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Abstract: In this article we propose an alternative formulation to model a thermal-optical coupled
problem involving laser heating. We show that by using the Fractional Beer-Lambert Law (FBLL)
instead of the Beer-Lambert Law (BLL) as the governing equation of the optical problem, the
formulation of the laser heat source changes, along with consequently, the distribution of temperatures.
Our theoretical findings apply to laser thermal keratoplasty (LTK), used to reduce diopters of
hyperopia. We show that the FBLL offers a new approach for heat conduction modeling of laser
heating, which is more flexible and could better fit the data in cases where the BLL approach does not
fit the data well. Our results can be extended to laser heating of other biological tissues and in other
general applications. Our findings imply a new insight to improve the accuracy of thermal models,
since they involve a new formulation of the external heat source rather than the heat equation itself.
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1. Introduction

Laser heating is a common thermal therapy in clinical practice. It is known that the use of a laser as
a heating source is employed in the cochlea stimulation [32], the treatment of different cancer tumours
[7, 11, 17, 19], laser-assisted drug permeation [9], endovenous ablation [30], skin remodeling [25] and
other applications [2]. This paper focuses on laser heating of the cornea and one of its applications:
laser thermal keratoplasty (LTK). LTK enables the alteration of the intrastromal collagen in a precise
and controlled manner, and, consequently, it can be employed to reduce hyperopia by several diopters.

In addition to experimental procedures, theoretical modeling is a usual methodology to assess the

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022796


14445

suitability of laser heating as a thermal therapy (see [6, 12, 13]). Accordingly, theoretical models have
also been developed to achieve a deeper understanding and a broader knowledge of laser heating of the
cornea, and, moreover, to make this technique more effective and confidently applicable [1, 20, 21, 26].
However, to consider theoretical modeling as a reliable tool, the results from theoretical models should
be in agreement with experimental ones. As the authors stated in [20], some factors may affect the
accuracy of theoretical models. Therefore, in the last decades, many efforts have been made to improve
mathematical models from different viewpoints. One of them corresponds to the change of the physics
formulation.

The parabolic heat transfer equation (PHTE) regularly used to model laser heating is

ρc
∂T
∂t

(x, t) = ∇ · (k∇T (x, t)) + S (x, t), (1.1)

where T (x, t) is the temperature at point x at time t, k is the thermal conductivity, ρ is the density, c
is the specific heat, and S (x, t) is the heat source in the material. In [18] we proposed an alternative
formulation using a time-fractional derivative in the first term of equation (1.1), which we called the
time-fractional derivative formulation of the heat transfer equation (FDHTE). Our hypothesis was that
the FDHTE, which can assume a non-ideal heat conduction behavior, could provide more accurate
theoretical results with a better agreement with experiment. The results in [18] corroborated the
hypothesis for FDHTE in cases in which a heat source was not applied. However, we did not find
significant differences between the solutions of PHTE and FDHTE when the source was applied. The
reason relies on the fact that the value of the term S (x, t) in (1.1) is several orders higher than the rest
of the terms during the heating phase (when the laser source is applied). This occurs for the laser
application exposed in [18], but also for LTK and a lot of applications of thermal laser heating. Thus,
in cases in which the source term is significantly greater than the others, the effect caused by changes
in terms of time or spatial partial temperature derivatives is almost negligible.

In the present work, our interest is also to explore alternative formulations of the PHTE for laser
heating in thermal therapies. Due to the important role of the heat source S (x, t) in equation (1.1),
we assume that by introducing an alternative and contrasted formulation in this term, we can obtain a
different temperature distribution that can provide more accurate results compared to those obtained
experimentally.

The heat source for laser heating is usually obtained from the Beer-Lambert Law (BLL). According
to [23], the BLL predicts a laser intensity assuming almost ideal conditions, such as homogeneous
sample without scattering, or no changes in the absorption despite the interactions between particles.
These assumptions are unrealistic in biological tissue. In the case of the cornea, [31] stated that
its mechanical properties are not isotropic in a plane perpendicular to the surface, and a resulting
mechanical anisotropy is a defining characteristic of the cornea. For this reason, some extensions of
the BLL have been considered. In [15] authors also stated that BLL was not appropriate to model
anomalous natural behaviours (for instance, anomalous transport that can take place in turbulent
plasmas, random lasers and biological cells), and a more realistic approach to this phenomenon can
often be provided by a Fractional Beer-Lambert Law (FBLL). In fact, this idea was also underlined
in [4], in which the authors marked the use of FBLL as an instrument to transmit randomness of
microscopic dynamics to the macroscopic scale. In [4] authors gave a generalization of the Beer-
Lambert Law derived from a fractional Poisson process, and it was later extended in [28]. These

AIMS Mathematics Volume 7, Issue 8, 14444–14459.



14446

results were employed in [10] to introduce the FBLL by considering an extension of the Srivastava-
Owa operators. The FBLL is useful for providing a generalized diffusion model based on the fractional
radiative transport equation, as shown in [15, 16]. Regarding nonbiological tissues, some recent works
have shown the FBLL to be effective for exhibiting sub-exponential effects in aluminum foil half-
value thickness [27] and, in [5], for approximating light attenuation inside photosynthetic cultures in
photobioreactors.

This study aims to assess the temperatures obtained from the PHTE using a heat source term based
on the FBLL. As far as we know, no studies have evaluated the influence of the FBLL inside the PHTE.
Moreover, we have applied the theoretical formulation to the laser heating of the cornea in LTK.

2. Mathematical modeling of the laser heating

We consider a 1-dimensional problem in which the laser incidence is produced at x = 0, and the
heating process is produced along the x-axis. Assuming constant thermal conductivity, density and
specific heat in Eq (1.1), the heat conduction problem from the viewpoint of the PHTE is given by

∂tT (x, t) = α∂2
xT (x, t) + S (x, t) t > 0, x > 0,

T (x, 0) = T0, x > 0,
lim
x→∞

T (x, t) = T0, t > 0,

∂xT (0, t) = h
k (Ta − T (0, t)), t > 0,

(2.1)

where α is the thermal diffusivity (α = k
ρc ), T0 is the initial temperature, Ta is the ambient temperature,

and h is the thermal convection constant at the interface of the tissue with the ambient temperature.
The diffusivity of the material α measures its ability to conduct thermal energy relative to storing it.
The parameter α represents the speed at which the heat is diffused through a material, and its unit
is m2/s. Therefore, if the material has a high value of diffusivity, it will respond quickly to thermal
changes. Meanwhile in a material with a small α value, the heat is mainly absorbed, and it will provide
a slower response to thermal changes. At the surface x = 0, the tissue is affected by free convection
of the surrounding air, as can be observed in the last condition of (2.1). This condition corresponds
to Newton’s cooling law, so the thermal convection constant h is the rate of heat transfer between a
solid surface (in this case, the cornea) and a fluid (the surrounding air) per unit area and per unit of
temperature difference (W/m2· K).

To solve problem (2.1), we need to introduce the S (x, t) expression in the governing equation.
Specifically, the relationship between the heat source and the laser intensity distribution I(x, t) is:

S (x, t) = b I(x, t)H(t), (2.2)

where b is the absorption coefficient in m−1 and H(t) is the Heaviside function, defined by

H(t) =

{
1, t > 0,
0, t = 0.

(2.3)

The parameter b, which is also called the attenuation coefficient, quantifies the absorption of laser light
per unit length. In this sense, b represents the depth at which the laser light of a specific wavelength
can penetrate in a material before it is absorbed.

At this step we considered two cases for obtaining I(x, t): 1) using the BLL and 2) using the FBLL.
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2.1. Modeling the laser source using the Beer-Lambert Law

The intensity of the laser I(x, t) is obtained using the BLL from the problem:
∂xI(x, t) = −bI(x, t), t > 0, x > 0,
I(0, t) = I0(1 − R), t > 0,
I(x, 0) = 0, x > 0,

(2.4)

where I0 is the laser intensity applied at point x = 0, and R is the reflection coefficient (%), which
accounts for the fraction of laser light that is reflected by the material.

It is easy to verify that the analytical solution of (2.4) is given by I(x, t) = I0(1 − R)e−bx. Therefore,
according to Eq (2.2),

S (x, t) = bI0(1 − R)e−bxH(t). (2.5)

Now, substituting expression (2.5) in the governing expression of (2.1), this problem can be solved as
in the reference [29, Section 3.2].

2.2. Modeling the laser source using the fractional Beer-Lambert Law

The intensity of the laser I(x, t) is obtained using the FBLL from the problem:
∂βxI(x, t) = −bI(x, t), t > 0, x > 0, 0 < β ≤ 1,
I(0, t) = I0(1 − R), t > 0,
I(x, 0) = 0, x > 0,

(2.6)

where we replace the ordinary derivative with the Caputo space-fractional derivative of real order β
defined by

∂βx f (x) =
1

Γ(1 − β)

∫ x

0

∂x′ f (x′)
(x − x′)β

dx′, 0 < β ≤ 1, x > 0

and

∂βx f (x) =
1

Γ(2 − β)

∫ x

0

∂2
x′ f (x′)

(x − x′)β−1 dx′, 1 < β ≤ 2, x > 0,

where Γ denotes the standard Gamma function.
It should be noted that b represents in (2.6) a constant coefficient with unit m−β to make the Eq (2.6)

dimensionally consistent. We observe that, according to the existing literature [3, 32], this dimensional
property could also be explicitly highlighted in the coefficient b as bβ or bβ.

In order to solve Eq (2.6), we will use the Laplace transform as the main tool. Given a function
f : R+ → R, the Laplace transform of f is defined by

f̂ (s) := L( f )(s) :=
∫ ∞

0
e−st f (t)dt,

for every s ∈ C such that Re(s) > ω for some ω ∈ R.
The Laplace transform of the fractional derivative of a function f is given by

∂̂
β
x f (s) = sβ f̂ (s) − sβ−1 f (0), 0 < β ≤ 1 and Re(s) > ω, (2.7)
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and
∂̂
β
x f (s) = sβ f̂ (s) − sβ−1 f (0) − sβ−2∂x f (0), 1 < β ≤ 2 and Re(s) > ω. (2.8)

We also recall the definition of the Mittag-Leffler function [14]:

Eα,β(z) =

∞∑
n=0

zn

Γ(αn + β)

where Γ denotes the standard Gamma function, and the following Laplace transform which involves
the Mittag-Leffler function:

L(tµ−1Eρ,µ(−λtρ))(s) =
sρ−µ

sρ + λ
. (2.9)

We proceed to solve the FBLL equation (2.6) by applying the Laplace transform, obtaining:

∂̂
β
xI(s, t) = −bÎ(s, t).

Using (2.7), we get:

sβ Î(s, t) − sβ−1I(0, t) = −bÎ(s, t),

and then

Î(s, t) = I(0, t)
sβ−1

sβ + b
= I0(1 − R)

sβ−1

sβ + b
.

Consequently, the solution of the FBLL is given by

Iβ(x, t) := I(x, t) = I0(1 − R)L−1
(

sβ−1

sβ + b

)
= I0(1 − R)Eβ,1(−bxβ), (2.10)

where we have used formula (2.9) with µ = 1, ρ = β and λ = b.
According to (2.2), the heat source is

S (x, t) = bI0(1 − R)Eβ,1(−bxβ)H(t). (2.11)

Observe that the case β = 1 corresponds to the exponential solution of the classical BLL given by
expression (2.5).

We point out that problem (2.6) for 1 < β ≤ 2 can be stated as follows:
∂βxI(x, t) = −bI(x, t), t > 0, x > 0, 1 < β ≤ 2,
I(0, t) = I0(1 − R), t > 0,
∂xI(0, t) = −bI0(1 − R), t > 0.
I(x, 0) = 0, x > 0,

(2.12)

where an extra initial condition is needed. Proceeding as before, and applying formula (2.8), the
solution of (2.12) is given by:

Iβ(x, t) := I(x, t) = I0(1 − R)
(
L−1

(
sβ−1

sβ + b

)
− bL−1

(
sβ−2

sβ + b

))
= I0(1 − R)

(
Eβ,1(−bxβ) − bEβ,2(−bxβ)

)
.

(2.13)
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We will now proceed to solve the problem (2.1) when considering the FBLL in the heat source, that is,
S (x, t) given by (2.11). In order to facilitate the resolution of the problem, we will make the following
change of variables:

V(x, t) = T (x, t) − T0; C = T0 − Ta. (2.14)

Thus, the resulting problem is:

∂V
∂t

(x, t) = α
∂2V
∂x2 (x, t) + bI0(1 − R)Eβ,1(−bxβ)H(t) (2.15)

V(x, 0) = 0 ∀ x > 0,
lim

x−→∞
V(x, t) = 0 ∀ t > 0,

∂V
∂x

(0, t) = −
h
k

(V(0, t) + C) ∀ t > 0.

In what follows, let M = bI0(1 − R). Taking the Laplace transform with respect to t and denoting
D(x, s) := Lt[V(x, t)], we get

−α
∂2D
∂x2 (x, s) + s D(x, s) =

M
s

Eβ,1(−bxβ) , (2.16)

lim
x−→∞

D(x, s) = 0 , (2.17)

∂D
∂x

(0, s) = −
h
k

(
D(0, s) +

C
s

)
. (2.18)

Applying now the Laplace transform with respect to x to (2.16) and denoting F(r, s) := Lx[D(x, s)],
we obtain:

− α

(
r2F(r, s) − rD(0, s) −

∂D
∂x

(0, s)
)

+ s F(r, s) =
M
s

(
rβ−1

rβ + b

)
. (2.19)

Substituting the initial conditions (2.17) and (2.18) in (2.19) and isolating F(r, s), we get

F(r, s) = −
αr

s − αr2 D(0, s) +
α

s − αr2

(
hC
ks

+
h
k

D(0, s)
)

+
M

s(s − αr2)

(
rβ−1

rβ + b

)
. (2.20)

Using formulas 15 and 16 from [24] and the convolution theorem of Laplace transforms, we get that
the inverse spatial Laplace transform of (2.20) is given by:

D(x, s) = −
1
2

(
e−
√

s
α x + e

√
s
α x

)
D(0, s) +

1
2

√
α

s

(
e−
√

s
α x
− e
√

s
α x

) (hC
ks

+
h
k

D(0, s)
)

+
M
2

∫ x

0
Eβ,1(−buβ)

1
√
αs3/2

(
e−
√

s
α (x−u)

− e
√

s
α (x−u)

)
du. (2.21)

Taking into account that limx−→∞ D(x, s) = 0, we obtain the reduced expression

D(x, s) = −
1
2

e−
√

s
α xD(0, s) +

1
2

√
α

s
e−
√

s
α x

(
hC
ks

+
h
k

D(0, s)
)

+
M
2

∫ x

0
Eβ,1(−buβ)

1
√
αs3/2

e−
√

s
α (x−u)du.

(2.22)
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Applying now the inverse temporal Laplace transform in (2.22) using formulas 181, 183 and 184
from [24] and the convolution theorem of Laplace transforms, we obtain:

Vβ(x, t) := V(x, t) = −
1
4

∫ t

0

x
√
παu3

e
−x2
4αu T (0, t − u)du +

√
α

2
hC
k

2 √
t
π

e
−x2
4tα −

x
√
α

Er f c
(

x

2
√
αt

)
+

√
αh

2k

∫ t

0

1
√
πu

e
−x2
4αu T (0, t − u)du

+
M

2
√
α

∫ x

0
Eβ,1(−buβ)

2 √
t
π

e
−(x−u)2

4tα −
(x − u)
√
α

Er f c
(
(x − u)
2
√
αt

) du, (2.23)

where Er f c(z) is the complementary error function. According to the changes made in (2.14), the
solution of (2.1) for 0 < β ≤ 1 is given by

T (x, t) = Vβ(x, t) + T0. (2.24)

The case β = 1 corresponds to the solution of (2.1) when using the classical BLL. Following a similar
procedure, if 1 < β ≤ 2, the function Vβ(x, t) is given by:

Vβ(x, t) := V(x, t) = −
1
4

∫ t

0

x
√
παu3

e
−x2
4αu T (0, t − u)du +

√
α

2
hC
k

2 √
t
π

e
−x2
4tα −

x
√
α

Er f c
(

x

2
√
αt

)
+

√
αh

2k

∫ t

0

1
√
πu

e
−x2
4αu T (0, t − u)du

+
M

2
√
α

∫ x

0

(
Eβ,1(−buβ) − bEβ,2(−buβ)

) 2 √
t
π

e
−(x−u)2

4tα −
(x − u)
√
α

Er f c
(
(x − u)
2
√
αt

) du.

(2.25)

2.3. Laser thermal keratoplasty

As we have mentioned in the introduction, we apply the expression (2.24) to a specific treatment of
laser heating called laser thermal keratoplasty (LTK). LTK is a minimally invasive refractive surgery
employed to reshape the cornea and correct hyperopia. A holmium laser is usually employed to focus
the energy on multiple points around the cornea, forming a ring. The delivery of energy is transformed
into heat in the tissue, and the heat modifies the curvature of the tissue, and then reshapes the cornea,
as shown in Figure 1.
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Figure 1. Schematic representation of the LTK process. A: corneal curvature previous to the
LTK. B: incident laser light during the LTK. C: new corneal curvature after the LTK.

We consider the typical parameters of LTK using a holmium:YAG laser as in the previous study
[29]: i.e., the initial laser intensity I0 = 5 × 108 W/m2, the reflectance coefficient R = 2.4% and the
absorption coefficient of the cornea b = 2000 m−1. As thermal characteristics of the cornea, we use
those reported in the same study [29]: ρ = 1060 kg/m3, c = 3830 J/kg·K and k = 0.556 W/m·K. The
initial temperature of the cornea (T0) is assumed to be 35 ◦C, the ambient temperature (Ta) is assumed
to be 20◦C, and the thermal convection constant is h = 20 W/m2·K. As we are interested in the heating
phase, we consider a time for the laser application of 200 µs. The cornea is approximately 540 µm,
and for this reason we have made the analysis in points from 0 to 500 µm. Where the corneal tissue
finishes, the aqueous humor begins, and it is followed by the crystallinelens, the vitreous humour, etc.
Most of these layers are much thicker than the cornea. Due to the difference of thickness between the
cornea and the other tissues, we can assume that the boundary condition of T0 (body temperature) can
be modeled as a limit when x tends to infinity. From a physical point of view, this can be also modeled
as a finite bar setting as a boundary condition T (x = xmax, t) = T0, but in this case xmax should have a
very high value.

From the analytical solutions obtained for the FBLL, we use Comsol Multiphysics to represent the
solutions.

3. Results and discussion

We are interested in the temperatures of the cornea during all the heating laser process to assess the
differences between using BLL and using FBLL. In this sense, Figure 2 represents the temperature in
a portion of the spatial domain x ∈ [0, 500] µm at t = 50 µs and at the end of the heating (t = 200 µs);
and Figure 3 represents the temperature evolution at the points x = 0, x = 200 µm and x = 500 µm.
Both figures are made using the FBLL to compute the heating source produced by the laser application,
β is the fractional derivative parameter, using expression (2.24). We choose β values next to the unit
since the solution for β = 1 corresponds to the case of the BLL source.

Figure 2 shows that when β < 1 in the FBLL (β = 0.95 and β = 0.90), the heat conduction is
predicted to be slower than using the BLL; and when β > 1 in the FBLL (β = 1.10 and β = 1.05),
the heat conduction is faster. In terms of the heat source, with β values smaller than 1, a smaller
quantitatively laser heat source is obtained, which provokes slower heat conduction. On the contrary,
with β values greater than 1, a higher value of the heat source is obtained, and faster heat conduction
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is produced. In Figure 2A), we see moderate differences in temperatures for t = 50 µs. In fact, we
find that the maximum differences (3.3 ◦C, which represents approximately an 8%) are between β = 1
and β = 1.10 at x = 500 µm. However, we observe in Figure 2B) that the differences increase for
longer times. At t = 200 µs differences between β = 1 and β = 1.10 at x = 500 µm are 12.5 ◦C which
represents approximately a 21% difference. So, Figure 2 shows that slight variations in the β value can
produce great changes in temperatures.

Figure 3 shows that the temperature behavior is very similar at x = 0 for all β values considered.
This fact was also observed in Figure 4 of [18] using the FDHTE and in Figure 2 of [29] using
the hyperbolic heat transfer equation (HHTE). However, Figures 3B) and 3C) show that differences
between different β values’ curves grow when we move away from the point x = 0. Note that in
[18] and [29], these differences were not observed during the heating phase at x = 0, nor in the
rest of the points of the spatial domain. Specifically, Figure 4 of [29] showed identical temperature
results for PHTE and HHTE during the heating phase and in all the spatial domain. In the previous
studies [18] and [29], we changed the heat conduction models using the PHTE, the FDHTE, and the
HHTE formulations, but all of them considered the laser heat source provided by the BLL. Due to
the predominant effect of the laser heat source over the rest of the terms, the changes in the temporal
derivatives assumed in HHTE and FDHTE formulations, provided negligible differences during the
heating phase compared to the PHTE formulation. Nevertheless, we observed that using the FBLL,
slight changes in the values of β translate into significant temperature variations even during the heating
phase. Figure 3C) shows that, assuming the FBLL instead of the BLL, we obtained differences of
approximately 22% between β = 1 and β = 1.10 at t = 200 µm (Figure 3C).

Figures 2 and 3 corroborate our hypothesis, since changes in the formulation of the laser heat
source produce significant variations in temperatures. In this sense, the FBLL offers a new approach
for modeling the heat conduction of laser heating which is more flexible and could better fit the data in
cases where the BLL approach does not fit the data well. This study assumes a new insight to improve
the formulation of heat conduction problems, since it is focused on the changes in the heat source,
instead of changes in the spatial and temporal derivatives involved in the PHTE formulation.

Consequently, our goal in this article was to explore a more flexible model that could fit data better
than the classical approach using the BLL.

The expression (2.24) that we have applied to LTK, can also be applied to other laser heating
problems mentioned in the introduction ([7, 9, 11, 17, 19, 32], for example). In the case of laser
heating of biological tissues involving perfused organs, only the blood perfusion term should be added
in the PHTE according to the Pennes Bioheat Equation used in [22], for instance.

β and b are two independent parameters which arise in the model in different ways. β is the fractional
parameter considered in the FBLL, and b corresponds to the absorption coefficient, which appears in
the BLL problem formulation (2.4), in the FBLL problem formulation (2.6) and in the heat source
(2.2). The parameter b is known in most of the cases, but when it is unknown, it needs to be adjusted.
The processes to adjust β and b values have to be independent. In the case of LTK presented in the
study, first we would apply an optimization method to adjust the value of b. Specifically, we would use
the experimental values obtained in x = 0, since at this point there is no influence of the β value (as
we can see in Figure 3A), but b has an important effect. Secondly, once the value of b is adjusted, we
would choose the β value which better matches with the experimental results in points different from
x = 0. It is important to note that the FBLL provides an alternative expression to the solution obtained
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with the BLL, differing from the resulting solution by adjusting the value of the absorption coefficient
parameter b. Actually, adjusting the value of b does not solve the mismatch between experimental
and theoretical results when dealing with non-ideal laser heating conditions. As an example, we have
modified the b value in our model to assess its influence on the results.

Figure 4A) shows the temperature evolutions at x = 200 µm for β = 1 and β = 1.10 considering
b = 2000 m−β and b = 3300 m−β, respectively. The case β = 1 corresponds to the BLL solution, and
b = 2000 m−β is the value we have used for the LTK modeling. So, the case b = 2000 m−β with β = 1
is our reference curve. The curves corresponding to β = 1.10 with b = 2000 m−β and the reference
curve are the same that appear in Figure 3B) for those β values. What is new in Figure 4A) is the curve
for b = 3300 m−β and β = 1. As can be seen in Figure 4A) it is possible to obtain the same behavior by
changing the value of β or changing the value of b, since the curves for b = 3300 m−β and β = 1 and
b = 2000 m−β and β = 1.10 are coincident, and both differ in the same way from the reference curve.
However, in Figures 4B) and 4C) we show that this statement is false. If we consider the temperature
evolution at the point x = 200 µm (Figure 4B)) and the same pairs of β and b values as those considered
in Figure 4A), we observe that in this case the curve for b = 3300 m−β and β = 1 does not coincide with
the curve for β = 1.10 and b = 2000 m−β. Indeed, the curve for b = 3300 m−β and β = 1 is above the
other two curves, assuming much faster heat transfer than the others. Therefore, the result of changing
the β and b values does not produce the same differences compared to the reference curve. Moreover,
changing the value of b, we cannot achieve that theoretical results agree better with the experimental
in cases where the BLL overestimates or underestimates the solution. The explanation is clearer if we
observe Figure 4C), in which the temperature evolution at the point x = 500 µm is shown considering
the same value pairs for β and b as in Figures 4A) and 4B). As we observe in Figure 4C) again the
curve for b = 3300 m−β and β = 1 and the curve for β = 1.10 and b = 2000 m−β do not coincide.
However, the most important fact is that at this point the curve for b = 3300 m−β and β = 1 is under the
other curves, assuming a slower heat transfer than in the other cases. Therefore, we cannot establish a
correlation between β and b values. Furthermore, changing the value of b, we cannot obtain at all the
points of the spatial domain the same behavior of the temperature above or below the reference curve
(b = 2000 m−β and β = 1).

In the introduction, we mentioned some interpretations of the FBLL, although the physical meaning
of the fractional-order β is still an open problem [8]. However, β in our study is only a parameter that
can be adjusted to obtain a better agreement between the theoretical and experimental results.
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Figure 2. Temperatures in a portion of the spatial domain x ∈ [0, 500] µm using the FBLL
source and different fractional derivative parameter β values: A) at time t = 50 µs and B) at
the end of the heating (t = 200 µs).

AIMS Mathematics Volume 7, Issue 8, 14444–14459.



14455

Figure 3. Temperature evolution using the FBLL source and different β values: A) at the
origin of the spatial domain (x = 0), B) at x = 200 µm and C) at x = 500 µm.
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Figure 4. Temperature evolution using the FBLL source and considering three different pairs
of β and b values: β = 1.10 with b = 2000 m−β, β = 1 with b = 2000 m−β (the reference
curve) and β = 1 with b = 3300 m−β, at three different points of the spatial domain: A)
x = 200 µm, B) x = 100 µm and C) x = 500 µm.

4. Conclusions

In this work, a new approach to the modeling of laser heating has been carried out. The study
focuses on an alternative formulation of the laser heat source based on the FBLL. Introducing the
solution of the FBLL into the heat transfer equation, we obtain different temperature profiles than
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those obtained with the classical BLL. These differences are also observed in all the points of the
spatial domain, even in the heating phase, something that other alternative heat equation formulations
(such as HHTE or FDHTE) did not show. Therefore, the FBLL is suitable for modeling laser heating,
and it could be applied in cases where the BLL formulation does not fit the data well. The use of the
FBLL is especially important in laser heating cases where the laser heat source is a term quantitatively
larger than the rest of the terms of the heat transfer equation, since the possible non-ideal effects of the
laser heating are more noticeable.

Although the FBLL solution has been obtained in previous studies, the novelty of the present work
is that this solution is incorpored into a heat transfer problem, and the resulting equation is solved
analytically. In fact, it is applied to obtain the temperature profiles produced in the laser heating of the
cornea called LTK.

The results obtained can be extended to other techniques involving laser heating of biological tissue
and, in general, other processes of laser heating that suggest the use of FBLL.
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