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Abstract. We propose a unified functional analytic approach to derive a variation of constants formula

for a wide class of fractional differential equations using results on (a, k)-regularized families of bounded

and linear operators, which covers as particular cases the theories of C0-semigroups and cosine families.
Using this approach we study the existence of mild solutions to fractional differential equation with nonlocal

conditions. We also investigate the asymptotic behavior of mild solutions to abstract composite fractional

relaxation equations. We include in our analysis the Basset and Bagley-Torvik equations.

1. Introduction

Fractional differential equations are generalizations of ordinary differential equations to an arbitrary (non-
integer) order. Fractional differential equations have attracted considerable interest because of their ability
to model complex phenomena. These equations capture nonlocal relations in space and time with power-law
memory kernels. Due to the extensive applications of FDEs in engineering and science, research in this area
has grown significantly in the past years (see, e.g., [4, 7, 11, 13, 18, 19, 23, 25, 35, 38, 41] and the references
therein).

The main purpose of this paper is to establish a general procedure as to derive mild solutions to a wide
class of fractional differential equations. This is a fundamental and complex problem that has been recently
discussed in [15], following the publication of several papers therein cited. Our method is based on an
extensive use of properties of Laplace transforms and (a, k)-regularized families, a concept introduced by C.
Lizama [29]. We anticipate it can be used for more classes of fractional differential equations with various
types of fractional derivatives not covered in this paper.

Our study of the variation of constant formulas for abstract fractional differential equations or, equiva-
lently, the representation of their solution by means of families of bounded and linear operators, has been
motivated by the recent paper [15], which treats the problem of the existence of solution for abstract differ-
ential equations with fractional derivatives in time. In that paper, the authors observed that the concepts of
mild solutions used in several recent literature on the subject are not appropriate, because the used concept
of solution is not realistic. The authors then proposed the use of the well developed theory of resolvent
operators for integral equations [39]. However, it is well known that not all fractional differential equation
can be formulated as an integral equation, so that the method proposed in [15] fails in the general case.

The paper is organized as follows. In Section 2, we recall the very recent facts about (a, k)-regularized
families since the paper [29]. Then we present in Section 3, how to derive the variation of constants formulas
for various classes of fractional differential equations with the Caputo derivative. This is the main part of
the paper. We finally present some applications in Section 4, where we study the existence and asymptotic
behavior of solutions of some fractional differential equations. First, using the Leray-Shauder alternative
theorem, we prove the existence of a solution to the fractional differential equation with nonlocal conditions

(1.1) Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t)), t ∈ [0, T ], u(0) + g(u) = u0, u′(0) = 0,
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where 1 < α < 2 and A generates an ( t
α−1

Γ(α) , 1)-regularized family Sα(t).

Then we prove the existence and uniqueness of solutions to the semilinear abstract composite fractional
relaxation equation

(1.2) u′(t)−ADα
t u(t) + u(t) = F (t, u(t)), 0 < α < 1, u(0) = x.

Finally, we discuss solutions for an abstract version of the Bagley- Torvik equation, proving existence of
asymptotically 2π-periodic mild solutions.

2. (a, k)-regularized families

In this section we review the main results in the literature on the theory of (a, k)-regularized families. The
notion of (a, k)-regularized family was introduced in [29] and studied in subsequent papers. The definition
can be now stated as follows.

Definition 2.1. Let X be a Banach space, k ∈ C(R+), k 6= 0 and let a ∈ L1
loc(R+), a 6= 0. Assume that A

is a linear operator with domain D(A). A strongly continuous family {R(t)}t≥0 of bounded linear operators
from X into X is called an (a, k)-regularized resolvent family on X (or simply (a, k)- regularized family)
having A as a generator if the following hold.

(i) R(0) = k(0)I;
(ii) R(t)x ∈ D(A) and R(t)Ax = AR(t)x for all x ∈ D(A) and t ≥ 0;

(iii) R(t)x = k(t)x+

∫ t

0

a(t− s)AR(s)xds, t ≥ 0, x ∈ D(A).

Assume that a and k are both positive and one of them is non-decreasing. Let {R(t)}t≥0 be an (a, k)-
regularized family with generator A such that

(2.3) ||R(t)|| ≤Mk(t), t ≥ 0,

for some constant M > 0. Then we have

(2.4) Ax = lim
t→0+

R(t)x− k(t)x

(a ∗ k)(t)
, x ∈ D(A).

The above representation of A in terms of R(t) was first established in [32]. The extension to the case where
the domain of A is not necessarily dense in X was proved in [34].
We say that {R(t)}t≥0 is of type (M,ω) if there exists constants M ≥ 0 and ω ∈ R such that

‖R(t)‖ ≤Meωt for all t ≥ 0.

The next result corresponds to the generation theorem for the theory. We assume that the Laplace transform

for a(t) and k(t) exists for all λ > ω and denote it by â(λ) and k̂(λ) respectively.

Theorem 2.2. ([29]) Let A be a closed linear densely defined operator in a Banach space X. Then {R(t)}t≥0

is an (a, k)-regularized family of type (M,ω) if and only if the following conditions hold:

(1) â(λ) 6= 0 and 1
â(λ) ∈ ρ(A) for all λ > ω;

(2) H(λ) := k̂(λ)(I − â(λ)A)−1 satisfies the estimates

‖H(n)(λ)‖ ≤ Mn!

(λ− ω)n+1
, λ > ω, n ∈ N0.

Remark 2.3. In the case where k(t) ≡ 1, Theorem 3.4 is well known. In fact, if a(t) ≡ 1, then it is just
the Hille-Yosida theorem; if a(t) ≡ t, then it is the generation theorem for generators of cosine functions
due to Sova and Fattorini; for arbitrary a(t), it is the generation theorem for resolvent operators associated

to Volterra equations, due essentially to Da Prato and Iannelli, and Prüss [39]. In the case where k(t) = tn

n!

and a(t) ≡ 1, it is the generation theorem for n-times integrated semigroups [22]; if k(t) = tn

n! and a(t)
is arbitrary, it corresponds to the generation theorem for integrated solutions of Volterra equations due to
Arendt and Kellermann [2].
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Let A be a closed linear operator and let {R(t)}t≥0 be an exponentially bounded and strongly continuous

operator family in B(X) such that the Laplace transform R̂(λ) exists for λ > ω. It was proved in [29,
Proposition 3.1] that R(t) is an (a, k)-regularized family with generator A if and only if for every λ > ω,
(I − â(λ)A)−1 exists in B(X) and

(2.5) H(λ)x =
k̂(λ)

â(λ)
(

1

â(λ)
I −A)−1x =

∫ ∞
0

e−λsR(s)xds, x ∈ X.

Let B : (D(A), ‖ · ‖)→ X be a linear operator. The following is the main result available in perturbation
theory.

Theorem 2.4. ([32]) Assume that A generates an (a, k)-regularized family {R(t)}t≥0 of type (M,ω) and
suppose that

(i) there exists b ∈ L1
loc(R+) such that b̂(λ) =

â(λ)

k̂(λ)
for all λ > ω.

(ii) there exists constants µ > ω and γ ∈ [0, 1) such that∫ ∞
0

e−µr
∥∥∥∥B ∫ r

0

b(r − s)R(s)xds

∥∥∥∥ dr ≤ γx, for all x ∈ D(A).

Then A+B generates an (a, k)-regularized family {R(t)}t≥0 on X such that ‖R(t)‖ ≤ M
1−γ e

µt. In addition

R(t)x = R(t)x+

∫ t

0

R(t− r)B
∫ r

0

b(r − s)R(s)xdsdr, x ∈ X.

Note that in case that B is bounded, condition (ii) is automatically satisfied. If, moreover, we consider

k(t) ≡ 1 and a(t) = tα−1

Γ(α) for α > 1, then condition (i) is satisfied with b(t) = tα−2

Γ(α−1) .

Our next result corresponds to the convergence theorem for the theory of (a, k)-regularized families. Note
that it is the analog to the Trotter-Kato theorem for the theory of C0-semigroups, which follows in case
a(t) ≡ k(t) ≡ 1.

Theorem 2.5. ([30]) Let {kn}n≥0 ∈ L1
loc(R+) and {an}n≥0 ∈ ACloc(R+) be of type (M,ω), ω ≥ 0, such

that ân(λ) 6= 0 for λ > ω and
∫∞

0
e−ωs|a′n(s)|ds <∞. Let An be closed and linear operators in X such that

A0 is densely defined. For each fixed n ∈ N0, assume that Rn(t) is an (an, kn)-regularized family generated
by An in X, and that there exists constants M > 0 and ω ∈ R, independent of n, such that

‖Rn(t)‖ ≤Meωt, for all t ≥ 0.

Suppose also an(t)→ a0(t) and kn(t)→ k0(t) as n→∞. Then the following statements are equivalent:

(1) lim
n→∞

kn(λ)(I − an(λ)An)−1 = k0(λ)(I − a0(λ)A0)−1 for all λ ≥ ω
(2) lim

n→∞
Rn(t)x = R0(t)x for all x ∈ X, t ≥ 0. Moreover the convergence is uniform in t on every

compact subset of R+.

In our next result, of concern are ergodic type theorems. Here the contributions to the theory are contained
in the references [33], [26] and [42]. We below cite only a simple, but typical, result.

Theorem 2.6. Let A be the generator of an (a, k)- regularized family {R(t)}t≥0 such that

‖R(t)‖ ≤Mk(t) for all t ≥ 0.

Suppose that

(i) a(t) is positive, and k(t) is nondecreasing and positive as well.

(ii) lim
t→∞

k(t)

(k ∗ a)(t)
= 0.

(iii) sup
t>0

k(t)(1 ∗ k)(t)

(k ∗ a)(t)
<∞.
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(iv) lim
t→∞

(a ∗ a ∗ k)(t)

(a ∗ k)(t)
=∞.

Define

Atx :=
1

k ∗ a(t)

∫ t

0

a(t− s)R(s)xds; x ∈ X t > 0.

Then the following hold.

(1) The mapping Px := lim
t→∞

Atx is a bounded linear projection with Ran(P ) = Ker(A), Ker(P ) =

Ran(A), and

D(P ) = Ker(A)⊕Ran(A).

(2) For 0 < β ≤ 1 and x ∈ Ker(A)⊕Ran(A), we have

‖Atx− Px‖ = O

([
k(t)

a ∗ k(t)

]β)
as |t| → ∞.

(3) If X is reflexive then Ker(A)⊕Ran(A) = X.

Remark 2.7. Note that in the case k(t) = tβ

Γ(β+1) , a(t) = tα−1

Γ(α) α > 0, β ≥ 0 the conditions (i)-(iv) are

automatically satisfied.

The following definition extends the concept of Favard class, which is essential in approximation theory.

Definition 2.8. Let a(t) and k(t) be continuous and positive. Let A be the generator of an (a, k)-regularized
family {R(t)}t≥0 on X. The Favard class of A with kernels a and k is defined as the set

Fa,k = {x ∈ X : sup
t>0

‖R(t)x− k(t)x‖
a ∗ k(t)

<∞}

Observe that the Favard class Fa,k, is a Banach space with respect to the norm

|x|a,k = ‖x‖+ sup
t>0

‖R(t)x− k(t)x‖
a ∗ k(t)

.

The following result characterizes the space Fa,k solely in terms of A, a and k.

Theorem 2.9. ([34]) Let A be a linear and closed operator with dense domain D(A) in a Banach space X.
Suppose that A generates a uniformly bounded (a, k)-regularized family {R(t)}t≥0. Assume, that

(i) The Laplace transform of a(t) exists for λ > 0 and satisfy lim
λ→0+

â(λ) =∞,

(ii) sup
t>0

(1 ∗ a)(t)

(k ∗ a)(t)
<∞.

Then

Fa,k = {x ∈ X : sup
λ>0
‖ 1

â(λ)
A(

1

â(λ)
−A)−1x‖ <∞}.

In particular, Fa,k does not depend on k.

Remark 2.10. In the case k(t) = tβ

Γ(β+1) , a(t) = tα−1

Γ(α) α > 0, β ≥ 0 we have that sup
t>0

(1∗a)(t)
(k∗a)(t) < ∞ is

satisfied only for β = 0 and α > 0. In particular, note that Fa,k ≡ Fα,β = Fα,0 ∼ F1,0.

We next recall that for a closed operator A we denote by σ(A), σp(A), σr(A) and σa(A) the spectrum,
the point spectrum, the residual spectrum, and the approximate spectrum of A respectively. We denote by
s(t, λ) the unique solution of the convolution equation

s(t, λ) = a(t) + λ

∫ t

0

a(t− τ)s(τ, λ)dτ.
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We also define

r(t, λ) := k(t) + λ

∫ t

0

s(t− τ, λ)k(τ)dτ.

The following result corresponds to the inclusion theorem in an spectral theory for (a, k)-regularized
families.

Theorem 2.11. ([34]) Let R(t) be an (a, k)-regularized family with generator A. Then

(i) σ(R(t)) ⊃ r(t, σ(A)), t ≥ 0;
(ii) σp(R(t)) ⊃ r(t, σp(A)), t ≥ 0;
(iii) If A is densely defined then σr(R(t)) ⊃ r(t, σr(A)), t ≥ 0;
(iv) σa(R(t)) ⊃ r(t, σa(A)), t ≥ 0.

Remark 2.12. In the case k(t) = tβ

Γ(β+1) , β ≥ 0, a(t) = tα−1

Γ(α) α > 0, we have that

rα,β(t, λ) = tβEα,β+1(λtα)

where Eα,β+1 denotes the (generalized) Mittag-Leffler function, defined as follows:

Eα,β+1(z) :=

∞∑
n=0

zn

Γ(nα+ β + 1)
.

In particular: α = 1, β = 0 gives E1,1(z) = ez and then r1,0(t, λ) = eλt. In this case R(t) corresponds to the
C0-semigroup generated by A and, therefore, we recover the well known spectral inclusion [12, Chapter IV,
Section 3]:

eσ(A)t ⊂ σ(R(t)), t > 0.

If α = 2, β = 0 we have E2,1(z2) = cosh(z) and then r1,0(t, λ) = cosh
√

(λ)t. Here R(t) is the cosine family
generated by A and we recover the spectral inclusion corresponding to that theory [37]:

cosh
√
σ(A)t ⊂ σ(R(t)), t > 0.

In general, let 0 < α ≤ 2 and suppose that the fractional Cauchy problem:

Dα
t u(t) = Au(t), t > 0

is well posed. Then A generates an (α, 0)-regularized family Rα(t) and we conclude that

Eα,1(σ(A)tα) ⊂ σ(Rα(t)), t > 0.

This result was first proved by Li and Zheng [27, Theorem 3.2].

We finish this review with the following subordination result in case of operators with dense domain. For
the non-dense case, see [24].

Theorem 2.13. [24]. Let A be the generator of an exponentially bounded (a, k)-regularized family. Let
k, a, c ∈ L1

loc(R+) be such that
∫∞

0
|a(t)|e−βtdt <∞ and

∫∞
0
|k(t)|e−βtdt <∞ for some β ∈ R. Assume

(i) c(t) is a completely positive function, i.e.
1

λĉ(λ)
and − ĉ(λ)

′

ĉ(λ)2
are completely monotonic on (0,∞).

(ii) â1(λ) = â(
1

ĉ(λ)
)

(iii) k̂1(λ) =
1

λĉ(λ)
k̂(

1

ĉ(λ)
)

Then A is the generator of a exponentially bounded (a1, k1)-regularized family.
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The case k(t) ≡ 1 gives k1(t) ≡ 1 and recover [39, Theorem 4.1]. A remarkable case is a(t) = gβ(t) and
k(t) ≡ 1, because we have an explicit representation. Note that in order to apply the above Theorem, is
enough to take c(t) = gα/β(t) which is completely positive whenever α < β. We restate from [6] the result.

Corollary 2.14. [6, Theorem 3.1] Let 0 < α < β ≤ 2, γ = α/β. If A be the generator of an exponentially
bounded (gβ , 1)-regularized family Sβ(t), then A generates an exponentially bounded (gα, 1)-regularized family
Sα(t), and

(2.6) Sα(t) =

∫ ∞
0

Φγ(s)Sβ(stγ)ds, t > 0,

where

Φγ(t) :=

∞∑
n=0

(−z)n

n!Γ(−γn+ 1− γ)
, 0 < γ < 1,

is the Wright function.

More results and concrete examples on the theory of (a, k) - regularized families can be obtained from the
recent article [24]. There, the author introduce the more general class of (local) (a, k)-regularized C-resolvent
families and discuss its basic structural properties. In particular, the analysis done in [24] covers subjects
like regularity, perturbations, duality, spectral properties and subordination principles, applying they in the
study of the backwards fractional diffusion-wave equation and providing several illustrative examples.

3. Variation of constants formulas: The Laplace transform method

In a recent paper, Hernández, O’Regan and Balachandran [15] have pointed out that several recent inves-
tigations treating the problem of the existence of solution for abstract differential equations with fractional
derivatives are incorrect since the considered variation of constants formulas are not appropriate. In this
section we indicate a general procedure on how to obtain the correct variation of constants formulas for a
wide class of fractional differential equations, based on the principle of transforming the linear part of the
given equation in the frequency domain and, from there and with the help of the notion of (a, k)-regularized
resolvents, obtain a right formula.

We start with the fractional differential equation

(3.1) Dα
t u(t) = Au(t) + f(t), t > 0,

where the fractional derivative will be understood in Caputo’s sense. However he procedure that we will
indicate is valid also for other types of fractional derivatives, e.g. the Riemann-Liouville’s one; however but
the final form of the variation of constant formula may vary with the type of fractional derivative. Fractional
derivatives in the sense of Riemann-Liouville seem to be more appropriate in studying the qualitative behavior
of abstract fractional differential equations on R. See e.g. [1] for an example in this direction.

Recall that the definition of Caputo’s fractional derivative of order α > 0 of a function f reads as follows:

Dα
t f(t) = Jm−αt Dm

t f(t); m = dαe

where Jαt f(t) = (gα ∗ f)(t), and J0
t f(t) := f(t), gβ(t) := 1

Γ(β) t
β−1, t > 0, β ≥ 0. Also, it is well known, that

the Caputo derivative is in general a left inverse of Jαt but in general not a right inverse. More precisely, we
have Dα

t J
α
t f = f, and Jαt D

α
t f(t) = f(t) − f(0) for 0 < α < 1. We also recall the formula for the Laplace

transform

(3.2) D̂α
t f(λ) = λαf̂(λ)−

m−1∑
k=0

f (k)(0)λα−1−k,

whenever it exists. The more useful cases are 0 < α ≤ 1

(3.3) D̂α
t f(λ) = λαf̂(λ)− λα−1f(0),
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and 1 < α ≤ 2

(3.4) D̂α
t f(λ) = λαf̂(λ)− λα−1f(0)− λα−2f ′(0),

whenever all the terms make sense.
Case 1. Suppose now 0 < α ≤ 1 in Equation (3.1). Taking Laplace transform to both sides of the

equation, we easily arrive to the following

(3.5) û(λ) = λα−1(λα −A)−1u(0) + (λα −A)−1f̂(λ),

whenever λα ∈ ρ(A). Hence, we need to have to our disposal a Laplace transformable and strongly continuous
family of bounded and linear operators, say Sα(t), such that

(3.6) Ŝα(λ) = λα−1(λα −A)−1.

For example, in case α = 1, our search corresponds exactly to the existence of a C0-semigroup (or equivalently,
well posedness of u′ = Au), say T (t), because it is well known that [3, Theorem 3.1.7]:

(3.7) T̂ (λ)x =

∫ ∞
0

e−λtT (t)xdt = (λ−A)−1x, for all x ∈ X.

Returning to the general case of equation (3.1), in order to known exactly for which kind of family we are
looking for, we have to compare (3.6) with (2.5). In other words, we look for scalar functions a(t) and k(t)
such that

(3.8)
k̂(λ)

â(λ)
(

1

â(λ)
I −A)−1 = λα−1(λαI −A)−1.

It follows that we must have â(λ) = 1
λα and hence, necessarily, k̂(λ) = 1

λ in order to have the identity

(3.8). We then find by inversion of the Laplace transform a(t) = tα−1

Γ(α) and k(t) ≡ 1. We conclude that the

appropriate family Sα(t) corresponds to an (a, k)-regularized family with a and k as precisely described. From
Section 2 we deduce straightforward some properties of Sα(t) such as: generation theorem, approximation,
etc. Concerning the variation of constants formula for (3.1), if we plug (3.6) in (3.5) and invert the Laplace
transform, we obtain

(3.9) u(t) = Sα(t)u(0) +

∫ t

0

Sα(t− s)g(s)ds,

where g(t) := d
dt

∫ t
0
gα(s)f(t − s)ds. Note that in the border situation, i.e. α = 1, we restate the fact that

g ≡ f. We notice that a better regularity of f gives a more precise formula. For example, assuming that f ′

exists, we obtain:

(3.10) u(t) = Sα(t)u(0) + f(0)

∫ t

0

Sα(t− s)gα(s)ds+

∫ t

0

(Sα ∗ gα)(t− s)f ′(s)ds.

Note that this formula shows that for 0 < α < 1 qualitative behavior of Sα(t) is important as well as the
behavior of Sα ∗ gα(t), in order to obtain information about u(t).

Using the subordination results for (a, k)-regularized families, i.e. Corollary 2.14 with β = 1, we immedi-
ately obtain the following result.

Theorem 3.1. Let A be the generator of a C0-semigroup T (t). Then A generates ( t
α−1

Γ(α) , 1)-regularized family

Sα(t) given by

Sα(t) =

∫ ∞
0

Φα(s)T (stα)ds, t > 0, 0 < α < 1.
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We note that such representation and variation of parameters formula have been used recently by some
authors to study nonlinear abstract fractional differential equations. In that applications, it is assumed
compactness of T (t) in order to have compactness for Sα(t) and hence several types of fixed point theorems
can be applied. See [10] and [43].

Case 2. We consider equation (3.1) for 1 < α ≤ 2. Then

(3.11) û(λ) = λα−1(λα −A)−1u(0) + λα−2(λα −A)−1u′(0) + (λα −A)−1f̂(λ),

whenever λα ∈ ρ(A). As in the first case, we look for a strongly continuous family Sα(t) ∈ B(X) such that

(3.12) Ŝα(λ) = λα−1(λα −A)−1.

Proceeding analogously as in the first case we note that it corresponds to an ( t
α−1

Γ(α) , 1)-resolvent family

generated by A (compare (3.12) with (2.5) and find a(t) and k(t)). For example, if α = 2 we have S2(t),
which corresponds to a cosine family generated by A (see [3, Proposition 3.14.4]). In the general case, we
first set (3.12) in (3.11), then invert the Laplace transform, and obtain the following variation of constant
formula:

(3.13) u(t) = Sα(t)u(0) +

∫ t

0

Sα(s)u′(0)ds+

∫ t

0

Sα(t− s)g(s)ds,

where g(t) = d
dt

∫ t
0
gα−1(t− s)f(s)ds.

It is worthwhile to obtain an explicit representation of Sα(t), at least in the scalar case. We recall that
the Mittag-Leffler function can be represented by

Eα,β(z) =
1

2πi

∫
Ha

eµ
µα−β

µα − z
dµ, α, β > 0, z ∈ C,

where Ha is a Hankel path, i.e. a contour which starts and ends at −∞ and encircles the disc |µ| ≤ |z|1/α
counter-clockwise.

Taking into account the following Laplace integral [38]

(3.14)

∫ t

0

e−λttαk+β−1E
(k)
α,β(±ωtα)dt =

k!λα−β

(λα ∓ ω)k+1
, Re(λ) > |ω|1/α,

and comparing with (3.12) we deduce the representation Sα(t) = Eα,1(ωtα) in the scalar case A = ωI. In
particular, S1(t) = E1,1(ωt) = eωt and S2(t) = E2,1(ωt2) = cosh

√
ωt as expected.

In analogy with the case 1, using the subordination principle (Corollary 2.14) with β = 2, we obtain the

following criteria for existence of ( t
α−1

Γ(α) , 1)-regularized families in case 0 < α < 2.

Theorem 3.2. Let A be the generator of a strongly continuous cosine family C(t). Then A generates

( t
α−1

Γ(α) , 1)-regularized family Sα(t) given by

Sα(t) =

∫ ∞
0

Φα(s)C(stα/2)ds, t > 0, 0 < α < 2.

We consider now the composite fractional relaxation equation

(3.15) u′(t)−ADα
t u(t) + u(t) = f(t), u(0) = x, 0 < α < 1,

where A is a closed linear operator and Dα
t denotes Caputo’s fractional derivative.

In the scalar case, the fractional differential equation in (3.15) with α = 1/2 corresponds to the Basset
problem, a classical problem in fluid dynamics concerning the unsteady motion of a particle accelerating in
a viscous fluid under the action of the gravity. The abstract version (3.15) has been studied in [34] and [20].
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Taking Laplace transform, we obtain

(3.16) û(λ) =
1

λα
(
λ+ 1

λα
−A)−1u(0)− 1

λ
A(
λ+ 1

λα
−A)−1u(0) +

1

λα
(
λ+ 1

λα
−A)−1f̂(λ),

whenever λ+1
λα ∈ ρ(A). Note the unpleasant fact that A is involved in the above formula. We then replace

the identity 1
λI = 1

λα (λ+1
λα − A)−1 − 1

λA(λ+1
λα − A)−1 + 1

λα+1 (λ+1
λα − A)−1 in (3.16) to obtain the equivalent

form

(3.17) û(λ) =
1

λ
u(0)− 1

λ

1

λα
(
λ+ 1

λα
−A)−1u(0) +

1

λα
(
λ+ 1

λα
−A)−1f̂(λ).

As before, we look for an strongly continuous family Rα(t) ⊂ B(X) such that

(3.18) R̂α(λ) =
1

λα
(
λ+ 1

λα
I −A)−1.

Comparing equation (3.17) with equation (2.5) we note, as in the previous examples, that we need to find

two Laplace transformable functions, a(t) and k(t), such that â(λ) = λα

λ+1 and k̂(λ) = 1
λ+1 . It happens when

we choose k(t) = e−t and a(t) = tαE1,1−α(−t), the Mittag-Leffler function (compare with (3.14)).
Hence, in this case it is enough to require that equation (3.15) has A as the generator of an (a, k)-

regularized family Sα(t), with a, k as defined before. The properties of such particular strongly continuous

family can be obtained from Section 2. Setting now R̂α(λ) in equation (3.17) we obtain

(3.19) û(λ) =
1

λ
u(0)− 1

λ
R̂α(λ)u(0) + R̂α(λ)f̂(λ).

Inverting the Laplace transform, we obtain as variation of constants formula for equation (3.15) the following
expression

(3.20) u(t) = u(0)−
∫ t

0

Rα(s)u(0)ds+

∫ t

0

Rα(t− s)f(s)ds.

Our next example consists in the composite fractional oscillation equation

(3.21) u′′(t)−ADα
t u(t) + u(t) = f(t), u(0) = x, u′(0) = y 0 < α < 2,

where A is a closed linear operator with domain D(A) ⊂ X. The fractional differential equation in (3.21) with
0 < α < 2 models an oscillation process with fractional damping term. It was formerly treated by Caputo,
who provided a preliminary analysis by the Laplace transform. The special cases α = 1/2 and α = 3/2 have
been discussed by Bagley and Torvik [5]. We note that the Bagley- Torvik equation was originally derived
to study the motion of a rigid plate in a Newtonian fluid (see, e.g., [38], [5], [40]). The abstract form have
been studied in [21].

Taking Laplace transform, we obtain
(3.22)

û(λ) =
1

λα−1
(
λ2 + 1

λα
−A)−1u(0)− 1

λ
A(
λ2 + 1

λα
−A)−1u(0)+

1

λα
(
λ2 + 1

λα
−A)−1u′(0)+

1

λα
(
λ2 + 1

λα
−A)−1f̂(λ),

whenever λ2+1
λα ∈ ρ(A). Taking into account the identity 1

λI = 1
λα−1 (λ

2+1
λα − A)−1 − 1

λA(λ
2+1
λα − A)−1 +

1
λα+1 (λ

2+1
λα −A)−1 we obtain the equivalent form

(3.23) û(λ) =
1

λ
u(0)− 1

λ

1

λα
(
λ2 + 1

λα
−A)−1u(0) +

1

λα
(
λ2 + 1

λα
−A)−1u′(0) +

1

λα
(
λ2 + 1

λα
−A)−1f̂(λ).

We now look for an strongly continuous family Tα(t) ⊂ B(X) such that

(3.24) T̂α(λ) =
1

λα
(
λ2 + 1

λα
I −A)−1.
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Comparing equation (3.24) with equation (2.5) we note that we need to find two Laplace transformable

functions, a(t) and k(t), such that â(λ) = λα

λ2+1 and k̂(λ) = 1
λ2+1 . It holds when we choose k(t) = sin(t) and

a(t) = t1−αE2,2−α(−t2)(compare with (3.14)).

Putting now T̂α(λ) in equation (3.24) we have

(3.25) û(λ) =
1

λ
u(0)− 1

λ
T̂α(λ)u(0) + T̂α(λ)u′(0) + T̂α(λ)f̂(λ).

From inversion of the Laplace transform, we obtain the following variation of constants formula for the
composite fractional oscillation equation (3.21):

(3.26) u(t) = u(0)−
∫ t

0

Tα(s)u(0)ds+ Tα(t)u′(0) +

∫ t

0

Tα(t− s)f(s)ds.

The above procedure is not restricted only to abstract fractional differential equations. As an example,
we consider now the well known Volterra equation of convolution type:

(3.27) u(t) = h(t) +A

∫ t

0

a(t− s)u(s)ds.

Taking formally the Laplace transform, we obtain

(3.28) û(λ) = (I − â(λ)A)−1ĥ(λ),

whenever (I− â(λ)A)−1 exists in B(X). We now look for a strongly continuous family of bounded and linear
operators S(t) such that

(3.29) Ŝ(λ) =
1

λ
(I − â(λ)A)−1 =

1

λâ(λ)
(

1

â(λ)
−A)−1.

The reason of this choice, instead of the most natural

Ŝ(λ) = (I − â(λ)A)−1

is that we are searching that S(t) coincides with the semigroup theory and cosine family theory in cases
a(t) ≡ 1 and a(t) ≡ t respectively. It was the argument used in the book (see [39]), originating the theory of

resolvent families. Comparing equation (3.29) with equation (2.5) we note that if we choose k̂(λ) = 1
λ then

is enough to require that equation (3.27) admits A as the generator of an (a, 1)-regularized family S(t) (or,
equivalently, resolvent family; see [39]). Setting now (3.29) in equation (3.28) we obtain from the properties
of the Laplace transform

(3.30) û(λ) = λŜ(λ)ĥ(λ) = ̂(S ∗ h)′(λ).

Then, a variation of constants formula for equation (3.27) can be defined by

(3.31) u(t) =
d

dt

∫ t

0

S(t− s)h(s)ds.

From the above formula, we obtain two possible expressions for variation of constants formula, depending
on the hypothesis. If we suppose that S(t) is differentiable, we have

(3.32) u(t) = h(t) +

∫ t

0

S′(t− s)h(s)ds,

but if we suppose that h is differentiable, we have

(3.33) u(t) = S(t)h(0) +

∫ t

0

S(t− s)h′(s)ds.

The following example illustrate the application of the above variation of constants formula for abstract
fractional semilinear equations.
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Example 3.3. Consider the abstract fractional functional differential equation

(3.34) Dα
t (u(t) + g(t, u(t)) = Au(t) + f(t, u(t)), u(0) = x0, 0 < α ≤ 1,

where Dα
t denotes Caputo’s fractional derivative. Integrating, we have the equivalent equation

(3.35) u(t) = x0 + g(0, x0)− g(t, u(t)) +

∫ t

0

gα(t− s)f(s, u(s))ds+A

∫ t

0

gα(t− s)u(s)ds

which is of the form (3.27) with a(t) = gα(t) :=
tα−1

Γ(α)
and

h(t) = x0 + g(0, x0)− g(t, u(t)) +

∫ t

0

gα(t− s)f(s, u(s))ds

In fact: Suppose that equation (3.34) holds. Then applying Jαt to both sides of the equation, we obtain:

(u(t) + g(t, u(t)))− (u(0) + g(0, u(0))) = AJαt u(t) + Jαt f(t, u(t)),

or

(u(t) + g(t, u(t)))− (x0 + g(0, x0)) = Agα ∗ u(t) + gα ∗ f(t, u(t)),

which is exactly equation (3.35). Conversely, suppose that equation (3.35) holds. Then, applying Dα
t to both

sides of the equation, we get

Dα
t (u(t) + g(t, u(t)))−Dα

t (x0 + g(0, x0)) = ADα
t J

α
t u(t) +Dα

t J
α
t f(t, u(t)),

or

Dα
t (u(t) + g(t, u(t)))−Dα

t (x0 + g(0, x0)) = Au(t) + f(t, u(t)).

Finally, since Dα
t (1) = 0, we obtain (3.34), proving the claim.

Suppose that A generates a differentiable (a,1)-regularized family S(t). Then we have that a mild solution
of equation (3.34) is well and consistently defined as the solution of the following integral equation

(3.36) u(t) = Gu(t) + Fu(t) +

∫ t

0

S′(t− s)[Gu(s) + Fu(s)]ds,

where Gu(t) := x0 + g(0, x0)− g(t, u(t)) and Fu(t) :=
∫ t

0
gα(t− s)f(s, u(s))ds. Compare it with the definition

of Γ in the proof of the main Theorem 2.1 in [15].

Example 3.4. Consider the semilinear abstract composite fractional relaxation equation

(3.37) u′(t)−ADα
t u(t) + u(t) = f(t, u(t)), 0 < α < 1, u(0) = x,

where A is the generator of an (a, k)-regularized family Rα(t), with k(t) = e−t and a(t) = tαE1,1−α(−t).
Then a mild solution of the semilinear equation (3.37) is well and consistently defined as a solution of the
following integral equation

(3.38) u(t) = x−
∫ t

0

Rα(s)xds+

∫ t

0

Rα(t− s)f(s, u(s))ds.

Example 3.5. Consider the semilinear abstract composite fractional oscillation equation

(3.39) u′′(t)−ADα
t u(t) + u(t) = f(t, u(t), u′(t)), 0 < α < 2, u(0) = x, u′(0) = y

where A is the generator of an (a, k)-regularized family Tα(t), with k(t) = sin(t) and a(t) = t1−αE2,2−α(−t2).
Then a mild solution of the semilinear equation (4.1) is well and consistently defined as a solution of the
following integral equation

(3.40) u(t) = u(0)−
∫ t

0

Tα(s)u(0) ds+ Tα(t)u′(0) +

∫ t

0

Tα(t− s)f(s, u(s), u′(s))ds.
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4. Applications

In this section we will study some existence results and asymptotic behavior of solutions of some fractional
differential equations using the variation of constants formulas developed earlier.

4.1. Existence results for semilinear fractional differential equations. In this subsection, we will
prove the existence of mild solutions of some fractional differential equations with nonlocal conditions. We
will need the following results.

Lemma 4.1. (Mazur’s Lemma)
If K is a compact subset of a Banach space X, then its convex closure convK is also compact.

Theorem 4.2. (Arzela-Ascoli’s theorem)
Let T := {f(t)} be a family of continuous mappings f : I → X. If T is uniformly bounded and equicon-

tinuous, and for any t∗ ∈ I, the set {f(t∗) : f ∈ T } is relatively compact, then there exists a uniformly
convergent sequence {fn(t)} in T .

Theorem 4.3. (Leray-Schauder Alternative Theorem)
Let D be a convex subset of a Banach space X and assume that 0 ∈ D. Let G : D → D be a completely

continuous map. Then either G has a fixed pint, or the set {x ∈ D : x = λG(x), 0 < λ < 1} is unbounded.

Consider the fractional differential equation with nonlocal conditions

(4.1) Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t)), t ∈ [0, T ], u(0) + g(u) = u0, u′(0) = 0,

where 1 < α < 2 and A generates an ( t
α−1

Γ(α) , 1)-regularized family Sα(t) such that there exists ω > 0 and

M > 0 such that ‖Sα(t)‖ ≤ Meωt for t ∈ I. Note that the existence of Sα(t) satisfying this condition
follows, for example, if A generates a cosine function or if we assume that A is ω sectorial with angle
0 ≤ θ < π(1 − α/2). See [8]. We notice that several qualitative properties of equation (4.1) with initial
conditions has been studied in [9] and [31].

According to the variation of constants formula (3.17), the problem above is equivalent to solving the
following

(4.2) u(t) = Sα(t)[u0 − g(u)] +

∫ t

0

Sα(t− s)f(s, u(s))ds.

We will make the following assumptions

• H1. f satisfies the Carathéodory condition, that is f(·, u) is strongly measurable for each u ∈ X
and f(t, ·) is continuous for each t ∈ I.
• H2. There exists a continuous function µ : I → R+ such that

‖f(t, u)‖ ≤ µ(t)‖u‖,∀t ∈ I, u ∈ X.
• H3. g : C(I,X)→ C(I,X) is continuous and there exists Lg > 0 such that

‖g(u)− g(v)‖ < Lg‖u− v‖, ∀u, v ∈ C(I,X).

• H4 The set K = {Sα(t− s)f(s, u(s)) : u ∈ C(I,X), 0 ≤ s ≤ t} is relatively compact for each t ∈ I.

Theorem 4.4. Under assumptions H1-H4, Eq.(4.1) has at least a solution.

Proof. Define the operator Γ : C(I,X)→ C(I,X) by

(Γu)(t) := Sα(t)[u0 − g(u)] +

∫ t

0

Sα(t− s)f(s, u(s))ds

Let Br := {u ∈ C(I,X) : ‖u‖ ≤ r}. The proof will be conducted into several steps
Step 1.
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We first show that Γ sends bounded sets of C(I,X) into bounded sets of C(I,X); in other words for any
given r > 0 there exists ξ > 0 such that ΓBr ⊂ Bξ. So let u ∈ Br and G := supu∈Br ‖g(u)‖. Then

(4.3)

‖Γu(t)‖ ≤ M‖Sα(t)‖(‖u0‖+ ‖g(u)‖) +M

∫ t

0

‖Sα(t− s)‖‖f(s, u(s))‖ds

≤ Meωt(‖u0‖+ ‖g(u)‖) +M

∫ t

0

‖Sα(t− s)‖‖f(s, u(s))‖ds

≤ Meωt(‖u0‖+ ‖g(u)‖) +M

∫ t

0

eω(t−s)‖f(s, u(s))‖ds

≤ Meωt(‖u0‖+ ‖g(u)‖) +M

∫ t

0

eω(t−s)‖µ(s)‖‖u(s)‖ds

≤ MeωT (‖u0‖+G) +Mr‖µ‖ e
ωT

ω = ξ.

Thus ΓBr ⊂ Bξ.
Step 2. Let’s show that Γ is a continuous operator.
Let un, u ∈ Br such that un → u in C(I,X). Then we have

(4.4)

‖Γun(t)− Γu(t)‖ ≤ ‖Sα(t)‖(‖g(un)− g(u)‖) +

∫ t

0

‖Sα(t− s)‖‖f(s, un(s))− f(s, u(s))‖ds

≤ MeωtLg‖un − u‖+M

∫ t

0

eω(t−s)‖f(s, un(s))− f(s, u(s))‖ds

≤ MeωTLg‖un − u‖+M

∫ t

0

eω(t−s)‖f(s, un(s))− f(s, u(s))‖ds

≤ MeωtLg‖un − v‖+M

∫ t

0

eω(t−s)µ(s)(‖un(s)‖+ ‖u(s)‖)ds

≤ MeωtLg‖un − u‖+ 2rM

∫ t

0

eω(t−s)µ(s)ds.

Choose n large enough such that ‖un − u‖ < ε. Also note that eω(t−s)µ(s) is integrable on I. So by the

Lebesgue’s Dominated Convergence Theorem,
∫ t

0
eω(t−s)‖f(s, un(s)) − f(s, u(s))‖ds → 0 as n → ∞; which

shows that Γ is continuous.
Step 3 Γ sends bounded sets of C(I,X) into equicontinuous sets of C(I,X).
Let u ∈ Br, with r > 0 and take t1, t2 ∈ I with t2 < t1. Then we have

(4.5)

‖Γu(t1)− Γu(t2)‖ ≤ ‖(Sα(t1)− Sα(t2))(u0 − g(u))‖+

∫ t1

t2

‖Sα(t1 − s)f(s, u(s))‖ds

+

∫ t2

0

‖(Sα(t1 − s)− Sα(t2 − s))f(s, u(s))‖ds

= I1 + I2 + I3.

We have
I1 ≤ ‖(Sα(t1)− Sα(t2))‖‖(u0 − g(u))‖.
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Using the continuity of Sα(t), we obtain that limt1→t2 I1 = 0.
Next we have

I2 ≤
∫ t1

t2

eω(t1−s)µ(s)‖u(s)‖ds ≤ r‖µ‖eωT (t1 − t2).

Thus limt1→t2 I2 = 0. Finally we have

(4.6)

I3 ≤
∫ t2

0

‖Sα(t1 − s)− Sα(t2 − s)‖‖f(s, u(s))‖ds

≤
∫ t2

0

‖Sα(t1 − s)− Sα(t2 − s)‖µ(s)‖u(s)‖ds

≤ r

∫ t2

0

‖Sα(t1 − s)− Sα(t2 − s)‖µ(s)ds.

Now observe that
‖Sα(t1 − ·)− Sα(t2 − ·)‖µ(s) ≤ 2MeωTµ(·) ∈ L1(I,R),

and Sα(t1 − s) − Sα(t2 − s) → 0 in L(X), as t1 → t2. Thus limt1→t2 I3 = 0 by the Lebesgue’s dominated
convergence theorem.

Step 4. Γ maps Br into relatively compact sets in X.
Indeed in view of Lemma 3.3, we deduce that convK is compact. Moreover, for u ∈ Br, using the

Mean-Value Theorem for the Bochner integral, we obtain

Γ(u(t)) ∈ tconvK, ∀t ∈ [0, T ].

Therefore the set {Γu(t);u ∈ Br} is relatively compact in X for every t ∈ [0, T ]. From Steps 1-4, we deduce
that Γ is continuous and compact by the Arzela-Ascoli’s theorem.

Step 5. Consider the set
Ω := {u ∈ Br : u = λΓu, 0 < λ < 1}.

Clearly Ω 6= ∅ since 0 ∈ Ω. So let u ∈ Ω. Then we have

‖u(t)‖ ≤ λ[Meαt(‖u0‖+ ‖g(u)‖) +M

∫ t

0

eω(t−s)‖f(s, u(s)‖ds]

≤ λ[Meαt(‖u0‖+G) +Mr

∫ t

0

eω(t−s)µ(s)ds]

≤ [Meαt(‖u0‖+G) +Mr‖µ‖e
ωT

ω
]

Thus Ω is bounded. So by the Leray-Schauder theorem Γ has a fixed point. The proof is complete.
�

4.2. S-asymptotically ω-periodic solutions. In this subsection we will study some asymptotic properties
of mild solutions of semilinear and linear abstract composite fractional relaxation equation. Let’s start with
the linear case.

(4.1) u′(t)−ADα
t u(t) + u(t) = f(t), 0 < α < 1, u(0) = x,

where A is the generator of an (a, k)-regularized family Rα(t), with k(t) = e−t and a(t) = tαE1,1−α(−t).
From now on we let Y := ker(A).

We recall some definitions.

Definition 4.1. ([16, 17]) A function f ∈ BC(R+, X) such that there exists ω > 0 such that limt→∞(f(t+
ω)− f(t)) = 0 is called S-asymptotically ω-periodic.

We will denote by SAPω(X), the space of all S-asymptotically ω-periodic functions f ∈ BC(R+, X).
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Definition 4.2. ([16, 17]) A function f ∈ BC(R+, X) is called asymptotically ω-periodic for ω > 0 if there
exist an ω-periodic function φ and and a h ∈ BC(R+, X) with limt→∞ h(t) = 0 such that f = φ+ h.

We will denote by APω(X), the space of all asymptotically ω-periodic functions f ∈ BC(R+, X).

Remark 4.3. It is known that the space of all asymptotically ω-periodic functions is strictly contained in
the space of S-asymptotically ω-periodic functions.

Lemma 4.4. Let f be an Y -valued S-asymptotically ω-periodic function; then the function ζ(t) defined by

ζ(t) :=

∫ t

0

Rα(t− s)f(s)ds. t > 0

is S-asymptotically ω-periodic.

Proof. It is clear that ζ ∈ BC(R+, Y ). Notice that by (ii)-(iii) of Definition 2.1 we have Rα(s)f(s) = e−sf(s)
for all s > 0. We have

ζ(t+ ω)− ζ(t) =

∫ t+ω

0

e−(t+ω−s)f(s)ds−
∫ t

0

e−(t−s)f(s)ds

=

∫ ω

0

e−(t+ω−s)f(s)ds+

∫ t+ω

ω

e−(t+ω−s)f(s)ds−
∫ t

0

e−(t−s)f(s)ds

=

∫ ω

0

e−(t+ω−s)f(s)ds+

∫ t

0

e−(t−s)f(s+ ω)ds−
∫ t

0

e−(t−s)f(s)ds

For each ε > 0, there is a positive constant Lε such that ||f(t+ω)− f(t)|| ≤ ε, for every t ≥ Lε. Under these
conditions, for t ≥ Lε, we can estimate

||ζ(t+ ω)− ζ(t)|| ≤
∫ ω

0

||e−(t+ω−s)f(s)||ds

+

∫ Lε

0

e−(t−s)||f(s+ ω)− f(s)||ds

+

∫ t

Lε

e−(t−s)||f(s+ ω)− f(s)||ds

≤ ||f ||∞
∫ ω

0

e−(t+ω−s)ds+ 2||f ||∞
∫ Lε

0

e−(t−s)ds

+ ε

∫ t

Lε

e−(t−s)ds

= ||f ||∞
∫ t+ω

t

e−sds+ 2||f ||∞
∫ t

t−Lε
e−sds

+ ε

∫ t−Lε

0

e−sds

≤ ||f ||∞
∫ ∞
t

e−sds+ 2||f ||∞
∫ ∞
t−Lε

e−sds

+ ε

∫ ∞
0

e−sds

which shows that limt→∞(ζ(t+ ω)− ζ(t)) = 0 and ends the proof. �

Our main result on the linear composite fractional relaxation equation is the following theorem.

Theorem 4.5. If x ∈ Y and f is an Y -valued S-asymptotically ω-periodic function, then every mild solution
of (4.1) is S-asymptotically ω-periodic.



16 CARLOS LIZAMA AND GASTON M. N’GUÉRÉKATA

Proof. Let u(t) be a mild solution of (4.1). Then we have (cf. Example 3.4):

(4.2) u(t) = x−
∫ t

0

Rα(s)xds+

∫ t

0

Rα(t− s)f(s)ds.

By Definition 2.1, if u ∈ Ker(A) then we have Rα(t)u = e−tu. Thus under the assumptions of the
theorem we have

(4.3) u(t) = x−
∫ t

0

e−sxds+

∫ t

0

e−(t−s)f(s)ds.

Therefore
‖u(t+ ω)− u(t)‖ ≤ I1 + I2

where

I1 = ‖
∫ t+ω

0

e−sxds−
∫ t

0

e−sxds‖ = ‖
∫ t+ω

t

e−sxds‖ ≤ e−t(1− e−ω)‖x‖

which shows that limt→∞ I1 = 0, and I2 = ‖ζ(t)‖ where ζ(t) is the S-asymptotically ω-periodic function in
the lemma above. The proof is complete.

�

Now we consider the semilinear abstract composite fractional relaxation equation

(4.4) u′(t)−ADα
t u(t) + u(t) = F (t, u(t)), 0 < α < 1, u(0) = x,

where A is as above and {F (t, u) : t ∈ R+, u ∈ Y } ⊂ Y .
We recall the following definitions and results.

Definition 4.6. [16] A continuous function f : [0,∞) × X → X is said to be uniformly S-asymptotically
ω-periodic on bounded sets if for every bounded set K ⊂ X, the set {f(t, x) : t ≥ 0, x ∈ K} is bounded and
limt→∞ (f(t, x)− f(t+ ω, x)) = 0 uniformly on x ∈ K.

Definition 4.7. [16] A continuous function f : [0,∞) × X → X is said to be asymptotically uniformly
continuous on bounded sets if for every ε > 0 and every bounded set K ⊂ X, there exist Lε,K ≥ 0 and
δε,K > 0 such that ‖f(t, x)− f(t, y)‖ < ε for all t ≥ Lε,K and all x, y ∈ K with ‖x− y‖ < δε,K .

Theorem 4.8. [16] Let f : [0,∞)×X → X be a function which is uniformly S-asymptotically ω-periodic on
bounded sets and asymptotically uniformly continuous on bounded sets. Let u : [0,∞) be an S-asymptotically
ω-periodic function. Then the Nemytskii function φ(·) := f(·, u(·)) is S-asymptotically ω-periodic.

We make the following assumptions

H1 F is uniformly S-asymptotically ω-periodic on bounded sets.

H2 F satisfies a Lipschitz condition in the second variable uniformly with respect to the first variable,
i.e. there exists L > 0 such that

‖F (t, u)− F (t, v)‖ ≤ L‖u− v‖, u, v ∈ Y, t ≥ 0.

We have the following first main result on the semilinear composite fractional relaxation equation.

Theorem 4.9. Under assumptions H1 − H2, if x ∈ Y and L < 1, then the equation (4.4) has a unique
S-asymptotically ω-periodic solution.

Proof. Let
Υ : SAPω(Y )→ SAPω(Y )

defined by

Υ(u)(t) = x−
∫ t

0

Rα(s)xds+

∫ t

0

Rα(t− s)F (s, u(s))ds,
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equivalently

Υ(u)(t) = e−tx+

∫ t

0

e−(t−s)F (s, u(s))ds.

Let f(·) := F (·, u(·)) where u ∈ AAP (Y ). By hypothesis, it implies f ∈ SAPω(Y ). By Lemma 4.4 we deduce
that Υ(u) well defined. Let u, v ∈ SAPω(Y ). Then we have

‖(Υu)(t)− (Υv)(t)‖ ≤
∫ t

0

e−(t−s)(F (s, u(s))− F (s, v(s))ds‖

≤ L‖u− v‖∞
∫ t

0

e−(t−s)ds.

Therefore

‖(Υu)− (Υv)‖∞ ≤ L‖u− v‖∞.

We conclude by using the Banach contraction mapping principle. �

Now we consider the following assumption.
H3 There exists L ∈ L1(0,∞) such that for all u, v ∈ Y and t ≥ 0

‖F (t, u)− F (t, v)‖ ≤ L(t)‖u− v‖.

We prove the following result.

Theorem 4.10. Under H1−H3 the equation (4.4) has a unique mild solution in SAPω(Y ).

Proof. We consider the following norm on the space BC(R+, Y ): ‖f‖c := supt≥0(‖f(t)‖e(−c
∫ t
0
L(s) ds)) (c >

0). The two norms ‖ · ‖c and ‖ · ‖∞ are equivalent, since L ∈ L1(0,∞) and L(t) ≥ 0. Let u, v ∈ SAPω(Y )
and consider Υ as defined above. Then we have

‖Υu(t)−Υv(t)‖ ≤
∫ t

0

‖Rα(t− s)‖B(Y )‖F (s, u(s))− F (s, v(s))‖ ds

≤
∫ t

0

e−(t−s)L(s)‖u(s)− v(s)‖ ds.

From ‖u(s)− v(s)‖ ≤ ‖u− v‖ce(c
∫ s
0
L(σ) dσ), it follows

‖Υu(t)−Υv(t)‖ ≤ ‖u− v‖c
∫ t

0

L(s)e(c
∫ s
0
L(σ) dσ) ds)

≤ 1

c
‖u− v‖ce(c

∫ t
0
L(s) ds),

thus

‖Υu−Υv‖c ≤
1

c
‖u− v‖c.

We can choose c := 2, then

‖Υu−Υv‖2 ≤
1

2
‖u− v‖2,

thus by the contraction mapping principle, Γ has a fixed point in SAPω(Y ) which is a solution to equation
(4.4). �
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4.3. Asymptotically periodic solutions. Consider the linear abstract composite fractional oscillation
equation

(4.1) u′′(t)−ADα
t u(t) + u(t) = f(t), 0 < α < 2, u(0) = x, u′(0) = y

where A is the generator of an (a, k)-regularized family Tα(t), with k(t) = sin(t) and a(t) = t1−αE2,2−α(−t2).
By Example 3.5, a mild solution u(t) of (4.1) is given by the following variation of constant formula

(4.2) u(t) = x−
∫ t

0

Tα(s)x ds+ Tα(t)y +

∫ t

0

Tα(t− s)f(s)ds.

As in the previous section, we denote Y := Ker(A).
We prove the following result.

Theorem 4.1. If x, y ∈ Y and f ∈ L1(R+;Y ), then every mild solution of (4.1) is asymptotically 2π-
periodic.

Proof. Note that, by Definition 2.1, in this case Tα(t)w = sin(t)w for all t > 0 and w ∈ Y. Then we have

u(t) = x−
∫ t

0

sin(s)x ds+ sin(t)y +

∫ t

0

sin(t− s)f(s)ds

= cos(t)x+ sin(t)y +

∫ t

0

sin(t− s)f(s)ds

= cos(t)x+ sin(t)y +

∫ ∞
0

sin(t− s)f(s)ds−
∫ ∞
t

sin(t− s)f(s)ds

= φ(t)− ψ(t)

where φ(t) := cos(t)x+ sin(t)y +

∫ ∞
0

sin(t− s)f(s)ds is clearly 2π-periodic and

‖ψ(t)‖ ≤
∫ ∞
t

‖ sin(t− s)f(s)‖ds ≤
∫ ∞
t

‖f(s)‖ds

which shows that limt→∞ ψ(t) = 0. It proves the Theorem.
�

Remark 4.2. Note that the above result essentially coincides, in the scalar case, with the analytic study in
the paper [36] for equation (4.1) with 0 < α < 1 and f ≡ 0.
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[40] S. Saha Ray, R. K. Bera. Analytical solution of the Bagley Torvik equation by Adomian decomposition method. Applied
Mathematics and Computation, 168 (1) (2005), 398–410.

[41] S. Samko, A.A. Kilbas and O.I., Marichev. Fractional Integrals and Derivatives: Theory and Applications. Gordon and

Beach, 1993.

[42] S.Y. Shaw, J.C. Chen. Asymptotic behavior of (a, k)-regularized resolvent families at zero. Taiwanese J. Math. 10 (2)
(2006), 531–542.

[43] Y. Zhou, F. Jiao.Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59(3) (2010),
1063–1077.



20 CARLOS LIZAMA AND GASTON M. N’GUÉRÉKATA
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