space of almost automorphic functions is defined as follows
AA(X) := {f ∈ BC(X) : for all (s′n), exists (sn) ⊂ (s′n) such that limt→∞ f(t+sn) =:

f(t) and limt→∞ f(t− sn) = f(t)∀t ∈ R}, provided with the norm || · ||∞.
As a typical example, we can take f(t) = sin( 1

2+sin(t)+sin(
√

2t)
). We have that AA(X) is

a Banach space with the norm || · ||∞ and the following inclusions hold:

Pω(X) ⊂ AP (X) ⊂ AAc(X) ⊂ AA(X) ⊂ BC(X).

Note that the function f(t) = sin( 1
2+sin(t)+sin(

√
2t)

) is not uniformly continuous, so the
inclusion AAc(X) ⊂ AA(X) is strict.

Let F1 = {Pω(X), AP (X), AAc(X), AA(X)} and Ω ∈ F1. Then we have

Theorem 2.1. Assume f, f1, f2 ∈ Ω. Then we have
• f1 + f2 ∈ Ω,
• λf ∈ Ω, for any scalar λ
• fτ (t) := f(t + τ) ∈ Ω for any τ ∈ R

Proof. See for instance [32]. �

Theorem 2.2. For any f ∈ Ω, the range Rf of f is relatively compact in X.

Proof. Let Ω ∈ F1, then since Ω ⊂ AA(X), we can conclude in view of [32, Theorem
2.1.3.]. �

Theorem 2.3. Let (fn) ⊂ Ω, such that fn → f uniformly on R. Then f ∈ Ω.

Proof. The case Ω = Pω is trivial. Indeed, let (fn) ⊂ Pω, such that fn → f uniformly on R.
Then for any ε > 0, there exists N such that ‖fn(t)− f(t)‖ < ε

2 for any n > N and t ∈ R.
Thus ‖f(t+ω)− f(t)‖ ≤ ‖f(t+ω)− fn(t+ω)‖+ ‖fn(t+ω)− fn(t)‖+ ‖fn(t)− f(t)‖ < ε,
for any t ∈ R. Which shows that f(t + ω = f(t), for any t ∈ R

For Ω = AP (X) (resp. Ω = AA(X)), see [32] Theorem 3.1.4 (resp. Theorem 2.1.10).
The case Ω = AAc(X) is similar to the one of AA(X). So we omit it.

�

Theorem 2.4. Assume that f ∈ Ω and let F (t) :=
∫ t

0
f(s)ds. Then F ∈ Ω if and only if

Rf is relatively compact in X.

Proof. For Ω = AP (X) (resp. Ω = AA(X)), see [32] Theorem 3.2.6 (resp. Theorem 2.4.4).
The case Ω = AAc(X) is similar to the one of AA(X). So we omit it. �

Remark 2.5. Note that if X does not contain a subspace isomorphic to c0 (for instance
X is a uniformly convex Banach space), the above theorem is called Kadet’s theorem ([26]
Theorem 2, p. 86, and it reads:
If f is ω-periodic (resp. almost periodic), then F is ω-periodic (resp. almost periodic) if
and only if it is bounded.
Kadet’s theorem is valid for all periodic, almost periodic and almost automorphic sequences
([36]).

Now we consider the set

C0(X) := {f ∈ BC(X) : lim
|t|→∞

||f(t)|| = 0},
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and define the space of asymptotically periodic functions as

APω(X) := Pω(X)⊕ C0(X).

Analogously, we define the space of asymptotically almost periodic functions

AAP (X) := AP (X)⊕ C0(X),

the space of asymptotically compact almost automorphic functions,

AAAc(X) := AAc(X)⊕ C0(X),

and the space of asymptotically almost automorphic functions

AAA(X) := AA(X)⊕ C0(X).

We have the following natural proper inclusions

APω(X) ⊂ AAP (X) ⊂ AAAc(X) ⊂ AAA(X) ⊂ BC(X).

Remark 2.6. We observe that

APω(X) 6= {f ∈ BC(X) : ∃ω > 0 ||f(t + ω)− f(t)|| → 0 as t →∞} =: SAPω(X).

This fact was only recently proved in [25], providing a counterexample to the assertion
given in [21, Lemma 2.1]. This way, in general we only have

APω(X) ⊂ SAPω(X).

The class of functions in SAPω(X) is called S-asymptotically ω-periodic (see [25] for a
discussion of qualitative properties of this class of functions).

We next consider the following set

P0(X) := {f ∈ BC(X) : lim
T→∞

1
2T

∫ T

−T
||f(s)||ds = 0},

and define the following classes of spaces: The space of pseudo-periodic functions

PPω(X) := Pω(X)⊕ P0(X),

the space of pseudo almost periodic functions

PAP (X) := AP (X)⊕ P0(X),

the space of pseudo compact almost automorphic functions

PAAc(X) := AAc(X)⊕ P0(X),

and the space of pseudo almost automorphic functions

PAA(X) := AA(X)⊕ P0(X).

As before, we also have the following relationship between them

PPω(X) ⊂ PAP (X) ⊂ PAAc(X) ⊂ PAA(X) ⊂ BC(X).

Since C0(X) ⊂ P0(X), we have the following diagram that summarizes the different
classes of subspaces defined above

AA(X) ⇒ AAA(X) ⇒ PAA(X)
⇑ ⇑ ⇑

AAc(X) ⇒ AAAc(X) ⇒ PAAc(X)
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⇑ ⇑ ⇑
AP (X) ⇒ AAP (X) ⇒ PAP (X)

⇑ ⇑ ⇑
Pω(X) ⇒ APω(X) ⇒ PPω(X)

⇓
SAPω(X)

Remark 2.7. The definition of almost periodic functions was introduced by H. Bohr [7].
Compact almost automorphic functions was introduced by A.M. Fink [19] after previous
work of S. Bochner, who introduced the concept of almost automorphic functions (see
[5]). Asymptotically periodic functions appears by the first time in works of N.G. de
Bruijn [6] whereas asymptotically almost periodic functions was introduced by M. Fréchet
[20]. The concept of asymptotically almost automorphic functions was defined by G.M. N’
Guérékata [33]. Pseudo periodic functions are treated, apparently for the first time, in the
article [44] by R.Yuan. Pseudo almost periodic functions are introduced in the literature
by C. Y. Zhang [45]. Finally, the concept of pseudo almost automorphic functions was only
recently introduced by J. Liang, J. Zhang and T.J. Xiao in the paper [28]. The concepts of
asymptotically compact almost automorphic functions as well as pseudo compact almost
automorphic functions appears here by the first time.

The fact that the space PAA(X) is complete under the sup-norm was only recently
proved, see [43].

3. The linear case

In this section we study bounded solutions for the linear integro-differential equation

(3.1) u′(t) = Au(t) +
∫ t

−∞
a(t− s)Au(s)ds + f(t), t ∈ R.

Recall that a function u ∈ C1(R;X) is called a strong solution of (3.1) on R if u ∈
C(R;D(A)) and (3.1) holds on R. If merely u(t) ∈ X instead of the domain of A, we
say that u is a mild solution of the linear equation (3.1). Conditions under which a mild
solution implies a strong one has been studied in Prüss [40].

We shall denote byM(R, X), or simplyM(X), any of the spaces defined in the previous
section. We define the set M(R ×X;X) which consists of all functions f : R ×X → X
such that f(·, x) ∈M(R, X) uniformly for each x ∈ K, where K is any bounded subset of
X.

Given f ∈ M(R × X;X), we ask for conditions under which there exists a solution
u ∈M(R, X).

We remark that, in general, the form in which integro-differential equations arise in
applications is given by equation (3.1) on the line, and the problem

(3.2) v′(t) = Av(t) +
∫ t

0
a(t− s)Av(s)ds + g(t), t ≥ 0,

arises from (3.1) as a history value problem. When considering problems with forces
f ∈ M(R, X), the equation to consider is (3.1), since (3.2) is only time invariant but not
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translation invariant, only (3.1) enjoys the latter property. In this context the important
question arises whether the solutions v(t) of (3.2) and u(t) of (3.1) are asymptotic to each
other, i.e. whether u(t)− v(t) → 0 as t →∞, whenever f(t) → g(t) → 0 as t →∞. Under
reasonable assumptions this turns to be the case (cf. [3]), and therefore the term limiting
equation of (3.2) makes sense for (3.1).

We recall that the Laplace transform of a function f ∈ L1
loc(R+, X) is given by

L(f)(λ) := f̂(λ) :=
∫ ∞

0
e−λtf(t)dt, Reλ > ω,

where the integral is absolutely convergent for Reλ > ω. Furthermore, we denote by B(X)
the space of bounded linear operators from X into X endowed with the norm of operators,
and the notation ρ(A) stands for the resolvent set of A.

In order to give an operator theoretical approach to equation (3.1) we recall the following
definition (cf. [40]) (see also Remark 3.5 below for the motivation).

Definition 3.1. Let b ∈ L1
loc(R) be given. Let A be a closed and linear operator with

domain D(A) defined on a Banach space X. We call A the generator of a solution operator
(or resolvent family) if there exists µ ∈ R and a strongly continuous function S : R+ →
B(X) such that { 1

b̂(λ)
: Reλ > µ} ⊂ ρ(A) and

1

λb̂(λ)
(

1

b̂(λ)
−A)−1x =

∫ ∞

0
e−λtS(t)xdt, Reλ > µ, x ∈ X.

In this case, S(t) is called the solution operator generated by A.

In the scalar case there is a large bibliography which studies the concept of resolvent, we
refer to the monograph by Gripenberg et al. [22] , and references therein. We emphasize
the fact that because of the uniqueness of the Laplace transform, in the case b(t) ≡ 1
the family S(t) corresponds to a C0-semigroup. We note that solution operators, as well
as resolvent families, are a particular case of (b, k)-regularized families introduced in [29].
According to [27] a solution operator S(t) corresponds to a (1, b)-regularized family.

Definition 3.2. ([40]) A strongly measurable family of operators {T (t)}t≥0 ⊂ B(X) is

called uniformly integrable (or strongly integrable) if
∫ ∞

0
||T (t)||dt < ∞.

In what follows, we will denote ‖T‖ :=
∫ ∞

0
||T (t)||dt < ∞ for any uniformly integrable

family of such operators {T (t)}t≥0.
Note that exponentially stable C0-semigroups are examples of uniformly integrable fam-

ilies of operators.
The following is our main result on maximal regularity under convolution of the above

mentioned spaces. It corresponds to a summary, with new, and in some cases, a slight
extension and improvement of recent results given by a number of authors (cf. [1], [34],
[32], [16], [3], [23], [25] and [30]).

Theorem 3.3. Let {S(t)}t≥0 ⊂ B(X) be a uniformly integrable and strongly continuous
family. If f belongs to one of the spaces M(X), and w(t) is given by

(3.3) w(t) =
∫ t

−∞
S(t− s)f(s) ds
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then w belongs to the same space as f .

Proof. We first consider periodic functions. Given f ∈ Pω(X), with a simple change of
variables, we have

w(t + ω)− w(t) =
∫ t+ω

−∞
S(t + ω − s)f(s)ds−

∫ t

−∞
S(t− s)f(s)ds = 0.

We now consider the space of almost periodic functions AP (X). So if f ∈ AP (X), then
by hypotheses, for each ε > 0 there exists a T > 0 such that every subinterval of R of
length T contains at least one point h such that sup

t∈R
||f(t + h)− f(t)|| ≤ ε. We have

sup
t∈R

||w(t + h)− w(t)|| = sup
t∈R

||
∫ t

−∞
S(t− s)[f(s + h)− f(s)]ds||

≤ ||S|| sup
t∈R

||f(t + h)− f(t)|| ≤ ε||S||,

and therefore, w has the same property as f , i.e., it is almost periodic.
AAc(X) : Let (σn)n∈N be a sequence of real numbers. Since f ∈ AAc(X) there exist a

subsequence (sn)n∈N, and a continuous function v ∈ BC(X) such that f(t+ sn) converges
to v(t) and v(t− sn) converges to f(t) uniformly on compact subsets of R.

Since

(3.4) w(t + sn) =
∫ t+sn

−∞
S(t + sn − s)f(s)ds =

∫ t

−∞
S(t− s)f(s + sn)ds,

using the Lebesgue’s dominated convergence theorem, we obtain that w(t + sn) converges

to z(t) =
∫ t

−∞
S(t− s)v(s)ds as n →∞ for each t ∈ R.

Furthermore, the preceding convergence is uniform on compact subsets of R. To show
this assertion, we take a compact set K = [−a, a]. For ε > 0, we choose Lε > 0 and
Nε ∈ N such that ∫ ∞

Lε

||S(s)||ds ≤ ε,

‖f(s + sn)− v(s)‖ ≤ ε, n ≥ Nε, s ∈ [−L,L],

where L = Lε + a. For t ∈ K, we now can estimate

‖w(t + sn)− z(t)‖ ≤
∫ t

−∞
||S(t− s)||‖f(s + sn)− v(s)‖ds

≤
∫ −L

−∞
||S(t− s)||‖f(s + sn)− v(s)‖ds

+
∫ t

−L
||S(t− s)||‖f(s + sn)− v(s)‖ds

≤ 2‖f‖∞
∫ ∞

t+L
||S(s)||ds + ε

∫ ∞

0
||S(s)||ds

≤ ε (2‖f‖∞ + ||S||) ,
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which proves that the convergence is independent of t ∈ K. Repeating this argument, one
can show that z(t − sn) converges to w(t) as n → ∞ uniformly for t in compact subsets
of R. This completes the proof in case of the space AAc(X).

AA(X) : Let (s′n) ⊂ R be an arbitrary sequence. Since f ∈ AA(X) there exists a
subsequence (sn) of (s′n) such that

lim
n→∞

f(t + sn) = v(t), for all t ∈ R

and
lim

n→∞
v(t− sn) = f(t), for all t ∈ R.

From (3.4), note that
‖w(t + sn)‖ ≤ ||S||‖f‖∞

and by continuity of S(·)x we have S(t− σ)f(σ + sn) → S(t− σ)v(σ), as n →∞ for each
σ ∈ R fixed and any t ≥ σ. Then by the Lebesgue’s dominated convergence theorem, we

obtain that w(t + sn) converges to z(t) =
∫ t

−∞
S(t − s)v(s)ds as n → ∞ for each t ∈ R.

Similarly we can show that

z(t− sn) → w(t) as n →∞, for all t ∈ R,

and the proof is complete.
SAPω(X) : We have

w(t + ω)− w(t) =
∫ t+ω

−∞
S(t + ω − s)f(s)ds−

∫ t

0
S(t− s)f(s)ds

=
∫ t

−∞
S(t− s)[f(s + ω)− f(s)]ds.

For each ε > 0, there is a positive constant Lε such that ||f(t + ω)− f(t)|| ≤ ε, for every
t ≥ Lε. Under these conditions, for t ≥ Lε, we can estimate

||w(t + ω)− w(t)|| ≤
∫ t

−∞
||S(t− s)[f(s + ω)− f(s)]||ds

≤
∫ Lε

−∞
||S(t− s)[f(s + ω)− f(s)]||ds

+
∫ t

Lε

||S(t− s)[f(s + ω)− f(s)]||ds

≤ 2||f ||∞
∫ Lε

−∞
||S(t− s)||ds + ε

∫ t

Lε

||S(t− s)||ds

= 2||f ||∞
∫ ∞

t−Lε

||S(s)||ds + ε

∫ ∞

0
||S(s)||ds

which permits to conclude that w(t + ω)− w(t) → 0 as t →∞.
Now we will study the asymptotic behavior of the solutions. Let h ∈ C0(X) and

define

(3.5) H(t) =
∫ t

−∞
S(t− s)h(s)ds.
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Let ε > 0 be given. There exist T > 0 such that ||h(s)|| < ε for all s > T and hence we
can write

H(t) =
∫ T

−∞
S(t− s)h(s) ds +

∫ t

T
S(t− s)h(s) ds.

Then

||H(t)|| ≤
∫ T

−∞
||S(t− s)||||h(s)|| ds +

∫ t

T
||S(t− s)||ε ds

≤ ||h||∞
∫ ∞

t−T
||S(v)||dv + ||S||ε,

and we conclude that H(t) → 0 as t → ∞. It permits us to infer the conclusion of the
theorem for the spaces AP (X), AAP (X), AAAc(X) and AAA(X).

Vanishing mean value: Let h ∈ P0(X) and define H(t) as in (3.5). For R > 0 we
have

1
2R

∫ R

−R
||H(t)||dt ≤ 1

2R

∫ R

−R
[
∫ t

−∞
||S(t− s)||||h(s)||ds]dt

≤ 1
2R

∫ R

−R
[
∫ ∞

0
||S(s)||||h(t− s)||ds]dt

=
∫ ∞

0
||S(s)||[ 1

2R

∫ R

−R
||h(t− s)||dt]ds

Note that the set P0(X) is translation-invariant. Hence, using the Lebesgue’s dominated

convergence theorem, we obtain from the above inequality that
1

2R

∫ R

−R
||H(t)||dt → 0 as

R → ∞. We conclude that the spaces PPω(X), PAP (X), PAAc(X) and PAA(X) have
the maximal regularity property under the convolution defined by (3.3).

�

The following consequence is the main result of this section.

Theorem 3.4. Assume that A generates a uniformly integrable (1, 1− (1 ∗ a))-regularized
family S(t) on the Banach space X. Then for each f ∈ M(X) there is a unique mild
solution u ∈M(X) of equation (3.1).

Proof. Let b(t) := 1−
∫ t

0
a(s)ds and define

u(t) :=
∫ t

−∞
S(t− s)f(s)ds,

where S satisfies the resolvent equation

(3.6) S(t)x = x +
∫ t

0
b(t− s)AS(s)xds, x ∈ X, t ≥ 0.
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In particular, since b(t) is differentiable, the above equation shows that for each x ∈ X,
S′(t)x exists and

(3.7) S′(t)x = AS(t)x−
∫ t

0
a(t− s)AS(s)xds, t ≥ 0.

It remains to prove that u defined as above is a mild solution for equation (3.1). In fact,
since S′(t)x exists and A is closed, using Fubini’s theorem we obtain

u′(t) = S(0)f(t) +
∫ t

−∞
S′(t− s)f(s)ds

= f(t) +
∫ t

−∞
AS(t− s)f(s)ds−

∫ t

−∞

∫ t−s

0
a(t− s− τ)AS(τ)f(s)dτds

= f(t) + Au(t)−
∫ t

−∞

∫ t

s
a(t− v)AS(v − s)f(s)dvds

= f(t) + Au(t)−
∫ t

−∞

∫ v

−∞
a(t− v)AS(v − s)f(s)dsdv

= f(t) + Au(t)−
∫ t

−∞
a(t− v)

∫ v

−∞
AS(v − s)f(s)dsdv

= f(t) + Au(t)−
∫ t

−∞
a(t− v)Au(v)dv.

�

Remark 3.5. The idea behind of the above theorem and their proof is the following:
Given an abstract linear equation (in this case the equation (3.2) as limiting equation of
(3.1)) we take formally the Laplace transform and obtain

F (λ)û(λ) = f̂(λ) + initial conditions.

For example, F (λ) = (λ−A− â(λ)A) in this case. Then, we define an ad-hoc strongly con-
tinuous family of bounded and linear operators S(t) for the given abstract linear equation
as those that satisfy

F (λ)Ŝ(λ) = I,

and
Ŝ(λ)F (λ) = I.

Then, we directly prove that the (mild) solution of equation (3.1) have the convolution

structure u(t) =
∫ t

−∞
S(t−s)f(s)ds. For instance, in case of (3.1) we find that S(t) should

formally satisfy

Ŝ(λ) = (λ−A− â(λ)A)−1 =
1

λ(1 + â(λ))
(

1
1 + â(λ)

−A)−1.

Comparing with Definition 3.1 (or more generally the definition of (b, k)-regularized fami-
lies, cf. [29]) we find b(t) = 1+a(t) (and k(t) = 1, resp.), so that the right ad-hoc family to
consider in this case, corresponds to those of resolvent families [40]. After this procedure,
we simply check directly that the proposed ”mild” solution solves, in fact, the abstract
linear evolution equation under study. The definition of ”mild” solution for the nonlinear
case is then straightforward (see e.g. Definition 4.2 below).
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In case a(t) ≡ 0 we obtain the following corollary.

Corollary 3.6. Assume that A generates an uniformly integrable semigroup S(t) on the
Banach space X. Then for each f ∈M(X) there is a unique mild solution u ∈M(X) of
the equation

(3.8) u′(t) = Au(t) + f(t), t ∈ R.

Remark 3.7. The above corollary generalizes [35, Theorem 3.1] when Ω = AA(X) and
recovers [17, Theorem 2.7] when B = g = 0; Ω = AAA(X) and the remainder cases are
new results.

Example 3.8. Let A = −ρI where ρ > 0 and a(t) ≡ 0. Then S(t) = e−ρtI and we
conclude that for each f ∈M(X) the equation

(3.9) u′(t) = −ρu(t) + f(t), t ∈ R,

has the unique strong solution u(t) =
∫ t

−∞
e−ρ(t−s)f(s)ds, which belongs to M(X).

In practice it may not be easy to check in Theorem 3.4 the conditions of uniform
integrability or even the hypothesis of A being the generator of an (1, 1−(1∗a))-regularized
family, therefore we state below a more direct criterion. Recall that a C∞-function g :
R+ → R is called completely monotonic if (−1)ng(n)(t) ≥ 0 for all t ≥ 0 and n ∈ Z+.

Theorem 3.9. Suppose A generates an analytic C0-semigroup, bounded on some sec-
tor Σ(0, θ), and is invertible, let a ∈ L1

loc(R+) be completely monotonic and such that∫ ∞

0
a(s)ds < 1. Then for each f ∈ M(X) there is a unique mild solution u ∈ M(X) of

equation (3.1)..

Proof. Direct consequence of Theorem 3.4 and [40, Corollary 10.1]. �

Remark 3.10. Kernels a(t) satisfying the condition of the above theorem can be easily
found using Bernstein’s theorem, which characterizes completely monotonic functions as
Laplace transforms of positive measures supported on R+. A simple example following this
method is a(t) = 1

(t+α)2
for α > 1.

Example 3.11. Suppose f(·, x) ∈M(L2(Ω)) for each fixed x ∈ Ω. Let α > 1. The problem

ut(t, x) = ∆u(t, x) +
∫ t

−∞

1
(t− s + α)2

∆u(s, x)ds + f(t, x)

admits a mild solution u which belongs to M(L2(Ω)).

4. The semilinear problem

It is well known that the study of composition of two functions with special properties
plays a key role in discussing the existence of solutions to semilinear equations. Our first
main result in this section, review and give some new composition theorems on the spaces
defined in the second section.

Define the Nemytskii’s superposition operator

N (ϕ)(·) := f(·, ϕ(·))
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for ϕ ∈M(X). From here on, M(X) will denote one the following spaces Pω(X), APω(X),
PPω(X), SAPω(X), AP (X), AAP (X), PAP (X), AA(X), AAA(X), PAA(X). We also de-
note

C0(R×X, X) = {h ∈ BC(R×X, X) : lim
t→∞

||f(t, x)|| = 0 uniformly on any subset of X}

and

P0(R×X, X) = {h ∈ BC(R×X, X) : h(·, x) ∈ BC(X) for all x ∈ X, and

lim
R→∞

1
2R

∫ R

−R
||h(t, x)||dt = 0 uniformly in x ∈ X}.

Theorem 4.1. Let f ∈ M(R × X, X) be given and assume that there exists a constant
Lf > 0 such that

(4.1) ||f(t, x)− f(t, y)|| ≤ Lf ||x− y||,

for all t ∈ R, x, y ∈ X. Let ϕ ∈M(X). Then N (ϕ) belongs to the same space as ϕ.

Proof. For almost periodic functions, AP (X), the proof was first provided in [1, Proposi-
tion 1]. See also [4, Lemma 3.4] and references therein. For the space AAP (X) our result
is a consequence of [4, Lemma 8.3]. The case of PAP (X) is consequence of [27, Theorem
2.1]. See also [14, Theorem 3.4]. For almost automorphic functions, AA(X), a proof is
given in [32, Theorem 2.2.4]. In case of AAA(X) the proof is contained in [28, Theorem
2.3]. In case of PAA(X) the result is consequence of [28, Theorem 2.4]. For the space
SAPω(X) the result appear in [25, Lemma 4.1] and implicitly before in [24].

The remaining cases Pω(X);APω(X);PPω(X); are proved as follows:
Let Ω = Pω(X) and assume that ϕ ∈ Ω and f(·, x) ∈ Ω uniformly for each x ∈ K, where
K is any bounded subset of X. Then for all t ∈ R we have

‖f(t + ω, ϕ(t + ω))− f(t, ϕ(t))‖ = ‖f(t + ω, ϕ(t + ω))− f(t + ω, ϕ(t))
+ f(t + ω, ϕ(t)− f(t, ϕ(t))‖
≤ ‖f(t + ω, ϕ(t + ω))− f(t + ω, ϕ(t))‖
+ ‖f(t + ω, ϕ(t)− f(t, ϕ(t))‖
≤ L‖ϕ(t + ω)− φ(t)‖
= 0.

Thus N (ϕ) ∈ Ω.
Let Ω = APω(X) and assume that ϕ ∈ Ω and f(·, x) ∈ Ω uniformly for each x ∈ K,

where K is any bounded subset of X. We can write f = g + h where g ∈ Pω(R×X, X),
h ∈ C0(R+ ×X, X) and ϕ = α + β where ϕ ∈ Pω(X) and β ∈ C0(R+, X).
Now we write

f(t, ϕ(t)) = f(t, ϕ(t))− f(t, α(t)) + g(t, α(t)) + h(t, α(t)).

Observe that by the above g(·, α(·)) ∈ Pω(X). Now

I(t) := ‖f(t, ϕ(t))− f(t, α(t))‖ ≤ Lf‖ϕ(t)− α(t)‖ = Lf‖β(t)‖

which shows that
lim
t→∞

I(t) = 0.
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Also if we let K = {α(t) : t ∈ R} which is compact and bounded, then we obtain that

lim
t→∞

‖h(t, α(t))‖ = 0.

Thus N (ϕ) ∈ Ω.
Let Ω = PPω(X) and write

f(t, ϕ(t)) = g(t, α(t))+f(t, ϕ(t))−g(t, α(t)) = g(t, α(t))+f(t, ϕ(t))−f(t, α(t))+h(t, α(t)).

As above g(·, α(·)) ∈ Pω(X). Now as in the Proof of Theorem 2.1 f(t, ϕ(t)) − f(t, α(t)),
and h(t, α(t)) are in P0(X).

�

In what follows we study existence and uniqueness of solutions in M(X) for the semi-
linear integro-differential equation given in the introduction, namely

(4.2) u′(t) = Au(t) +
∫ t

−∞
a(t− s)Au(s)ds + f(t, u(t)).

Definition 4.2. A function u : R → X is said to be a mild solution to equation (4.2) if
there exists a strongly continuous family of bounded and linear operators on X such that
the function s → S(t− s)f(s, u(s)) is integrable on (−∞, t) for each t ∈ R and

(4.3) u(t) =
∫ t

−∞
S(t− s)f(s, u(s))ds,

for each t ∈ R.

We next give several theorems on existence of mild solutions for the semilinear problem.
We begin with the following simple result.

Theorem 4.3. Assume that A generates an uniformly integrable (1, 1−(1∗a))-regularized
family S(t) on the Banach space X. Let f ∈ M(R × X, X) be given and assume that f
satisfy

(4.4) ||f(t, x)− f(t, y)|| ≤ Lf ||x− y||,

for all t ∈ R. Then equation (4.2) has a unique mild solution u ∈ M(X) whenever Lf <

||S||−1.

Proof. We define the operator F : M(X) →M(X) by

(4.5) (Fϕ)(t) :=
∫ t

−∞
S(t− s)f(s, ϕ(s)) ds, t ∈ R.

In view of Theorems 3.3 and 4.1, F is well defined. Then for ϕ1, ϕ2 ∈M(X) we have:

‖Fϕ1 − Fϕ2‖∞ = sup
t∈R

∥∥∥∥∫ t

−∞
S(t− s)[f(s, ϕ1(s))− f(s, ϕ2(s))]ds

∥∥∥∥
≤ L sup

t∈R

∫ ∞

0
‖S(τ)‖‖ϕ1(t− τ)− ϕ2(t− τ)‖dτ

≤ L‖ϕ1 − ϕ2‖∞‖S‖.
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This proves that F is a contraction, so by the Banach fixed point theorem there exists a

unique u ∈M(X), such that Fu = u, that is u(t) =
∫ t

−∞
S(t−s)f(s, u(s))ds. Since clearly

u is a mild solution of (4.2) (cf. also the proof of Theorem 3.4), the proof is complete. �

The following consequence is immediate.

Corollary 4.4. Suppose A generates an analytic C0-semigroup, bounded on some sec-
tor Σ(0, θ), and is invertible, let a ∈ L1

loc(R+) be completely monotonic and such that∫ ∞

0
a(s)ds < 1. Let f ∈M(R×X, X) be given and assume that f satisfy

(4.6) ||f(t, x)− f(t, y)|| ≤ Lf ||x− y||,

for all t ∈ R. Then there exists η > 0 such that equation (4.2) has a unique mild solution
u ∈M(X) whenever Lf < η.

A different Lipschitz condition is considered in the following result. Recall that an
strongly continuous family {S(t)}t≥0 ⊂ B(X) is said to be uniformly bounded if there
exists a constant M > 0 such that ‖S(t)‖ ≤ M for all t ≥ 0.

Theorem 4.5. Assume that A generates a bounded and uniformly integrable (1, 1−(1∗a))-
regularized family S(t) on the Banach space X. Let f ∈M(R×X, X) be given and assume
that f satisfy

(4.7) ||f(t, x)− f(t, y)|| ≤ Lf (t)||x− y||, t ∈ R,

where Lf ∈ L1(R) ∩BC(R). Then equation (4.2) has a unique mild solution u ∈M(X).

Proof. We define the operator F as in (4.5). Clearly under conditions on Lf , Fϕ ∈M(X)
if ϕ ∈M(X). Now let ϕ1, ϕ2 be in M(X). We can estimate

||(Fϕ1)(t)− (Fϕ2)(t)|| =
∥∥∥∥∫ t

−∞
S(t− s)[f(s, ϕ1(s))− f(s, ϕ2(s))]ds

∥∥∥∥
≤ M

∫ t

−∞
Lf (s)‖ϕ1(s)− ϕ2(s)‖ds

Repeating the argument, we get

||(Fnϕ1)(t)− (Fnϕ2)(t)||

≤ Mn

∫ t

−∞

∫ s

−∞
· · ·

∫ sn−2

−∞
Lf (s)Lf (s1) · · ·Lf (sn−1)||ϕ1(sn−1)− ϕ2(sn−1)||dsn−1 · · · ds1ds

≤ Mn

n!

(∫ t

−∞
Lf (τ)dτ

)n

||ϕ1 − ϕ2||∞

≤
(M ||Lf ||1)n

n!
||ϕ1 − ϕ2||∞.

Since
(M ||Lf ||1)n

n!
< 1 for n sufficiently large, applying the contraction principle we con-

clude that F has a unique fixed point u ∈M(X) which completes the proof. �
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Of course, an immediate consequence under the condition that A generates a bounded
analytic semigroup, like Corollary 4.4, also holds. The particular case a(t) ≡ 0 reads as
follows.

Corollary 4.6. Suppose A generates an analytic C0-semigroup, bounded on some sector
Σ(0, θ), and invertible. Let f ∈M(R×X, X) be given and assume that f satisfy

(4.8) ||f(t, x)− f(t, y)|| ≤ Lf (t)||x− y||, t ∈ R,

where Lf ∈ L1(R) ∩BC(R). Then equation

(4.9) u′(t) = Au(t) + f(t, u(t)),

has a unique mild solution u ∈M(X).

We note that conditions of type (4.8) has been previously considered in the literature
(see [11] and references therein). Now we consider a more general case of equations intro-
ducing a new class of functions L which do not necessarily belong to L1(R). We have the
following result.

Theorem 4.7. Assume that A generates a bounded and uniformly integrable (1, 1−(1∗a))-
regularized family S(t) on the Banach space X. Let f ∈ M(R × X, X) be given and
assume that f satisfy the Lipschitz condition (4.8) where Lf ∈ BC(R) and the integral∫ t

−∞
Lf (s)ds exists for all t ∈ R. Then equation (4.2) has a unique mild solution u ∈

M(X).

Proof. Define a new norm |||ϕ|| := supt∈R{v(t)||ϕ(t)||}, where v(t) := e−k
∫ t
−∞ Lf (s)ds and

k is a fixed positive constant greater than M := supt∈R ||S(t)||. Let ϕ1, ϕ2 be in M(X),
then we have

v(t)||(Fϕ1)(t)− (Fϕ2)(t)|| = v(t)
∥∥∥∥∫ t

−∞
S(t− s)[f(s, ϕ1(s))− f(s, ϕ2(s))]ds

∥∥∥∥
≤ M

∫ t

−∞
v(t)Lf (s)‖ϕ1(s)− ϕ2(s)‖ds ≤ M

∫ t

−∞
v(t)v(s)−1Lf (s)v(s)‖ϕ1(s)− ϕ2(s)‖ds

≤ M |||ϕ1(s)− ϕ2(s)|||
∫ t

−∞
v(t)v(s)−1Lf (s)ds =

M

k
|||ϕ1(s)− ϕ2(s)|||

∫ t

−∞
kek

∫ s
t Lf (τ)dτLf (s)ds

=
M

k
|||ϕ1(s)− ϕ2(s)|||

∫ t

−∞

d

ds

(
ek

∫ s
t Lf (τ)dτ

)
ds =

M

k
[1− e−k

∫ t
−∞ Lf (τ)dτ ]|||ϕ1(s)− ϕ2(s)|||

≤ M

k
|||ϕ1(s)− ϕ2(s)|||.

Hence, since M/k < 1, F has a unique fixed point u ∈M(X). �
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