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Abstract
For B > 0 and p > 1, the generalized Cesaro operator

) =5 [[a-9P )05

and its companion operator ¢ defined on Sobolev spaces y,,(a)(to‘) and Z,(a)(|t\“)
(where o > 0 is the fractional order of derivation and are embedded in L?(R™) and
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LP(R) respectively) are studied. We prove that if p > 1, then 43 and ‘Kﬁ* are bounded

operators and commute on 91,(00 (t*) and Z,(a) (|]*). We calculate explicitly their spec-
tra 6(%p) and 6(¢};) and their operator norms (which depend on p). For 1 < p <2, we

— —~ —

prove that €3 (f) = 5 (f) and 5 (f) =%p (f) where f denotes the Fourier transform
of a function f € LP(R).

Keywords: Cesaro operators, Sobolev spaces, Boundedness.

1 Introduction

Given 1 < p < oo, let L?(R™) be the set of Lebesgue p-integrable functions, that is, f is a

measurable function and
oo 1/p
Il ([ 1) <o

The classical Hardy inequality (see [13, p. 245]) establishes that

(

for 1 < p < o and therefore the so-called Cesaro transformation %', defined by

P 1/p p
dt) <P fll,, Ferr®*),

1 t
; /0 f(S)dS E

() (1) = %/Olf(s)ds, >0, (1.1)

is a bounded operator on LP(R™) with ||€|| < 1% for 1 < p < co. In fact, it is also known
thatif § >0

(/
0
([34‘1)1(1—%)

t
B-1
— | (t— d
5 | =9 r)as
r
for 1 < p < o and the constant

/ _1
pdt)l p . r(B+1ra 1 >)
FB+1-75)

||f||177 fELp(R+)7 (12)

is optimal in this inequality, see [13, Theorem

L(B+1-3)

329]. A closer (and dual) inequality is the following

00 (1 —x)B~1 N C(a+1)T (%)

| B[ roa) ax) < 171 (13
0 X t T <a + l)
p

Mle+r(5) . .

Also the constant ﬁ is optimal in the above inequality ([13, Theorem 329, p.245]).
(X‘FE



Note that inequalities (1.2) and (1.3) show that the operators ‘5[;, CKE where

t o (f —g)B—1
@i =t [P p0as G0 =5 [T s,

t

define bounded operators on LP(R"), 4] = ¢ and €| = ¢*. By Fubini theorem, the dual
operator of g on LP(R™") is %5 on LY (RT), ie,

| Grwsa = | oGstds. fer®Y), gelr®),

where 1 < p,p’ < e and % + 1% = 1. See other properties about some of these operators in
[6, 7, 18].

Recently, A. Arvanitidis and A. Siskakis ([4]) showed that the half-plane versions of
Cesaro operators on the Hardy space .7¢,(U), defined on U := {z € C : Im(z) > 0} by

F(s) s

S

C(F)(z) = = /OZF(s)ds, C*(F)(2) = /Z )

4

F € H?(U), (1.4)

define bounded operators on .7,(U) when p > 1. Both operators C and C* can be obtained
as resolvent operators of generators of some appropriate strongly continuous Cyp-semigroups
on %,(U).

Similarly, W. Arendt and B. de Pagter ([3]) studied the Cesaro operator (1.1) defined
in an interpolation space E of (L',L*) on R*. When E = LP(R"), the authors obtained a
representation of % in terms of an appropriate resolvent operator, see [3, Corollaries 2.2,
4.3].

In [11], Sobolev subspaces fl(a) (t%) and Z(a)(|t|“) (contained in L' (R*) and L!(R)
respectively and where o > 0 is the fractional order of derivation) were introduced. In fact,
these subspaces are sub-algebras for the convolution products given by

fxgt)= /Olf(t —s)g(s)ds, t>0, (1.5)

and

(o)

fre)= [ fl=sglds,  reR (1.6)

—o0

respectively. These algebras are canonical to define some algebra homomorphisms (defined
by integral representations) into %(X), the set of all linear and bounded operators on a
Banach space X. See further details in [11].

Further, in [20] Sobolev subspaces ,?p(a)(t“) contained in Lebesgue spaces LP(R™)
(p > 1) were introduced and studied in detail. Some remarkable results were proved (see

Proposition 2.2 below). In particular, the subspace ﬂp(a)(t“) is a module for the algebra
,7](“) (t%) for the convolution product * given by (1.5).
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Hence, it is natural to ask to what extent the boundedness property of the operators 6
and %, remain valid in the above described Sobolev spaces.

The main aim of this paper is to study boundedness, representation and spectral properties
for the generalized Cesaro operators 4 and (KE on Sobolev subspaces of fractional order

o > 0 embedded in LP(R™") and LP(R) (which are denoted by %(a) (t%) and Z,(a)(wo‘)
respectively).
The outline of the paper is as follows: In the second section we recall some basic prop-

erties of the Sobolev spaces Z,(a) (t%) (where fp(a) (t%) < LP(R™)). We also prove new
results, see for example Proposition 2.4. The main tool of this section (and in the rest of the

paper) is the group of isometries on %(a) (t%), (Ti p)icr given by

Tpf(s)=e 2 fe™'s),  feZ? ).

In the Theorem 2.5 it is identified its infinitesimal generator and, its spectrum, in Proposition
2.6. We note that this strategy has been pursued by other authors. We mention here [3, 4, 8,
24].

In the third section, we study the generalized Cesaro operators % and ‘KE defined on

Sobolev spaces Z,(a) (t%). We first show that both operators are bounded operators and
commute for p > 1. In fact, we have

L(B+1)r(1/p). I'(B+1)I'(1/p)
r+1/p) ° L(B+1/p)
fora >0,p>1,>0, 1/p+1/p’ =1.1Itis remarkable that the composition %ffg may be

described explicitly involving the Gaussian hypergeometric function ,F; (see Theorem 3.12)
as follows:

1631l =

1651l =

! —r atp r
i) = o[ 105 (1) gt ar

o 1 r—t atp t
+ﬁ/ f(l")— -, 2F1(OH—[3,OC;05—|—1;—)€11’,
t r—t t r

for o, B > 0.
Using the description of ¢} and CKE in terms of the Cp-semigroups (Theorem 3.3 and

Theorem 3.7), we are able to determine the spectra, 6(%3) and G(%g) (Theorem 3.5 and
3.9) as:

D(y+ir) .
7

and

I(L+ir)
o(¢5) :r(ﬁ+1){m : tER},
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where 1/p+1/p’ = 1. In particular, the operators %} and ;" can be obtained as the resolvent
operator of appropriate Cy-semigroups, namely (7; ,);>0 and (T—¢ p)s>0, respectively.
We remark that in case § = 1 we obtain:

o(6)) = {WG(C ‘w——‘:l—;}.

This gives a proof of a conjecture posed by F. Méricz on LP(R™) [18, Section 2] and new
proofs of some results given in [6, 7].

In Sectlon 4, we introduce and give some basic properties of the Sobolev spaces 9 ( t|%)
(here 9 (\t| ) = LP(R)). We also prove that the space 9 (|t\ ) is @ module for the

algebra 91( (|#]*) and the *-convolution product given by (1.6). Moreover, the following
interesting inequality holds:

|11/ gll

In Section 5, we study boundedness, representation and spectral properties of generalized
Cesaro operators on R. Again, it is relevant to mention that the Cyp-group of isometries on

“(t]%), (T p)rcr given by

Tpf(s)=e v fle”'s),  fe M%),

(Theorem 4.4) is the main tool to prove the main results in this section. The generalized

ap < Ca re 000, ge 7 ().

Cesaro operators % and 65 defined on Sobolev spaces 9 (|t| ) are described in terms of

the Cy-group of isometries (7; ,);cr. Similar results shown in the case Z,(a) (t%) hold in this
case, see Theorem 5.2 and 5.3 below. - -

In the last section we show that €5 (f) = ‘KE (f) and CKE (f) =3 (f) where f is the
Fourier transform of a function f € LP(R) and 1 < p < 2, see Theorem 6.4. We notice that

our studies in this section extends and complement the main result in [19].

2 Composition groups on Sobolev spaces defined on R™.

Let 2. be the class of C*-functions with compact support on [0,e) and .%; the Schwartz
class on [0,0). For a function f € ., and a > 0, the Weyl fractional integral of order «,
W, %f, is defined by

1

WoF(r) = m/tm(s—t)alf(s)ds, t e R*.

The Weyl fractional derivative W f of order o is defined by

dl’l

WWJ(”_“)f(r), teR"T

WEF() = (~1)"



where n = [a] + 1, and [ denotes the integer part of . It is proved that Wfﬂg = Wf‘(Wf)

for any a,f € R, where W = Id is the identity operator and (—1)"W! = 57',2 holds with
n € N, see more details in [16] and [21].

Take A > 0 and f; defined by f (r) := f(Ar) for r >0 and f € .7, Itis direct to check
that

WEfL=A%WEf),  fedy, (2.1)

for a € R.
Now we introduce a family of subspaces %(a) (t*) which are contained in L (R ™).

Definition 2.1 For a > 0 let be the Banach space Z,(a) (t%) defined as the completion of the
Schwartz class .4 in the norm

1 - o\
HfHa,p::m(/o ‘W+f(t)|pt pdt) .

We understand that Z,(O) ") =LP(R")and|| |lop=]|| |l,- Thecase p=1and @ €N
where introduced in [2] and for o > Oin [11].

In the next proposition we collect some results about these family of spaces Z,(a) (r%)
which we may be found in [20].

Proposition 2.2 Take p > 1 and B > o« > 0. Then
(i) TP (P) = 7% 1%) - 1/ (R),

(ii) Z,(a) (1%) * ﬂl(a)(t“) — Z,(a) (t%) for 1 < p < eo, where
t
Fralt) = /0 fe—s)gs)ds, 120, e D0, ge 790%). @2

(iti) The operator DY : ﬂp(a) (t%) — LP(R™) defined by

fr DEF() = = W), 1>0, fe TP

(a+1)

is an isometry.

(iv) If p > 1 and p’ satisfies % 1% = 1, then the dual of ,Z,(a)(t“) is ,711(,“) (t%), where the
duality is given by

1 oo
(f,8a= )2/0 WEF()Wg(1)e*%dt,

INo+1

for f € ﬂp(a)(t“), g€ ﬂp(,a)(t“).



Note that, in fact,

A llep = IDFfNlp,  {f:8)a = (DSf, DSg)o, (2.3)

for f € Z,(a)(t“) and g € L‘Z)(,a)(t“) with %—I—I% =1.
In the next lemma, we consider some functions which belong (or not) to ﬁp(a)(t“) for
p=>1.
Lemma 2.3 Ifa,a>0and p > 1, then
(i) tP ¢ 9(“)(t“)forﬁ cC.
(ii) (a+1)~P 69 ( ) for RB > 1/p.
Proof. (i) It suffices to note that 8 does not belong to L (R™).

(ii) For 0 < Ry < RS and a > 0 it is well know that W, "(a+1)7% = %(r +a)’9,
see for example [10, p. 201]. With this formula, it is easy to check that

o p_la+B) (a
W+(a+t) B_ F(ﬁ) ( ) +ﬁ)

Thus for f(¢) := (a+1)~# we obtain

_ o o C(a+p)\" [~ 1P
ks = e werorern = (eigs) | raem
(@+B)\ [~ 1
= (F(a>F(B)) J v <
and we conclude the proof. n

Given f € ,Z,(a) (1%), as the next result shows, we obtain that the function f € C(R™) for
p,o>1.

Proposition 2.4 Take p,ax > 1 and f € ﬂp(a) (t%). Then f € C(RT), limy_ye f(t) = 0 and

supt’ (1) < Capllfllap,  f€ T %),
1>

where Cq ) is independent of f.

Proof. By Proposition 2.2 (i), it is enough to check for a = 1. Take ¢ > s > 0, and we get
that

70 =56 < [ 1 ldu < ['17 wud



For p =1, it is clear that f is continuous and for p > 1, we apply the Holder inequality to
obtain

f(O) = fG)<Ilf

! 11
17p(l—S)P, E-l-]?:l.

Then f is continuous in R™. For f € Z(a) (t%), we have
o 1= C C
PO [ 1 @lde < [ulf wldn < FA < S laas 10
and we conclude that lim;_,. f(z) = 0. Similarly take f € ﬂp(a) (t%) with 1 < p < 0. Then

we have that

1

- - b1\ 1 \7
o< [Criaes ([eirwra) (M La)” < (o) s

1
where we conclude that sup, o7 |f(¢)| < <[%> " || f|l1,p and the proof is finished. n

Lp

The following is the main result of this section. It will be the key in the study of spectral
properties of the generalized Cesaro operators 6 and ‘55 defined on Sobolev spaces.

Theorem 2.5 For 1 < p and o > 0, the family of operators (T, ,)icr defined by
Lpfls):=e 7 fles),  fe "),

is a Cy-group of isometries on ﬂp(a) (t%) whose infinitesimal generator A is given by
1
(Af)(s) = —sf(s) - r (s)

with domain D(A) = %V 0+ 1),
Proof. We check that the operators (7;,,);cg are isometries:

1 o e ! oo -
Lo =t |, WETa s = s [T (e st

T;

= Far i b T WEN@I = |1l

where we have applied the equality (2.1).
Using some known properties for fractional derivative ([21, p. 96]) it can be shown that
the family of operatos (7; ,);cr are strongly continuous, see similar ideas in [4, Proposition



2.1] and [3, Section 2]. It is straightforward to check that the family (7; ,);cR is a group of
operators.

On Z,(a) (r%*) define {S;},>0 by Si(f)(s) := f(e~"s). Then, an easy computation shows
that the generator A of {S; };>0 with domain {f € ﬂp(a) (t%) @ tf € ﬂp(a)(t“)} is given by
Af(s) = —sf'(s). Therefore, the rescaled semigroup (7; ,);>0 has domain {f € Z,(a) (t%) -

tf' € Z,(a)(t“)} and his generator is (Af)(s) = —sf’(s) — %f(s). See [9, p. 60] for more
details.
Finally, we prove that D(A) = ,Z,(aﬂ)(to‘“). In fact, let f € %(aﬂ)(t““) be given.

Since %(a+1)(t°‘+1) — Z,(a)(t“), we have f € Z,(a)(t“). From [16, p. 246] it is easy
to show that W(1f'(t)) = aW2f(t) + tW*T f(¢). Thus, tf' € Z,(a)(t“) and therefore

f € D(A). Conversely, if f € D(A), then f € ﬂp(a) (t%) and tf’ € Z,(a)(to‘). The same
above identity, implies that r*T ' W™ f(¢r) = t*WE(tf'(t)) — at*W¥f(¢), and therefore

fe %(OH-U(IOHI)‘ -
The proof of the following result is inspired in [4, Proposition 2.3] (see also [1]). We

denote by o(A) the usual spectrum of the operator A and by 6,(A) the point spectrum of the
operator A.

Proposition 2.6 For 1 < p < oo we have
(i) op(A) = 0;
(ii) o(A) =iR.

Proof. (i)Let A €Cand f € ﬂp(a) (t%) such that A(f) = A f. Then, f is solution of the
differential equation

sf'(s)+ (A + Il—))ﬂs) _o.

The nonzero solutions to this equation have the form f(r) = ¢t~ (*+1/P) with ¢ # 0. But by

Lemma 2.3, these solutions are not in ,%(a) (t%*). Therefore 6,(A) = 0.
(if) Since each T; ,, is an invertible isometry its spectrum satisfies

o(Ti,) C{zeCi =1},
By the spectral mapping theorem (see Theorem [9, IV.3.6]), we have that

Therefore, if w € 6(A), then ¢ € {z € C: |z| = 1}. Thus, we obtain that c(A) C iR.
Conversely, let i € iR and assume that g € p(A). Let A = u + 117 By Lemma 2.3 the

function f defined by f(r) := (1+1)"*"1 ¢ %(a) (t%). Since R(u,A) is a bounded operator,
the function g(¢) := R(u,A) f(t) belongs to Z,(a) (t%). Therefore, g is solution of equation

Ag(t) +1g'(t) = f(1).

9



An easy computation shows that the solution of this equation is G(¢) := ct—* + 11 (1 +

1)~*, where c is a constant. However, as in Lemma 2.3 one can check that G ¢ Z,(a) (t%).
Therefore, i € o(A). =

Now, consider the negative part {T_; ,,t > 0} of the group {7; ,},cr: that is, for f €
%(05) (la)’
T pf(s) = eéf(ets), t>0.

Obviously, {T-; ,};>0 is a Co-semigroup on ﬁp(a) (t%) of isometries whose generator is —A.
We finish this section, establishing the relationship between the semigroups {7; , };>0 and
{T1 pr}izo with 5+ = 1.

Proposition 2.7 The semigroups {T; p}i>0 and {T_, ,y }+>0 are dual operators of each other
acting on Z,(a)(t“) and ﬂp(,a) (t%) with %-I—I% =1.

Proof. This is easily checked by Proposition 2.2 (iv) and (2.1).

3 Generalized Cesaro operators on Sobolev spaces defined
on R,

For B > 0 the generalized Cesaro operator on fp(a) (t%) is defined by

t
0

Cuf(r) = t%/ (z—s)ﬁ—lf(s)dSZﬁ/olu—r)ﬁ—lf(tr)dr, £ 0.

Defining the function

we obtain the also equivalent formulation of the generalized Cesaro operator in terms of
finite convolution as follows:

Cor(t) = — /Otgﬁ(t—s)f(s)ds, £>0.

N 8p+1()

We remark that for certain classes of vector-valued functions f, the asymptotic behavior as
t — oo of € f(t) in the above representation has been studied in [14].
Note that we may calculate €3 (f) for some particular functions:

10



. . . . o CB+DI(y).
Example 3.1 (i) Functions gy are eigenfunctions of 4 with eigenvalue By

Cp(gy)(t) = #/Ot(t _S)Bfls%lds = %gm}, t>0.

(ii) Take ey (¢) := e M fort>0and A € C*. Then

Zi(en)(t) = %(1 o, %z(el)(t):%(em—l—l—lt), (>0,

t 1—
Since €7 (ey,)( = / a’s for t > 0, we conclude that 67 (e, ) # %»(e; ) and then

CL+ G
(iii) More generally, take f3 (¢) := Eg (AtP) the Mittag-Leffler function, for z >0 and A €

C™T. Then .

BN =70

()(1_fl( )) 1>0.

The relationship between these generalized Cesaro operators and fractional evolution
equations of order o can be also observed in [14].
The next lemma shows a key commutativity property.

Lemma 3.2 Take a > 0 and B > 0. Then DY o %”B = ‘Kﬁ oD%, ie.,

DE(Cp(f) =Cp(DS(S), [,

where DY (t) = t*WEf () for f € S,

Na+1)

Proof. By the equality (2.1), we have that

1
GOLUNG = B[ (=P wEserdr

for f € ., and we conclude the proof. [

The first main result in this section is the following theorem.

Theorem 3.3 The operator € is a bounded operator on fp(a) (t%) and

P TB+1-1/p)

11




fora>0,p>landB >0.If f € fp(a)(ta), then
GO =B [ (1PN (a0 3.1)
where the semigroup (Ty.p)i>0 is defined in Theorem 2.5.

Proof. Leta >0, >0and f € Z,(a) (t%) be given. We apply the change of variable
s =te " to get that

_[31 _ _r— —r —r
Cpf(t) tﬁ/t s) s)ds = [3/ (1—e e "f(te ")dr,

and the equality (3.1) is proved. Observe that by this equality, ¢} is well defined and is a
bounded operator on %(a) (t%) for p > 1. Indeed, we have

1€ Map < B/O (1—e P le VP £l pdr

= Bllfllap [ (1=e P e dr = | a

r(B+1)r\—1/p)
L(B+1-1/p)

To check the exact value of ||%€j]| g, note that by the Lemma 3.2, the boundedness of
‘5[3 on LP(R™) (see the Introduction) and the fact that the operator Dﬂ‘_ is an isometry (see
Proposition 2.2 (iii)), we have

168l er.p

Cpllap =
‘ ﬁ”ap 740 Hf|

«,p

|DF o6 flp
20 IIDEflp
|65 o DS £l 16pellp

= sup——SuP = 1B lp-
o D%, avo Dgll, ORI

Finally, we observe that |65, = inf{M > 0: | €3£, < M| fI|} = "B 715 because,

by (1.2), the constant %W is optimal for the inequality. [

Remark 3.4 (i) Recall that the Beta function, also called the Euler integral of the first kind,
is defined by:

1
B(x,y):/ot"l(l—t)yldt, x>0, y>0,

12



and satisfies the property B(x,y) = % Hence, the obtained value for the norm of 6p

can be rewritten as
€51l =BB(B,1-1/p), B>0, p>1

(ii) In the case p = 1 we remark that 4 does not take ﬂl(a) (t%) in 91(0‘) (t%). In fact,

from Lemma 2.3 it follows that, for § > 0, hg(t) := (1+1)~ (B+1) belongs to 91(05) (r%). By
[21, Formula 2, p.173] and [17, p. 38], we have

t—S

tﬁ 1+Sﬁ+1 =2F(LB+ 1B +1i—1) = (1407,

Cphp ()

where > F| denotes the Gaussian hypergeometric function,

['(c) i I(@a+n)I(b+n)"

2Fi(a,bic32) = ['(c+n) n!’

n=0
Since €hg does not belong to L' (R™) and Z(a) (t*) < L'(R™) (see Proposition 2.2 (i)),
we obtain Gghg & ﬁl(a)(t“).

(iii) Let p > 1 be given. Take B =1 and f € ﬁp(a) (t%). Then

G ft) = / e TU=UPIT f(0)dr = R(Ap, A) f(t), A,=1—1/p>0.  (3.2)
0
and by the spectral theorem for resolvent operators (see for example [9, Theorem IV.1.13])

we get that
14 14
w— = , (3.3)
2(p— 1)‘ 2(p— 1)}
see [18, Theorem 2] and similar results in [4, Theorem 3.1], and [3, Corollary 2.2]. Here,
R(-,A) denotes the resolvent operator of A.
Note that in case § = 2 we obtain

G(Cfl):{weC :

HF) / f=1P) (1 — e )T, f(1)dr = 2R(Ap, A) f (1) — 2R(Ap + 1,A) f(1),

and, more generally, for f =n+1,

Gni1f(t)=(n+1) Zn: (n> (—D*R(A, +k,A) f(t), neZy. (3.4)

k=0 k

In the next result, we are able to describe o(%}) for § > 0.

13



Theorem 3.5 Let 1 < p < oo, and 6 : %(a) (t%) — %(a) (t%) the generalized Cesaro oper-
ator. Then

__ L(1—,+ir)
o(%3) = BB(B, 1 —1/p+iR):=T(B+1) T tERS.
p

Proof. Note that (7; ,);cr is an uniformly bounded Cyp-group (Theorem 2.5) whose in-
finitesimal generator is (A,D(A)) and 65 = fp ,(A), i.e,

Cgﬁf: ﬁ/o (1 —e_r)ﬁ_le_r(l_l/p)Tr,pfdr:/_ fﬁ,p(”)Tr,pfd”,

where fg ,(r) = X[0,00) (1) B(1 — e "B—1e="(=1/P) for r € R, see Theorem 3.3. By [22, The-
orem 3.1], we obtain

o(%p) = fp,p(G(iA))
where fﬁ\p is the Fourier transform of the function fg ,. As 6(iA) = R (see Proposition 2.6
(ii)) and fp p( ) =Z(fp,)(it) we use that

U= [[r et TE T 9

: ze Ct.
L(B+1-+4+2)

to conclude the result. n

Remark 3.6 In the case that n € N, we obtain that

n

o(6n) =

n!p .
{((n+it)p—1)...((1+ir)p_1) ' ’GR}U{O},

and forn =1

o) = |ty ¢ eRpUO={ree: ool

Now we consider the generalized dual Cesaro operator ‘55 on Z,(a) (t%) defined by

s—t p-1
(Kﬁf [3/ ds-ﬁ/ f(tr)dr, t>0.
For 0 < y < 1, functions g, are eigenfunctions of CKE with eigenvalue %:
] B /"" (s—)P~ ' T(B+1I(1-7)
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fort > 0.
Using (2.1), we obtain

DEoBs(f)=C5oDY(f),  feS (3.5)

where DY f(t) = t*W2f(t) for f € .7, and t > 0. Hence the proof of the next

INo+1)
result follows from duality and Theorem 3.3.

Theorem 3.7 The operator ‘55 is a bounded operator on fp(a) (t%) and

. TB+ 10 /p)
R

for a >0, p>1and B > 0. The dual operator of 6 on %((x) (t%) is 65 on ﬂp(,a) (t%), ie.

(€3f.8)a = ([ Ci8)ar  fE TV, g€ TN 1Y),

where (|, )q is given in Proposition 2.2 (iv) and % + % =1
If f € 7\0%), then
G0 B/ 1)B-1er=1r=B), r(r)dr, 1> 0, (3.6)

where the Co-group (T,.p):cr is defined in Theorem 2.5.

Remark 3.8 Take B =1 and f € 7\ (¢*). Then

0 r
GH0) = [T fWdrds =R(1/p,~Nf(0), 120
and by the spectral theorem for the resolvent operator, see [9, Theorem IV.1.13], we obtain
p p
@ :{ C ‘ ——‘:—}.

This gives a proof of a conjecture posed by F. Méricz in [18, Section 2]. See a similar result
in [4, Theorem 3.2].

In the following theorem we describe G(%g) for B > 0. The proof follows from duality and
Theorem 3.5.
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Theorem 3.9 Let f >0, 1 < p < oo, and 5 Z,(a) (t%) — %(a) (t%) the generalized dual

Cesaro operator. Then

. __ T(5 +ir) .
o(4) = BB 1/p+ iR =B+ 1m0 1€ R
p

Remark 3.10 In the case that n € N, we obtain that

n

nlp

o) = {<<n—1>p+1+ir>.-.<p+1+ir><1+ir> ”ER}U{O}’

and forn =1

o(¢)) = {% : teR}U{O}:{wEC : ’w—glzg}.

Remark 3.11 In the case that p =2 we have 6(%6p) = G(‘KE) for all B > 0. Note that in
case p # 2 the spectrum of 6 and ‘55 are dual in the sense that 6(%}), with ¢ defined on

Z,(a) (r%), is identical to G(CKE), with %”[;" defined on ﬂp(,a) (t%), and where 1]_9+ 1% =1.

To finish this section we prove the remarkable fact that 67, and ‘KE commute on L”(R™)

(and then on ﬁp(a)(t“)). We also give explicitly the value of ‘KQCKE in terms of the the
Gaussian hypergeometric function . This theorem includes [18, Lemma 2] for ¢ = = 1.

Theorem 3.12 Let 6y, and CKE the generalized Cesdro operators on L (R™) for p > 1. Then
Cabr = %E(Ka for a,B >0 and

.
o+p r
Gt = af s (1) she Bt Dar
o8
+;3/ r_t<”t’) SFi(o+ B o+ 135 )dr
in particular
)/3
(GEFT) = Gfe)+B / ﬁﬂ SFi(B+1,1:2:0)dr,
Gab)f0) = a [ 70 R 1,12 D 6 ),

(e f = Gf+%f=(6)f,

for f € LP(R™) and t almost everywhere on RT.
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Proof. By the integral representations (3.1) and (3.6), and since T; , commutes with 7;., for
any ¢,r € R, we conclude that ‘Ka‘ﬁg = %E%”a for o, B > 0. Take f € LP(R™) and we apply
the Fubini theorem to get that

o (x_)B-1 px
CgCaf(t) = Ba/t (XW/O (x—r)* L f(r)drdx
oo oo X — B—1 x_ra—l
= ﬁoc/o f(r)/max{”}( gl ) dxdr

xBt+a

for t almost everywhere on R™. For 0 < r < t, this equality

= (x— )P~ (x—r)%! 1 (t—r\*P LT
/t xPto dx:ﬁ(t—r)( t ) 2F1(a+[3,B,B+1,;)

holds, see for example [12, p. 314, 3197(1)].
Now take ¢ = 1. Since

(1 _Z)a2F1 (%b;C;Z) =,k (a,c—b;c;z—)
(see for example [17, p.47]), we get that

A R P TL S B SO N
t—r t 2471 9 B ’t —t_r2 1 Pt ’t—r _t

where we apply that »F|(—a,b;b;—z) = (14 2)%, ([17, p. 38]). Similarly we prove the case
B=1. ]

4 Composition groups on Sobolev spaces defined on R.

In this section we introduce the subspaces %(a)(|t\a) which are contained in L”(R), simi-
larly to Z,(a) (t%) are in LP(R™). Let .¥ be the Schwartz class on R and we set

1 X

W) = gy [0

W) = st [ e
X)=——"-— xX—
- I'n—a)dx" /- ’

and WO f = £, for x € R and a natural number n > o. Putting f(x) = f(—x), it is readily seen

that W2 f(x) = W% f(—x) for all @ € R, f € . and x € R. Equalities WP — wowP and
W= f (") hold for each natural number n and o B €R.
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For f € .7, put
WEf(1) <0
o e g ) )
WO f(t) T { emanrxf(t), t>0.

For A > 0, we have that W*(f)) = A%(Wy* f)a, where f3(t) = f(Ar) fort € R.

Definition 4.1 Let 1 < p < . The Banach space 9 (|t| ) is defined as the completion of
the Schwartz class on R in the norm

11y :ﬁ( I (IWo"‘f()lllI“)pdt)p

Properties similar to those of 91,( )( %) hold for 9 (|t| ). The proof of next proposi-
tion is similar to the proof of Proposition 2.2 and we sklp it.

Proposition 4.2 Take p > 1 and B > o« > 0. Then
(i) T3P (1P) = T3 (1) — L (R).

(ii) The operator D : Z,(a)(]ﬂo‘) — LP(R) defined by

[ Dof() = (OWEF(@),  teR, feZ (],

1
INo+1)

Is an isometry.

(iii) If p > 1 and p' satisfies llj—l—l% =1, then the dual of fp(a)(hl ) is 9 (|t\ ), where
the duality is given by

r s [ W owSsolar,

:F(oc+1
for f € 7% (111%), g € 7 (1t]).

For p = 1, the subspace 9 (|t| ) was introduced in [11, Definition 1.9]. In fact
(|t| ) is a subalgebra of L!(R) for the convolution product

fee) = [ fe-9)ds,  teR, fge 7, @.1)

see [11, Theorem 1.8] and also [15, Theorem 2] for some more details.
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Theorem 4.3 Let 1 < p < oo. The Banach space 9 (]t\ ) is a module for the algebra
(|t| ) and

1 *&lllep < CapllIf1llapll re 0%, ge 7 ().
Proof. Take f,g € .. We write fi 1= fX[o) and f— 1= f¥(_wp]. By considering the

decomposition fxg = (fy*g+)+ (fr*xg_)+ (f-xg+)+(f-*g_)onR, and we apply [11,
Lemma 1.6] and the fact that f_ xg_ = 0 on (0, o) to obtain that

WE(f*g)4(t) = WE(frxge) (@) + (W frxg)(t) + (Wigy + f-)(2), t>0.
Now, first,

1/ 1lleplllgllla.1

1+ # 8 +llap < Capllfilla
by Proposition 2.2 (ii).
On the other hand, 31(06) (t*) ¢ L'(R*), and we apply the Minkowski inequality to get
that

P

([ weresepierar)
([ () |Wff+<s+r>||g_<s>|ds>prapdr)’1’
= / lg—( (/ |Wff+(t+s)|pr°‘pdt)lds
[l [ wer >|Pu°‘f"du)lds

< T(e+Dlllgllloallf+llap < TCe+Dlllgllloi 1/ ]lep

As ﬂp(a) (t*) C LP(R*) for p > 1, and we apply again the Minkowski inequality to obtain
that

IN

IN

([ 1weecs wwpera)’

(/ow (/tm ’ng+(s)Hf(t—s)\ds)ptapdt)ll’
A </ e |pfapdt);ds

1£1llo /0 W (s)|s%ds

Lo+ Dl Aepllg+la
Do+ DA eplllgle1-

IA

IN

IA A
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Combining these estimates obtained, we get

1

s ([T we e an) <l il

Na+1)

Finally, because WY(f * g)(t) = WE(f x §)(—t) if t < O using the inclusion Z,(a) (t%) C
L?(R™") as above for p > 1, we have that

1 a o %
m(/ WE(fxg) ()| |t] Pdt) <C[|f]l

The result follows. n

apllglllo1-

We remark that, as in the case of ,Z,(a) (%), itis easy to verify that (T; ,);cr is a Co-group

of isometries on 9 (\t\ ) as the next theorem shows. The proof runs parallel to the proofs
of Theorem 2.5, Proposmon 2.6 and Proposition 2.7 and hence we omit it.

Theorem 4.4 Let 1 < p and a@ > 0. We define the family of operators (T j):cr by

Tpf(s) =€ 7 f(e's),  fe TN ().

(i) Then (T; p):cr is a Co-group of isometries on 7 (|t| ) whose infinitesimal generator
A is given by

1
(Af)(s) :==sf'(s) — ;f(S)
with domain D(A) = %V (jr]o+1).
(ii) 6,(A) =0 and o(A) = iR (here G, denotes the point spectrum).

(iii) The semigroups (T, p)z>0 and (T ' ) >0 are dual operators of each other acting on
D (|¢|%) and T3 (e|%) with L+ 5 =1 for p > 1.

5 The generalized Cesaro operators on R.

For B > 0 we define the generalized Cesaro operator by

0
% /t (s—1)P~ f(s)ds, 1<0,

Cpf(t) =14 £(0), =0,

/




for f € . We are interested in the extension of ¢ on 9 (\t| ). Note that we may write

Cf (1) ﬁ/ (1=nB-1f(trdr, (€R, fe.?
We use this integral representation to prove the next lemma.
Lemma 5.1 Take o« > 0 and B > 0. Then D ot =g oD{, ie.,
Dg(¢p(f)) =%p(DG(f),  fE€S,

where D f(t) = t| %W f(t) for f € 7.

OH—l

Proof. Since for 4 > 0, we have that W*(f; ) = A%(Wy* f)a, where f (1) = f(At) fort € R,
the proof follows similarly to Lemma 3.2. [

Similar results of €5 on Z,( )(ta) hold for € on 9 (\t| ). The proof of next result is
analogous to the proof of Theorem 3.3 and Theorem 3. 5

Theorem 5.2 Let o0 > 0, > 0, 1 < p < o and the generalized Cesaro operator 6 on
(1), Then
(i) The operator 6g is bounded on 9 (|t| ) and

T DI 1/p)
=)

(i) If f € 9 (|t| ), then

GO =B [ (1= IINT far e,

where the Co-group (Ty.),cr is defined in Theorem 4.4.

(iii)
B L(1—5+ir)
G%@—Fw+l)rw+l_l+m.teR.
p

Now we consider the generalized dual Cesaro operator CKE defined for 8 > 0 by
(t—s)B-1
[3 / s) f(s)ds, t<0,
P

Cri) =13 0, (=0,

o (o AB—1
\ﬁ/t %f(s)ds, >0,
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andDg‘o%E(f) :%Eng(f), where D§ f(t) = a+1 t| WX f(¢) for f € . and t € R.

Note that we may write

%ﬁf [3/ f(ts)ds, t #£0,

for f € .. The proof of next result runs parallel to the proof of Theorem 3.7 and 3.9.

Theorem 5.3 Ler >0, B >0, 1 < p < o and the generalized dual Cesdro operator ‘KE
on 9 (\t] ). Then

(i) The operator 6y is bounded on 9 (]t| ) and

P T(B+1/p)

(ii) The dual operator of 6 onﬁ (\t| )ls%* onﬂ (|t] ), L.

(G5t 8o = F- €800 FET (D), g€ T\ (1%,

where (|, )q is given in Proposition 4.2 (iii).

(iii) If f € 9 (]r| ), then

Gr0) = B[ (@ 0P e B, e eR, s

where the Cy-group (T,.p)rcr is defined in Theorem 4.4.

(iv)
o (5, +it) '
p

Remark 5.4 Note that for ¢ = 0, by the integral representation (5.1)

€5 £(0) [3/ Ny — oo, fe.
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6 Fourier transform and Cesaro generalized operator

We remind the reader that the Fourier transform of a function f in L (R) is defined by
7() = / e i)y, 1ER.

It is well-known that f is continuous on R and f(f) — O when |t| — oo (the Riemann-
Lebesgue lemma). In the case that f € LP(R) for some 1 < p < 2, the Fourier transform
of f is defined in terms of a limit in the norm of L? (R) of truncated integrals:

—_— R .
Fom Jim S e SACen®= [ e iWdr, 1eR,

R—o0

ie., fe LV (R) and limg_.e Hf_fm)”pl = 0 where %—k% = 1 and x(_g ) is the char-
acteristic function of the interval (—R,R), see for example [25, Vol 2, p.254]. Then the
existence of f(¢) is guaranteed only at almost every ¢ and f may be non continuous and the
Riemann-Lebesgue lemma could not hold (unlike the case when f € L' (R)).

In case that f € LP(R) for some 2 < p < oo, the Fourier transform f cannot be defined as
an ordinary function although f can be defined as a tempered distribution, see for example

[23, pp 19-30].
In the next theorem, we consider the Fourier transform on the Sobolev space 9 (]t\ ).

Theorem 6.1 Tuke 1 < p<2andneN. Thenfey (]t\ )forfef (\t| )and%—k%z
L.

Proof. Take f € f (|t| ). Since 9 (|t| ) C p(j)(|t|j), we have that x/ f/) € LP(R) for
0<j<n. As

(it)" (/)™ (1) = i(—l) (n) l;—fo\( ) neN,tae. onR,

(see for example [25]), we conclude that (ir)"(f)™ € L” (R) and then f € 9 (|t| ). =

In what follows, we show that

~ o — —~

ep(f) =C5(f), and  C5(f)=%p(f), [feL’(R),
for 1 < p <2 (Theorem 6.4). This theorem extends the case B = 1 formulated in [5] and

proved in [19]. Our approach looks like to be new and is based in the integral representations
of €(f) and 5 (f) given in Section 3.
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Lemma 6.2 Let 1 < p <2 and the family of operators (T, p)icr defined by T; ,(f) := e_éf(e
for f € LP(R). Then
— 1 1

T}vp(f):T—t,p’(f)v feLpGR)y ;"‘—/:1

Proof. Consider 1 < p <2and f € .. Itis clear that T; ,(f) € .. Note that

— —t Gl

@) = eF [ empetnar =03 [~ e plyyay =

= (T D)),

By denseness of .# we conclude the result. [

~

(')

L
I

—

Remark 6.3 Since 9 (\t\ ) < LP(R) (Proposition 4.2 (i)), the equality 7; ,(f) = T; »(f)
holdsforfEﬂ (|t| Jfora>0and1<p<2.

Finally, we are ready to prove the main result in this section.
Theorem 6.4 Let > 0.
(i) If f € LP(R) for some 1 < p <2, then ‘m = (Kg(f)

(ii) If f € LP(R) for some 1 < p <2, then (ZE_(?) = ‘Kﬁ(f)

Proof. (i) Take f € LP(R) for some 1 < p < 2. By Theorem 5.2 (ii) and Lemma 6.2 we
have that

Gk = ﬁ/m (1—e NP1 -1P T F(x)dr
:ﬁ/ ﬁl—r(l/pﬁ ,f()
-5/ <e*f—1>ﬁ*le*’“*#*‘”Tr,p/ﬂx)dr:%5(f><x>

for almost every x on R and we use Theorem 5.3 (iii).
(ii) Now take f € L”(R) for some 1 < p < 2. By the integral representation (5.1) of (55
and Lemma 6.2 we have that

— 0 1 —~
G = B (-1l P Fxar

= B[ (1-eP e far

oo

= B[ (=Pl TT Fa)dr = €5 () (x)

0
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for almost every x on R and we use the Theorem 5.2 (ii). [

— —~ —

Remark 6.5 By the Proposition 2.4, we get that 63 (f)(¢) = ¢ (f)(t) and ‘5[’; (f)(t)=%Cp (F)(@)
fort #0and f € 7, (t|*), 1< p<2and a > 1.
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