
UNIFORM STABILITY OF (a, k)−REGULARIZED FAMILIES

CARLOS LIZAMA, PEDRO J. MIANA, AND FELIPE POBLETE

Abstract. In this article we study the uniform stability of an (a, k)-regularized family {S(t)}t≥0

generated by a closed operator A. We give sufficient conditions, on the scalar kernels a, k and
the operator A, to ensure the uniform stability of the family {S(t)}t≥0 in Hilbert spaces. Our
main result is a generalization of [5, Theorem 1], concerning the stability of resolvent families,
and can be seen as a substantial generalization of the Gearhart-Greiner-Prüss characterization
of exponential stability for strongly continuous semigroups.

1. Introduction

Let A be a closed operator with domain D(A) defined on a complex Banach space X; a ∈
L1
loc(R+) and k ∈ C(R+). Recall that an (a, k)-regularized family generated by A is a strongly

continuous family {S(t)}t≥0 ⊂ B(X) (the set of bounded and linear operators defined in X)
which satisfies the following conditions:

(i) S(0) = k(0)I;
(ii) S(t)x ∈ D(A) and S(t)Ax = AS(t)x for all x ∈ D(A) and t ≥ 0;

(iii) S(t)x = k(t)x+

∫ t

0
a(t− s)AS(s)xds, t ≥ 0, x ∈ D(A).

This notion generalizes the theories of C0-semigroups, r-times-integrated semigroups, k-convoluted
semigroups, r-times integrated cosine families, and k-times resolvent families, among others. We
observe that existence as well as structural properties of (a, k)-regularized families have been
studied by several authors in recent years (see [4, 6] and references therein).

Existence, uniqueness and qualitative properties of solutions for wide classes of linear evolution
equations are associated to (a, k)-regularized families. For example, the abstract Cauchy problem
of first and second order, Volterra equations of convolution type like

u(t) =

∫ t

0
a(t− s)Au(s)ds+ f(t),

and fractional order differential equations, among others, see for example [3, 4] .
We note that a large number of results concerning C0-semigroups, resolvent families, convo-

luted semigroups and cosine functions, can be presented in a new and unified look on the theory
of general (a, k)-regularized families. However, the study of stability for this general structure
remains an untreated topic in the literature.

In this paper, we study uniform stability of (a, k)-regularized families. Note that the theory
of stability is important since stable (a, k)-regularized families correspond one-to-one to stable
well-posed abstract linear equations. It is also important since stability plays a central role in
the structural theory of operators.
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We give sufficient conditions for the uniform stability of the (a, k)-regularized family in Hilbert
spaces. Our main result can be seen as substantial generalization of the Gearhart-Greiner-Prüss
characterization of exponential stability for strongly continuous semigroups, see for example [2,
Theorem V.1.11]. Our results also allow to study the identification of the kernels a and k. More
precisely, we prove the following main result in the third section.

Suppose a, k are 1-regular kernels and that k satisfies the (H)-condition (see below). Assume
that A generates an (a, k)-resolvent family {S(t)}t≥0 with finite growth bound in a Hilbert space
H, and the following conditions hold.

(H1) 1
â(λ) ∈ ρ(A) for all <(λ) ≥ 0, λ 6= 0.

(H2) For all x ∈ H, lim
λ→0

k̂(λ)
â(λ)(

1
â(λ) −A)−1x = Bx exists.

(H3) sup
<λ>0

‖ k̂(λ)â(λ)(
1

â(λ) −A)−1‖ <∞.

Then {S(t)}t≥0 is uniformly stable (Theorem 3.1).

In the second section we present some technical results about Laplace transforms and its
estimates. We finish this paper with some examples and comments concerning stability of
strongly continuous cosine families and α-resolvent families associated to fractional differential
equations, see Section 4. Finally, an example concerning stability of the solutions of the Basset
equation is also considered.

2. Estimates of Laplace transform

We say that k ∈ L1
loc(R+) is of subexponential growth if for every ε > 0, there exists Cε > 0

such that |k(t)| ≤ Cεeεt a.e. t ≥ 0. In this case the Laplace transform, k̂(λ), given by

k̂(λ) :=

∫ ∞
0

e−λtk(t)dt,

exists for all <λ > 0.

Definition 2.1. Let k ∈ L1
loc(R+) be of subexponential growth such that there exists lim

λ→iρ
k̂(λ) =

k̂(iρ) for all |ρ| ≥ 1. We say that k satisfies the (H)-condition if there exists a constant M > 0
such that

1

|ρk̂(iρ)|
≤M

for all |ρ| ≥ 1.

In what follows, we denote:

gα(t) :=
tα−1

Γ(α)
for α > 0 and e−b(t) := e−bt for b ≥ 0.

Example. The functions e−b cos, for b > 0 ; gα, for 0 < α ≤ 1; χ(1,∞)gn+1, for n ∈ N and e−b for
b ≥ 0 satisfy the (H)-condition. However the characteristic function χ(0,1), sin, cos and gα for
α > 1 do not satisfy this (H)-condition.

We recall that b ∈ L1
loc(R+) of subexponential growth is called n-regular (n ∈ N) if there exist

a constant c > 0 such that

|λk d
k b̂

dλk
(λ)| ≤ c|b̂(λ)|
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for all <λ > 0 and 0 ≤ k ≤ n, see [9, Definition 3.3]. In this paper, we will use only the
definition of 1-regular.

Example 2.2. We give some examples of 1-regular functions.

• Let a = e−bgα where <b ≥ 0, α > 0. We note that

sup
<λ>0

∣∣∣∣λâ′(λ)

â(λ)

∣∣∣∣ = sup
<λ>0

α|λ|
|λ+ b|

<∞.

Then a is an 1-regular function.
• Let 0 < α < 1 and a = g1−α − (g1−α ∗ e−1) . We have that â(λ) = λα

λ+1 , then∣∣∣∣λâ′(λ)

â(λ)

∣∣∣∣ =

∣∣∣∣α+ (α− 1)λ

λ+ 1

∣∣∣∣ ,
which is bounded for all <λ > 0.

Remark 2.3. Note that if b ∈ L1
loc(R+) is 1-regular, then

(i) b̂(iρ) = lim
λ→iρ

b̂(λ) exist for each ρ 6= 0.

(ii) b̂(λ) 6= 0 for all <λ ≥ 0, λ 6= 0.

(iii) |ρb̂′(iρ)| ≤ c|b̂(iρ)| for a.a. ρ ∈ R.
see [9, Lemma 8.1].

Lemma 2.4. Let a ∈ L1
loc(R+) and k ∈ C(R+) be of subexponential growth and 1-regular;

Assume that k satisfies the (H)-condition and let ω > 0 be fixed. Then

(i)

sup
|ρ|≥1

∣∣∣∣∣ 1

k̂(iρ)

(
â(iρ)

â(ω + iρ)
− 1

)∣∣∣∣∣ <∞.
(ii) If k̂(ω + i(·)) ∈ L2(R \ [−1, 1]) then

(
1− k̂(ω+i(·))

k̂(i(·))

)
∈ L2(R \ [−1, 1]).

(iii) If lim
λ→∞

λk̂(λ) exists, then k̂(ω + i(·)) ∈ L2(R \ [−1, 1]).

Proof. We note that 1-regularity of a implies that iρ
(

â(iρ)
â(ω+iρ) − 1

)
is bounded for |ρ| ≥ 1. Hence,

from the identity
1

k̂(iρ)

(
â(iρ)

â(ω + iρ)
− 1

)
=

iρ

iρk̂(iρ)

(
â(iρ)

â(ω + iρ)
− 1

)
and the (H)-condition, the conclusion (i) follows. To show (ii), note that(

1− k̂(ω + iρ)

k̂(iρ)

)
= iρ

(
k̂(iρ)

k̂(ω + iρ)
− 1

)
1

iρk̂(iρ)
k̂(ω + iρ)

where iρ
(

k̂(iρ)

k̂(ω+iρ)
− 1
)

and 1
iρk̂(iρ)

are bounded on R \ [−1, 1] by 1-regularity of k and (H)-

condition, respectively.
To show (iii) note that by hypothesis there exists M > 0 such that

|k̂(ω + iρ)| = 1

|ω + iρ|
|(ω + iρ)k̂(ω + iρ)| ≤ M

|ω + iρ|
,

which yields the claim. �
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Remark 2.5. Recall that in case that lim
t→0

k(t) exists, then

lim
t→0

k(t) = lim
λ→∞

λk̂(λ),

(see for example [1, Proposition 4.1.3]) and hence we may replace the condition lim
λ→∞

λk̂(λ) by

lim
t→0

k(t) in (iii) of Lemma 2.4.

3. Main result

Recall that a family {S(t)}t≥0 ⊂ B(X) satisfying

lim
t→∞
‖S(t)‖ = 0,

is called uniformly stable. The next theorem gives sufficient conditions about uniformly stability
of (a, k)-regularized family {S(t)}t≥0. The case of C0-semigroups is known as Gearhart-Greiner-
Prüss theorem and may be found in [2, 8]. For resolvent families of operators, see [5, Theorem
1]. In this section, we modify the proof of [5] to consider the much more general case of (a, k)-
regularized families. We write

H(λ) := k̂(λ)(I − â(λ)A)−1,

whenever is well defined. In view of [6, Proposition 3.1], if A generates an (a, k)-regularized
family {S(t)}t≥0, exponentially bounded of type (M,ω) (i.e. ‖S(t)‖ ≤ Meωt for all t ≥ 0 with
M > 0 and ω ∈ R) then 1

â(λ) ∈ ρ(A) for all <λ > ω and

Ŝ(λ) = H(λ), for all <λ > ω.

Theorem 3.1. Suppose a ∈ L1
loc(R+) and k ∈ C(R+) are 1-regular and k satisfies the (H)-

condition. Assume that A generates an (a, k)-resolvent family {S(t)}t≥0 with finite growth bound
in a Hilbert space H, and the following conditions:

(H1) 1
â(λ) ∈ ρ(A) for all <(λ) ≥ 0, λ 6= 0.

(H2) For all x ∈ H, lim
λ→0

H(λ)x = Bx defines a bounded operator.

(H3) sup
λ∈C+

‖H(λ)‖ <∞ where C+ := {λ ∈ C : <λ > 0}.

Then {S(t)}t≥0 is uniformly stable.

Proof. By hypothesis there are constants M > 0 and ω0 ∈ R such that ‖S(t)‖ ≤ Metω0 for all
t ≥ 0. We may suppose that ω0 ≥ 0. Let ω > ω0 + 1 be given and define R(t) := e−tωS(t)

and ‖R(t)‖ ≤ Me−(ω−ω0)t for t ≥ 0. Let x ∈ H be fixed, and observe that χ[0,∞)(·)R(·)x is in

L2(R,H) where χ[0,∞) denotes the characteristic function. In fact,

‖χ[0,∞)(·)R(·)x‖22 ≤
∫ ∞
0
‖R(t)x‖2dt ≤M2

∫ ∞
0

(
e−(ω−ω0)t‖x‖

)2
dt

≤ M2‖x‖2

2(ω − ω0)
;

Hence

‖χ[0,∞)(·)R(·)x‖2 ≤
M‖x‖√

2(ω − ω0)
.

Because H is a Hilbert space, the Plancherel theorem shows us that the Fourier transform F
satisfies ‖Ff‖2 =

√
2π‖f‖2 for all f ∈ L2(R,H). On the other hand, because {S(t)}t≥0 is
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an exponentially bounded family, its Laplace transform Ŝ(λ) is well-defined, holomorphic and

satisfies H(λ) = Ŝ(λ) for all <λ > 0. Hence, we have for all x ∈ H and s ∈ R,

H(ω + is)x = Ŝ(ω + is)x =

∫ ∞
0

e−(ω+is)tS(t)xdt =

∫ ∞
0

e−ωte−istS(t)xdt

=

∫ ∞
0

e−istR(t)xdt =

∫ ∞
−∞

e−istχ[0,∞)(t)R(t)xdt

= F(χ[0,∞)(·)R(·)x)(s)

It follows from the Plancherel theorem that H(ω + i(·))x ∈ L2(R,H) and

(3.1) ‖H(ω + i·)x‖2 =
√

2π‖χ[0,∞)(·)R(·)x‖2 ≤M
√

π

ω − ω0
‖x‖.

We observe that by (H2) lim
λ→0

H(λ)x = Bx exist for all x ∈ H and B ∈ B(H). Also, from

1-regularity of a, k, Remark 2.3 and (H1), we obtain that H(iρ)x := lim
λ→iρ

H(λ)x is well defined

for all x ∈ H and, by (H3) and the Banach-Steinhaus theorem, that H(iρ) is bounded for each
ρ ∈ R. It follows from the uniform boundedness principle that H is also uniformly bounded in
the imaginary axis iR.

On the other hand, the identity

H(λ)x− â(λ)AH(λ)x = k(λ)x

is valid for all x ∈ H and <λ ≥ 0, λ 6= 0. It follows, replacing x by H(λ2)x and λ by λ1, that

H(λ1)H(λ2)x− â(λ1)AH(λ1)H(λ2)x = k̂(λ1)H(λ2)x

for all x ∈ H and <λ1,<λ2 ≥ 0, λ1, λ2 6= 0. Now, taking into account the above equation for
λ1 = ω + iρ and λ2 = iρ we have,

H(iρ)x = H(ω + iρ)x+H(iρ)x− 1

k̂(iρ)
[H(ω + iρ)H(iρ)]x

+
1

k̂(iρ)

[
H(iρ)H(ω + iρ)− k̂(iρ)H(ω + iρ)

]
x

= H(ω + iρ)x+H(iρ)x− 1

k̂(iρ)

[
k̂(ω + iρ)H(iρ) + â(ω + iρ)AH(ω + iρ)H(iρ)

]
x

+
1

k̂(iρ)
[â(iρ)AH(iρ)H(ω + iρ)]x

= H(ω + iρ)x+

(
1− k̂(ω + iρ)

k̂(iρ)

)
H(iρ)x

+
1

k̂(iρ)

(
â(iρ)

â(ω + iρ)
− 1

)
â(ω + iρ)[AH(ω + iρ)H(iρ)]x,

and finally we obtain that

(3.2)

H(iρ)x = H(ω + iρ)x+

(
1− k̂(ω + iρ)

k̂(iρ)

)
H(iρ)x

+
1

k̂(iρ)

(
â(iρ)

â(ω + iρ)
− 1

)
H(iρ)[H(ω + iρ)− k̂(ω + iρ)]x.
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Choose a function φ in C∞0 (R), defined by φ(ρ) = 1 for |ρ| < 1 and φ(ρ) = 0 for |ρ| ≥ 2.
Define ψ(ρ) = 1− φ(ρ), ρ ∈ R. Then using the uniform boundedness of H(i·) in R and (3.1) in
(3.2) together with Lemma 2.4 implies that ψ(·)H(i·)x ∈ L2(R,H) and

‖ψ(·)H(i·)x‖22 =

∫ ∞
∞
‖ψ(ρ)H(iρ)x‖2dρ

≤
∫
|ρ|≥2

‖H(iρ)x‖2dρ+

∫
1<|ρ|<2

ψ(ρ)‖H(iρ)x‖2dρ

≤ M0‖x‖2.

Analogously, we can prove that H(ω + i(·))∗x ∈ L2(R,H) and following the same argument as
above we conclude that ψ(·)H(i(·))∗x ∈ L2(R,H). By Parseval’s theorem, there exists a function
u ∈ L2(R,H) such that

F(u(·)x)(ρ) = ψ(ρ)H(iρ)x for a.a ρ ∈ R.

It follows that

(3.3) F(u(·)x)′(ρ) = ψ′(ρ)H(iρ)x+ iψ(ρ)H ′(iρ)x.

Note that for all <(λ) ≥ 0, λ 6= 0 we have from the definition of H(λ)

H ′(λ) =

(
k̂(λ)

â(λ)

)′
(

1

â(λ)
−A)−1 − k̂(λ)â(λ)′

â(λ)3
(

1

â(λ)
−A)−2

=
k̂(λ)′â(λ)− k̂(λ)â(λ)′

â(λ)2
(

1

â(λ)
−A)−1 − â(λ)′

â(λ)k̂(λ)

(
k̂(λ)

â(λ)

)2

(
1

â(λ)
−A)−2

=
k̂(λ)′

k̂(λ)

k̂(λ)

â(λ)
(

1

â(λ)
−A)−1 − â(λ)′

â(λ)

k̂(λ)

â(λ)
(

1

â(λ)
−A)−1 − â(λ)′

â(λ)k̂(λ)
H(λ)2

=
k̂(λ)′

k̂(λ)
H(λ)− â(λ)′

â(λ)
H(λ)− â(λ)′

â(λ)k̂(λ)
H(λ)2.

Replacing λ = iρ, ρ 6= 0 we get from (3.3) that

F(u(·)x)′(ρ) = ψ′(ρ)H(iρ)x+ iψ(ρ)

(
k̂′(iρ)

k̂(iρ)
H(iρ)x− â(iρ)′

â(iρ)
H(iρ)x− â′(iρ)

k̂(iρ)â(iρ)
H(iρ)2x

)
.

But, by (H) and 1-regularity of a(·) there exists M0 such that∣∣∣∣∣ â′(iρ)

k̂(iρ)â(iρ)

∣∣∣∣∣ =

∣∣∣∣∣ 1

iρk̂(iρ)

∣∣∣∣∣
∣∣∣∣ iρâ′(iρ)

â(iρ)

∣∣∣∣ ≤M0

for all ρ ∈ R, |ρ| > 1. Moreover by the 1-regularity of k(·) and a(·), we have that k̂′(i(·))
k̂(i(·))

and â′(i(·))
â(i(·))

are bounded in R\[−1, 1]. This and the fact that ψ(·)H(i(·))x, ψ(·)H(i(·))∗x∗ are in L2(R,H)
for each x, x∗ ∈ H gives,

(3.4)

∫ ∞
∞
|〈F(u(·)x′)(ρ), x∗〉|dρ =

∫
R\[−1,1]

|〈F(u(·)x′)(ρ), x∗〉|dρ ≤M0‖x‖‖x∗‖.
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On the other hand, again from the uniform boundedness of H(i·) in R we have that for each
t > 0

S0(t) :=

∫ ∞
−∞

φ(ρ)H(iρ)eiρtdρ =

∫ 2

−2
φ(ρ)H(iρ)eiρtdρ.

Hence, by the Riemann-Lebesgue lemma it follows that S0(t)→ 0 in B(H) as t→ +∞.
Finally, for x, x∗ ∈ H we have that

〈S(t)x, x∗〉 =
1

2π

∫ ∞
−∞
〈H(iρ)x, x∗〉eiρtdρ

=
1

2π

∫ ∞
−∞
〈φ(ρ)H(iρ)x, x∗〉eiρtdρ+

1

2π

∫ ∞
−∞
〈ψ(ρ)H(iρ)x, x∗〉eiρtdρ.

Integrating by parts in the second integral, we get

〈S(t)x, x∗〉 =
1

2π

∫ ∞
−∞
〈φ(ρ)H(iρ)x, x∗〉eiρtdρ+

1

2πit

∫ ∞
−∞
〈(ψ(ρ)H(iρ))′x, x∗〉eiρtdρ

=
1

2π
〈S0(t)x, x∗〉+

1

2πit

∫ ∞
−∞
〈(F(u(·)))′(ρ)x, x∗〉eiρtdρ.

Therefore ‖S(t)‖ ≤ 1
2‖S0(t)‖+ 1

2πtM0, from which we obtain the result. �

Remark 3.2. Consider the following integral Volterra equation of scalar type:

(3.5) u(t) =

∫ t

0
a(t− s)Au(s)ds+ f(t),

where A is a closed and linear operator with domain D(A) dense in X, a ∈ L1
loc(R+) is a scalar

kernel and f ∈ W 1,1(R+;X). It is well known that equation (3.5) is well-posed if and only if
it admits a resolvent family, see for example [9]. In terms of the theory of (a, k)-regularized
families, this correspond to an (a, 1)-regularized family generated by A.
We recover the following result concerning stability of resolvent families which appeared in [5,
Theorem 1].

Corollary 3.3. Suppose a ∈ L1
loc(R+) is 1-regular; Let A be the generator of a resolvent family

{S(t)}t≥0 with finite growth bound in a Hilbert space H, and the following conditions:

(1) 1
â(λ) ∈ ρ(A) for all <λ ≥ 0 λ 6= 0.

(2) lim
λ→0

λâ(λ) =: a(∞) 6= 0 and 0 ∈ ρ(A).

(3) (λ− λâ(λ)A)−1 is uniformly bounded in C+ := {λ ∈ C : <λ > 0}.
Then {S(t)}t≥0 is uniformly stable.

Proof. We observe that the scalar kernel k = χ[0,∞) is 1-regular and satisfies the (H)-condition.
It follows from (1) and (3) that (H1) and (H3) of Theorem 3.1 are satisfied, so that we only
need to verify (H2). For this we note that by (2)

lim
λ→0

H(λ)x =
1

λâ(λ)

(
λ

λâ(λ)
−A

)−1
=

1

a(∞)
A−1x,

and the conclusion follows. �

Recall that a strongly continuous family S ≡ {S(t)}t≥0 ⊂ B(X) is called uniformly integrable
if t 7→ ‖S(t)‖ is a measurable function and

‖S‖L1 :=

∫ ∞
0
‖S(t)‖dt <∞.
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Corollary 3.4. Suppose a ∈ L1
loc(R) and k ∈ C(R+) are 1-regular and k satisfies the (H)-

condition. Assume that A generates an (a, k)-resolvent family S ≡ {S(t)}t≥0 with finite growth
bound in a Hilbert space H. If {S(t)}t≥0 is uniformly integrable then {S(t)}t≥0 is uniformly
stable.

Proof. The fact that S is uniformly integrable implies that H(λ) is well defined for all λ ∈ C+.
On the other hand, from the definition of an (a, k)-regularized family generated by A we can
see that

1

k̂(λ)
H(λ)(I − â(λ)A)x = x for all λ ∈ C+ \ {0}, x ∈ D(A),

then we obtain that (I − â(λ)A) is an injective operator. Now using that H(λ) commutes with
(I− â(λ)A) for all x ∈ D(A) and H(λ)D(A) ⊂ D(A), we conclude that the operator (I− â(λ)A)
is surjective. Moreover (I − â(λ)A)−1 is bounded i.e. 1

â(λ) ∈ ρ(A) for all <λ ≥ 0, λ 6= 0. Then

(H1) holds.

It follows from the above that Ŝ(λ) = H(λ) for all λ ∈ C+ \ {0} and hence, by application of
the dominated convergence theorem, we obtain

lim
λ→0

H(λ)x =

∫ ∞
0

S(t)xdt =: Bx.

Therefore (H2) is satisfied. Finally, let λ ∈ C+ then we have

‖H(λ)x‖ ≤
∫ ∞
0
‖S(t)x‖dt ≤ ‖S‖L1‖x‖

and we conclude that (H3) holds. Then by Theorem 3.1 {S(t)}t≥0 is uniformly stable. �

Since the function χ[0,∞) is 1-regular and satisfies the (H)-condition, we recover the following
result on stability of C0-semigroups due to Gearhart, Greiner and Prüss (see [2, Theorem V.
1.11]), taking k = a = χ[0,∞) in Theorem 3.1.

Corollary 3.5. Let A be the generator of a C0-semigroup {T (t)}t≥0 with finite growth bound
defined in a Hilbert space H. The following conditions are equivalent.

(1) {λ ∈ C : <λ ≥ 0} ⊂ ρ(A) and sup
<λ>0

‖R(λ;A)‖ <∞.

(2) The semigroup {T (t)}t≥0 is uniformly stable.

4. Examples and comments

Example 4.1. Suppose that A is the generator of an (e−bgα, e−b)-regularized family {S(t)}t≥0
for some α > 1 and b > 0 satisfying the following conditions:

(1) (b+ λ)α ∈ ρ(A) for all <λ ≥ 0;
(2) sup

<λ>0
||(λ+ b)α−1((λ+ b)α −A)−1|| <∞;

Then {S(t)}t≥0 is uniformly stable.

Proof. It follows from Example 2.2 that a = e−bgα and k = e−b are 1-regular. On the other
hand

1

|ρê−b(iρ)|
=
|b+ iρ|
|ρ|

≤M

for some M > 0 and for all |ρ| ≥ 1, proving that the (H)-condition holds. By (1)

lim
λ→0

H(λ)x = bα−1(bα −A)−1x
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for all x ∈ H, and therefore the above limit defines a bounded operator. Then (H2) holds. It
also follows from (1) and (2) that (H1) and (H3) of Theorem 3.1 are satisfied. Then {S(t)}t≥0
is uniformly stable. �

Let A be the generator of a strongly continuous cosine family {C(t)}t≥0. It is well known that
{C(t)}t≥0 cannot be stable (because of the identity I = 2C(t)2−C(2t) for t ≥ 0). However, our
above example in case α = 2 shows that we can give a counterpart of Corollary 3.4 for strongly
continuous cosine families of operators as follows.

Corollary 4.1. Let b > 0. Suppose that A is the generator of a strongly continuous cosine
families of operators {C(t)}t≥0 satisfying the following conditions:

(1) (b+ λ)2 ∈ ρ(A) for all <λ ≥ 0 .
(2) sup

<λ>0
||(λ+ b)((λ+ b)2 −A)−1|| <∞.

Then {e−btC(t)}t≥0 is uniformly stable.

Example 4.2. Note that Example 4.1 includes stability for the solution of the fractional differ-
ential equation

Dαu(t) = Au(t);

with initial condition u(0) = u0 or, equivalently, the solution of the integral equation of convo-
lution type:

u(t) = u(0) +

∫ t

0

(t− s)α−1

Γ(α)
Au(s)ds, t ≥ 0.

Indeed, take v(t) = e−btu(t) where b > 0 is given, then the above integral equation is equivalent
to

(4.1) v(t) = e−btv(0) +

∫ t

0
e−b(t−s)

(t− s)α−1

Γ(α)
Av(s)ds, t ≥ 0.

Hence, we conclude that if the problem (4.1) is well-posed then, under the conditions (1) and
(2), we have that v(t)→ 0 as t→∞.

In particular, if we consider the operator Ax = µx for all x ∈ H where:

(4.2) 0 < µ < bα,

then A generates a uniformly stable (e−bgα, e−b)-regularized family {S(t)}t≥0 given by

S(t) := e−btEα(µtα), t ≥ 0,

where Eα denotes the Mittag-Leffler function. Indeed, we have that

Ŝ(λ) = ̂[e−btEα(µtα)](λ) =
(b+ λ)α−1

(b+ λ)α − µ
= k̂(λ)(1− â(λ)µ)−1, <λ > 0,

where a = e−bgα and k = e−b, which shows that {S(t)}t≥0 is an (e−bgα, e−b)-regularized family.
We are going now to show properties (H1) and (H2) of Theorem 3.1. In fact, we note that
(b + λ)α ∈ ρ(A), for all <λ ≥ 0 if and only if (b + λ)α 6= µ, for all <λ ≥ 0. If (b + λ)α = µ

for some <λ ≥ 0 then <λ = µ1/α cos(2kπ/α) − b for k ∈ Z. Therefore, condition (4.2) implies

µ1/α cos(2kπ/α) < b, for all k ∈ Z, and hence (b+ λ)α ∈ ρ(A) for all <λ ≥ 0. We conclude that
condition (H1) holds. On the other hand,

k̂(λ)(1− â(λ)µ)−1 =
(b+ λ)α−1

(b+ λ)α − µ
→ 0
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as λ→∞. In consequence, using the fact that k̂(λ)(1− â(λ)µ)−1 is continuous in C+, we con-
clude that H(λ) is uniformly bounded in C+, namely, the condition (H2) holds. The claim
follows.

It is illustrative to check the result in the following particular cases:

α = 1 : 0 < µ < b implies e−btE1(µt) = e−(b−µ)t → 0 as t→∞;

α = 1/2 : 0 < µ < b1/2 implies e−btE1/2(µt
1/2) = e−(b−µ

2)t[1− erf(µt1/2)]→ 0 as t→∞;

α = 2 : 0 < µ < b2 implies e−btE2(µt
2) = e−bt cosh(

√
µt) = 1

2 [e−(b−
√
µ)t + e−(b+

√
µ)t] → 0 as

t→∞;
α = 4 : 0 < µ < b4 implies e−btE4(µt

4) = 1
2e
−bt[cos( 4

√
µt) + cosh( 4

√
µt)] = 1

4e
−bt[2 cos( 4

√
µt) +

e−(b−
4
√
µ)t + e−(b+

4
√
µ)t]→ 0 as t→∞.

Example 4.3 Let H be a Hilbert space and for 0 < α < 1 consider the fractional relaxation
equation

(4.3) u′(t)−ADαu(t) + u(t) = f(t), t > 0,

with initial condition u(0) = u0 and f an appropriate H-valued function. Equation (4.3) cor-
responds to the abstract version of the Basset problem (see [3]). We recall that the Basset
equation arises in fluid dynamics concerning the unsteady motion of a particle accelerating in a
viscous fluid under the action of the gravity, see [7]. As stated in [3, Section 3], well-posedness of
equation (4.3) is equivalent to the existence of an (a, k)-regularized family {S(t)}t≥0 generated
by A, with

(4.4) a = g1−α − (g1−α ∗ e−1) and k = e−1.

Moreover, it is easy to check that the solution of the problem in terms of {S(t)}t≥0 is given by

(4.5) u(t) = u(0)−
∫ t

0
S(s)u(0)ds+

∫ t

0
S(t− s)f(s)ds.

Corollary 4.2. Let 0 < α < 1. Suppose that A generates an (g1−α−(g1−α∗e−1), e−1)-regularized
family {S(t)}t≥0 satisfying the following conditions.

(1) λ+1
λα ∈ ρ(A) for all <λ ≥ 0 and λ 6= 0.

(2) sup
<λ>0

||(1 + λ− λαA)−1|| <∞.

Then {S(t)}t≥0 is uniformly stable.

Proof. It follows from the identities â(λ) = λα

1+λ and k̂(λ) = 1
1+λ that

lim
λ→0

H(λ)x = lim
λ→0

((1 + λ)− λαA)−1x = x, x ∈ H,

and the conclusion follows from Theorem 3.1. �

For instance, suppose that the operator A is scalar (Ax = µx, for some µ ∈ C and for all x
∈ H). We consider equation (4.3) with initial conditions, i.e.

u′(t)− µDαu(t) + u(t) = f(t), u(0) = u0.

We claim that if <µ < 0 then A generates a uniformly stable (a, k)-regularized family {S(t)}t≥0.

Firstly, we will show that there exist a bounded continuous function S : [0,∞)→ C such that

Ŝ(λ) = H(λ) =
1

1 + λ− λαµ
for all <λ > 0,
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and we will use [6, Proposition 3.1] to show that A generates an (a, k)-regularized family, where
a and k are given in (4.4). For this, we note that 1+λ

λα 6= µ for all <λ > 0. Indeed, we have the
identity

<
(

1 + λ

λα

)
=

1

|λ|α
[(1 + <λ) cos(αθλ) + (=λ) sin(αθλ)]

where θλ := Arg[−π,π)(λ). Then using that 0 < α < 1, we conclude that <
(
1+λ
λα

)
≥ 0 for all

<λ > 0. Since <µ < 0 we obtain that 1+λ
λα 6= µ for all <λ > 0.

On the other hand, from the fact that 0 < α < 1 and the continuity of H and H ′ over iR, we
conclude that there exist M > 0 such that

|λH(λ)| ≤M and |λ2H ′(λ)| ≤M for all <λ > 0.

Hence by [1, Theorem 2.5.2] we get that there exists a bounded function S ∈ C(R+) such that

Ŝ(λ) = H(λ), for all <λ > 0.
Secondly, we will apply Corollary 4.2 to conclude that the solution is uniformly stable. The

fact that <µ < 0 and <(1+λλα ) ≥ 0 for all <λ ≥ 0, implies that the condition (1) of Corollary 4.2
is satisfied. Condition (2) follows from the fact that H is analytic over C+ and continuous in
iR. Therefore we have

lim
|λ|→∞

H(λ) = lim
|λ|→∞

1

1 + λ− λαµ
= 0,

and hence the resolvent {S(t)}t≥0 is uniformly stable. In particular, we conclude from (4.5) that
if <µ < 0 then the solution of the equation:

u′(t)− µDαu(t) + u(t) = 0, u(0) = u0,

satisfies µDαu(t)− u(t)→ 0 as t→∞.
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