
Citation: Mohammed, P.O.; Lizama,

C.; Lupas, A.A.; Al-Sarairah, E.;

Abdelwahed, M. Maximum and

Minimum Results for the Green’s

Functions in Delta Fractional

Difference Settings. Symmetry 2024, 16,

991. https://doi.org/10.3390/

sym16080991

Academic Editor: Calogero Vetro

Received: 30 June 2024

Revised: 26 July 2024

Accepted: 1 August 2024

Published: 5 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Maximum and Minimum Results for the Green’s Functions in
Delta Fractional Difference Settings
Pshtiwan Othman Mohammed 1,2,* , Carlos Lizama 3 , Alina Alb Lupas 4,* , Eman Al-Sarairah 5,6

and Mohamed Abdelwahed 7

1 Department of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, Iraq
2 Research and Development Center, University of Sulaimani, Sulaymaniyah 46001, Iraq
3 Departamento de Matemática y Ciencia de la Computación, Facultad de Ciencia, Universidad de Santiago de

Chile, Casilla 307, Correo 2, Santiago 8320000, Chile; carlos.lizama@usach.cl
4 Department of Mathematics and Computer Science, University of Oradea, 410087 Oradea, Romania
5 Department of Mathematics, Khalifa University of Science and Technology,

Abu Dhabi P.O. Box 127788, United Arab Emirates; eman.alsarairah@ku.ac.ae
6 Department of Mathematics, Al-Hussein Bin Talal University, P.O. Box 20, Ma’an 71111, Jordan
7 Department of Mathematics, College of Science, King Saud University, P.O. Box 2455,

Riyadh 11451, Saudi Arabia; mabdelwahed@ksu.edu.sa
* Correspondence: pshtiwansangawi@gmail.com (P.O.M.); dalb@uoradea.ro (A.A.L.)

Abstract: The present paper is dedicated to the examination of maximum and minimum results
based on Green’s functions via delta fractional differences for a class of fractional boundary problems.
For such a purpose, we built the corresponding Green’s functions based on the falling factorial
functions. In addition, using the constructed Green’s function, the positivity of the function and its
corresponding delta function are presented. We also verified the occurrence of two distinct functions
with the same Green’s function. The maximality and minimality of the Green’s function show a good
qualitative agreement. Finally, we considered some special examples to explain the obtained results.

Keywords: Riemann–Liouville operators; Green’s functions; positivity results; max and min results

MSC: 26A48; 26A51; 39A12; 39B62

1. Introduction

In the last two decades, a large number of fractional differential and difference equa-
tions have been studied with their application in fractional calculus, telecommunication,
mathematical modeling, biological modeling, and so on; see e.g., [1–4]. One of the funda-
mental problems in science is the development of suitable fractional operators to extract
useful information from fractional and discrete fractional calculus; see e.g., [5–7]. These
operators are important in many fields of science, including physics, applied science,
mathematics, and scientific computing, as well as some related research fields, such as
engineering sciences, fluid dynamics, number theory, mathematical physics, and quantum
mechanics; see for example [8–11].

The study of the fractional boundary value problems (FBVPs) has attracted the at-
tention of researchers through the world, and these models have rarely been investigated
in the context of discrete fractional calculus [12,13]. The problem of finding the existence
and uniqueness of discrete FBVPs in relation to the homogeneous and inhomogeneous
boundary conditions is critical for mathematical and physical applications. For this reason,
different models have been proposed in the literature aiming to calculate the existence
and uniqueness of discrete FBVP models, using analytical and numerical or experimental
approaches; see for example [14,15] to be familiar with these operators.

On the other hands, the FBVPs have been extensively modelled since its beginning,
and with the flourishing development of discrete fractional calculus, the qualitative analysis
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of FBVPs for fractional difference equations has become an active research field. There
are several books and papers devoted to fractional difference modelling in both the com-
monly used fractional differences: Riemann–Liouville and Liouville–Caputo settings; see,
e.g., [16–22], for instance. Moreover, the existence and uniqueness of the solutions of FBVPs
have been investigated via other types of fractional differences, including the Attangana–
Baleanu and Caputo–Fabrizio fractional operators; see for example [23–26].

We have previously introduced several models of FBVPs to better understand their
interactions; for example in [27,28]. Motivated by the FBVP used in [27], we aim to examine
the following FBVP:

−
(

RL
b0+1∆ℓ w

)
(t) = g

(
t + ℓ), t ∈ J(b0+2,b), ℓ ∈ I2,

α1w(b0)− α2(∇w)(b0 + 1) = 0,

δ2w(b) + δ1(∇w)(b) = 0.

(1)

where g : J(b0+2,b) → R, and α2
1 + α2

2 > 0, δ2
2 + δ2

1 > 0, for α1, α2, δ2, δ1 ∈ R and J(b0+2,b) =
{b0 + 2, b0 + 3, . . . , b}. With these motivations and considerations in mind, in this article,
we will establish bounded results to the Green’s functions obtained from the above delta
fractional operator.

The remaining part of this paper has structured in the sequence: In the next section,
we have briefly presented fundamental structures and basic theorems related to Green’s
functions and FBVPs. Then, in Section 3, we have studied the conduction of Green’s
functions associated with the proposed FBVP. In addition, we have two parts for the main
results in this section: In Section 3.1, the essential positivity results of the operators have
been deducted along with their existence results, and we have presented the bounded
results in Section 3.2 regarding the maximality and minimality. Then, in Section 4, we
have presented a related numerical example. Concluding remarks, together with the future
directions, are detailed in Section 5.

2. Preliminaries

Let In = (n − 1, n), J(b0)
= {b0, b0 + 1, . . .}, n ∈ J(1), and Υ(t) = t + 1. We refer to

Definition 2.25 in [2]; the delta-fractional sum is given as follows:

(
b0

∆−ℓw
)
(t) =

t−ℓ

∑
t2=b0

Wℓ−1(t, Υ(t2))w(t2), for t ∈ J(b0+ℓ), (2)

and Theorem 2.2 in [29]; the delta-fractional difference is given as follows:

(
RL
b0

∆ℓw
)
(t) =

t+ℓ

∑
t2=b0

W−ℓ−1(t, Υ(t2))w(t2), for t ∈ J(b0+n−ℓ), (3)

for ℓ ∈ In and w is defined by J(b0)
. Also, we have

Wℓ(t, t2) :=
(t − t2)

ℓ

Γ(ℓ+ 1)
=

Γ(t − t2 + 1)
Γ(ℓ+ 1) Γ(t − t2 + 1 − ℓ)

. (4)

Next, we recall some properties of Wℓ(t, t2).

Lemma 1 (see [2,14]). If ℓ ∈ R+, then

(i) ∇Wℓ(t, b0) = Wℓ−1(t − 1, b0).
(ii) For t ∈ J(b0)

, we have

Wℓ(t + ℓ− 1, b0)−Wℓ−1(t + ℓ− 2, b0) = Wℓ(t + ℓ− 1, Υ(b0)) = Wℓ(t + ℓ− 2, b0).
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(iii) For t ∈ J(b0+n) as ℓ ∈ In, we have(
RL

b0+n−α1
∆−ℓ RL

b0
∆ℓw

)
(t) = w(t). (5)

(iv) t ∈ J(b0+1), we have

t

∑
t2=b0+1

Wℓ(t2 + ℓ− 1, b0) = Wℓ+1(t + ℓ, b0),

t

∑
t2=b0+1

Wℓ(t2 + ℓ+ 1, Υ(t2)) = Wℓ+1(t + ℓ, b0).

Lemma 2 (see [28]). Let t2 ∈ J(b0)
. Then, one can have

(i) If ℓ > 0, then

• Wℓ(t + ℓ+ 1, Υ(t2)) is decreasing with reference to t2, for t ∈ J(t2−1).
• Wℓ(t + ℓ+ 1, Υ(t2)) is increasing with reference to t, for t ∈ J(t2)

.

(ii) If ℓ > −1, then

• Wℓ(t + ℓ+ 1, Υ(t2)) ≥ 0, for t ∈ J(t2−1).
• Wℓ(t + ℓ+ 1, Υ(t2)) > 0, for t ∈ J(t2)

.

(iii) If 0 > ℓ > −1, then

• Wℓ(t + ℓ+ 1, Υ(t2)) is increasing with reference to t2, for t ∈ J(t2)
.

• Wℓ(t + ℓ+ 1, Υ(t2)) is increasing with reference to t, for t ∈ J(t2+1).

(iv) If ℓ ≥ 0, then Wℓ(t + ℓ+ 1, Υ(t2)) is non-decreasing with reference to t, for t ∈ J(t2−1).

Lemma 3 (see [28]). For t2 ∈ J(b0+1), t ∈ J(t2)
and ℓ > −1, we define

Tℓ(t, t2) =
Wℓ(t + ℓ+ 1, Υ(t2))

Wℓ(t + ℓ− 1, b0)
. (6)

Then, we have

i- Tℓ(t, t2) > 0.
ii- Tℓ(t, t2) ≤ 1, where ℓ > 0, and Tℓ(t, t2) ≥ 1, where −1 < ℓ < 0, specifically, T0(t, t2) = 1.

iii- The function Tℓ(t, t2) is non-increasing with reference to t, where ℓ > 0.
iv- The function Tℓ(t, t2) is non-increasing with reference to t, where −1 < ℓ < 0.

Lemma 4 (see [28]). The general solution of(
RL
b0

∆ℓw
)
(t) = −g(t + ℓ), t ∈ J(b0+2),

is given as follows

w(t) = c1 Wℓ−1
(
t + ℓ, Υ(b0)

)
+ c2 Wℓ−2

(
t + ℓ− 1, Υ(b0)

)
−

(
b0+2∆−α1 g

)
(t + ℓ), t ∈ J(b0)

, (7)

where ℓ ∈ I2, c1 and c2 are arbitrary constants.
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3. Main Results

First, we study our essential results on Green’s functions. By considering (1), we define
the following notations:

B1 = α1 + α2 (1 − ℓ),

B2 = B1 + α2 = α1 + α2 (2 − ℓ),

f1(r) = δ2 Wℓ−1
(
b + ℓ, Υ(r)

)
+ δ1 Wℓ−2

(
b + ℓ− 1, Υ(r)

)
, r ∈ J(b0,b),

f2(r) = B2 Wℓ−1
(
r + ℓ, Υ(b0)

)
− B1 Wℓ−2

(
r + ℓ− 1, Υ(b0)

)
, r ∈ J(b0,b),

A = δ2 Wℓ−2
(
b + ℓ− 1, Υ(b0)

)
+ δ1 Wℓ−3

(
b + ℓ− 2, Υ(b0)

)
,

λ = B2 f1(b0)− B1 A.

Theorem 1. There is a unique solution for the FBVP (1), which is given by

w(t) =
b

∑
t2=b0+2

G (t, t2)g(t2), t ∈ J(b0,b), (8)

where

G (t, t2) =


G1(t, t2) := f2(t)

λ f1(t2), t ∈ J(b0,t2−1);

G2(t, t2) := G1(t, t2)−Wℓ−1
(
t + ℓ, Υ(t2)

)
, t ∈ J(t2,b).

(9)

Proof. The general solution of (1) is given by (7). It follows from this and Lemma 1 that(
∇w

)
(t) = c1 Wℓ−2

(
t + ℓ− 1, Υ(b0)

)
+ c2 Wℓ−3

(
t + ℓ− 2, Υ(b0)

)
−∇

(
b0+2∆−α1 g

)
(t + ℓ)

= c1 Wℓ−2
(
t + ℓ− 1, Υ(b0)

)
+ c2 Wℓ−3

(
t + ℓ− 2, Υ(b0)

)
−

(
b0+2∆1−α1 g

)
(t + ℓ− 1), (10)

for t ∈ J(b0,b). By using the BCs of (1) in (7) and (10), respectively, we obtain

c1 B1 + c2 B2 = 0,

and

c1 f1(b0) + c2 A =
b

∑
t2=b0+2

f1(t2)g(t2).

From these equations, it follows that

c1 =
B2

λ

b

∑
t2=b0+2

f1(t2)g(t2),

and

c2 =
−B1

λ

b

∑
t2=b0+2

f1(t2)g(t2).

By substituting the values of c1 and c2 in (7), we obtain the desired result. Therefore,
the proof is complete.

We have divided the main results of this section into two parts.
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3.1. Positivity Results

This subsection is dedicated to prove some necessary lemmas for the positivity of operators.

Lemma 5. Let α1, α2, δ2, δ1 > 0 s.t. α1 ≥ α2. Then, we have

(a) B1, B1, f1(r) > 0, for r ∈ J(b0,b);
(b) f1(b0)− A > 0;
(c) λ > 0;
(d) f2(r) ≥ 0, for r ∈ J(b0,b);
(e)

(
∇ f2

)
(r) > 0, for r ∈ J(b0+1,b).

Proof. By considering Lemma 2 (ii), we obtain (a).
Next, by using the hypothesis and Lemmas 1–2 (ii), we see that

f1(b0)− A = δ2

[
Wℓ−1

(
b + ℓ, Υ(b0)

)
−Wℓ−2

(
b + ℓ− 1, Υ(b0)

)]
+ δ1

[
Wℓ−2

(
b + ℓ− 1, Υ(b0)

)
− δ1 Wℓ−3

(
b + ℓ− 2, Υ(b0)

)]
= δ2 Wℓ−1

(
b + ℓ− 2, b0

)
+ δ1 Wℓ−2

(
b + ℓ− 3, b0

)
> 0,

which proves (b).
For the next one, we use (a) and (b) to obtain

λ = B2 f1(b0)− B1 A

= (B1 + α2) f1(b0)− B1 A

= B1
(

f1(b0)− A
)
+ α2 f1(b0) > 0,

which gives the proof of (c).
By considering (a), Lemma 1 (ii), Lemma 2 (i,ii), we have

f2(r) = B2 Wℓ−1
(
r + ℓ, Υ(b0)

)
− B1 Wℓ−2

(
r + ℓ− 1, Υ(b0)

)
= (B1 + α2)Wℓ−1

(
r + ℓ, Υ(b0)

)
− B1 Wℓ−2

(
r + ℓ− 1, Υ(b0)

)
= B1

[
Wℓ−1

(
r + ℓ, Υ(b0)

)
−Wℓ−2

(
r + ℓ, Υ(b0)

)]
+ α2 Wℓ−1

(
r + ℓ, Υ(b0)

)
= B1 Wℓ−1(r + ℓ− 2, b0) + α2 Wℓ−1

(
r + ℓ, Υ(b0)

)
≥ 0,

for r ∈ J(b0,b). This has proved (d).
The final item can be proved by using (d) and Lemma 1 (i) as follows:(

∇ f2
)
(r) = ∇

[
B1 Wℓ−1(r + ℓ− 2, b0) + α2 Wℓ−1

(
r + ℓ, Υ(b0)

)]
= B1 Wℓ−2(r + ℓ− 3, b0) + α2 Wℓ−2

(
r + ℓ− 1, Υ(b0)

)
> 0,

for r ∈ J(b0+1,b). Hence, the proof is complete.

Lemma 6. With the same assumptions as the above lemma, we have

G (t, t2) ≥ 0, (t, t2) ∈ J(b0,b) × J(b0+2,b).

Proof. Considering Theorem 1, we have

G1(t, t2) =
f2(t)

λ
f1(t2) ≥ 0, (11)

as f2(t) ≥ 0, λ > 0, f1(t2) > 0 for t ∈ J(b0,b) and t2 ∈ J(b0+2,b) according to Lemma 5.
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Moreover, we have

G2(t, t2) =
f2(t)

λ
f1(t2)−Wℓ−1

(
t + ℓ, Υ(t2)

)
=

1
λ

[
f2(t) f1(t2)− λWℓ−1

(
t + ℓ, Υ(t2)

)]
=

1
λ

[
B1δ2 E1 + B1δ1 E2 + α2δ2 E3 + α2δ1 E4

]
, (12)

where

E1 = Wℓ−1
(
b + ℓ, Υ(t2)

)
Wℓ−1

(
t + ℓ− 2, b0

)
−Wℓ−1

(
t + ℓ, Υ(t2)

)
Wℓ−1

(
b + ℓ− 2, b0

)
;

E2 = Wℓ−2
(
b + ℓ− 1, Υ(t2)

)
Wℓ−1

(
t + ℓ− 2, b0

)
−Wℓ−1

(
t + ℓ, Υ(t2)

)
Wℓ−2

(
b + ℓ− 3, b0

)
;

E3 = Wℓ−1
(
b + ℓ, Υ(t2)

)
Wℓ−1

(
t + ℓ, Υ(b0)

)
−Wℓ−1

(
t + ℓ, Υ(t2)

)
Wℓ−1

(
b + ℓ, Υ(b0)

)
;

E4 = Wℓ−2
(
b + ℓ− 1, Υ(t2)

)
Wℓ−1

(
t + ℓ, Υ(b0)

)
−Wℓ−1

(
t + ℓ, Υ(t2)

)
Wℓ−2

(
b + ℓ− 1, Υ(b0)

)
.

Computing these values in turn, we have

E1 = Wℓ−1
(
t + ℓ, Υ(t2)

)
Wℓ−1

(
b + ℓ− 2, b0

)
×

[
Wℓ−1

(
b + ℓ, Υ(t2)

)
Wℓ−1

(
b + ℓ− 2, b0

) Wℓ−1
(
t + ℓ− 2, b0

)
Wℓ−1

(
t + ℓ, Υ(t2)

) − 1

]

= Wℓ−1
(
t + ℓ, Υ(t2)

)
Wℓ−1

(
b + ℓ− 2, b0

)[Tℓ−1
(
b, t2

)
Tℓ−1

(
t, t2

) − 1

]
≥ 0,

where we used Wℓ−1
(
t + ℓ, Υ(t2)

)
Wℓ−1

(
b + ℓ − 2, b0

)
> 0 according to Lemma 2 (ii),

and Tℓ−1
(
b, t2

)
≥ Tℓ−1

(
t, t2

)
according to Lemma 3. Also,

E2 = Wℓ−2
(
b + ℓ− 1, Υ(t2)

)
Wℓ−1

(
t + ℓ− 2, b0

)
−Wℓ−1

(
t + ℓ, Υ(t2)

)
Wℓ−2

(
b + ℓ− 3, b0

)
> Wℓ−2

(
b + ℓ− 1, Υ(b0) + 1

)
Wℓ−1

(
t + ℓ− 2, t2 − 1

)
−Wℓ−1

(
t + ℓ, Υ(t2)

)
Wℓ−2

(
b + ℓ− 3, b0

)
= 0,

where we have used Lemma 2 (i,iii) and

Wℓ−2
(
b + ℓ− 1, Υ(b0) + 1

)
= Wℓ−2

(
b + ℓ− 3, b0

)
,

Wℓ−1
(
t + ℓ− 2, t2 − 1

)
= Wℓ−1

(
t + ℓ, Υ(t2)

)
,

for t2 ∈ J(b0+2,b) and ℓ ∈ I2.
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Again, by using Lemma 2 (ii) and Lemma 3, we have

E3 = Wℓ−1
(
b + ℓ, Υ(t2)

)
Wℓ−1

(
t + ℓ, Υ(b0)

)
−Wℓ−1

(
t + ℓ, Υ(t2)

)
Wℓ−1

(
b + ℓ, Υ(b0)

)
= Wℓ−1

(
t + ℓ, Υ(t2)

)
Wℓ−1

(
b + ℓ, Υ(b0)

)
×

[
Wℓ−1

(
b + ℓ, Υ(t2)

)
Wℓ−1

(
b + ℓ, Υ(b0)

) Wℓ−1
(
t + ℓ, Υ(b0)

)
Wℓ−1

(
t + ℓ, Υ(t2)

) − 1

]

= Wℓ−1
(
t + ℓ, Υ(t2)

)
Wℓ−1

(
b + ℓ, Υ(b0)

)[Tℓ−1
(
b, t2

)
Tℓ−1

(
t, t2

) − 1

]
≥ 0.

Finally, by using Lemma 2 (i,iii), we have

E4 = Wℓ−2
(
b + ℓ− 1, Υ(t2)

)
Wℓ−1

(
t + ℓ, Υ(b0)

)
−Wℓ−1

(
t + ℓ, Υ(t2)

)
Wℓ−2

(
b + ℓ− 1, Υ(b0)

)
> Wℓ−2

(
b + ℓ− 1, Υ(b0)

)
Wℓ−1

(
t + ℓ, Υ(s)

)
−Wℓ−1

(
t + ℓ, Υ(t2)

)
Wℓ−2

(
b + ℓ− 1, Υ(b0)

)
= 0.

Therefore, by considering the Eℓ’s values in (12) and the hypotheses, we have

G2(t, t2) =
f2(t)

λ
f1(t2) ≥ 0, (13)

for t ∈ J(b0,b) and t2 ∈ J(b0+2,b). Hence, G (t, t2) ≥ 0, for (t, t2) ∈ J(b0,b)×J(b0+2,b), according
to (11) and (13). This completes the proof.

3.2. Max and Min Results

The maximality and minimality of the proposed Green’s function will be stated in the
following theorems.

Theorem 2. With the same assumptions as the Lemma 5, we have

max
t∈J(b0,b)

G (t, t2) = G (t2 − 1, t2), t2 ∈ J(b0+2,b).

Proof. According to Theorem 1 one can have

(
∇t G1

)
(t, t2) =

(
∇t f2

)
(t)

λ
f1(t2) > 0,

according to Lemma 5, for (t, t2) ∈ J(b0+1,t2−1) × J(b0+2,b).
Next, from Lemma 6, we have

(
∇t G2

)
(t, t2) =

1
λ

[(
∇t f2

)
(t) f1(t2)− λWℓ−2

(
t + ℓ− 1, Υ(t2)

)]
=

1
λ

[
B1δ2 F1 + B1δ1 F2 + α2δ2 F3 + α2δ1 F4

]
,
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where

F1 =
(
∇t E1

)
= Wℓ−1

(
b + ℓ, Υ(t2)

)
Wℓ−2

(
t + ℓ− 3, b0

)
−Wℓ−2

(
t + ℓ− 1, Υ(t2)

)
Wℓ−1

(
b + ℓ− 2, b0

)
;

F2 =
(
∇t E2

)
= Wℓ−2

(
b + ℓ− 1, Υ(t2)

)
Wℓ−2

(
t + ℓ− 3, b0

)
−Wℓ−2

(
t + ℓ− 1, Υ(t2)

)
Wℓ−2

(
b + ℓ− 3, b0

)
;

F3 =
(
∇t E3

)
= Wℓ−1

(
b + ℓ, Υ(t2)

)
Wℓ−2

(
t + ℓ− 1, Υ(b0)

)
−Wℓ−2

(
t + ℓ− 1, Υ(t2)

)
Wℓ−1

(
b + ℓ, Υ(b0)

)
;

F4 =
(
∇t E4

)
= Wℓ−2

(
b + ℓ− 1, Υ(t2)

)
Wℓ−2

(
t + ℓ− 1, Υ(b0)

)
−Wℓ−2

(
t + ℓ− 1, Υ(t2)

)
Wℓ−2

(
b + ℓ− 1, Υ(b0)

)
.

By using the same techniques used in the previous lemma, we can calculate each Fℓs
as follows:

F1 = Wℓ−1
(
b + ℓ, Υ(t2)

)
Wℓ−2

(
t + ℓ− 3, b0

)
−Wℓ−2

(
t + ℓ− 1, Υ(t2)

)
Wℓ−1

(
b + ℓ− 2, b0

)
< Wℓ−1

(
b + ℓ− 2, b0

)
Wℓ−2

(
t + ℓ− 1, Υ(t2)

)
−Wℓ−2

(
t + ℓ− 1, Υ(t2)

)
Wℓ−1

(
b + ℓ− 2, b0

)
= 0,

F2 = Wℓ−2
(
b + ℓ− 1, Υ(t2)

)
Wℓ−2

(
t + ℓ− 3, b0

)
−Wℓ−2

(
t + ℓ− 1, Υ(t2)

)
Wℓ−2

(
b + ℓ− 3, b0

)
= Wℓ−2

(
t + ℓ− 1, Υ(t2)

)
Wℓ−2

(
b + ℓ− 3, b0

)
×

[
Wℓ−2

(
b + ℓ− 1, Υ(t2)

)
Wℓ−2

(
b + ℓ− 3, b0

) Wℓ−2
(
t + ℓ− 3, b0

)
Wℓ−2

(
t + ℓ− 1, Υ(t2)

) − 1

]

= Wℓ−2
(
t + ℓ− 1, Υ(t2)

)
Wℓ−2

(
b + ℓ− 3, b0

)[Tℓ−2
(
b, t2

)
Tℓ−2

(
t, t2

) − 1

]
≤ 0,

F3 = Wℓ−1
(
b + ℓ, Υ(t2)

)
Wℓ−2

(
t + ℓ− 1, Υ(b0)

)
−Wℓ−2

(
t + ℓ− 1, Υ(t2)

)
Wℓ−1

(
b + ℓ, Υ(b0)

)
< Wℓ−1

(
b + ℓ, Υ(b0)

)
Wℓ−2

(
t + ℓ− 1, Υ(s)

)
−Wℓ−2

(
t + ℓ− 1, Υ(t2)

)
Wℓ−1

(
b + ℓ, Υ(b0)

)
= 0,

and

F4 = Wℓ−2
(
b + ℓ− 1, Υ(t2)

)
Wℓ−2

(
t + ℓ− 1, Υ(b0)

)
−Wℓ−2

(
t + ℓ− 1, Υ(t2)

)
Wℓ−2

(
b + ℓ− 1, Υ(b0)

)
= Wℓ−2

(
t + ℓ− 1, Υ(t2)

)
Wℓ−2

(
b + ℓ− 1, Υ(b0)

)
×

[
Wℓ−2

(
b + ℓ− 1, Υ(t2)

)
Wℓ−2

(
b + ℓ− 1, Υ(b0)

) Wℓ−2
(
t + ℓ− 1, Υ(b0)

)
Wℓ−2

(
t + ℓ− 1, Υ(t2)

) − 1

]

= Wℓ−2
(
t + ℓ− 1, Υ(t2)

)
Wℓ−2

(
b + ℓ− 1, Υ(b0)

)[ Tℓ−2
(
b, t2

)
Wℓ−2

(
t, t2

) − 1

]
≤ 0.
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Therefore, we conclude from the hypotheses and these values(
∇t G2

)
(t, t2) < 0,

for (t, t2) ∈ J(t2,b) × J(b0+2,b).
As a consequence, for t2 ∈ J(b0+2,b), we obtain the result

max
t∈J(b0,b)

G (t, t2) = max
t∈J(b0,b)

{
G1(t2 − 1, t2), G2(t2, t2)

}
= G (t2 − 1, t2),

where we have used

G2(t2, t2)− G1(t2 − 1, t2) =
f2(t2)

λ
f1(t2)−Wℓ−1

(
t2 + ℓ, Υ(t2)

)
− f2(t2 − 1)

λ
f1(t2)

=
f1(t2)

λ

[
f2(t2)− f2(t2 − 1)

]
−Wℓ−1

(
t2 + ℓ, Υ(t2)

)
=

(
∇t2 f2

)
(t2)

λ
f1(t2)−Wℓ−2

(
t2 + ℓ− 1, Υ(t2)

)
=

(
∇t2 G2

)
(t2, t2) < 0.

Thus, we have completed our proof.

Theorem 3. With the same assumptions as the Lemma 5, we have

max
t∈J(b0,b)

G (t, t2) ≥ χ G (t2 − 1, t2), t2 ∈ J(b0+2,b),

where

χ =
1

f2(b − 1)
min

 f2(b0), f2(b)−
λ

δ2 + δ1

(
ℓ−1

b−b0+ℓ−3

)
.

Proof. Theorem 2 implies that

G1(b0, t2) ≤ G1(t, t2) ≤ G1(t2 − 1, t2), (14)

for (t, t2) ∈ J(b0,t2−1) × J(b0+2,b)

G2(b, t2) ≤ G2(t, t2) ≤ G2(t2, t2), (15)

for (t, t2) ∈ J(t2,b) × J(b0+2,b).
We consider

G (t, t2)

G (t2 − 1, t2)
=


G1(t,t2)

G (t2−1,t2)
, t ∈ J(b0,t2−1);

G2(t,t2)
G (t2−1,t2)

, t ∈ J(t2,b).
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It follows from (14) and (15) that

G (t, t2)

G (t2 − 1, t2)
≥


G1(b0,t2)

G (t2−1,t2)
, t ∈ J(b0,t2−1);

G2(b,t2)
G (t2−1,t2)

, t ∈ J(t2,b),

=


f2(b0)

f2(t2−1) , t ∈ J(b0,t2−1);

f2(b)
f2(t2−1) −

λWℓ−1

(
b+ℓ,Υ(t2)

)
f2(t2−1) f1(t2)

, t ∈ J(t2,b),

=
1

f2(t2 − 1)


f2(b0), t ∈ J(b0,t2−1);

f2(b)− λ
Wℓ−1

(
b+ℓ,Υ(t2)

)
f1(t2)

, t ∈ J(t2,b).
(16)

Calculating the second term, we have

Wℓ−1
(
b + ℓ, Υ(t2)

)
f1(t2)

=
Wℓ−1

(
b + ℓ, Υ(t2)

)
δ2 Wℓ−1

(
b + ℓ, Υ(t2)

)
+ δ1 Wℓ−2

(
b + ℓ− 1, Υ(t2)

)
=

1

δ2 + δ1
Wℓ−2

(
b+ℓ−1,Υ(t2)

)
Wℓ−1

(
b+ℓ,Υ(t2)

)
=

1

δ2 + δ1

(
ℓ−1

b−t2+ℓ−1

)
≤ 1

δ2 + δ1

(
ℓ−1

b−b0+ℓ−3

) , (17)

for t2 ∈ J(b0+2,b). From (16) and (17), we can conclude that

G (t, t2)

G (t2 − 1, t2)
≥ 1

f2(t2 − 1)


f2(b0), t ∈ J(b0,t2−1);

f2(b)− λ

δ2+δ1

(
ℓ−1

b−b0+ℓ−3

) , t ∈ J(t2,b).
(18)

Since
(
∇ f2

)
(t2) > 0, for t2 ∈ J(b0+1,b), according to Lemma 5 (e), we can say that

f2(b − 1) ≥ f2(t2 − 1) ≥ f2(b0 + 1), t2 ∈ J(b0+2,b). (19)

By making the use of (19) in (18), we obtain the desired result. Hence, the proof is com-
plete.

4. An Application

The following example is dedicated to understand the applicability of the above
main results.

Example 1. Let us suppose that

b0 = 0, b = 2, δ1 = α2 = 0, α1 = δ2 = 1.
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This implies that B1 = B2 = α1 = 1. Therefore,

A = Wℓ−2(ℓ+ 1, 1) =
1
2
(ℓ− 1)ℓ,

f1(t) = Wℓ−1(ℓ+ 2, t + 1) =
Γ(ℓ+ 2 − t)
Γ(ℓ)Γ(3 − t)

=⇒ f1(b0) =
1
2
ℓ(ℓ+ 1),

λ = f1(b0)− A = ℓ,

f2(t) = Wℓ−1
(
t + ℓ, Υ(b0)

)
−Wℓ−2

(
t + ℓ− 1, Υ(b0)

)
= Wℓ−1

(
t + ℓ− 1, Υ(b0)

)
=

Γ(t + ℓ− 1)
Γ(t)Γ(ℓ)

=⇒ f2(b0) → 0, f2(b) = ℓ, f2(b − 1) = 1.

Also, we know that

Wℓ−1
(
t + ℓ, Υ(t2)

)
=

Γ(t + ℓ− t2)

Γ(t − t2 + 1)Γ(ℓ)
.

Since t2 = 2 and

Wℓ−1
(
[t2 − 1] + ℓ, Υ(t2)

)
=

Γ(ℓ− 1)
Γ(0)Γ(ℓ)

→ 0,

we conclude that

G1(t2 − 1, t2) = G2(t2 − 1, t2) =
1

Γ(ℓ)Γ(ℓ+ 1)
Γ(t2 + ℓ− 2)Γ(ℓ− t2 + 2)

Γ(t2 − 1)Γ(3 − t2)
=

1
ℓ

.

Moreover, in view of (9), we have

G (t, t2) =


1

Γ(ℓ+1)
Γ(t+ℓ−1)

Γ(t) , t ∈ {0, 1};

1
Γ(ℓ+1)

Γ(t+ℓ−1)
Γ(t) − 1

Γ(ℓ)
Γ(t+ℓ−2)

Γ(t−1), t ∈ {2}.

=


0, t = 0, 2;

1
ℓ t = 1.

Thus, we can deduce that

max
t∈J(0,2)

G (t, t2) =
1
ℓ
= G (t2 − 1, t2), t2 = 2,

which confirms the validity of Theorem 2.

On the other hands, we observe that

χ =
1

f2(b − 1)
min

 f2(b0), f2(b)−
λ

δ2 + δ1

(
ℓ−1

b−b0+ℓ−3

)


= min{0, 0} = 0.

Therefore, for t2 = 2, we have

1
ℓ
= max

t∈J(0,2)

G (t, t2) ≥ 0 = χ G (t2 − 1, t2),
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for each ℓ ∈ I2. This confirms the validity of Theorem 3.

5. Conclusions

In this paper, we have considered the delta FBVP (1). For this, a new Green’s func-
tion in the domain J(b0,b) has been constructed, together with some essential properties.
The proposed Green’s function is formulated via some functions and the positivity of
these functions has been derived. In fact, it is proven that the maximality of this Green’s
function is equal to G (t2 − 1, t2), t2 ∈ J(b0+2,b); however, when χ is defined in Theorem 3,
it is greater and equal to χ G (t2 − 1, t2). Finally, Theorem 3 has been verified by using an
example of a special FBVP.

This research direction can be extended to other types of fractional difference operators,
such as Liouville–Caputo operators, and other types with Mittag-Leffler and exponential
in kernels; for example, see [14,15] to find these operators.
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