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We show that the solutions of the linearized damped extensible beam equation 
exhibit a chaotic or stable behavior that depends on the distribution of the physical 
parameters of the equation. Such dynamical behavior is achieved in Herzog-like 
spaces. Our results provide new insights into the damped extensible beam equation 
by finding a critical parameter whose sign determines such qualitative properties.
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1. Introduction

Evolution equations have long attracted the attention of researchers because they model a wide range 
of dynamical processes ranging from the natural to the social sciences. Starting with PDEs and integral 
equations, there is now a broad variety of them. In order to mathematically understand its qualitative 
behavior, the original evolution equation is usually simplified in such a way that, sometimes, the physical 
parameters of the equation are absent in the analysis, see e.g., [18,24]. However, this simplification most of 
the time reduces the possibility of having a more precise understanding of the dynamics of the model.

How should these parameters be chosen to have Devaney chaos or stability?. This article explores a 
plausible answer to this general problem for a specific evolution equation. The proposed methodology 
provides a mechanism to examine the chaos (see Definition 3.2) and stability of a wide range of evolutionary 
processes.

We will analyze the dynamics of the linearized damped extensible beam (DEB) equation [26] which can 
be stated as follows:
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∂2
t u(t, x) + δ∂tu(t, x) + κ∂4

xu(t, x) + η∂t∂
4
xu(t, x) = 0, (t, x) ∈ R+ ×R, (1)

where κ, η are positive real numbers, and δ ∈ R. In this model, η represents the effective viscosity, κ := EI

where E is the Young’s modulus and I is the cross sectional second-moment of area, and δ is the coefficient 
of external damping, which can be negative [1]. We suppose that the coefficient of mass for unit length (in 
front of the term ∂2

t ) is equal to 1. Our analysis will be carried out within the framework of Herzog spaces.
Equation (1) arises as the linearization of a model of an extensible beam proposed by Ball [1], where he 

assumes that the beam has linear structural (Kelvin-Voigt) and external (frictional) damping. Ball studies 
asymptotic properties and shows that when time t tends to infinity, provided that δ is not large and possibly 
negative, any solution of the nonlinear model converges in a suitable topology to an equilibrium position. 
The singular perturbation problem for (1) was studied by Fitzgibbon [19], by Racke and Yoshikawa [26], and 
abstractly using semigroup theory by Fitzgibbon [18] and by Massatt [24] who uses the theory of sectorial 
operators. Exponential attractors were studied by Eden and Milani [16, Section 8] and periodic solutions 
by Cwiszewski [14], among others.

Herzog-type spaces were introduced by Herzog in [21] when studying the universality of the solutions 
of the classical heat equation. These function spaces of analytic functions regulated by a parameter allow 
to control their growth in infinity. See for instance [6] where the dynamics of the translation operator on 
spaces of analytic functions of slow growth were considered. Due to this advantage on their growth control, 
researchers have analyzed the presence of Devaney chaos for the C0-semigroups associated to PDEs in such 
spaces.

From a dynamical point of view, the existence of Devaney chaos implies that small changes in the initial 
states of a system may lead, after some time, to large discrepancies in the orbits of its solutions [20]. Note 
however that definitions of linear chaos may vary [13,22,23].

In the reference [9], Conejero et al. studied the Devaney chaos for the hyperbolic heat transfer equation 
in absence of internal heat sources and the wave equation. In [11] the authors studied the telegraph equation

∂2
t u(t, x) + β∂tu(t, x) + θu(t, x) − α∂2

xu(t, x) = 0, β, θ, α ≥ 0,

which includes the hyperbolic heat transfer equation (θ = 0), and the wave equation (θ = β = 0), and 
obtained conditions on the sign of the critical parameter γ := β2 − 4θ to ensure chaos or stability.

Following a similar approach, the analysis of the chaotic behavior of the Moore-Gibson-Thompson equa-
tion

τ∂3
t u(t, x) + α∂2

t u(t, x) − c2∂2
xu(t, x) − b∂t∂

2
xu(t, x) = 0, τ, α ≥ 0, c, b > 0,

describing propagation process in acoustics or vibrations in elastic structures, were performed in [7]. In this 
case, it was shown that when the critical parameter γ := α − τc2

b is negative, it describes chaos, while the 
positive sign describes stability.

In [8] Devaney chaos was obtained for the Lighthill-Whitham-Richards equation

∂tu(t, x) + c∂xu(t, x) + T∂2
t u(t, x) −D∂2

xu(t, x) = 0, c, T,D ≥ 0,

that describes traffic at the macroscopic level. It is interesting to observe that, unlike the previous cases, 
for this model chaos is always present in some Herzog-type spaces and there is no critical parameter. The 
corresponding study for the van Wijgaarden–Eringen equation

∂2
t u(t, x) − ∂2

xu(t, x) − (Red)−1∂t∂
2
xu(t, x) − a2

0∂
2
t ∂

2
xu(t, x) = 0, Red, a0 > 0,
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that models the acoustic planar propagation in bubbly liquids can be found in [10]. For such an equation 
it was shown that assuming a0 < 1 and 

√
5

6 < a0Reb <
1
2 chaos is obtained. However, the stability problem 

was left open. See [12] for a review on this topic.
This article is organized as follows. Section 2 is devoted to collect basic definitions and results about 

the dynamics of C0-semigroups. In Section 3 we present the novel results of this article. More concretely, 
for the critical parameter γ := ηδ − κ we show that γ ≤ 0 is sufficient to ensure Devaney chaos. As a 
corollary, the dynamics of the (DEB) equation are proven to be distributionally chaotic under the same 
assumption. We also succeed in proving that the complementary condition γ > 0 provides stability which 
displays the dependence of the dynamics behavior for the (DEB) equation through a complete analysis of 
the critical parameter found. This critical parameter provides new insights and motivation for a complete 
future discussion on the dynamics of the solutions of the nonlinear model. Indeed, assuming a possibly 
negative value of δ, as shown in the reference [1, Conditions (7.1) and (8.5)], our result proves that γ < 0
implying Devaney chaos. However, if that value of δ is positive, then the condition γ > 0, i.e. δ > η/κ, is 
necessary for stability.

2. Preliminaries

We first need to recall the notion of C0-semigroup.

Definition 2.1. Let X be a Banach space. A one-parameter family {Tt}t≥0 ⊂ B(X), is a C0-semigroup if 
T0 = I, Tt+s = Tt ◦ Ts and lims→t Tsx = Ttx for all x ∈ X and t ≥ 0. The operator

Ax := lim
t→0

1
t
(Ttx− x), (2)

exists on a dense subspace of X; the set of these x, the domain of A, is denoted by D(A). Then A, or rather 
(A, D(A)), is called the infinitesimal generator of the semigroup.

As a consequence of the Hille-Yosida theorem [5, Theorem 7.4], it follows that the solution of the abstract 
Cauchy problem on X given by:

{
∂tu(t) = Au(t),
u(0) = ϕ,

(3)

can be provided by means of a C0-semigroup {Tt}t≥0 on X whose infinitesimal generator is A. If A ∈ B(X), 
then the semigroup is uniformly continuous and can be represented as Tt = etA =

∑∞
k=0(tA)n/n! for all 

t ≥ 0 (see [17, Ch. I, Prop. 3.5]). We can now provide the definition of Devaney chaotic C0-semigroup.

Definition 2.2. An element x ∈ X is called a periodic point for {Tt}t≥0 if there exists some t > 0 such 
that Ttx = x. A C0-semigroup {Tt}t≥0 is called Devaney chaotic if there exists x ∈ X such that the set 
{Ttx : t ≥ 0} is dense in X and the set of periodic points is dense in X.

We point out that these two conditions in the definition of Devaney chaos imply the sensitive dependence 
on the initial conditions, as it was stated by Banks et al. [2,20].

There exists another notion of chaos, namely distributional chaos, introduced for the first time by 
Schweizer & Smítal [27].

Definition 2.3. A C0-semigroup {Tt}t≥0 on X is distributionally chaotic if there is an uncountable subset 
K ⊂ X and δ > 0 such that, for all points x, y ∈ K with x �= y and for every ε > 0, we have Dens({s ≥



4 C. Lizama, M. Murillo-Arcila / J. Math. Anal. Appl. 522 (2023) 126954
0; ||Tsx − Tsy|| > δ}) = 1 and Dens({s ≥ 0; ||Tsx − Tsy|| < ε}) = 1, where Dens corresponds to the upper 
density of a set I ⊂ R+, that is,

Dens(I) := lim sup
N→∞

μ(I ∩ [0, N ])
N

,

where μ is the Lebesgue measure on R+.

We recall the following criterion [20, Th. 7.30] which gives the necessary conditions to obtain a Devaney 
chaotic C0-semigroup. The original version of it, the so-called Desch-Schappacher-Webb (DSW) criterion 
can be found in [15].

Theorem 2.4. Let X be a complex separable Banach space, and {Tt}t≥0 a C0-semigroup on X with in-
finitesimal generator (A, D(A)). Assume that there exists an open connected subset U ⊂ C and a weakly 
holomorphic function f : U → X (for all x∗ ∈ X∗, λ → 〈f(λ), x∗〉 is holomorphic, where 〈·, ·〉 is the dual 
product between X and X∗) such that

(i) U ∩ iR �= ∅,
(ii) f(λ) ∈ ker(λI −A) for every λ ∈ U ,
(iii) for any x∗ ∈ X∗, if 〈f(λ), x∗〉 = 0 for all λ ∈ U , then x∗ = 0.

Then the semigroup {Tt}t≥0 is Devaney chaotic.

Now, we define the Herzog space of analytic functions introduced in [21], which is isometrically isomorphic 
to the Banach space of sequences c0(N0) := {s : N0 → C : |sn| → 0 as n → ∞} endowed with the natural 
norm.

Definition 2.5. Given ρ > 0, the Herzog space of analytic functions is defined as:

Xρ =
{
f : R → C; f(x) =

∞∑
n=0

anρ
n

n! xn, (an)n≥0 ∈ c0(N0)
}

(4)

endowed with the norm ‖f‖ρ := supn≥0 |an|.

For example, the functions f(x) = cosh(bx) and g(x) = ebx where b ∈ C, belong to Xρ if ρ > |b|. 
It is worth noting that classical partial differential operators, e.g. ∂n

x , n ∈ N, become bounded operators 
on Herzog spaces and hence they are generators of uniformly continuous semigroups (see for instance [25, 
Section 1.1]).

3. Chaos and stability

In this section we will examine the damped extensible beam equation on (0, ∞) × R with prescribed 
initial conditions on Herzog spaces

{
∂2
t u(t, x) + δ∂tu(t, x) + κ∂4

xu(t, x) + η∂t∂
4
xu(t, x) = 0 (t, x) ∈ (0,∞) ×R;

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ R.
(5)

In order to study the dynamics for the equation (5), we first reduce it into a first order system by setting 
u1 = u and u2 = ∂tu. It reads as follows:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t

(
u1(t, x)
u2(t, x)

)
=

(
0 I

−κ∂4
x −(δI + η∂4

x)

)(
u1(t, x)
u2(t, x)

)
;(

u1(0, x)
u2(0, x)

)
=

(
u0(x)
u1(x)

)
.

(6)

Since the operator ∂4
x is bounded on any Herzog space Xρ, it follows that the operator-valued matrix

A :=
(

0 I

−κ∂4
x −(δI + η∂4

x)

)
, (7)

is bounded on X := Xρ ⊕Xρ for every ρ > 0. By [25, Theorem 1.2 and Corollary 1.4] we immediately get 
the following result on well-posedness.

Theorem 3.1. The operator A is the generator of a uniformly continuous semigroup (etA)t≥0 on X :=
Xρ ⊕Xρ for every ρ > 0, which determines a unique solution of the Cauchy problem (5).

Adopting the notion of Devaney chaos for C0-semigroups, we introduce the following definition that 
directly appeal to the equation (5).

Definition 3.2. Let ρ > 0 be given. The dynamic of the equation (5) is said to be Devaney chaotic on 
X := Xρ ⊕Xρ if

(a) There exists (u0, u1) ∈ X such that the unique solution of (5) satisfies that the set of trajectories 
{(u(t, ·), ∂tu(t, ·)) : t ≥ 0} is dense in X.

(b) The set of periodic points {(ϕ1, ϕ2) ∈ X : ∃ t > 0, u(t, x) = ϕ1(x) and ∂tu(t, x) = ϕ2(x) for all x ∈ R}
is dense in X.

Concerning distributional chaos, we introduce the following definition.

Definition 3.3. Let ρ > 0 be given. The dynamic of the equation (5) is said to be distributionally chaotic on 
X := Xρ⊕Xρ if there is an uncountable subset K ⊂ X and δ > 0 such that, for all points (ϕ1, ϕ2), (ψ1, ψ2) ∈
K with (ϕ1, ϕ2) �= (ψ1, ψ2), and for every ε > 0, we have Dens({s ≥ 0; ||(u(s, ·) −v(s, ·), u′(s, ·) −v′(s, ·)||ρ×ρ >

δ}) = 1, Dens({s ≥ 0; ||(u(s, ·) − v(s, ·), u′(s, ·) − v′(s, ·)||ρ×ρ < ε}) = 1 where u(0, ·) = ϕ1, u′(0, ·) =
ϕ2, v(0, ·) = ψ1 and v′(0, ·) = ψ2.

We can now state the first main result of this section where we prove Devaney chaos for the damped 
extensible beam equation (5) under a condition on the parameters of the equation.

Theorem 3.4. Suppose that

ηδ < κ.

Then the dynamic of the equation (5) is Devaney chaotic on X := Xρ ⊕Xρ whenever ρ4 > 3
2
δη+κ
η2 .

Proof. We define U := {z ∈ C : |z| < r0 }, where

r0 := δη + κ
> 0.
2η
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It is clear that U ∩ iR �= ∅ and then hypothesis (i) in Theorem 2.4 is verified. For each λ ∈ C \ {−κ/η} we 
define the analytic function Rλ ≡ R(λ) := −λ2+δλ

κ+ηλ .
Let now prove (ii) in Theorem 2.4. We start solving Agz0,z1,z2,z3(λ) = λgz0,z1,z2,z3(λ), λ ∈ U, z0, z1, z2, z3 ∈

C. By the structure in the first line of the matrix A, we find that the eigenvectors of A must have the form:

gz0,z1,z2,z3(λ) =
(

ψλ

λψλ

)
, (8)

and a simple calculus shows that

ψλ(x) := exp
(

4
√

Rλx
)
z0 + exp

(
− 4
√

Rλx
)
z1 + sin

(
4
√

Rλx
)
z2 + cos

(
4
√

Rλx
)
z3. (9)

Let us now prove that the functions gz0,z1,z2,z3(λ) belong to Xρ ⊕Xρ for all λ ∈ U . We first point out 
that the functions ψλ(x) can be rewritten as:

ψλ(x) = exp
(

4

√
Rλ

ρ4 ρx

)
z0 + exp

(
− 4

√
Rλ

ρ4 ρx

)
z1 + sin

(
4

√
Rλ

ρ4 ρx

)
z2 + cos

(
4

√
Rλ

ρ4 ρx

)
z3

=
∞∑

n=0
(an(λ) + bn(λ) + cn(λ)) (ρx)n

n! , x ∈ R, λ ∈ U,

where an(λ) := R
n/4
λ

ρn z0, bn(λ) := (−1)nRn/4
λ

ρn z1 and

cn(λ) =

⎧⎨
⎩

(−1)kRn/4
λ

ρn z2 if n = 2k + 1, k ∈ N0,
(−1)kRn/4

λ

ρn z3 if n = 2k, k ∈ N0.

Consequently, from the definition of Xρ, it is enough to prove that 
∣∣∣Rλ

ρ4

∣∣∣ < 1 for all λ ∈ U in order to obtain 

that ψλ, λψλ ∈ Xρ. Indeed, let λ ∈ U that satisfies |λ| < r0 = κ+δη
2η . Using the identity az+b

cz+d = a
c + 1

c
bc−ad
cz+d , 

we can write

λ2 + δλ

κ + ηλ
= λ

η
+ λ

η

δη − κ

ηλ + κ
. (10)

Since ηδ < κ we have that |λ| < r0 = κ+δη
2η < κ

η , and we obtain

|ηλ + κ| ≥ |η|λ| − κ| = κ− η|λ| > κ− ηr0.

Using again ηδ < κ and the definition of r0, we have

∣∣∣∣λ2 + δλ

ηλ + κ

∣∣∣∣ ≤ r0
η

+ r0
η

|δη − κ|
κ− ηr0

= r0
η

+ r0
η

κ− δη

κ− η κ+δη
2η

= 3r0
η

< ρ4,

where the last inequality follows from the hypothesis. This proves the claim.
Finally, let us show condition (iii) in Theorem 2.4 is fulfilled, that is, for any x∗ ∈ X∗

ρ ⊕ X∗
ρ the 

functions λ → 〈gz0,z1,z2,z3(λ), x∗〉, z0, z1, z2, z3 ∈ C, are holomorphic on U , and if they all vanish on U , then 
x∗ = 0. Indeed, we first observe that from Definition 2.5, the dual space X∗

ρ is isomorphic to �1. Now, given 
x∗ ∈ X∗

ρ ⊕X∗
ρ it follows that x∗ = (x∗

1, x
∗
2) = ((x∗

1,n)n≥0, (x∗
2,n)n≥0) ∈ �1 ⊕ �1. Then, we have
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0 = 〈gz0,z1,z2,z3(λ), x∗〉 = 〈ψλ, x
∗
1〉 + 〈λψλ, x

∗
2〉, (11)

for all λ ∈ U, z0, z1, z2, z3 ∈ C. This last equation can be rewritten as follows:

0 =
∞∑

n=0
(an(λ) + bn(λ) + cn(λ))x∗

1,n + λ
∞∑

n=0
(an(λ) + bn(λ) + cn(λ))x∗

2,n

= (z0 + z1 + z3)x∗
1,0 + λ(z0 + z1 + z3)x∗

2,0

+
4
√
Rλ

ρ
(z0 − z1 + z2)x∗

1,1 + λ
4
√
Rλ

ρ
(z0 − z1 + z2)x∗

2,1+

+
√
Rλ

ρ2 (z0 + z1 − z3)x∗
1,2 + λ

√
Rλ

ρ2 (z0 + z1 − z3)x∗
2,2 + . . .

(12)

Let λ0 = 0. It is clear that λ0 ∈ U and Rλ0 = 0. Replacing in (12) the value of λ0 = 0, we get the 
following equation:

(z0 + z1 + z3)x∗
1,0 = 0 (13)

for all z0, z1, z3 ∈ C. Consequently, x∗
1,0 = 0. Now, observe that from the hypothesis ηδ < κ we obtain 

δ < κ+δη
2η = r0 and therefore −δ ∈ U . Hence, we can evaluate (12) in λ1 = −δ obtaining Rλ1 = 0. It 

immediately follows that x∗
2,0 = 0. We now divide (12) by 4

√
Rλ obtaining:

0 = 1
4
√
Rλ

( ∞∑
n=0

(an(λ) + bn(λ) + cn(λ))x∗
1,n + λ

∞∑
n=0

(an(λ) + bn(λ) + cn(λ))x∗
2,n

)

= 1
ρ
(z0 − z1 + z2)x∗

1,1 + λ

ρ
(z0 − z1 + z2)x∗

2,1 +
4
√
Rλ

ρ2 (z0 + z1 − z3)x∗
1,2 (14)

+ λ
4
√
Rλ

ρ2 (z0 + z1 − z3)x∗
2,2 + . . .

Evaluating equation (14) in λ = λ0 we get:

1
ρ
(z0 − z1 + z2)x∗

1,1 = 0 (15)

for all z0, z1, z3 ∈ C. As a consequence, x∗
1,1 = 0. Now, replacing λ by λ1 in equation (14) we obtain:

λ1

ρ
(z0 − z1 + z2)x∗

2,1 = 0 (16)

and then x∗
2,1 = 0. Proceeding by induction we finally arrive to x∗

i,n = 0 for all i = 1, 2 and n ∈ N and then 
x∗ = 0. As an application of Theorem 2.4, the conclusion holds. �
Theorem 3.5. Suppose that

ηδ = κ.

Then the dynamic of the equation (5) is Devaney chaotic on X := Xρ ⊕Xρ whenever ρ4 > 3κ
2 .
η
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Proof. The proof follows the same steps as the one of Theorem 3.4. We consider U := {z ∈ C : |z| < κ
η }, 

which clearly verifies U ∩ iR �= ∅ and 0 ∈ U . For each λ ∈ C we consider the analytic function Rλ := −λ
η . 

Proceeding as in Theorem 3.4, it can be shown the eigenvectors of A have the form provided in (8) and 

(9). In order to prove (ii) in Theorem 2.4 it only remains to show that 
∣∣∣Rλ

ρ4

∣∣∣ < 1 for all λ ∈ U to obtain 
ψλ, λψλ ∈ Xρ. Indeed, given λ ∈ U we have

∣∣∣∣λη
∣∣∣∣ < κ

η2 <
3κ
η2 < ρ4,

and the claim is proven.
Finally, it only remains to show that hypothesis (iii) of Theorem 2.4 holds. Indeed, evaluating equation 

(12) in λ0 = 0, we get x∗
1,0 = 0. We now divide (12) by 4

√
Rλ obtaining:

0 = 1
4
√
Rλ

( ∞∑
n=0

(an(λ) + bn(λ) + cn(λ))x∗
1,n + λ

∞∑
n=0

(an(λ) + bn(λ) + cn(λ))x∗
2,n

)

= 1
4
√
η

(
4
√
λ3(z0 + z1 + z3)x∗

2,0 + 1
ρ
(z0 − z1 + z2)x∗

1,1 + λ

ρ
(z0 − z1 + z2)x∗

2,1 (17)

+
4
√
Rλ

ρ2 (z0 + z1 − z3)x∗
1,2 + λ

4
√
Rλ

ρ2 (z0 + z1 − z3)x∗
2,2 + . . .

)

and evaluating again in λ0 = 0 we get x∗
1,1 = 0.

Dividing now (17) by 4
√
Rλ we get:

0 = 1
4
√
Rλ

( ∞∑
n=0

(an(λ) + bn(λ) + cn(λ))x∗
1,n + λ

∞∑
n=0

(an(λ) + bn(λ) + cn(λ))x∗
2,n

)

= 1
√
η

(
√
λ(z0 + z1 + z3)x∗

2,0 +
4
√
λ3

ρ
(z0 − z1 + z2)x∗

2,1 + 1
ρ2 (z0 + z1 − z3)x∗

1,2 (18)

+ λ

ρ2 (z0 + z1 − z3)x∗
2,2 + . . .

)

We substitute λ = 0 in (18) which leads to x∗
1,2 = 0. In the next step, we divide (18) by 

√
λ obtaining 

x∗
2,0 = 0. Afterwards, we divide again by 4

√
Rλ getting x∗

2,1 = 0. Proceeding by induction we finally arrive 
to x∗

i,n = 0 for all i = 1, 2 and n ∈ N and the proof is concluded. �
Since it is well known that there is distributional chaos if the DSW criterion holds [3,4,28], we immediately 

get the following corollary.

Corollary 3.6. Suppose that

ηδ ≤ κ.

Then the dynamic of the equation (5) is distributionally chaotic on X := Xρ ⊕Xρ whenever ρ4 > 3
2
κ+δη
η2 .

Our second main result shows stability under a complementary condition on the parameters of the 
equation. Recall that a uniformly continuous semigroup is said to be stable, if limt→∞ ‖eAt‖ = 0. According 
to [17, Theorem 3.14] this is equivalent to prove that �(λ) < 0 for all λ ∈ σ(A).
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Theorem 3.7. Suppose that

ηδ > κ.

Then the dynamic of the equation (5) is stable on X := Xρ ⊕Xρ whenever ρ4 < 1
2
δη−κ
η2 .

Proof. Since A is bounded, it is enough to show that the spectrum of A is contained in the open left 
halfplane. To this end, we consider the problem

Af = λf, λ ∈ C, for every f ∈ X. (19)

As in the proof of the above theorem, this leads to the equation

ϕ′′′′(x) = R(λ)ϕ(x), x ∈ R, ϕ ∈ Xρ, (20)

where

R(λ) := −λ2 + δλ

κ + ηλ
, λ ∈ C \ {−κ/η}. (21)

Since ϕ ∈ Xρ we have ϕ(x) =
∞∑

n=0

anρ
n

n! xn, where an → 0. From (20) we deduce that the sequence (an)n

must satisfy the identity ρ4an+4 = R(λ)an, n ∈ N0. It follows that the sequence (an)n is defined as powers 
of R(λ)

ρ4 . This, together with the condition an → 0, implies that

|R(λ)| < ρ4, λ ∈ C \ {−κ/η}. (22)

Let λ = a + ib, a, b ∈ R. It is not difficult to prove that for a ∈ R arbitrary but fixed, we have
∣∣∣R(λ)

λ
− 1

η

∣∣∣ → 0 as b → ∞. (23)

Therefore, there exists N > 0 such that for all |b| > N we have

∣∣∣R(λ)
λ

− 1
η

∣∣∣ < δη − κ

2κη . (24)

From (21) and using (22) and (24) we obtain

|λ + δ| =
∣∣∣κR(λ)

λ
+ ηR(λ)

∣∣∣ < κ

(
δη − κ

2κη + 1
η

)
+ ηρ4. (25)

Since ρ4 < 1
2
δη−κ
η2 , we obtain

|λ + δ| < δη − κ

2η + κ

η
+ η

(
1
2
δη − κ

η2

)
= δ. (26)

Therefore �(λ) = a < 0. This proves the claim and the theorem. �
Remark 3.8. In terms of the model equation (5) the conclusion of stability expresses that

lim
s→∞

‖(u(s, ·), u′(s, ·))‖ρ×ρ = 0,

uniformly for all initial conditions u(0, ·) = ϕ, u′(0, ·) = ψ satisfying ‖(ϕ, ψ)‖ρ×ρ ≤ 1.
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