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Abstract. We study the viscous van WijngaardenEringen equation:

(1)
∂2u

∂t2
− ∂2u

∂x2
= (Red)−1 ∂3u

∂t∂x2
+ a20

∂4u

∂t2∂x2

which corresponds to the linearized version of the equation that models the acoustic planar
propagation in bubbly liquids. We show the existence of an explicit range, solely in terms
of the constants a0 and Red, in which we can ensure that this equation admits an uniformly
continuous, Devaney chaotic and topologically mixing semigroup on Herzog’s type Banach
spaces.

1. Introduction

In the 1940’s and 50’s, the interest in studying the propagation of pressure waves of
small amplitude in bubbly liquids appeared. The reason was to determine whether it was
possible to take advantage of these acoustical properties to control the sound produced by
propellers, both of surface ships and submerged ship. A vast literature on the subject deals
with theoretical and experimental studies of the various aspects of propagation of pressure
waves of small amplitude in bubbly liquids, see for instance [Wij72].

The acoustic planar propagation perpendicular to and along the x-axis (i.e., 1D flow) in
bubbly liquids is given by the following equation [JKS14, Eq. 4.14]
(2)

∂2u

∂t2
− (1− 2ε(β − 1))

∂2u

∂x2
+ ε

∂2

∂t2

(
∂2u

∂x2

)2

= (Red)
−1 ∂3u

∂t∂x2
+ a20

∂4u

∂t2∂x2
, t ≥ 0, x ∈ R,

being Red = ceL/δ a Reynolds number, where ce(> 0) is the adiabatic sound speed, δ is the
diffusivity of sound [Tho72], and L is a characteristic (macroscopic length). The constant a0
is a Knudsen number corresponds to the dimensionless bubble radius. In addition, γ stands
for the adiabatic index of the liquid and β(> 1) is known as the coefficient of nonlinearity
[Bey97]. This coefficient is given by β = (γ + 1)/2 in the case of a perfect gas.

More details on the formulation of equation (2) can be found in [JKS14] and [JF06].
The linearized version, ε = 0, of equation (2) is known as the viscous (or dissipative) van
Wijngaarden–Eringen equation, see [Wij72, Eri90].
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(3)
∂2u

∂t2
− ∂2u

∂2x
= (Red)

−1 ∂3u

∂t∂x2
+ a20

∂4u

∂t2∂x2
, t ≥ 0, x ∈ R,

Some other classical models in nonlinear acoustics are the Kuznetsov equation, the Wester-
velt equation, and the Kokhlov-Zabolotskaya-Kuznetsov equation. Several initial boundary
problems for these second order in time partial differential equations have been already
solved (see for instance [KL11], [KLM11], [Roz07] and [RP08]).

Many problems in acoustics for the sound propagation are described in terms of the linear
wave equation. The transport equation governing the propagation of second-sound in both
metals and dielectric solids is the well known damped wave equation [Che63, Mau69] (see
also [Jor15] for recent advances in the area). For these two cases, the 1D version of this PDE
coincides with the hyperbolic heat transfer equation. The chaotic behaviour of the solutions
to the abstract Cauchy problem stated from this equation was investigated in [CPT10], see
also [GEP11]. For high wave amplitudes and intensities, phenomena such as wave distortion
and formation of shocks appear, and then it is natural to study chaos for this type of
equations. In [CLR15] the chaotic behaviour of the one-dimensional version of the Moore-
Gibson-Thompson equation is studied. See also the seminal formulation of this equation in
[Sto51, Eq. 7]. Moreover, the strong connection between acoustics and bioengineering and
industry of high intensity sound waves has contributed to the improvement of the research
in this area (see [Cri79], [Kuz71], [Col92]).

To the best of our knowledge, no study on chaotic behavior for equation (1) have been
obtained. Hence, our aim here is to examine the van Wijngaarden-Eringen equation in the
context of a dynamic, yet still analytically tractable, setting.

In this paper, we succeed in to prove the existence of a chaotic dynamics for the van
Wijngaarden–Eringen equation. More precisely, we are able to show that whenever a0 < 1
and

(4)

√
5

6
< a0 Reb <

1

2
,

then equation (1) admits an uniformly continuous semigroup which is Devaney chaotic on
an isomorphic copy of the sequence space c20(N0).

The paper is organized as follows: In section 2 we introduce some basic concepts related
to the study of C0- semigroups and chaos. In Section 3, chaos is also studied for the viscous
van Wijngaarden–Eringen equation. Moreover, we provide a range for the bubble radius
that ensures the existence of chaotic behaviour for the solutions of this equation. Finally, in
Section 4, we give some physical interpretation of the results proved previously.

2. Preliminaries

Let X be a separable infinite-dimensional Banach space. We recall that {Tt}t≥0, with
Tt : X → X a continuous and linear map on X for each t ≥ 0, is a C0-semigroup if T0 = I,
Tt+s = Tt ◦ Ts and lims→t Tsx = Ttx for all x ∈ X and t ≥ 0.



VAN WIJNGAARDEN–ERINGEN EQUATION 3

Let {Tt}t≥0 an arbitrary C0-semigroup on X. It can be shown that

(5) Ax := lim
t→0

1

t
(Ttx− x),

exists on a dense subspace of X; the set of these x, the domain of A, is denoted by D(A).
Then A, or rather (A,D(A)), is called the infinitesimal generator of the semigroup.

Given the following abstract Cauchy problem on X:

(6)

{
ut(t, x) = Au(t, x),

u(0, x) = ϕ(x) ϕ ∈ X,

the solution to (6) can be represented as a C0-semigroup {Tt}t≥0 on X whose infinitesimal
generator is A. If A ∈ L(X), then the operators in the C0-semigroup can be represented as
Tt = etA =

∑∞
k=0(tA)n/n! for all t ≥ 0 (see for instance [EN00, Ch. I, Prop. 3.5]).

A C0-semigroup {Tt}t≥0 on X is said to be hypercyclic if there exists x ∈ X such that
the set {Ttx : t ≥ 0} is dense in X. An element x ∈ X is called a periodic point for the
semigroup {Tt}t≥0 if there exists some t > 0 such that Ttx = x. A C0-semigroup {Tt}t≥0 is
topologically mixing if for any pair U, V of nonempty open sets of X, there exists some t0 ≥ 0
such that Tt(U) ∩ V 6= ∅ for all t ≥ t0. A C0-semigroup {Tt}t≥0 is called Devaney chaotic
if it is hypercyclic and the set of periodic points is dense in X. We point out that these
two requirements also yield the sensitive dependence on the initial conditions, as it was seen
by Banks et al [BBC+92, GEP11]. Further information on the dynamics of C0-semigroups
can be found in [GEP11, Ch. 7]. See also [Eis10] for information regarding the stability
properties of C0-semigroups.

Another variation of the definition of chaos is the notion of distributional chaos introduced
by Schweizer and Smı́tal [SS94], see also [MGOP09, Opr06] for its presentation in the infinite-
dimensional linear setting. A C0-semigroup {Tt}t≥0 on X is said to be distributionally chaotic
if there exists an uncountable subset S ⊂ X and δ > 0 such that, for each pair of distinct
points x, y ∈ S and for every ε > 0, we have Dens({s ≥ 0; ||Tsx − Tsy|| > δ}) = 1 and
Dens({s ≥ 0; ||Tsx − Tsy|| < ε}) = 1, where Dens stands for the upper density of a set of
real positive numbers. The set S is called the scrambled set and the C0-semigroup is said to
be densely distributionally chaotic if S is dense on X.

Now, we present a criterion that ensures Devaney chaos for C0-semigroups. It is a variation
of the (DSW) criterion [DSW97] which depends on verifying that the point spectrum of the
infinitesimal generator of the C0-semigroup contains “enough” eigenvalues. A first criterion
stated in these terms was given for operators by Godefroy and Shapiro in [GS91]. We
will use the following version of the (DSW) Criterion, see [GEP11, Th. 7.30]. It is also
well known that distributional chaos holds whenever the DSW criterion can be applied
[BC12, BBMGP11].

Theorem 2.1. Let X be a complex separable Banach space, and {Tt}t≥0 a C0-semigroup
on X with infinitesimal generator (A,D(A)). Assume that there exists an open connected
subset U and a weakly holomorphic function f : U → X, such that

(1) U ∩ iR 6= ∅,
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(2) f(λ) ∈ ker(λI − A) for every λ ∈ U ,
(3) for any x∗ ∈ X∗, if 〈f(λ), x∗〉 = 0 for all λ ∈ U , then x∗ = 0.

Then the semigroup {Tt}t≥0 is Devaney chaotic and topologically mixing.

A Borel probability measure (µ,B) is said to have full support if for all non-empty open
set U ⊂ X we have µ(U) > 0, and µ is said to be Tt-invariant if for all A ∈ B we have
that µ(A) = µ(T−1t (A)) for all t ≥ 0. A C0- semigroup {Tt}t≥0 is µ-strongly mixing if
limt→∞ µ(A∩ T−1t (B)) = µ(A)µ(B), for any A,B borelian sets of X. The existence of these
measures are ensured if hypothesis of the DSW criterion are satisfied [MAP15].

Finally, we recall the definition of the space of analytic functions of Herzog type. Given
ρ > 0, let:

Xρ =

{
f : R→ C; f(x) =

∞∑
n=0

anρ
n

n!
xn, (an)n≥0 ∈ c0(N0)

}
endowed with the norm ‖f‖ρ = supn≥0 |an|. This space is isometrically isomorphic to c0(N0).
For examples and references on Herzog spaces, we refer the reader to [CLR15].

3. Existence of chaotic behavior

In this section, we will study the chaotic behavior of the viscous van Wijngaarden–Eringen
equation

(7)
∂2u

∂t2
(t, x)− ∂2u

∂x2
(t, x) = (Reb)

−1 ∂3u

∂t∂x2
u(t, x) + a20

∂4u

∂t2∂x2
(t, x), t ≥ 0, x ∈ R,

in the space of analytic functions of Herzog type. We recall that a0 > 0 denotes the dimen-
sionless bubble radius and Reb is a Reynolds number. Since the second order differential
operator ∂xx turns out to be a bounded operator on Xρ, assuming the condition

(8) a0 < 1,

we obtain ‖a20∂xx‖ρ < 1 and, consequently, the inverse operator (1− a20∂xx)−1 exists on Xρ.

Then we can express (7) as a first order equation on the product space X := Xρ ⊕ Xρ.
Setting u1 = u and u2 = ∂u

∂t
we can pose the following abstract Cauchy problem:

(9)


∂

∂t

(
u1
u2

)
=

(
0 I

(1− a20∂xx)−1∂xx (Reb)
−1(1− a20∂xx)−1∂xx

)(
u1
u2

)
;

(
u1(0, x)
u2(0, x)

)
=

(
ϕ1(x)
ϕ2(x)

)
, x ∈ R.

Then, the operator-valued matrix

(10) A :=

(
0 I

−(1− a20∂xx)−1∂xx (Reb)
−1(1− a20∂xx)−1∂xx

)
defines a bounded operator on X and, consequently, we have that {etA}t≥0 is the solution C0-
semigroup of (9). See also [CPT10, Sec. 2.2] for a similar representation of the solution in the
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case of the wave equation, and [CLR15, Sec. 3] for the case of the Moore-Gibson-Thompson
equation.

The following theorem is the main result in this paper.

Theorem 3.1. Suppose that a0 < 1 and

(11) 0.3726 ≈
√

5

6
< a0 Reb <

1

2
,

then for each ρ satisfying

(12) ρ >
r0

( 1
2a20 Reb

− 3r0)a0
,

where r0 := 1
2

√
1−4a20 Re2b
2a20 Reb

, the operator A generates a uniformly continuous semigroup which

is Devaney and distributionally chaotic, topologically mixing and admits a strongly mixing
measure with full support on Xρ ⊕Xρ.

Proof. Fix an arbitrary ρ > 0 satisfying (12). Our purpose is to apply Theorem 2.1. Firstly,
we define

(13) U := {z ∈ C : |z| < r0}.

Note that 1 − 4a20 Re2b > 0 due to the second inequality in (11). Hence r0 > 0 and
U ∩ iR 6= ∅. This proves condition (1) in Theorem 2.1.

Secondly, for each λ ∈ U we define

(14) Rλ :=
λ2

1 + (Reb)−1λ+ a20λ
2
,

and weakly analytic functions fz0,z1 : U → Xρ ⊕Xρ by

(15) fz0,z1(λ) :=

(
ϕλ
λϕλ

)
,

where ϕλ(x) := z0 cosh(
√
Rλx) + z1 sinh (

√
Rλx), with z0, z1 ∈ C.

It is easy to verify that

(16) ϕ
′′

λ(x) + (Reb)
−1λϕ′′λ(x) + a20λ

2ϕ′′λ(x) = λ2ϕλ(x), x ∈ R,

and therefore Afz0,z1(λ) = λfz0,z1(λ). We will show that fz0,z1(λ) ∈ Xρ ⊕ Xρ for all λ ∈ U.
Indeed, first note that we can rewrite ϕλ as follows:

(17) ϕλ(x) = cosh

(
ρx

√
Rλ

ρ2

)
z0 + sinh

(
ρx

√
Rλ

ρ2

)
z1 =

∞∑
n=0

an(λ)
(ρx)n

n!
, x ∈ R,

where an(λ) = z0
R
n/2
λ

ρn
, n = 0, 2, 4, . . . and an(λ) = z1

√
Rλ

R
(n−1)/2
λ

ρn
, n = 1, 3, 5, . . .
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Therefore, by definition, it is enough to prove that |Rλ
ρ2
| < 1. Indeed, observe that

(18) a20λ
2 + (Reb)

−1λ+ 1 = a20

[(
λ+

1

2a20 Reb

)
+ 2r0

] [(
λ+

1

2a20 Reb

)
− 2r0

]
.

Define α :=
1

2a20 Reb
+ 2r0 and β :=

1

2a20 Reb
− 2r0. Then 0 < β < α and for all λ ∈ U we

have

(19) |λ+ α| ≥ α− |λ| ≥ β − r0 and |λ+ β| ≥ β − |λ| ≥ β − r0.

The hypothesis
√

5/6 < a0 Reb implies that
1

2a20 Reb
− 3r0 > 0. Therefore ρ > 0 and a

calculation gives

(20) β − r0 >
r0
ρa0

.

The above considerations imply,∣∣∣Rλ

ρ2

∣∣∣ =
|λ|2

ρ2a20|λ+ α||λ+ β|
< r20

1

ρ2a20

ρ2a20
r20

= 1,

for all λ ∈ U, proving the claim. It proves condition (2) in Theorem 2.1.
It only remains to show that for any x∗ ∈ X∗ρ ⊕ X∗ρ the functions λ → 〈fz0,z1(λ), x∗〉,

z0, z1 ∈ C, are holomorphic on U , and if they all vanish on U , then x∗ = 0. Since Xρ is
isometrically isomorphic to c0, in what follows, we identify the dual space X∗ρ with `1.

Let x∗ ∈ X∗ρ ⊕ X∗ρ . It can be represented in a canonical way by x∗ = (x∗1, x
∗
2) =

((x∗1,n)n≥0, (x
∗
2,n)n≥0) ∈ `1 ⊕ `1. Then, we have

(21) 0 = 〈fz0,z1(λ), x∗〉 = 〈ϕλ, x∗1〉+ 〈λϕλ, x∗2〉,

for all λ ∈ U, z0, z1 ∈ C. This last equation can be reformulated in the following way:

0 =
∞∑
n=0

an(λ)x∗1,n + λ

∞∑
n=0

an(λ)x∗2,n

= z0x
∗
1,0 + λz0x

∗
2,0 +

z1
ρ

√
Rλx

∗
1,1 +

z1
ρ
λ
√
Rλx

∗
2,1 +

z0
ρ2
Rλx

∗
1,2 +

z0
ρ2
Rλλx

∗
2,2 + . . .

(22)

Let λ0 = 0. It is clear that λ0 ∈ U and Rλ0 = 0. Evaluating (22) in λ0, we get the
following equation:

z0x
∗
1,0 = 0(23)

for all z0 ∈ C. Therefore, x∗1,0 = 0.
Now, we divide (22) by λ and we get:
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0 =
1

λ

(
∞∑
n=0

an(λ)x∗1,n + λ

∞∑
n=0

an(λ)x∗2,n

)

= z0x
∗
2,0 +

z1
ρ

√
Rλ

λ
x∗1,1 +

z1
ρ

√
Rλx

∗
2,1 +

z0
ρ2
Rλ

λ
x∗1,2 +

z0
ρ2
Rλx

∗
2,2 + . . .

= z0x
∗
2,0 +

z1
ρ

1√
1 + (Reb)−1λ+ a20λ

2
x∗1,1 +

z1
ρ

√
Rλx

∗
2,1

+
z0
ρ2

λ

(1 + (Reb)−1λ+ a20λ
2)
x∗1,2 +

z0
ρ2
Rλx

∗
2,2 + . . .

(24)

As Rλ0 = 0, evaluating (24) in λ0 we get:

z0x
∗
2,0 +

z1
ρ
x∗1,1 = 0.(25)

for all z0, z1 ∈ C. Therefore, x∗2,0 = 0 and x∗1,1 = 0.

Now, we divide (22) by λ
√
Rλ and we get:

(26) 0 =
1

λ
√
Rλ

(
∞∑
n=0

an(λ)x∗1,n + λ
∞∑
n=0

an(λ)x∗2,n

)
.

So that equation (26) can be reduced to:

0 =
z1
ρ
x∗2,1 +

z0
ρ2

√
Rλ

λ
x∗1,2 +

z0
ρ2

√
Rλx

∗
2,2 + . . .

=
z1
ρ
x∗2,1 +

z0
ρ2

1√
1 + (Reb)−1λ+ a20λ

2
x∗1,2 +

z0
ρ2

λ√
1 + (Reb)−1λ+ a20λ

2
x∗2,2 + . . .

(27)

Evaluating (27) in λ0, we get:

z1
ρ
x∗2,1 +

z0
ρ2
x∗1,2 = 0(28)

for all z0, z1 ∈ C. Therefore, x∗2,1 = 0 and x∗1,2.
Proceeding inductively, we will get that x∗i,n = 0 for i = 1, 2 and n ∈ N. We finally have

x∗ = 0 and we conclude the result by applying Theorem 2.1. �

Remark 3.2. Recalling that a0 > 0 denotes the bubble radius and Reb = ceL/δ is a Reynolds
number, where L denote a characteristic length, ce the adiabatic sound speed and the positive
constant δ > 0 is known as the diffusivity of sound, we observe that the condition (11),
namely

(29) 0.3726 ≈
√

5

6
< a0 Reb <

1

2
,
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together with the general condition a0 < 1, give an explicit range for the bubble radius in
order to obtain chaotic behavior in the given model.

This estimation can be compared with the physical one of

(30) 0.4899 ≈
√

6

5
< a0 Reb,

given in [JKS14, Eq. 4.20] that has to be satisfied by the Reynolds number.

4. Conclusions

These results can be understood in the following sense. For the hypercyclicity, given an
arbitrary acoustic planar wave close to the origin one can determine a wave far away enough
in order that, as time goes by, we can have that its propagation through a bubbly liquid
gives us a wave at the origin as close as we want to the initial one. The Devaney chaos also
yields the existence of periodic waves similar as much as we want to a prescribed one close
to the origin.

These theoretical results present some limitations: The amplitudes required to resemble
a prescribed wave at the origin can be so wide that cannot even be easily generated.

Furthermore, we recall that the existence of Devaney chaos yields the sensitive dependence
of the solutions to the problem respect to the initial conditions. This affirms that given some
planar wave, one can find a small perturbation, such that after a long enough period of time
the behavior of both waves is completely different.

One last comment, the existence of distributional chaos asserts, roughly speaking, that
there is an uncountable set of initial conditions such that we can pick a pair of initial
conditions from this set and, as time goes by, there will be long time intervals in which the
behaviour of the waves close to the origin are very similar for both initial waves. On the
other hand, there will be also intervals as long as the previous ones in which the waves are
quite different depending on which one of these two initial conditions we have chosen, see
[BCMASS15].
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