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A B S T R A C T

We analyze the existence of chaos for the fourth-order Moore–Gibson–Thompson equation. We obtain sufficient
conditions on the parameters of the equation so that it exhibits a chaotic behavior in the Devaney sense. Such
dynamic behavior is achieved in Herzog-like spaces revealing the structure of critical parameters.
1. Introduction

Our concern in this article is to answer an open question about the
existence of sufficient conditions on the parameters of the so-named
fourth-order Moore–Gibson–Thompson equation

𝜏 𝜕
4𝑢
𝜕𝑡4

(𝑡, 𝑥) + 𝛼 𝜕
3𝑢
𝜕𝑡3
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𝜕𝑡𝜕𝑥2

(𝑡, 𝑥) − 𝜌 𝜕
2𝑢

𝜕𝑥2
𝑢(𝑡, 𝑥) = 0, (1)

where 𝑡 ≥ 0, 𝑥 ∈ R, so that we may have chaotic behavior of
the associated semigroup. This model has its origin in the scope of
acoustics. A prototypical model consists of the linearized part of the
Westervelt equation [1] given by
𝛿
𝑐40

𝜕3𝑢
𝜕𝑡3

(𝑡, 𝑥) + 𝛥𝑢(𝑡, 𝑥) − 1
𝑐20

𝜕2𝑢
𝜕𝑡2

𝑢(𝑡, 𝑥) = 0, 𝑡 ≥ 0,

where 𝑢 represents the sound pressure, 𝑐0 denotes the small signal
sound speed, 𝛿 symbolizes the sound diffusivity and 𝛥 is the Laplacian
operator. The Moore–Gibson–Thompson (MGT) equation given by
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𝑢(𝑡, 𝑥) − 𝑏0𝛥𝑢(𝑡, 𝑥) = 0, 𝑡 ≥ 0, (2)

where 𝑏0 = 𝛿 + 𝜏𝑐2, is an expansion of the Westervelt equation,
which considers second sound effects and the corresponding thermal
relaxation in viscous fluids, see [2–5]. The MGT equation with memory
𝜕3𝑢
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+ ∫

𝑡

0
𝑔(𝑡 − 𝑠)𝛥𝑢(𝑠, 𝑥)𝑑𝑠 = 0, 𝑡 ≥ 0, (3)

was analyzed in [6–8]. If 𝑔 ≠ 0, the memory term introduces additional
dissipation. From a physical perspective, the most significant scenario
related to (3) is:

𝑔(𝑠) = 𝑑𝑒−𝓁𝑠, 𝑑,𝓁 > 0.

Considering the above kernel, model (1) arises from (3) adding 𝜕(3)
𝜕𝑡 +

𝓁(3), i.e., adding the derivative with respect to time of Eq. (3) with 𝓁
times Eq. (3).

It is worth noting that third and fourth order time derivatives find
applications in various research domains. In physics and engineering,
it is crucial to consider them when dealing with vibrations, espe-
cially when such excitation leads to multi-resonant modes of vibration
(see [9]). Additionally, they should be taken into account during tran-
sitional phases such as startup and shutdown, take-off and landing,
and acceleration and deceleration as indicated in [10]. Fourth order
time derivatives also come into play in diverse contexts, such as the
evaluation of the kinematic performance of long-dwell mechanisms of
linkage type, which are utilized in automated machinery to generate
intermittent motions as shown in [11] or in the Taylor series expansion
of the Hubble law [12].

The dynamic behavior of (1) began to be studied by Dell’Oro and
Pata [6] in Hilbert spaces. They stated that in case 𝜏 = 1 the conditions
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𝜒 ∶= 𝛾 − 𝛿
𝛼
> 0 and 𝜛 ∶= 𝛽 −

𝜌𝛼
𝛿

> −𝜆1𝜒 (4)

here 𝜆1 is the first eigenvalue of the Dirichlet Laplacian, are necessary
nd sufficient to exhibit exponential stability of the linked semigroup.
ore recently, the sufficiency of the conditions 𝜒 > 0 and 𝜛 > 0, among

thers, for decay of solutions of Eq. (1) with memory, was recently
stablished in [13].

After the seminal work of Dell’Oro and Pata, Eq. (1) has been
tudied by Abouelregal et al. [14] as a new model of magneto-thermo-
iscoelasticity in which heat waves can travel at limited speeds. In
he same line of work, the article [15] used (1) as a theoretical
ramework to establish a new photothermal model that reveals the
hermo-magneto-mechanical properties of semiconductor materials.

ell-posedness and general decay of solutions for (1) with a memory
erm, in the context of a Hilbert space, and using the Faedo–Galerkin
ethod, was analyzed by Liu, Chen and Tu in the Ref. [13]. With an

nalogous technique, Mesloub et al. [16] studied solvability of the non-
ocal mixed boundary value problem. In the Ref. [17], Murillo studied
he well-posedness of (1) in the scale of vector-valued Hölder contin-
ous functions. The method used in such a paper was operator-valued
ourier multipliers. Using the same methodology, well-posedness for
he nonhomogeneous equation in the scales of Lebesgue, Besov and
riebel–Lizorkin spaces were characterized in the Ref. [18].

In accordance with a widely accepted viewpoint, chaos and nonlin-
arity are closely interconnected and it is generally assumed that a lin-
ar system exhibits predictable behavior. However, in 1929,
irkhoff [19] provided a linear operator that possessed a crucial aspect
f chaos: the presence of a dense orbit, that is, the concept of hyper-
yclicity. Later, MacLane [20] and Rolewicz [21] observed the same
henomenon in the differentiation operator and linear shifts respec-
ively. It was not until 1991 when G. Godefroy and J.H. Shapiro [22]
roposed adopting Devaney’s definition of chaos (typically associated
ith nonlinear systems) as the appropriate definition for linear chaos.
he relatively recent discovery of chaos in linear systems can be
ttributed to the requirement for an infinite-dimensional framework,
s Rolewicz highlighted, where hypercyclicity, and consequently linear
haos, can manifest, see also [23]. Consequently, we will consider the
otion of Devaney chaos throughout this paper.

We note that in the special case 𝜏 = 0 and 𝛾 = 0, model (1) reduces
o the classical Moore–Gibson–Thompson equation, which arises in
coustics. For that equation, it is well known that the condition 𝜛 > 0
s sufficient for stability [3,5], while the opposite condition 𝜛 < 0 is
ufficient for chaos in the Devaney sense [24]. This provides a complete
icture of its dynamic behavior. Another special case is 𝜏 = 𝛼 = 0
hich corresponds to the viscous van Wijngaarden–Eringen equation,
nd which models the acoustic planar propagation in bubbly liquids.
he existence of chaos for such an equation has been studied in the
ef. [25].

As intimated in [18], chaos for higher order time derivatives ap-
ears in the study of jerk and hyper jerk systems [26,27], among other
ppealing areas of research. However, aside from analyzing the stability
nd decay properties for (1) carried out so far, the study of chaos for
he linear system (1) remains a wide open problem.

In this article, we give an important step towards solving this
uestion, providing a first answer and new insights into this interesting
roblem. In passing we solve an open problem proposed in [28, Prob-
em 6.5]. Our main result, Theorem 3.1, ensures that the conditions

≤ 0, 𝜛 ≥ 0, 𝛼 ≥ 2
√

𝛽, (5)

are sufficient to exhibit Devaney chaos of the associated semigroup.
Our results confirm that 𝜒 is the critical parameter that determines the
ynamic behavior of model (1).

It is worth noting that there is a large gap between the sufficient and
2

ecessary criteria for chaos; at present any ‘if and only if’ result about s
the occurrence of chaos in a general linear dynamical system seems to
be far beyond our understanding of this phenomenon.

Our method to solve our problem is based on the Desch–
Schappacher–Webb criterion [23] that provides sufficient conditions
for Devaney chaos of a 𝐶0-semigroup in a separable Banach space.
This criterion will be used in the context of Herzog spaces, which
are isometrically isomorphic to the space of vanishing sequences 𝑐0,
such that the underlying partial differential operator 𝜕2

𝜕𝑥2
in (1) remains

bounded in such space. Therefore the additional problems of working
with an unbounded operator can be avoided. The main difficulty then
lies in establishing delicate estimates of the characteristic symbol

𝑅𝜆 ∶=
𝜆4 + 𝛽𝜆2 + 𝛼𝜆3

𝛾𝜆2 + 𝛿𝜆 + 𝜌
,

and providing an exhaustive analysis on sufficient conditions for the
location of its zeros within a convenient subset of the complex plane.

This article is organized as follows. In the next section, we give
a brief review on the necessary preliminaries. In Section 3, we prove
our main general result, Theorem 3.1, and its complementary result,
namely Theorem 3.2 (case 𝛾 = 0). We then turn our attention to the
situation 𝛼 < 2

√

𝛽 where instead of 𝜛 ≥ 0 we discover that the
condition

|𝜌 − 𝛽(2 + 𝛾)| >
√

𝛽(2𝛼 + 𝛿),

together with 𝜒 ≤ 0 are sufficient to ensure Devaney chaos, see
Theorem 3.3. We end this article with a complementary theorem in
case 𝛾 = 0 (Theorem 3.4).

2. Preliminaries

We start with the notion of a 𝐶0-semigroup.

efinition 2.1. Let 𝑋 be a Banach space. The family of operators
𝑇𝑡}𝑡≥0 ⊂ (𝑋) is said to be a 𝐶0-semigroup if the following assertions
old:

• 𝑇0 = 𝐼 ,
• 𝑇𝑡+𝑠 = 𝑇𝑡◦𝑇𝑠,
• lim𝑠→𝑡 𝑇𝑠𝑥 = 𝑇𝑡𝑥 for all 𝑥 ∈ 𝑋 and 𝑡 ≥ 0.

We also recall the operator

𝑥 ∶= lim
𝑡→0

1
𝑡
(𝑇𝑡𝑥 − 𝑥),

exists on a dense subspace of 𝑋; the so-called domain of 𝐴 which is
denoted by 𝐷(𝐴). Then (𝐴,𝐷(𝐴)) is called the infinitesimal generator
of the semigroup.

Accordingly to the Hille–Yosida theorem [29, Theorem 7.4], the
solution of the abstract Cauchy problem on 𝑋 stated as:
{

𝜕𝑡𝑢(𝑡) = 𝐴𝑢(𝑡),
𝑢(0) = 𝜑 ∈ 𝐷(𝐴),

(6)

can be expressed on terms of the 𝐶0-semigroup {𝑇𝑡}𝑡≥0 on 𝑋 generated
y the operator 𝐴. Furthermore, if 𝐴 ∈ (𝑋), then the semigroup is
niformly continuous and it is given by 𝑇𝑡 = 𝑒𝑡𝐴 =

∑∞
𝑘=0(𝑡𝐴)

𝑛∕𝑛! for all
≥ 0 (see [30, Ch. I, Prop. 3.5]).

We now provide the notion of Devaney chaos for 𝐶0-semigroups.
ee also [23] for more information and related notions.

efinition 2.2. A 𝐶0-semigroup {𝑇𝑡}𝑡≥0 is Devaney chaotic if there
xists 𝑥 ∈ 𝑋 such that the set {𝑇𝑡𝑥 ∶ 𝑡 ≥ 0} is dense in 𝑋 and the set of
eriodic points, that is, those 𝑥 ∈ 𝑋 such that 𝑇𝑡𝑥 = 𝑥 for some 𝑡 > 0,
s dense in 𝑋.

As it was stated by Banks et al. [23,31], the existence of a vector
ith dense orbit and the density of the set of periodic points imply the
ensitive dependence on the initial conditions.
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The following criterion stated in [23, Theorem 7.30] provides suf-
ficient conditions in terms of the generator 𝐴 and its eigenvectors of a
0-semigroup to be Devaney chaotic. We also refer the reader to [32]

or the original version of it, the so-called Desch–Schappacher–Webb
riterion.

heorem 2.3. Assume that 𝑋 is a complex separable Banach space,
𝑇𝑡}𝑡≥0 is a 𝐶0-semigroup on 𝑋 whose infinitesimal generator is (𝐴,𝐷(𝐴))
nd there exists an open connected subset 𝑈 ⊂ C and a weakly holomorphic
unction 𝑔 ∶ 𝑉 → 𝑋 such that

(i) 𝑉 ∩ 𝑖R ≠ ∅,
(ii) 𝑔(𝜇) ∈ ker(𝜇𝐼 − 𝐴) for every 𝜇 ∈ 𝑉 ,
(iii) for any 𝑥∗ ∈ 𝑋∗, if ⟨𝑔(𝜇), 𝑥∗⟩ = 0 for all 𝜇 ∈ 𝑉 , then 𝑥∗ = 0.

hen the semigroup {𝑇𝑡}𝑡≥0 is Devaney chaotic.

Finally, we introduce the Herzog space of analytic functions 𝑋𝑝
efined in [33], which is isometrically isomorphic to the Banach space
f sequences 𝑐0(N0) ∶= {𝑠 ∶ N0 → C ∶ |𝑠𝑛| → 0 as 𝑛 → ∞} endowed
ith the natural norm.

efinition 2.4. Given 𝑝 > 0, the space of analytic functions given by

𝑝 =

{

𝑓 ∶ R → C ∕ 𝑓 (𝑥) =
∞
∑

𝑛=0

𝑎𝑛𝑝𝑛

𝑛!
𝑥𝑛, (𝑎𝑛)𝑛≥0 ∈ 𝑐0(N0)

}

and endowed with the norm ‖𝑓‖𝑝 ∶= sup𝑛≥0 |𝑎𝑛| is called the Herzog
space.

3. Devaney chaos

In this section, we will study the chaotic behavior of the fourth-
order Moore–Gibson–Thompson equation

𝜕4𝑢
𝜕𝑡4

(𝑡, 𝑥) + 𝛼 𝜕
3𝑢
𝜕𝑡3

(𝑡, 𝑥) + 𝛽 𝜕
2𝑢
𝜕𝑡2

𝑢(𝑡, 𝑥) − 𝛾 𝜕4𝑢
𝜕𝑡2𝜕𝑥2

(𝑡, 𝑥)

− 𝛿 𝜕3𝑢
𝜕𝑡𝜕𝑥2

(𝑡, 𝑥) − 𝜌 𝜕
2𝑢

𝜕𝑥2
𝑢(𝑡, 𝑥) = 0, (7)

in the space of analytic functions of Herzog type. Since the second order
differential operator 𝜕

𝜕𝑥2
is a bounded operator on 𝑋𝑝, we can express

(7) as a first-order equation on the product space 𝑋 ∶= 𝑋𝑝⊕𝑋𝑝⊕𝑋𝑝⊕
𝑋𝑝. Setting 𝑢1 = 𝑢, 𝑢2 = 𝜕𝑢1

𝜕𝑡 , 𝑢3 = 𝜕𝑢2
𝜕𝑡 and 𝑢4 = 𝜕𝑢3

𝜕𝑡 we can pose the
ollowing abstract Cauchy problem:
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;
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⎜

⎜

⎜
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⎝

𝑢1(0, 𝑥)
𝑢2(0, 𝑥)
𝑢3(0, 𝑥)
𝑢4(0, 𝑥)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

𝜑1(𝑥)
𝜑2(𝑥)
𝜑3(𝑥)
𝜑4(𝑥)

⎞

⎟

⎟

⎟
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, 𝑥 ∈ R.

(8)

hen, the operator-valued matrix

∶=

⎛

⎜

⎜

⎜

⎜

⎝

0 𝐼 0 0
0 0 𝐼 0
0 0 0 𝐼

𝜌𝜕𝑥𝑥 𝛿𝜕𝑥𝑥 𝛾𝜕𝑥𝑥 − 𝛽 −𝛼

⎞

⎟

⎟

⎟

⎟

⎠

(9)

efines a bounded operator on 𝑋 and, consequently, we have that
𝑒𝑡𝐴}𝑡≥0 is the solution 𝐶0-semigroup of (8). See [24, Section 3] for
similar representation for the case of the classical Moore–Gibson–

hompson equation.
We begin with the following general result:

heorem 3.1. Let 𝛼, 𝛽, 𝛿, 𝜌, 𝛾 > 0. Suppose that

− 𝛿 ≤ 0, 𝛼 ≥ 2
√

𝛽, 𝛽𝛿 − 𝜌𝛼 ≥ 0. (10)
3

𝛼

Then for each 𝑝 satisfying

2 > max{𝛽, 𝑟20}, 𝑟0 ∶=
−(2𝛼 + 𝛿)
2(2 + 𝛾)

+

√

(2𝛼 + 𝛿)2

4(2 + 𝛾)2
+

𝜌
2 + 𝛾

, (11)

the operator 𝐴 generates a uniformly continuous semigroup which is De-
vaney chaotic on 𝑋𝑝 ⊕𝑋𝑝 ⊕𝑋𝑝 ⊕𝑋𝑝.

roof. We set 𝑈 ∶= {𝑧 ∈ C ∶ |𝑧| < 𝑟0}. It is clear that condition (i) in
heorem 2.3 is satisfied. For each 𝜆 ∈ 𝑈 we define

𝜆 ∶=
𝜆4 + 𝛽𝜆2 + 𝛼𝜆3

𝛾𝜆2 + 𝛿𝜆 + 𝜌
,

and weakly analytic functions 𝑓𝑧0 ,𝑧1 ∶ 𝑈 → 𝑋𝑝 ⊕𝑋𝑝 ⊕𝑋𝑝 ⊕𝑋𝑝 by

𝑧0 ,𝑧1 (𝜆) ∶=

⎛

⎜

⎜

⎜

⎜

⎝

𝜑𝜆
𝜆𝜑𝜆
𝜆2𝜑𝜆
𝜆3𝜑𝜆

⎞

⎟

⎟

⎟

⎟

⎠

, (12)

where 𝜑𝜆(𝑥) ∶= 𝑧0 cosh(
√

𝑅𝜆𝑥) + 𝑧1 sinh (
√

𝑅𝜆𝑥), with 𝑧0, 𝑧1 ∈ C and
𝑥 ∈ R. It is easy to verify that

𝜌𝜑′′
𝜆 (𝑥) + 𝛿𝜆𝜑′′

𝜆 (𝑥) + 𝛾𝜆2𝜑′′
𝜆 (𝑥) − 𝛽𝜆2𝜑𝜆(𝑥) − 𝛼𝜆3𝜑𝜆(𝑥) = 𝜆4𝜑𝜆(𝑥), 𝑥 ∈ R,

nd therefore 𝐴𝑓𝑧0 ,𝑧1 (𝜆) = 𝜆𝑓𝑧0 ,𝑧1 (𝜆).
We claim that 𝑓𝑧0 ,𝑧1 (𝜆) ∈ 𝑋𝑝 ⊕𝑋𝑝 ⊕𝑋𝑝 ⊕𝑋𝑝 for all 𝜆 ∈ 𝑈 . Indeed,

irst note that we can rewrite 𝜑𝜆 as follows:

𝜆(𝑥) = cosh

(

𝑝𝑥

√

𝑅𝜆

𝑝2

)

𝑧0+sinh

(

𝑝𝑥

√

𝑅𝜆

𝑝2

)

𝑧1 =
∞
∑

𝑛=0
𝑎𝑛(𝜆)

(𝑝𝑥)𝑛

𝑛!
, 𝑥 ∈ R,

where 𝑎𝑛(𝜆) = 𝑧0
𝑅𝑛∕2
𝜆
𝑝𝑛 , 𝑛 = 0, 2, 4,… and 𝑎𝑛(𝜆) = 𝑧1

√

𝑅𝜆
𝑅(𝑛−1)∕2
𝜆
𝑝𝑛 , 𝑛 =

1, 3, 5,… Therefore, to prove the claim, it is enough to show that ||
|

𝑅𝜆
𝑝2
|

|

|

<
1 for each 𝜆 ∈ 𝑈 .

For each 𝜆 ∈ 𝑈 we have

|

|

|

𝑅𝜆

𝑝2
|

|

|

=
|𝜆|2(|𝜆|2 + 𝛼|𝜆| + 𝛽)
𝑝2|𝛾𝜆2 + 𝛿𝜆 + 𝜌|

<
𝑟20(𝑟

2
0 + 𝛼𝑟0 + 𝛽)

𝑝2|𝜌 − 𝛾𝑟20 − 𝛿𝑟0|
. (13)

or 𝛾 > 0 we define

(𝑥) ∶= 𝜌 − 𝛾𝑥2 − 𝛿𝑥, 𝑥 ∈ R.

his is a quadratic polynomial whose two roots are given by

1 ∶= − 𝛿
2𝛾

−

√

𝛿2

4𝛾2
+

𝜌
𝛾

and 𝑟2 ∶= − 𝛿
2𝛾

+

√

𝛿2

4𝛾2
+

𝜌
𝛾
. (14)

Note that 𝑓 (𝑥) > 0 for every 𝑟1 < 𝑥 < 𝑟2. We will check that 𝑟1 < 𝑟0 < 𝑟2.
ondition 𝑟1 < 𝑟0 holds trivially. On the other hand, since by hypothesis
10) we have 𝛿 − 𝛼𝛾 ≥ 0 we obtain that the following identity
2(2 + 𝛾) + 𝛾(2𝛼 + 𝛿)2 + 4𝜌𝛾(2 + 𝛾) < 4𝜌(1 + 𝛾)2 + 2𝛿(1 + 𝛾)(2𝛼 + 𝛿)

olds. Multiplying by 𝜌
𝛾2(2+𝛾)2 we obtain

𝛿2𝜌
𝛾2(2 + 𝛾)

+
𝜌(2𝛼 + 𝛿)2

𝛾(2 + 𝛾)2
+

4𝜌2

𝛾(2 + 𝛾)
<

4𝜌2(1 + 𝛾)2

𝛾2(2 + 𝛾)2
+

2𝜌(1 + 𝛾)𝛿(2𝛼 + 𝛿)
𝛾2(2 + 𝛾)2

which turns out to be equivalent to

4
( 𝛿2

4𝛾2
+

𝜌
𝛾

)( (2𝛼 + 𝛿)2

4(2 + 𝛾)2
+

𝜌
2 + 𝛾

)

<
( 2𝜌(1 + 𝛾)
𝛾(2 + 𝛾)

+
𝛿(2𝛼 + 𝛿)
2𝛾(2 + 𝛾)

)2

=
( 𝜌
𝛾
+

𝜌
2 + 𝛾

+
𝛿(2𝛼 + 𝛿)
2𝛾(2 + 𝛾)

)2
.

Therefore, taking square root, we get the following identity

𝛿2

4𝛾2
−

𝛿(2𝛼 + 𝛿)
2𝛾(2 + 𝛾)

+
(2𝛼 + 𝛿)2

4(2 + 𝛾)2
< 𝛿2

4𝛾2
+

𝜌
𝛾

− 2

√

𝛿2

4𝛾2
+

𝜌
𝛾

√

(2𝛼 + 𝛿)2

4(2 + 𝛾)2
+

𝜌
2 + 𝛾

+
(2𝛼 + 𝛿)2

4(2 + 𝛾)2
+

𝜌
2 + 𝜌
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|

|

|

D

T

|

|

|

f
t
t

w

f
f

0

D

𝜆

T

0

T

(

which is easy to see is equivalent to

0 ≤ 𝛿 − 𝛼𝛾
𝛾(2 + 𝛾)

= 𝛿
2𝛾

− 2𝛼 + 𝛿
2(2 + 𝛾)

<

√

𝛿2

4𝛾2
+

𝜌
𝛾
−

√

(2𝛼 + 𝛿)2

4(2 + 𝛾)2
+

𝜌
2 + 𝛾

.

As a consequence, the inequality 𝑟0 < 𝑟2 holds. We conclude that
𝑓 (𝑟0) > 0 and hence from (13) we have

𝑅𝜆

𝑝2
|

|

|

<
𝑟20(𝑟

2
0 + 𝛼𝑟0 + 𝛽)

𝑝2(𝜌 − 𝛾𝑟20 − 𝛿𝑟0)
=

𝑟20
𝑝2

(

𝑟20 + 𝛼𝑟0
𝜌 − 𝛾𝑟20 − 𝛿𝑟0

+
𝛽

𝜌 − 𝛾𝑟20 − 𝛿𝑟0

)

. (15)

ue to the choice of 𝑟0 we have (2 + 𝛾)𝑟20 + (2𝛼 + 𝛿)𝑟0 − 𝜌 = 0. Thus,

𝑟20 + 𝛼𝑟0
𝜌 − 𝛾𝑟20 − 𝛿𝑟0

= 1
2

and 𝛽
𝜌 − 𝛾𝑟20 − 𝛿𝑟0

=
𝛽

2(𝑟20 + 𝛼𝑟0)
.

herefore, from (15) and using hypothesis (11) we obtain

𝑅𝜆

𝑝2
|

|

|

<
𝑟20
2𝑝2

+
𝛽𝑟20

2𝑝2(𝑟20 + 𝛼𝑟0)
< 1

2
+ 1

2
= 1.

This proves the claim, and condition (ii) in Theorem 2.3.
It only remains to show that for any 𝑥∗ ∈ 𝑋∗

𝑝 ⊕𝑋∗
𝑝 ⊕𝑋∗

𝑝 ⊕𝑋∗
𝑝 the

unctions 𝜆 → ⟨𝑓𝑧0 ,𝑧1 (𝜆), 𝑥
∗
⟩, 𝑧0, 𝑧1 ∈ C, are holomorphic on 𝑈 , and if

hey all vanish on 𝑈 , then 𝑥∗ = 0. Since 𝑋𝑝 is isometrically isomorphic
o 𝑐0, in what follows, we identify the dual space 𝑋∗

𝑝 with 𝓁1.
Let 𝑥∗ ∈ 𝑋∗

𝑝 ⊕𝑋∗
𝑝 ⊕𝑋∗

𝑝 ⊕𝑋∗
𝑝 . It can be represented in a canonical

ay by 𝑥∗ = (𝑥∗1 , 𝑥
∗
2 , 𝑥

∗
3 , 𝑥

∗
4) = ((𝑥∗1,𝑛)𝑛≥0, (𝑥

∗
2,𝑛)𝑛≥0, (𝑥

∗
3,𝑛)𝑛≥0, (𝑥

∗
4,𝑛)𝑛≥0) ∈

𝓁1 ⊕ 𝓁1 ⊕ 𝓁1 ⊕ 𝓁1. Then, we have

0 = ⟨𝑓𝑧0 ,𝑧1 (𝜆), 𝑥
∗
⟩ = ⟨𝜑𝜆, 𝑥

∗
1⟩ + ⟨𝜆𝜑𝜆, 𝑥

∗
2⟩ + ⟨𝜆2𝜑𝜆, 𝑥

∗
3⟩ + ⟨𝜆3𝜑𝜆, 𝑥

∗
4⟩,

or all 𝜆 ∈ 𝑈, 𝑧0, 𝑧1 ∈ C. This last equation can be reformulated in the
ollowing way:

=
∞
∑

𝑛=0
𝑎𝑛(𝜆)𝑥∗1,𝑛 + 𝜆

∞
∑

𝑛=0
𝑎𝑛(𝜆)𝑥∗2,𝑛 + 𝜆2

∞
∑

𝑛=0
𝑎𝑛(𝜆)𝑥∗3,𝑛 + 𝜆3

∞
∑

𝑛=0
𝑎𝑛(𝜆)𝑥∗4,𝑛

= 𝑧0𝑥
∗
1,0 + 𝜆𝑧0𝑥

∗
2,0 + 𝜆2𝑧0𝑥

∗
3,0 + 𝜆3𝑧0𝑥

∗
4,0

+
𝑧1
𝜌
√

𝑅𝜆𝑥
∗
1,1 +

𝑧1
𝜌
𝜆
√

𝑅𝜆𝑥
∗
2,1 +

𝑧1
𝜌
𝜆2
√

𝑅𝜆𝑥
∗
3,1 +

𝑧1
𝜌
𝜆3
√

𝑅𝜆𝑥
∗
4,1

+
𝑧0
𝜌2

𝑅𝜆𝑥
∗
1,2 +

𝑧0
𝜌2

𝑅𝜆𝜆𝑥
∗
2,2 +

𝑧0
𝜌2

𝑅𝜆𝜆
2𝑥∗3,2 +

𝑧0
𝜌2

𝑅𝜆𝜆
3𝑥∗4,2 …

(16)

efine now

0 = 0, 𝜆1 ∶= −𝛼
2
+
√

𝛼2
4

− 𝛽 and 𝜆2 ∶= −𝛼
2
−
√

𝛼2
4

− 𝛽. (17)

It is clear that 𝑅𝜆 = 0 if 𝜆 ∈ {𝜆0, 𝜆1, 𝜆2}. We claim that 𝜆0, 𝜆1, 𝜆2 ∈ 𝑈 .
In fact, clearly 𝜆0 ∈ 𝑈 . By hypothesis (10) we have 𝜆2 < 𝜆1 < 0.

herefore, it is enough to show that 𝜆2 ∈ 𝑈 .
By hypothesis (10) we obtain that the following inequality

< 𝜌2 + 4𝜌𝛽 + 2𝜌𝛽𝛾 + 4𝛽2 + 4𝛾𝛽2 + 𝛾2𝛽2 + 2𝛼2𝛽𝛾

+ (6𝛼 + 𝛿 + 𝛼𝛾)(𝛽𝛿 − 𝛼𝜌) + 4𝛽𝛾2 + 4𝛽𝛼2 + 2𝛼2𝜌,

holds. A computation shows that the above inequality is equivalent to

0 <
(

𝜌
2 + 𝛾

+ 𝛽
)2

+
𝛽(2𝛼 + 𝛿)2 − 𝛼𝜌(2𝛼 + 𝛿)

(2 + 𝛾)2
+

𝛽𝛼(2𝛼 + 𝛿) − 𝜌𝛼2

2 + 𝛾
.

which is the same as:

4
(

(2𝛼 + 𝛿)2

4(2 + 𝛾)2
+

𝜌
2 + 𝛾

)(

𝛼2

4
− 𝛽

)

<
𝜌2

(2 + 𝛾)2
+ 𝛽2

−
2𝜌𝛽

(2 + 𝛾)
+

𝛽𝛼(2𝛼 + 𝛿) − 𝜌𝛼(2𝛼 + 𝛿)
(2 + 𝛾)2

+
𝛼2(2𝛼 + 𝛿)2

4(2 + 𝛾)2
=
(

𝜌
(2 + 𝛾)

− 𝛽 −
𝛼(2𝛼 + 𝛿)
2(2 + 𝛾)

)2
.

Taking now square roots we arrive to:

2

√

(2𝛼 + 𝛿)2
2
+

𝜌
√

𝛼2 − 𝛽 <
(

𝜌
− 𝛽 −

𝛼(2𝛼 + 𝛿)
)

.

4

4(2 + 𝛾) 2 + 𝛾 4 (2 + 𝛾) 2(2 + 𝛾)
Adding 𝛼2

4 + (2𝛼+𝛿)2

4(2+𝛾)2 in both sides of the previous inequality we get:

𝛼(2𝛼 + 𝛿)
2(2 + 𝛾)

+ 𝛼2

4
+

(2𝛼 + 𝛿)2

4(2 + 𝛾)2
< 𝛼2

4
+

(2𝛼 + 𝛿)2

4(2 + 𝛾)2

+
𝜌

(2 + 𝛾)
− 𝛽 − 2

√

(2𝛼 + 𝛿)2

4(2 + 𝛾)2
+

𝜌
2 + 𝛾

√

𝛼2

4
− 𝛽.

his inequality is equivalent to:

𝛼
2
+

(2𝛼 + 𝛿)
2(2 + 𝛾)

)2
<
⎛

⎜

⎜

⎝

√

(2𝛼 + 𝛿)2

4(2 + 𝛾)2
+

𝜌
2 + 𝛾

−
√

𝛼2
4

− 𝛽
⎞

⎟

⎟

⎠

2

.

Note that the hypothesis 𝛿 − 𝛼𝛾 > 0 implies
√

(2𝛼+𝛿)2
4(2+𝛾)2 + 𝜌

2+𝛾 >
√

𝛼2
4 − 𝛽.

Therefore, taking square roots in the previous inequality leads to:

|𝜆2| =
𝛼
2
+
√

𝛼2
4

− 𝛽 < −
(2𝛼 + 𝛿)
2(2 + 𝛾)

+

√

(2𝛼 + 𝛿)2

4(2 + 𝛾)2
+

𝜌
2 + 𝛾

= 𝑟0,

which proves the claim.
Finally, we will check condition (iii) in Theorem 2.3. Indeed, eval-

uating (16) in 𝜆0, we have the following equation:

𝑧0𝑥
∗
1,0 = 0 (18)

for all 𝑧0 ∈ C. Therefore, 𝑥∗1,0 = 0.
Now, we divide (16) by 𝜆 and we get:

0 = 1
𝜆

( ∞
∑

𝑛=0
𝑎𝑛(𝜆)𝑥∗1,𝑛 + 𝜆

∞
∑

𝑛=0
𝑎𝑛(𝜆)𝑥∗2,𝑛 + 𝜆2

∞
∑

𝑛=0
𝑎𝑛(𝜆)𝑥∗3,𝑛 + 𝜆3

∞
∑

𝑛=0
𝑎𝑛(𝜆)𝑥∗4,𝑛

)

= 𝑧0𝑥
∗
2,0 + 𝜆𝑧0𝑥

∗
3,0 + 𝜆2𝑧0𝑥

∗
4,0 +

𝑧1
𝜌

√

𝑅𝜆

𝜆
𝑥∗1,1

+
𝑧1
𝜌
√

𝑅𝜆𝑥
∗
2,1 +

𝑧1
𝜌
𝜆
√

𝑅𝜆𝑥
∗
3,1 +

𝑧1
𝜌
𝜆2
√

𝑅𝜆𝑥
∗
4,1

+
𝑧0
𝜌2

𝑅𝜆
𝜆

𝑥∗1,2 +
𝑧0
𝜌2

𝑅𝜆𝑥
∗
2,2 +

𝑧0
𝜌2

𝑅𝜆𝜆𝑥
∗
3,2 +

𝑧0
𝜌2

𝑅𝜆𝜆
2𝑥∗4,2 …

(19)

As 𝑅𝜆0 = 0, evaluating (19) in 𝜆0 = 0 we obtain:

𝑧0𝑥
∗
2,0 +

𝑧1
𝜌

√

𝛽
𝜌
𝑥∗1,1 = 0 (20)

for all 𝑧0, 𝑧1 ∈ C. Then, 𝑥∗2,0 = 0 and 𝑥∗1,1 = 0.
We then obtain

0 = 1
𝜆

( ∞
∑

𝑛=0
𝑎𝑛(𝜆)𝑥∗1,𝑛 + 𝜆

∞
∑

𝑛=0
𝑎𝑛(𝜆)𝑥∗2,𝑛 + 𝜆2

∞
∑

𝑛=0
𝑎𝑛(𝜆)𝑥∗3,𝑛 + 𝜆3

∞
∑

𝑛=0
𝑎𝑛(𝜆)𝑥∗4,𝑛

)

= 𝜆𝑧0𝑥
∗
3,0 + 𝜆2𝑧0𝑥

∗
4,0 +

𝑧1
𝜌
√

𝑅𝜆𝑥
∗
2,1 +

𝑧1
𝜌
𝜆
√

𝑅𝜆𝑥
∗
3,1 +

𝑧1
𝜌
𝜆2
√

𝑅𝜆𝑥
∗
4,1

+
𝑧0
𝜌2

𝑅𝜆
𝜆

𝑥∗1,2 +
𝑧0
𝜌2

𝑅𝜆𝑥
∗
2,2 +

𝑧0
𝜌2

𝑅𝜆𝜆𝑥
∗
3,2 +

𝑧0
𝜌2

𝑅𝜆𝜆
2𝑥∗4,2 …

(21)

Since 𝜆1, 𝜆2 ∈ 𝑈 we now evaluate (21) in 𝜆1 and 𝜆2 getting:

𝜆1𝑧0𝑥
∗
3,0 + 𝜆21𝑧0𝑥

∗
4,0 = 0 and 𝜆2𝑧0𝑥

∗
3,0 + 𝜆22𝑧0𝑥

∗
4,0 = 0 (22)

for all 𝑧0, 𝑧1 ∈ C. Since 𝜆1 ≠ 𝜆2 then 𝑥∗3,0 = 0 and 𝑥∗4,0 = 0.
Now, we divide (21) by 𝜆 again getting:

0 =
𝑧1
𝜌

√

𝑅𝜆

𝜆
𝑥∗2,1 +

𝑧1
𝜌
√

𝑅𝜆𝑥
∗
3,1 +

𝑧1
𝜌
𝜆
√

𝑅𝜆𝑥
∗
4,1

+
𝑧0
𝜌2

𝑅𝜆

𝜆2
𝑥∗1,2 +

𝑧0
𝜌2

𝑅𝜆
𝜆

𝑥∗2,2 +
𝑧0
𝜌2

𝑅𝜆𝑥
∗
3,2 +

𝑧0
𝜌2

𝑅𝜆𝜆𝑥
∗
4,2 …

(23)

Evaluating (23) in 𝜆0 we get:

𝑧1
√

𝛽
𝑥∗2,1 +

𝑧0
2
𝛽
𝑥∗1,2 = 0 (24)
𝜌 𝜌 𝜌 𝜌
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b

𝑛
T

r
h
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e
𝜌

𝐵

a
N
T

T

𝛽

𝑅

w

𝑟

T

|

|

|

s
f

p
m
o

T

𝛾

c

P
u
t

A

T

for all 𝑧0, 𝑧1 ∈ C. Therefore 𝑥∗2,1 = 0 and 𝑥∗1,2 = 0. Dividing again (23)
y 𝜆 and evaluating in 𝜆0 we arrive to 𝑥∗3,1 = 0 and 𝑥∗2,2 = 0.

Proceeding inductively, we will get that 𝑥∗𝑖,𝑛 = 0 for 𝑖 = 1, 2, 3, 4 and
∈ N. We finally have 𝑥∗ = 0 and we conclude the result by applying
heorem 2.3. □

Special attention deserves the case 𝛾 = 0, that is, the model

𝜕4𝑢
𝜕𝑡4

(𝑡, 𝑥) + 𝛼 𝜕
3𝑢
𝜕𝑡3

(𝑡, 𝑥) + 𝛽 𝜕
2𝑢
𝜕𝑡2

𝑢(𝑡, 𝑥) − 𝛿 𝜕3𝑢
𝜕𝑡𝜕𝑥2

(𝑡, 𝑥)

− 𝜌 𝜕
2𝑢

𝜕𝑥2
𝑢(𝑡, 𝑥) = 0, 𝑡 ≥ 0, 𝑥 ∈ R. (25)

The model (25) appears in the Ref. [15, formula (12)] and rep-
esents the so-called modified fourth-order Moore–Gibson–Thompson
eat equation. In such case 𝑢 represents the thermodynamical temper-
ture of a semiconductor. It explains the interaction of thermal-plasma-
lastic waves. For the meaning of the constitutive parameters 𝛼, 𝛽, 𝛿 and
we refer to [15].

Associated to (25) we have the operator-valued matrix

∶=

⎛

⎜

⎜

⎜

⎜

⎝

0 𝐼 0 0
0 0 𝐼 0
0 0 0 𝐼

𝜌𝜕𝑥𝑥 𝛿𝜕𝑥𝑥 −𝛽 −𝛼

⎞

⎟

⎟

⎟

⎟

⎠

s the generator of an uniformly continuous semigroup on the space 𝑐0.
ote that the proof of Theorem 3.1 breaks down in step (14) for 𝛾 = 0.
he analysis of this case is contained in the following result.

heorem 3.2. Let 𝛼, 𝛽, 𝛿, 𝜌 > 0 Suppose that

𝛿 − 𝜌𝛼 ≥ 0 and 𝛼 ≥ 2
√

𝛽. (26)

Then for each 𝑝 satisfying

𝑝2 > max{𝛽, 𝑟20}, 𝑟0 ∶= −2𝛼 + 𝛿
4

+

√

(2𝛼 + 𝛿)2
16

+
𝜌
2

(27)

the operator 𝐵 generates a uniformly continuous semigroup which is De-
vaney chaotic on 𝑋𝑝 ⊕𝑋𝑝 ⊕𝑋𝑝 ⊕𝑋𝑝.

Proof. We will only include the main steps of the proof which are
different with respect to Theorem 3.1. First, we define 𝑈 ∶= {𝜆 ∈ C ∶
|𝜆| < 𝑟0 }. For each 𝜆 ∈ 𝑈 we define

𝜆 ∶=
𝜆4 + 𝛽𝜆2 + 𝛼𝜆3

𝛿𝜆 + 𝜌
,

and weakly analytic functions 𝑓𝑧0 ,𝑧1 on 𝑈 as in (14). We will show that
𝑓𝑧0 ,𝑧1 (𝜆) ∈ 𝑋𝑝 ⊕𝑋𝑝 ⊕𝑋𝑝 ⊕𝑋𝑝 for all 𝜆 ∈ 𝑈 by proving that |𝑅𝜆

𝑝2
| < 1.

For each 𝜆 ∈ 𝑈 we have the inequality

|𝛿𝜆 + 𝜌| ≥ |𝜌 − 𝛿𝑟0|.

We claim that 𝜌 − 𝛿𝑟0 > 0. Indeed, we have

0 <
2𝜌2 + 2𝛿𝛼𝜌

2𝛿2
=

2𝜌2 + 𝛿𝜌(2𝛼 + 𝛿) − 𝛿2𝜌
2𝛿2

. (28)

Observe that inequality (28) is equivalent to

(2𝛼 + 𝛿)2

16
+

𝜌
2
<

𝜌2

𝛿2
+

(2𝛼 + 𝛿)2

16
+

𝜌(2𝛼 + 𝛿)
2𝛿

=
(𝜌
𝛿
+

(2𝛼 + 𝛿)
4

)2
. (29)

Taking square roots to (29) we get
√

(2𝛼 + 𝛿)2
16

+
𝜌
2
<

𝜌
𝛿
+

(2𝛼 + 𝛿)
4

(30)

hich is equivalent to

0 ∶= −2𝛼 + 𝛿
4

+

√

(2𝛼 + 𝛿)2
16

+
𝜌
2
<

𝜌
𝛿
.

his proves the claim.
For each 𝜆 ∈ 𝑈 we have

𝑅𝜆
2
|

|

|

=
|𝜆|2(|𝜆|2 + 𝛼|𝜆| + 𝛽)

2
<

𝑟20(𝑟
2
0 + 𝛼𝑟0 + 𝛽)
2

=
𝑟20
2

(

𝑟20 + 𝛼𝑟0 +
𝛽

)

.

5

𝑝 𝑝 |𝛿𝜆 + 𝜌| 𝑝 (𝜌 − 𝛿𝑟0) 𝑝 𝜌 − 𝛿𝑟0 𝜌 − 𝛿𝑟0 c
Note that 𝑟0 satisfies the equation 2𝑟20 + (2𝛼 + 𝛿)𝑟0 − 𝜌 = 0, therefore we
get:

𝑟20 + 𝛼𝑟0
𝜌 − 𝛿𝑟0

= 1
2

and 𝛽
𝜌 − 𝛿𝑟0

=
𝛽

2(𝑟20 + 𝛼𝑟0)
.

Hence,

|

|

|

𝑅𝜆

𝑝2
|

|

|

<
𝑟20
2𝑝2

+
𝛽𝑟20

2𝑝2(𝑟20 + 𝛼𝑟0)
< 1

2
+ 1

2
= 1, (31)

ince by hypothesis we have 𝑝2 > max{𝛽, 𝑟20}. The remaining proof
ollows the same lines as Theorem 3.1 just making 𝛾 = 0. □

It is interesting to note that there exists a different combination of
arameters that still produces a chaotic behavior for the fourth-order
odel (7). This combination is, in a certain sense, less natural than the

ne given in Theorem 3.1.

heorem 3.3. Let 𝛼, 𝛽, 𝛿, 𝜌, 𝛾 > 0. Suppose that

− 𝛿
𝛼
≤ 0, 𝛼 < 2

√

𝛽, |𝜌 − 𝛽(2 + 𝛾)| >
√

𝛽(2𝛼 + 𝛿). (32)

Then for each 𝑝 satisfying (11) the operator 𝐴 generates a uniformly
ontinuous semigroup which is Devaney chaotic on 𝑋𝑝 ⊕𝑋𝑝 ⊕𝑋𝑝 ⊕𝑋𝑝.

roof. We set 𝑟0 as in (11) and then follow the steps of Theorem 3.1
ntil the expression in (16). We define 𝜆0, 𝜆1 and 𝜆2 as in (17). Recall
hat 𝑅𝜆 = 0 if 𝜆 ∈ {𝜆0, 𝜆1, 𝜆2}. We claim that 𝜆1, 𝜆2 ∈ 𝑈 .

In fact, by hypothesis (32) we have 𝜆1 = 𝛼
2 + 𝑖

√

𝛽 − 𝛼2
4 and 𝜆2 =

𝛼
2 − 𝑖

√

𝛽 − 𝛼2
4 . Consequently, it is sufficient to prove that |𝜆1| = |𝜆2| =

√

𝛽 < 𝑟0.
From the hypothesis (32) we obtain the inequality

0 < (𝜌 − 𝛽(2 + 𝛾))2 − 𝛽(2𝛼 + 𝛿)2. (33)

Dividing (33) by (2𝛼 + 𝛿)2 we obtain the equivalent form:

0 <
(

𝜌
2𝛼 + 𝛿

−
𝛽(2 + 𝛾)
2𝛼 + 𝛿

)2
− 𝛽 =

𝜌2

(2𝛼 + 𝛿)2
+

𝛽2(2 + 𝛾)2

(2𝛼 + 𝛿)2
−

2𝜌𝛽(2 + 𝛾)
(2𝛼 + 𝛿)2

− 𝛽.

(34)

dding (2𝛼+𝛿)2

4(2+𝛾)2 + 𝜌
(2+𝛾) in both sides of inequality (34) we have:

(2𝛼 + 𝛿)2

4(2 + 𝛾)2
+

𝜌
(2 + 𝛾)

<
(

(2𝛼 + 𝛿)
2(2 + 𝛾)

+
𝜌

(2𝛼 + 𝛿)
−

𝛽(2 + 𝛾)
(2𝛼 + 𝛿)

)2

and then root squaring, we arrive to:
√

(2𝛼 + 𝛿)2

4(2 + 𝛾)2
+

𝜌
(2 + 𝛾)

<
(2𝛼 + 𝛿)
2(2 + 𝛾)

+
𝜌

(2𝛼 + 𝛿)
−

𝛽(2 + 𝛾)
(2𝛼 + 𝛿)

. (35)

We now multiply (35) by (2𝛼+𝛿)
(2+𝛾) which leads to:

𝛽 <
(2𝛼 + 𝛿)2

2(2 + 𝛾)2
+

𝜌
(2 + 𝛾)

−
(2𝛼 + 𝛿)
(2 + 𝛾)

√

(2𝛼 + 𝛿)2

4(2 + 𝛾)2
+

𝜌
(2 + 𝛾)

(36)

=
(

√

(2𝛼 + 𝛿)2

4(2 + 𝛾)2
+

𝜌
2 + 𝛾

−
(2𝛼 + 𝛿)
2(2 + 𝛾)

)2
.

Finally, taking square root to (36) we get
√

𝛽 < 𝑟0. This proves the
claim. The remaining proof follows the same steps as Theorem 3.1. □

Parallel to Theorem 3.2, we can state the corresponding result for
the model (25).

Theorem 3.4. Let 𝛼, 𝛽, 𝛿, 𝜌 > 0 Suppose that

𝛼 < 2
√

𝛽 and |𝜌 − 2𝛽| >
√

𝛽(2𝛼 + 𝛿). (37)

hen for each 𝑝 satisfying (27) the operator 𝐵 generates a uniformly
ontinuous semigroup which is Devaney chaotic on 𝑋 ⊕𝑋 ⊕𝑋 ⊕𝑋 .
𝑝 𝑝 𝑝 𝑝
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Proof. We set 𝑟0 as in (27) and define 𝑈 ∶= {𝜆 ∈ C ∶ |𝜆| < 𝑟0 }.
We also define weakly analytic functions 𝑓𝑧0 ,𝑧1 on 𝑈 as in (14). Our
task is to show that 𝑓𝑧0 ,𝑧1 (𝜆) ∈ 𝑋𝑝 ⊕ 𝑋𝑝 ⊕ 𝑋𝑝 ⊕ 𝑋𝑝 for all 𝜆 ∈ 𝑈 , and
this is achieved following the same lines of Theorem 3.2 by proving
that |

𝑅𝜆
𝑝2
| < 1 for all 𝜆 ∈ 𝑈 where 𝑅𝜆 = 𝜆4+𝛽𝜆2+𝛼𝜆3

𝛿𝜆+𝜌 . Next, we note
hat the hypothesis 𝛼 < 2

√

𝛽 in (37) allows to define 𝜆1 and 𝜆2 as
𝜆1 = 𝛼

2 + 𝑖
√

𝛽 − 𝛼2
4 and 𝜆2 = 𝛼

2 − 𝑖
√

𝛽 − 𝛼2
4 . Then, thanks to the

hypothesis |𝜌 − 2𝛽| >
√

𝛽(2𝛼 + 𝛿), we can follow the same proof of
heorem 3.3 to obtain that 𝜆1, 𝜆2 ∈ 𝑈 . From this point, we finish the
roof following the same steps of Theorem 3.1. □

We end this article with the following example.

xample 1. Let 𝑎, 𝑏, 𝑐, 𝑑,𝓁 ≥ 0 and consider the following form of the
ourth-order Moore–Gibson–Thompson equation

𝜕4𝑢
𝜕𝑡4

(𝑡, 𝑥) + (𝑎 + 𝓁) 𝜕
3𝑢
𝜕𝑡3

(𝑡, 𝑥) + 𝑎𝓁 𝜕2𝑢
𝜕𝑡2

𝑢(𝑡, 𝑥) − 𝑏 𝜕4𝑢
𝜕𝑡2𝜕𝑥2

(𝑡, 𝑥) (38)

− (𝑐 + 𝑏𝓁) 𝜕3𝑢
𝜕𝑡𝜕𝑥2

(𝑡, 𝑥) − (𝑐𝓁 − 𝑑) 𝜕
2𝑢

𝜕𝑥2
𝑢(𝑡, 𝑥) = 0,

t was considered in [6] and labels into the model (7) with 𝛼 = 𝑎+𝓁, 𝛽 =
𝓁, 𝛾 = 𝑏, 𝛿 = 𝑐 + 𝑏𝓁 and 𝜌 = 𝑐𝓁 − 𝑑.

We will apply Theorem 3.1 to (38). Note that

− 𝛿
𝛼
≤ 0 if and only if 𝑏 − 𝑐

𝑎
≤ 0.

e now observe that

≥ 2
√

𝛽 if and only if (𝑎 − 𝓁)2 > 0. (39)

and

𝛽𝛿 − 𝜌𝛼 > 0 if and only if (𝑐 − 𝑎𝑏)𝓁2 − 𝑑𝑙 − 𝑎𝑑 < 0

where the last conditions hold if

𝑏 − 𝑐
𝑎
< 0 and 0 ≤ 𝓁 <

√

𝑑2 + 4𝑎𝑑(𝑐 − 𝑎𝑏)
2(𝑐 − 𝑎𝑏)

+ 𝑑
2(𝑐 − 𝑎𝑏)

,

nd therefore they are sufficient conditions to exhibit chaos for model
38).
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