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a b s t r a c t

We investigate the Blackstock–Crighton–Westervelt equation which models non-
linear acoustic wave propagation in thermally relaxing viscous fluids. We prove
existence and regularity, in a Lp −Lq setting, of time-periodic solutions for a given
sufficiently small time-periodic forcing data, and homogeneous Dirichlet boundary
conditions over a cylindrical domain. We show maximal Lp-regularity for the
abstract linearized model. We use techniques of operator-valued Fourier multiplier
theorems combined with a generalized version of the implicit function theorem.
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1. Introduction

The Westervelt equation
utt − b∆ut − c2∆u =

(
1
c2 (1 + B

2A )(ut)2
)

t

here u represents the potential of the velocity field, c is the speed of sound, b denotes the diffusivity of
ound and B/A is an acoustic parameter of nonlinearity, is a classical, and widely used model describing the
ropagation of sound in fluids and is characterized by the presence of a viscoelastic damping [19]. Taking
nto account the heat conductivity of the fluid, denoted by a, we obtain the Blackstock–Crighton–Westervelt
BCW ) equation

(a∆ − ∂t)(utt − b∆ut − c2∆u) =
(

1
c2 (1 + B

2A )(ut)2
)

tt

(1.1)
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which is a higher-order model in nonlinear acoustics that describes the propagation of sound waves in
monatomic gases such as Helium, Xenon or Argon. In such model, a := νPr−1, where ν is the kinematic
iscosity and Pr denotes the Prandtl number. For a detailed derivation of Eq. (1.1), we refer to [3, Chapter
] and [5].

The BCW equation has been recently intensively investigated [3,4,6,7,14,17]. R. Brunnhuber and B.
altenbacher [3,6] studied the homogeneous Dirichlet boundary problem (1.1) and showed local existence
f a unique (weak) solution in the Hilbert space L2(Ω) where Ω ⊂ Rn is open, bounded and connected,

by means of a combination between regularity results for the heat equation and the linearized Westervelt
equation together with Banach’s fixed point theorem. Then, global well-posedness and exponential decay of
solutions were proved by using energy estimates for the linearized problem and a fixed point argument [6].

However, in [6] a restriction on the dimension of Ω is considered (n = 1, 2, 3) in order to use various
embedding theorems. This restriction was lifted in [7] by Brunnhuber and Meyer using techniques based
on maximal regularity and the implicit function theorem. Using such technique, they are able to study
the linearized version of (1.1) in Lq(Ω) when 1 < q < ∞ and the BCW equation for q > max{n/4 +
/2, n/3}. Notably, they proved the existence of a unique global solution of the inhomogeneous Dirichlet
oundary problem (1.1) within a certain regularity of class L1(R+;Lq(Ω)) and which depends continuously

on sufficiently small initial and boundary data. We note that the results from [6] were also extended
by Brunnhuber in [4] where existence of strong solutions for (1.1) in the vector-valued Lebesgue space
L2(0, T ;L2(Ω)) was proved.

The main objective of this paper is to study well-posedness of the BCW equation with periodic initial
conditions and a time-periodic forcing term belonging to the vector-valued Lebesgue space Lp(T, Lq(Ω)).

The mathematical analysis of the BCW equation with a time-periodic forcing term and inhomogeneous
Dirichlet boundary conditions was recently initiated by Celik and Kyed [14]. These authors showed that
for time-periodic data f sufficiently restricted in size and belonging to the vector-valued Lebesgue space
Lq(T, Lq(Ω)), a time-periodic solution u ∈ W 3,q

per(T, Lq(Ω)) ∩ W 1,q
per(T,W 4,q(Ω)) always exists whenever

max{2, n/2} < q < ∞ [14, Theorem 1.1]. Physically, this infers that the dissipative effects given by the
term b∆ut are enough to avoid the occurrence of an unbounded solution when the system is excited by a
periodic force within the Blackstock–Crighton–Westervelt model [14, Section 1]. The proofs in [14] are based
on a priori estimates for the linear problem and an application of the contraction mapping principle.

In this paper, we are able to obtain solvability of the initial–boundary value problem in the vector-valued
Lebesgue spaces Lp(T;Lq(Ω)) for the full range 1 < p, q < ∞. This will be achieved employing a technique
that uses operator-valued Fourier multipliers (or symbols) associated to the linearized equation in order to
obtain Lp-maximal regularity. This technique has been used by several authors [8–11,13,22] and allows to
obtain in a simpler way a priori estimates for the linearized equation, to the cost of a previous checking of a
so-called R-boundedness condition on the symbols. Then a generalized version the implicit function theorem
can be employed. Our method relies on very recent abstract results regarding the linearized non homogeneous
version for the Moore–Gibson–Thompson equation proved in the general setting of UMD spaces [15], and
abstract results for cylindrical boundary value problems due to Nau et al. [25,26], combined with a criteria of
R-boundedness due to Denk, Hieber and Prüss [16, Proposition 4.10]. Another advantage is that our method
is sufficiently general to admit Ω as a cylindrical domain.

It should be noted that a similar approach has been taken for the authors in recent works for other two
models of interest, namely, the Moore– Gibson–Thompson equation with two temperatures [24], and the Van
Wijngaarden–Eringen equation [23]. However, the present paper differs from these in several aspects. First,
the Blackstock–Crighton–Westervelt equation has a different dynamics characterized by a operator-valued
Fourier multiplier that has their own geometry and, consequently, need different conditions for well-posedness
than those considered in [23,24]. Second, and most importantly, in the present paper we are interested in the
nonlinear equation (1.1) instead of only the linear one, as in the above cited references. This new challenge
2
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is settled by a procedure using the implicit function theorem, that takes into account the very particular
form of the nonlinear term given by the BCW -equation.

By an appropriate combination of these described tools, we are able to prove the existence of a unique
time periodic solution of the nonlinear problem⎧⎨⎩

(a∆ − ∂t)(utt − b∆ut − c2∆u) =
( 1

c2 (1 + B
2A )(ut)2)

tt
+ f(t), t ∈ T := [0, 2π];

u(0) = u(2π) u′(0) = u′(2π) u′′(0) = u′′(2π),
(1.2)

on the cylindrical domain Ω = Rn
+ ×V, V ⊂ Rd with homogeneous Dirichlet boundary conditions. Moreover,

this solution depends continuously on a sufficiently small time-periodic forcing term f ∈ Lp(T;Lq(Ω)) where
1 < p, q < ∞.

This paper is organized as follows: Section 2 is devoted to the necessary tools that we will use throughout
the paper. They include the vector-valued Banach spaces of periodic functions, and the notion of R-
boundedness, needed to recall the main abstract result of [15]. We also recall in this section the notion
of R-sectorial operator and how this property is connected with R-boundedness of certain sets by means of
a functional calculus (Theorem 2.9). Section 3 states the main abstract result of this paper (Theorem 3.1).
It says that for certain classes of closed and linear operators A, the linearized BCW equation

(−aA− ∂t)(u′′(t) + c2Au(t) + bAu′(t)) = f(t), t ∈ T := [0, 2π], (1.3)

admits maximal Lp-regularity. The section finishes with an application to the linearized Blackstock–
Crighton–Westervelt equation with periodic initial conditions and subject to homogeneous Dirichlet bound-
ary conditions on a cylindrical domain (see Theorem 3.4).

Finally, in Section 4 we study the existence and regularity of solutions for the Blackstock–Crighton–
Westervelt Eq. (1.1) adding an external forcing term f ∈ Lp(T, Lq(Ω)) where Ω = U × V is a cylindrical
domain. Our main result in this section (Theorem 4.5) asserts the existence of a unique solution that depends
continuously on f and belongs to the following maximal regularity space

Sp(Lq(Ω)) := {u ∈ W 1,p
per(T,W 4,q(Ω)) ∩ Lp(T,W 4,q(Ω)) :

u′ ∈ Lp(T,W 4,q(Ω)) ∩W 2,p
per(T, Lq(Ω)),∆qu

′ ∈ W 1,p
per(T, Lq(Ω))}.

. Preliminaries

In what follows, X will denote a Banach space and 1 < p < ∞. We will first recall some preliminary
esults about well-posedness in vector-valued Lp-spaces for third order degenerate equations that can be
ound in [12,15]. In the mentioned papers, the authors succeed in characterizing Lp-well-posedness for the

model:
α(Mu′)′′(t) + (Nu′)′(t) − βEu(t) − γHu′(t) = f(t), t ∈ T := [0, 2π], (2.1)

ith initial conditions u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π) and α, β, γ are real numbers, M,N,E

and H are closed linear operators defined on a Banach space X with domains D(M), D(N), D(E) and D(H),
espectively.

We define the vector-valued function spaces:

Wn,p
per (T, X) := {u ∈ Lp(T, X) : there exists v ∈ Lp(T, X), v̂(k) = (ik)nû(k) for all k ∈ Z}.

here
f̂(k) := 1

2π

∫ 2π

0
e−iktf(t)dt

for all k ∈ Z denotes the kth Fourier coefficient of a function f ∈ L1(T, X).

3
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We recall the following important properties related to the spaces Wn,p
per (T, X):

(i) Let m,n ∈ N. If n ≤ m, then Wm,p
per (T, X) ⊆ Wn,p

per (T, X).
(ii) If u ∈ Wn,p

per (T, X), then for any 0 ≤ k ≤ n− 1, we obtain u(k)(0) = u(k)(2π).
(iii) Let u ∈ Lp(T, X), then u ∈ W 1,p

per(T, X) if and only if u is differentiable a.e. on T and u′ ∈ Lp(T, X),
n this case u is actually continuous and u(0) = u(2π) [2, Lemma 2.1].

Analogously, given u ∈ Lp(T, X), then u ∈ W 2,p
per(T, X) if and only if u is twicely differentiable a.e.,

′, u′′ ∈ Lp(T, X), and u(0) = u(2π), u′(0) = u′(2π).
In [15] the following space of maximal regularity was introduced:

efinition 2.1. Let us define the following space of maximal regularity:

Sp(E,H,M,N) := {u ∈ W 1,p
per(T, [D(E) ∩D(H)]) ∩ Lp(T, [D(E) ∩D(H)]) :

u′ ∈ Lp(T, [D(E) ∩D(H)]),Mu′ ∈ W 2,p
per(T, X), Nu′ ∈ W 1,p

per(T, X)}.

The space Sp(E,H,M,N) is a Banach space endowed with the norm

∥u∥Sp(E,H,M,N) :=∥u∥Lp(T,X) + ∥u′∥Lp(T,X) + ∥Hu′∥Lp(T,X) + ∥Eu∥Lp(T,X) + ∥(Nu′)′∥Lp(T,X)

+ ∥(Mu′)′′∥Lp(T,X) + ∥Nu′∥Lp(T,X) + ∥Mu′∥Lp(T,X).

Eq. (2.1) is said to be strongly Lp(X)-well-posed if for each f ∈ Lp(T, X), there exists a unique solution
u ∈ Sp(E,H,M,N) that satisfies (2.1) for almost all t ∈ T. We also need the following definition provided
in [15]:

Definition 2.2. Let M,N,E and H be closed linear operators defined on a Banach space X with domains
D(M), D(N), D(E) and D(H) such that D(E) ∩ D(H) ⊂ D(M) ∩ D(N), then the (M,N)-resolvent of E
and H is defined as the set:

ρM,N (E,H) := {s ∈ R : αis3M + s2N + βE + γisH : [D(E) ∩D(H)] → X

is invertible and [αis3M + s2N + βE + γisH]−1 ∈ B(X)}. (2.2)

Here, [D(E) ∩D(H)] is a Banach space with the standard norm ∥x∥[D(E)∩D(H)] := ∥x∥ + ∥Ex∥ + ∥Hx∥.

Before we recall the main theorem obtained in [15] that will serve us a tool for providing one of our main
results we need to define the concepts of R-boundedness and UMD-spaces.

Definition 2.3. Let X and Y be Banach spaces. A subset T of B(X,Y ) is called R-bounded if there is a
constant c ≥ 0 such that

∥(T1y1, . . . , Tnyn)∥R ≤ c∥(y1, . . . , yn)∥R, (2.3)
for all T1, . . . , Tn ∈ T , y1, . . . , yn ∈ X, n ∈ N where

∥(y1, . . . , yn)∥R := 1
2n

∑
ϵj∈{−1,1}n

 n∑
j=1

ϵjyj

, y1, . . . , yn ∈ X.

We refer the reader to [16] for the properties preserved under R-boundedness. We also recall the notion
of UMD spaces. For more details [1, Section III.4.3-III.4.5].

Definition 2.4. A Banach space X is said to have the Unconditional Martingale Difference property
(UMD) if for each p ∈ (1,∞) there exists a constant Cp > 0 such that for any martingale (fn)n≥0 ⊂

p(Ω ,Σ , µ;X) and any choice of signs (ξn)n≥0 ⊂ {−1, 1} and any N ∈ Z+ the following estimate holds⏐⏐⏐⏐⏐⏐f0 +
N∑
ξn(fn − fn−1)

⏐⏐⏐⏐⏐⏐
Lp(Ω,Σ ,µ;X)

≤ Cp∥fN ∥Lp(Ω,Σ ,µ;X).

n=1

4
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The following characterization obtained in [15] will serve us as a useful tool for providing Lp-well-
osedness for the Blackstock–Crighton–Westervelt equation. In this characterization well-posedness is
quivalent to the R-boundedness of certain sets of operators related to the model.

heorem 2.5 ([15]). Let 1 < p < ∞ and α, β, γ ∈ R. Let E,H,M,N be closed linear operators on a UMD

pace X satisfying D(E) ∩D(H) ⊂ D(M) ∩D(N). Then, the next two assertions are equivalent:

(i) (2.1) is strongly Lp(X)-well posed;
ii) Z ⊂ ρM,N (E,H) and the sets {ik3αMNk : k ∈ Z}, {k2NNk : k ∈ Z}, {kγHNk : k ∈ Z} {kNk : k ∈ Z}

are R-bounded where
Nk := −[iαk3M + k2N + βE + ikγH]−1, k ∈ Z. (2.4)

oreover, for each f ∈ Lp(T, X) there exists a constant C > 0, independent of f , such that

∥u∥Sp(E,H,M,N) ≤ C∥f∥Lp .

Given Σϕ ⊂ C, we define the open sector Σϕ := {λ ∈ C \ {0} : | arg λ| < ϕ}. In what follows we denote as
(Σϕ) the set of holomorphic functions f : Σϕ → C. If a function f ∈ H(Σϕ) is bounded too then we say

hat f ∈ H∞(Σϕ). This set can be endowed with the norm ∥f∥ϕ
∞ := sup| arg λ|<ϕ |f(λ)|.

We define the subspace H0(Σϕ) of H(Σϕ) as follows: H0(Σϕ) :=
⋃

α,β<0{f ∈ H(Σϕ) : ∥f∥ϕ
α,β < ∞}, with

f∥ϕ
α,β := sup|λ|≤1 |λαf(λ)| + sup|λ|≥1 |λ−βf(λ)|.

We now recall the notion of sectorial operators. Most of the properties concerning this class of operators
an be found in [18].

efinition 2.6 ([21]). Given a closed linear operator A defined on a complex Banach space X, A is said to
e a sectorial operator if:

(i) D(A) = X,R(A) = X, (−∞, 0) ⊂ ρ(A);
ii) ∥t(t+A)−1∥ ≤ M for all t > 0 and some M > 0.

emark 2.7. If condition (ii) is replaced by the R-boundedness of the set {t(t+A)−1}t>0 then A is said
o be R-sectorial.

If A is a sectorial operator then we have Σθ ⊂ ρ(−A) for some θ > 0 and moreover sup| arg λ|<θ ∥λ(λ +
)−1∥ < ∞. We denote the spectral angle of a sectorial operator A by

θA = inf{θ : Σπ−θ ⊂ ρ(−A), sup
λ∈Σπ−θ

∥λ(λ+A)−1∥ < ∞}.

efinition 2.8 ([21]). Given a sectorial operator A defined on a complex Banach space X, we denote as
∞(X) the space of all operators that admit a bounded H∞− calculus, that is, if there exist θ > θA and a

onstant Kθ > 0 such that ∥f(A)∥ ≤ Kθ∥f∥θ
∞ for all f ∈ H0(Σθ). We also define the H∞(X)-angle as

θ∞
A := inf{θ > θA : ∥f(A)∥ ≤ Kθ∥f∥θ

∞ for all f ∈ H0(Σθ) holds }.

In the setting of R-boundedness, there are an analogous concept for operators admitting an R-bounded
∞−calculus (or simply RH∞−calculus), and this class of operators is denoted as RH∞(X). Specifically,

f A ∈ H∞(X) satisfies that the set

∞ θ
{g(A) : g ∈ H (Σθ), ∥g∥∞ ≤ 1}
5
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is R-bounded for some θ > 0 then it is said that A admits an R-bounded H∞−calculus and that A belongs
o the class RH∞(X). The corresponding angle will be noted as θR∞

A . See [21].
For examples of operators that admit a RH∞−calculus and bounded H∞-calculus we refer to [20,21,24]

r [23] and references therein.
Finally, we need the following theorem given in [16, Proposition 4.10] which provides an easier condition

o ensure the R-boundedness of a certain set of operators.

heorem 2.9. Let A ∈ RH∞(X) and suppose that {gλ}λ∈Λ ⊂ H∞(Σθ) is uniformly bounded for some
> θR∞

A , where Λ is an arbitrary index set. Then the set {gλ(A)}λ∈Λ is R-bounded.

We recall the general implicit function theorem. In such theorem D will denote the Fréchet derivative
here, if needed, a subindex indicates the variable under which such derivative acts.

heorem 2.10. Let X,Y , and Z be Banach spaces and let Ω be an open subset of X × Y . Let C be a
ontinuously differentiable map from Ω to Z. If (x̂, ŷ) ∈ Ω is a point such that DyC(x̂, ŷ) is a bounded,
nvertible, linear map from Y to Z, then there is an open neighborhood G of x̂, and a unique function

: G → Y such that
C(x, ψ(x)) = C(x̂, ŷ), ∀x ∈ G.

Moreover, ψ is continuously differentiable and ψ′(x) = −[DyC(x, ψ(x))]−1DxC(x, ψ(x)).

3. Strongly Lp(X)-well-posedness for the linearized Blackstock–Crighton–Westervelt equation

The linearization of the BCW equation in a general abstract form on a Hilbert space was first considered
by Brunnhuber and Kaltenbacher in [6]. They apply the theory of operator semigroups and prove that the
underlying semigroup is analytic on two different phase spaces which leads, together with certain spectral
properties of the generator, to two exponentially decaying energy functionals. Moreover, they provide
existence and uniqueness results for the solutions of the linear model. From a different perspective, in the
Ref. [17] the authors are able to give an explicit representation of the solution for the linear model by means
of two classes of related strongly continuous families of bounded and linear operators.

In this section we will take a direct approach to the linearized BCW equation, in the setting of a Banach
space X satisfying a geometrical condition (UMD), avoiding reduction to a first-order system as done in [6].

We state the main abstract result of this paper.

Theorem 3.1. Let X be a UMD-space, 1 < p < ∞, a, b, c > 0. Suppose that A ∈ RH∞(X) has angle θR∞
A ∈

(0, arctan(b/c2)) and 0 ∈ ρ(A). Then for each f ∈ Lp(T, X) the linearized Blackstock–Crighton–Westervelt
equation:

(−aA− ∂t)(u′′(t) + c2Au(t) + bAu′(t)) = f(t), t ∈ T := [0, 2π], (3.1)

admits a unique solution u ∈ W 1,p
per(T, D(A2)) ∩ Lp(T, X) with u′ ∈ W 2,p

per(T, X) ∩ Lp(T, D(A2)) and
Au ∈ W 1,p

per(T, X) that satisfies (3.3) for a.a. t ∈ T. (i.e. is strongly Lp(X)-well posed).

Proof. We first note that Eq. (3.3) can be expressed as:

− u′′′(t) − (a+ b)Au′′(t) − (abA+ c2)Au′(t) − ac2A2u(t) = f(t), t ∈ T := [0, 2π], (3.2)

and then it labels into (2.1) for M = I, N = −(a+ b)A E = A2, H = (abA2 + c2A), α = −1 and β = ac2,
γ = 1.
6
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Note that the operators M,N and E are closed. Moreover, since 0 ∈ ρ(A) and A is closed, we can easily
educe that H is closed, too. Also, we have that D(E) ∩D(H) = D(A2) ⊂ D(A) = D(M) ∩D(N).

We point out that for proving Lp-well posedness of our equation we have to check assertion (ii) in
heorem 2.5, where

Nk := −[iαk3M + k2N + βE + ikγH]−1 = −[−ik3 − k2(a+ b)A+ ac2A2 + ik(abA2 + c2A)]−1,

or k ∈ Z. An easy computation shows that:

Nk = [−aA− ik]−1[−k2 + c2A+ bAik]−1.

t follows that

Nk = 1
a(c2 + bik)

[
ik

a
+A

]−1 [
−k2

(c2 + bik) +A

]−1

= 1
ik3 ck(ck +A)−1dk(dk +A)−1,

here ck = ik
a and dk = −k2

(c2+bik) .
Since 0 < θR∞

A < arctan(b/c2) there exists s > θR∞
A such that s < arctan(b/c2). For each z ∈ Σs and

∈ Λ := Z \ {0}, define

F1(k, z) = ck(ck + z)−1 =
(

1 + az

ik

)−1

F2(k, z) = dk(dk + z)−1 =
(

1 + −(c2 + ibk)z
k2

)−1

.

Observe that the fraction az
ik belongs to the sector Σs+ π

2
and that if s < π/2 then such a sector does not

ontain the semi-axis (−∞, 0]. On the other hand, for all k ∈ Λ we note that the fraction 1
dk

= − c2

k2 − i b
k

elongs to the sector Σπ−arctan(b/c2). Thus, the fraction −(c2+ibk)z

k2 belongs to the sector Σs+π−arctan(b/c2)
nd, therefore, if s < arctan(b/c2) ≤ π/2 then such a sector does not contain the semi-axis (−∞, 0].

We conclude that both z
ck

and z
dk

belong to the sector Σs+π−arctan(b/c2) where s < arctan(b/c2) and we
an assert that the distance from the sector Σs+π−arctan(b/c2) to −1 is always positive. As a consequence,
here exist positive constants C1, C2 > 0 independent of k ∈ Z and z ∈ Σs such that:

|F1(k, z)| =
⏐⏐⏐ 1
1 + z

ck

⏐⏐⏐ ≤ C1, |F2(k, z)| =
⏐⏐⏐ 1
1 + z

dk

⏐⏐⏐ ≤ C2.

heorem 2.9 shows that the sets {F1(k,A)}k∈Λ and {F2(k,A)}k∈Λ are R-bounded. Moreover, since A is
nvertible, and c0 = d0 = 0, the operators H1(k) := (ck + A)−1 and H2(k) := (dk + A)−1 exist for all

∈ Z. Consequently, H1(k), H2(k) belong to B(X) for all k ∈ Z and the sequences {ck(ck + A)−1}k∈Z and
dk(dk +A)−1}k∈Z are R-bounded.

As a consequence of the above and the permanence properties of R-bounded sets [16], we obtain that
Nk}k∈Z is R-bounded. Now, we proceed to prove the R-boundedness of the sets {ik3αMNk : k ∈ Z},
k2NNk : k ∈ Z}, {kγHNk : k ∈ Z} and {kNk : k ∈ Z}. Indeed,

ik3MNk = ck(ck +A)−1dk(dk +A)−1

nd then the conclusion follows immediately. Considering the identity A(ck + A)−1 = I − ck(ck + A)−1 we
ave:

k2NNk = −k2(a+ b)ANk = − (a+ b)
dk(dk +A)−1 + (a+ b)

ck(ck +A)−1dk(dk +A)−1.

ik ik

7
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Since the sets { (a+b)
ik }k∈Λ, {dk(dk +A)−1} and {ck(ck +A)−1dk(dk +A)−1}k∈Z are R-bounded, we obtain

sing the previous identity that the set {k2NNk}k∈Z is R-bounded, too. Moreover, using again the identities
(dk +A)−1 = I − dk(dk +A)−1 and A(ck +A)−1 = I − ck(ck +A)−1 we obtain

kγCNk = kabA2Nk + kc2ANk = kabA2Nk

+ c2

ik2 [dk(dk +A)−1 − ck(ck +A)−1dk(dk +A)−1]

= − b

ik2 + b

ik2 dk(dk +A)−1 + b

ik2 ck(ck +A)−1 − b

ik2 ck(ck +A)−1dk(dk +A)−1

+ c2

ik2 dk(dk +A)−1 − c2

ik2 ck(ck +A)−1dk(dk +A)−1

here the sets { c2

aik2 }k∈Λ and { b
ik2 }k∈Λ are bounded and the sets {ck(ck + A)−1} and {dk(dk + A)−1} are

-bounded. We conclude that the set {kγHNk}k∈Z is R-bounded. To end, we have

kNk = 1
ik2 (ik3MNk),

and then {kNk}k∈Z is also R-bounded. By Theorem 2.5 we conclude that Eq. (3.3) is strongly Lp(X)-well
posed. □

Remark 3.2. Observe that if A is a sectorial operator that admits a bounded H∞−calculus of angle
θR∞

A ∈ (0, arctan(b/c2)) and 0 ∈ ρ(A), then the conclusion of Theorem 3.1 also holds.

In case of A = −∆ with Dirichlet boundary conditions on X = Lq(Ω) we immediately get the following
result that complements and extends recent results in [14].

Corollary 3.3. Given 1 < p, q < ∞ and a, b, c > 0. For each f ∈ Lp(T, Lq(Ω)) the linearized
Blackstock–Crighton–Westervelt equation:

(a∆ − ∂t)(u′′(t) − c2∆u(t) − b∆u′(t)) = f(t), t ∈ T := [0, 2π], (3.3)

dmits a unique solution u ∈ W 1,p
per(T,W 4,q(Ω)) ∩ Lp(T, Lq(Ω)) with u′ ∈ W 2,p

per(T, Lq(Ω)) ∩ Lp(T,W 4,q(Ω))
nd Au ∈ W 1,p

per(T, Lq(Ω)) that satisfies (3.3) for a.a. t ∈ T. (i.e. is strongly Lp(Lq(Ω))-well posed).

We now consider the linearized Blackstock–Crighton–Westervelt equation subject to homogeneous Dirich-
et boundary conditions on a cylindrical domain Ω :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−a(−∆) − ∂t)(∂2
t u(x, y, t) + c2(−∆)u(x, y, t) + b(−∆)∂tu(x, y, t))

= f(x, y, t), for (x, y, t) ∈ Ω × (0, 2π);

BUu(x, y, t) = 0, for (x, y, t) ∈ ∂U × V × (0, 2π);

BV u(x, y, t) = 0, for (x, y, t) ∈ U × ∂V × (0, 2π);

u(x, y, 0) = u(x, y, 2π), ∂tu(x, y, 0) = ∂tu(x, y, 2π),

∂2
t u(x, y, 0) = ∂2

t u(x, y, 2π), ∂3
t u(x, y, 0) = ∂3

t u(x, y, 2π),

(3.4)

for each (x, y) ∈ Ω , with Ω = U × V ⊂ Rn+d where U = Rn
+, n ∈ N and V ⊂ Rd, d ∈ N0 has a compact

boundary (i.e. is a C2-standard domain, see [26, Definition 4.5]).

8
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Moreover, in (3.4) ∆ stands for a cylindrical decomposition of the Dirichlet Laplacian on the space Lq(Ω)
ith reference to the two cross-sections i.e. ∆ = ∆1 +∆2 where ∆i behaves on the corresponding part of Ω .
ccording to [25] we introduce Lq-realizations ∆q,i = ∆i in the following way:

D(∆q,1) := {u ∈ W 2,q(Rn
+, L

q(V )) : BU = 0};
D(∆q,2) := W 2,q(V ) ∩W 1,q

0 (V ).

ore details about ∆q,2 can be found in [27].
We introduce the Laplacian ∆q in Lq(Ω) subject to the Dirichlet boundary conditions BU and BV to be

D(∆q) := D(∆q,1) ∩D(∆q,2)
∆qu := ∆q,1u+ ∆q,1u = ∆u, u ∈ D(∆q).

As a consequence of [25, Theorem 4.2] we can assert that −∆q ∈ RH∞(Lq(Ω)) and ∆q is invertible.
lso, by [25, Remark 4.7] we obtain that θR∞

−∆q
= 0. As an application of Theorem 3.1 with A =

∆q we obtain the following main result on the strongly Lp(Lq(Ω))-well-posedness for the linearized
lackstock–Crighton–Westervelt equation.

heorem 3.4. Let a, b, c > 0 and 1 < p, q < ∞. For any given f ∈ Lp(T, Lq(Ω)) the problem (3.4) has a
nique solution u that belongs to the maximal regularity space:

Sp(Lq(Ω)) := {u ∈ W 1,p
per(T,W 4,q(Ω)) ∩ Lp(T,W 4,q(Ω)) : (3.5)

u′ ∈ Lp(T,W 4,q(Ω)) ∩W 2,p
per(T, Lq(Ω)), ∆qu

′ ∈ W 1,p
per(T, Lq(Ω))}.

oreover, for any 1 < p, q < ∞ there exists a constant C > 0 such that the following estimate

∥u′′′∥Lp(T,Lq(Ω)) + ∥u′∥Lp(T,Lq(Ω)) + ∥u∥Lp(T,Lq(Ω))|| + ∥∆u′||Lp(T,Lq(Ω)) + ∥∆u′′||Lp(T,Lq(Ω))

+ ∥(−∆)2u||Lp(T,Lq(Ω)) + ∥∆u||Lp(T,Lq(Ω)) ≤ C∥f∥Lp(T,Lq(Ω)),

olds.

. Lp(Lq)-well-posedness for the Blackstock–Crighton–Westervelt equation with time-periodic forcing
erm

We now analyze Lp(Lq)-well-posedness of periodic solutions for the Blackstock–Crighton–Westervelt
quation on a cylindrical domain with an external forcing term and homogeneous Dirichlet boundary
onditions: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−a(−∆) − ∂t)(∂2
t u(x, y, t) + c2(−∆)u(x, y, t) + b(−∆)∂tu(x, y, t))

= ∂2
t

(
1
c2

(
1 + B

2A

)
(∂tu(x, y, t))2

)
+ ρf(x, y, t), for (x, y, t) ∈ Ω × T;

BUu(x, y, t) = 0, for (x, y, t) ∈ ∂U × V × T;

BV u(x, y, t) = 0, for (x, y, t) ∈ U × ∂V × T;

u(x, y, 0) = u(x, y, 2π), ∂tu(x, y, 0) = ∂tu(x, y, 2π),

2 2 3 3

(4.6)
∂t u(x, y, 0) = ∂t u(x, y, 2π), ∂t u(x, y, 0) = ∂t u(x, y, 2π),
9
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where Ω := U × V , ρ ∈ R and f ∈ Lp(T, Lq(Ω)). We consider the Dirichlet Laplacian ∆q in Lq(Ω) with
oundary conditions BU and BV as in the previous section. We now state the main result of this section that
rovides the existence of solutions for the nonlinear Eq. (4.6). Our method of proof is based on the general
mplicit function theorem and the maximal regularity estimate established in the previous section for the
inearized Blackstock–Crighton–Westervelt equation.

heorem 4.5. Let 1 < p, q < ∞, a, b, c > 0. Then for each f ∈ Lp(T, Lq(Ω)) there exists ρ∗ > 0 such
hat for all 0 < |ρ| < ρ∗ Eq. (4.6) has a nontrivial solution uρ ∈ W 1,p

per(T,W 4,q(Ω)) ∩ Lp(T,W 4,q(Ω)) with
′
ρ ∈ Lp(T,W 4,q(Ω)) ∩W 2,p

per(T, Lq(Ω)) and ∆qu
′
ρ ∈ W 1,p

per(T, Lq(Ω)).

roof. We first recall that the space Sp(Lq(Ω)) defined in (3.5) is a Banach space when endowed with the
orm:

|||u||| := ∥u′′′∥Lp(T,Lq(Ω)) + ∥u′∥Lp(T,Lq(Ω)) + ∥u∥Lp(T,Lq(Ω))∥ + ||∆u′∥Lp(T,Lq(Ω))

+||∆u′′||Lp(T,Lq(Ω)) + ∥(−∆)2u||Lp(T,Lq(Ω)) + ∥∆u||Lp(T,Lq(Ω)).

e define a linear operator C : Sp(Lq(Ω)) → Lp(T;Lq(Ω)) by

C(u) := −u′′′ + (a+ b)∆u′′ + (−ab∆ + c2)∆u′ − ac2(−∆)2u.

rom the definition of the operator C we deduce that ∥C(u)∥ ≤ M |||u|||. As a consequence of Theorem 3.4
e can state the existence of a constant C > 0 such that |||u||| ≤ C∥C(u)∥. Therefore C is an isomorphism.
oreover, as a consequence of Theorem 3.4 it follows that C is onto.
Let now define a mapping G : Sp(Lq(Ω)) → Lp(T;Lq(Ω)) as follows:

G(u) := ∂2
t

(
1
c2

(
1 + B

2A

)
(∂tu)2

)
= k[(∂2

t u)2 + (∂tu)(∂3
t u)], u ∈ Sp(Lq(Ω)),

where k := 2
c2

(
1 + B

2A

)
.

Note that u ∈ Sp(Lq(Ω)) implies u′ ∈ W 2,p(T;Lq(Ω)) and hence we have that u′′, u′′′ ∈ Lp(T;Lq(Ω))
nd u′, u′′ are continuous. Therefore, we have∫ 2π

0
∥u′′(t)u′′(t)∥p

qdt ≤
∫ 2π

0
∥u′′(t)∥p

q∥u′′(t)∥p
qdt ≤ 2πC2

1

nd ∫ 2π

0
∥u′(t)u′′′(t)∥p

qdt ≤
∫ 2π

0
∥u′(t)∥p

q∥u′′′(t)∥p
qdt ≤ C2

∫ 2π

0
∥u′′′(t)∥p

qdt = C2∥u′′′∥p
Lp(T,Lq(Ω))

here C1 := supt∈[0,T ] ∥u′′(t)∥p
q and C2 := supt∈[0,T ] ∥u′(t)∥p

q .
Thus, (u′′)2 ∈ Lp(T;Lq(Ω)) and u′u′′′ ∈ Lp(T;Lq(Ω)). It implies that G is well defined as a map from

p(Lq(Ω)) to Lp(T;Lq(Ω)).
To prove that the map G is continuous, we first note that 0 ∈ ρ(A) implies that

∥w′′∥Lp(T;Lq(Ω)) = ∥A−1Aw′′∥Lp(T;Lq(Ω)) ≤ C3∥Aw′′∥Lp(T;Lq(Ω)) ≤ C3|||w|||

or each w ∈ Sp(Lq(Ω)), where C3 := ∥A−1∥. Therefore, given (un) ⊂ Sp(Lq(Ω)) such that un → u ∈
q

p(L (Ω)) in the norm ||| · |||, we have that the sequence (un) is bounded and, denoting by ∥ · ∥ the norm
10
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∥ · ∥Lp(T;Lq(Ω)), we obtain

∥G(un) −G(u)∥ ≤ ∥(∂2
t un − ∂2

t u)(∂2
t un + ∂2

t u)∥ + ∥(∂tun − ∂tu)∂3
t un∥ + ∥∂tu(∂3

t un − ∂3
t u)∥

≤ ∥∂2
t un − ∂2

t u∥(∥∂2
t un∥ + ∥∂2

t u∥) + ∥∂tun − ∂tu∥∥∂3
t un∥

+ ∥∂3
t un − ∂3

t u∥∥∂tu∥
≤ (C4 + |||u|||)(C3 + 1)|||un − u|||,

where C4 := supn |||un|||. This inequality proves the continuity of G.
Now, we consider the uniparametric family H : R × Sp(Lq(Ω)) → Lp(T;Lq(Ω)) defined by

H(τ, u) = −C(u) +G(u) + τf.

From its definition, it is clear that H(0, 0) = 0. On the other hand, we note that

DG(u) = k[2(∂2
t u)∂2

t + (∂3
t u)∂t + ((∂tu)∂3

t )]

where we recall that D denotes the Fréchet derivative of G and therefore

DG(u)(h) = k[2(∂2
t u)(∂2

t h) + (∂3
t u)(∂th) + (∂tu)(∂3

t h)].

In particular, it implies that DG(0) = 0. Since DuH(τ, u) = −C +DG(u) we then obtain DuH(0, 0) = −C
which is linear, bounded and invertible. Using Theorem 2.10 we conclude that there exists a neighborhood
I ⊂ R of 0 and a unique ψ : I → Sp(Lq(Ω)) such that H(τ, ψ(τ)) = 0 for all τ ∈ I. Since u ≡ 0 is a trivial
solution in case τ = 0, we conclude that for all τ ∈ I \ {0} there exists uτ := ψ(τ) ∈ Sp(Lq(Ω)) such that
uτ is a nontrivial solution of Eq. (4.6), and the proof is finished. □
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