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Abstract. In the present work, we introduce the concept of almost automorphic functions
on time scales and present the first results about their basic properties. Then, we study
the nonautonomous dynamic equations on time scales given by x∆(t) = A(t)x(t) + f(t) and
x∆(t) = A(t)x(t) + g(t, x(t)), t ∈ T where T is a special case of time scales that we define in
this article. We prove a result ensuring the existence of an almost automorphic solution for
both equations, assuming that the associated homogeneous equation of this system admits
an exponential dichotomy. Also, assuming the function g satisfies the global Lipschitz type
condition, we prove the existence and uniqueness of an almost automorphic solution of the
nonlinear dynamic equation on time scales. Further, we present some applications of our
results for some new almost automorphic time scales. Finally, we present some interesting
models which our main results can be applied.

1. Introduction

The theory of time scales is a recent theory which started to be developed by Stefan Hilger,
on his doctoral thesis (see [34]). This theory represents a powerful tool for applications to
economics, populations models, quantum physics among others. See, for instance, [4], [19]
and [36]. Because of this fact, it has been attracting the attention of many mathematicians
(see [1], [6], [10], [22], [23], [24], [26], [27], [45], [46], [47], [48], for instance and the references
therein) and the interest in the subject remains growing.

Since time scale is any closed nonempty subset of R, the theory of dynamic equations on
time scales allows to unify several developments in evolution equations, depending on the
chosen time scale. For instance, if T = Z, we have a result for difference equations. On
the other hand, taking T = R, we obtain a result for differential equations. We point out
that this theory can also describe continuous-discrete hybrid processes, which have several
important applications. For instance, the continuous-discrete hybrid processes can be used
to investigate option-pricing and stock dynamics in finance, the frequency of markets and
duration of market trading in economics, large-scale models of DNA dynamics, gene mutation
fixation, electric circuits, populations models, among others. See, for instance, [13], [19], [37],
[50], [36] and the references therein.

Moreover, this theory can be used to study quantum physics. Choosing the time scale
equal to qZ ∪ {0}, q > 1, we obtain a result for quantum calculus, which is a fundamental
tool to study quantum physics. See [11] and [12] for more details.
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Recently, the qualitative properties of the solutions of dynamic equations on time scales
have been extensively investigated, specially concerning their periodicity. Periodic dynamic
equations on time scales have been treated by several mathematicians. See, for instance,
[1], [2], [6], [10], [42] and the references therein. On the other hand, almost periodicity is a
recent concept in the literature of time scales. It was formally introduced by Y. Li and C.
Wang (2011) in [40] and based on it, some results concerning almost periodicity for dynamic
equations on time scales were proved (see [39]). However, to the best of our knowledge,
the concept of almost automorphic functions on time scales has not been introduced in the
literature until now.

The theory of continuous almost automorphic was introduced by S. Bochner in relation
to some aspects of differential geometry (see [7], [8] and [9]) and after that, this theory has
been attracting the attention of several mathematicians and the interest in this topic still
increasing. See, [14], [15], [16], [17], [20], [29], [30], [43], for instance and the references
therein.

Motivated by this fact, the main goal of this paper is to introduce the concept of almost
automorphic functions on time scales and to start the investigation of existence and unique-
ness of almost automorphic solutions of dynamic equations. More precisely, we study the
non-autonomous dynamic equations on time scales given by

(1.1) x∆(t) = A(t)x(t) + f(t), t ∈ T,

where A ∈ R(T,Rn×n) and f ∈ Crd(T,Rn).
We prove the existence of an almost automorphic solution of (1.1), assuming the associated

homogeneous equation of (1.1) admits an exponential dichotomy and T is an invariant under
translations time scale, concept that we introduce here for the first time. In passing, we
show that in these time scales the graininess function have the remarkable property of to be
automatically almost automorphic. Also, we suppose A ∈ R(T,Rn×n) is almost automorphic
and nonsingular matrix function, the sets

(1.2) {A−1(t)}t∈T and {(I + µ(t)A(t))−1}t∈T
are bounded and f ∈ Crd(T,Rn) is almost automorphic function.

After that, we consider the semilinear dynamic equation on time scales given by

(1.3) x∆(t) = A(t)x(t) + f(t, x(t)), t ∈ T,

where A ∈ R(T,Rn×n), f ∈ Crd(T × Rn,Rn) and T is an invariant under translations time
scale.

We also obtain the existence and uniqueness of an almost automorphic solution of (1.3),
we assume the associated homogeneous equation of (1.3) admits an exponential dichotomy
and A ∈ R(T,Rn×n) is almost automorphic and nonsingular matrix function, the sets in
(1.2) are bounded and f ∈ Crd(T× Rn,Rn) is almost automorphic function with respect to
first variable and satisfies the global Lipschitz condition with respect to the second variable.

Moreover, we present some applications of our results for new and interesting invariant
under translations time scales. Finally, we present interesting models which our results can
be applied.

The present paper is organized as follows. The second section is devoted to present the
preliminaries results concerning the theory of time scales. In the third section, we prove
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some properties for almost automorphic functions on time scales and present some examples.
The fourth section is devoted to present some basic concepts and main results concerning
product integration on time scales. The fifth section brings a result which ensures the
existence of almost automorphic solutions for linear dynamic equations on time scales. In
the sixth section, we prove an existence and uniqueness of almost automorphic solutions for
semilinear dynamic equations on time scales. Finally, the last section is devoted to present
some interesting examples and applications of our main results.

2. Preliminaries

In this section, we present some basic concepts and results concerning time scales which
will be essential to prove our main results. For more details, the reader may want to consult
[11] and [12].

Let T be a time scale, that is, closed and nonempty subset of R. For every t ∈ T, we
define the forward and backward jump operators σ, ρ : T→ T, respectively, as follows:

σ(t) = inf{s ∈ T, s > t} and ρ(t) = sup{s ∈ T, s < t}.

In this definition, we consider inf ∅ = supT and sup ∅ = inf T.
If σ(t) > t, we say that t is right-scattered. Otherwise, t is called right-dense. Analogously,

if ρ(t) < t, then t is called left-scattered whereas if ρ(t) = t, then t is left-dense.
We also define the graininess function µ : T → R+ and the backward graininess function

ν : T→ R+, respectively, by

µ(t) = σ(t)− t and ν(t) = t− ρ(t).

Definition 2.1. A function f : T → R is called rd-continuous if it is regulated on T and
continuous at right-dense points of T. If the function f : T→ R is continuous at each right-
dense point and each left-dense point, then the function f is said to be continuous on T. We
denote the class of all rd-continuous functions f : T→ R by Crd = Crd(T) = Crd(T,R).

Given a pair of numbers a, b ∈ T, the symbol [a, b]T will be used to denote a closed interval
in T, that is, [a, b]T = {t ∈ T; a ≤ t ≤ b}. On the other hand, [a, b] is the usual closed
interval on the real line, that is, [a, b] = {t ∈ R; a ≤ t ≤ b}.

We define the set Tk which is derived from T as follows: If T has a left-scattered maximum
m, then Tk = T− {m}. Otherwise, Tk = T.

Definition 2.2. For y : T → R and t ∈ Tk, we define the delta-derivative of y to be the
number (if it exists) with the following property: given ε > 0, there exists a neighborhood
U of t such that

|y(σ(t))− y(t)− y∆(t)[σ(t)− s]| < ε|σ(t)− s|,
for all s ∈ U .

Similarly, we can define the nabla-derivative of the function y : T → R. For details, see
[11] and [12].

Definition 2.3. A partition of [a, b]T is a finite sequence of points

{t0, t1, . . . , tm} ⊂ [a, b]T, a = t0 < t1 < . . . < tm = b.
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Given such a partition, we put ∆ti = ti − ti−1. A tagged partition consists of a partition
and a sequence of tags {ξ1, . . . , ξm} such that ξi ∈ [ti−1, ti) for every i ∈ {1, . . . ,m}. The set
of all tagged partitions of [a, b]T will be denoted by the symbol D(a, b).

If δ > 0, then Dδ(a, b) denotes the set of all tagged partitions of [a, b]T such that for every
i ∈ {1, . . . ,m}, either ∆ti ≤ δ, or ∆ti > δ and σ(ti−1) = ti. Note that in the last case, the
only way to choose a tag in [ti−1, ti) is to take ξi = ti−1.

In the sequel, we present the definition of Riemann ∆-integrals. See [11] and [12], for
instance.

Definition 2.4. We say that f is Riemann ∆-integrable on [a, b]T, if there exists a number
I with the following property: for every ε > 0, there exists δ > 0 such that∣∣∣∣∣∑

i

f(ξi)(ti − ti−1)− I

∣∣∣∣∣ < ε,

for every P ∈ Dδ(a, b) independently of ξi ∈ [ti−1, ti)T for 1 ≤ i ≤ n. It is clear that such a
number I is unique and is the Riemann ∆-integral of f from a to b.

Similarly, we can define the Riemann ∇-integrable functions on [a, b]T. See [11] and [12],
for instance.

In what follows, we present a concept of regressive functions.

Definition 2.5. We say that a function p : T→ R is regressive provided

1 + µ(t)p(t) 6= 0, for all t ∈ Tk

holds. The set of all regressive and rd-continuous functions will be denoted by R = R(T) =
R(T,R).

Suppose that p, q ∈ R, then we define p⊕ q and 	p as follows:

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t), for all t ∈ Tk

and

(	p)(t) :=
−p(t)

1 + µ(t)p(t)
, for all t ∈ Tk.

It is clear that (R,⊕) is an Abelian group. (See, for instance, [11]). In the sequel, we
define the generalized exponential function ep(t, s).

Definition 2.6. If p ∈ R, then we define the generalized exponential function by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
for s, t ∈ T,

where the cylinder transformation ξh : Ch → Zh is given by

ξh(z) =
1

h
log(1 + zh),

where log is the principal logarithm function. For h = 0, we define ξ0(z) = z for all z ∈ C.

In what follows, we present some definitions about matrix-valued functions on time scales.
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Definition 2.7. Let A be an m × n matrix-valued function on T. We say that A is rd-
continuous on T if each entry of A is rd-continuous on T. We denote the class of all rd-
continuous m× n matrix-valued function on T by Crd = Crd(T) = Crd(T,Rm×n).

We say that A is delta-differentiable at T if each entry of A is delta-differentiable on T.
And in this case, we have

Aσ(t) = A(t) + µ(t)A∆(t).

Definition 2.8. A m × n matrix-valued function A on a time scale T is called regressive
(with respect to T) provided

I + µ(t)A(t) is invertible for all t ∈ Tk,
and the class of all such regressive rd-continuous is denoted by R = R(T) = R(T,Rm×n).

Assume A and B are regressive n×n matrix-valued functions on T. Then, we define A⊕B
by

(A⊕B)(t) = A(t) +B(t) + µ(t)A(t)B(t), ∀t ∈ Tk,
and we define 	A by

(	A)(t) = −[I + µ(t)A(t)]−1A(t), ∀t ∈ Tk.
It is clear that (R(T,Rn×n),⊕) is a group. For more details, see [11].
We proceed giving the definition of matrix exponential function found in [11].

Definition 2.9. (Matrix Exponential Function) Let t0 ∈ T and assume that A ∈ R is an
n× n matrix valued function. The unique matrix-valued solution of the IVP

Y ∆(t) = A(t)Y (t), Y (t0) = I,

where I denotes as usual the n×n-identity matrix, is called the matrix exponential function
at t0 and it is denoted by eA(·, t0).

In the sequel, we enunciate a result which describes the properties of matrix exponential
function. It can be found in [11], Theorem 5.21.

Theorem 2.10. If A,B ∈ R are matrix-valued functions on T, then

(i) e0(t, s) ≡ I e eA(t, t) ≡ I;
(ii) eA(σ(t), s) = (I + µ(t)A(t))eA(t, s);

(iii) eA
−1(t, s) = e∗	A∗(t, s);

(iv) eA(t, s) = eA
−1(s, t) = e∗	A∗(s, t);

(v) eA(t, s)eA(s, r) = eA(t, r);
(vi) eA(t, s)eB(t, s) = eA⊕B(t, s) if eA(t, s) and B(t) commute.

Using these notions, one can obtain the following result which is a Variation of Constants
Formula which can be found in [11], Theorem 5.24.

Theorem 2.11 (Variation of Constants Formula). Let A ∈ R be an n × n matrix-valued
function on T and suppose that f : T→ Rn is rd-continuous. Let t0 ∈ T and y0 ∈ Rn. Then
the initial value problem

(2.1)

{
y∆(t) = A(t)y(t) + f(t),

y(t0) = y0
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has a unique solution y : T→ Rn. Moreover, this solution is given by

y(t) = eA(t, t0)y0 +

∫ t

t0

eA(t, σ(τ))f(τ)∆τ.

Definition 2.12. Let A(t) be n × n rd-continuous matrix-valued function on T. We say
that the linear system

(2.2) x∆(t) = A(t)x(t)

has an exponential dichotomy on T if there exist positive constants K and γ, projection P ,
which commutes with X(t), t ∈ T, and fundamental solution matrix X(t) of (2.2) satisfying

|X(t)PX−1(s)| ≤ Ke	γ(t, s), s, t ∈ T, t ≥ s,

|X(t)(I − P )X−1(s)| ≤ Ke	γ(s, t), s, t ∈ T, t ≤ s.

The following result will be essential to our purposes. For a proof of this result, see [11],
Theorem 2.39.

Theorem 2.13. If p ∈ R and a, b, c ∈ T, then

[ep(c, ·)]∆ = −p[ep(c, ·)]σ

and ∫ b

a

p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).

The following result shows that e	α(t, s), for α > 0, t > s, is a bounded function. The
proof is inspired in [41], Lemma 5.1.

Theorem 2.14. If α > 0, then e	α(t, s) ≤ 1 for t, s ∈ T such that t > s.

Proof. First, we suppose µ(t) = 0, then

e	α(t, s) = exp

(∫ t

s

ξ0(	α)∆τ

)
,

for every s, t ∈ T. Then,

e	α(t, s) = exp

(∫ t

s

	α∆τ

)
= exp

(∫ t

s

−α
1 + µ(τ)α

∆τ

)
= exp (−α(t− s)) ,

using the fact that µ(τ) = 0. Since t > s, we obtain

e	α(t, s) = exp (−α(t− s)) ≤ 1.

Now, let us consider µ(t) > 0, then

1 + µ(t)	 α = 1 + µ(t)
−α

1 + µ(t)α
=

1 + µ(t)α− µ(t)α

1 + µ(t)α
=

1

1 + µ(t)α
< 1.

Thus, 	α ∈ R and it is easy to see that

log(1 + µ(t)	 α) ∈ R
for all t ∈ T. Then, it follows

ξµ(t)(	α) =
log(1 + µ(t)	 α)

µ(t)
< 0,
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which implies that

e	α(t, s) = exp

(∫ t

s

ξµ(t)(	α)

)
< 1,

for every t, s ∈ T such that t > s. �

The next result describes the solution of (2.1). It can be found in [40], Lemma 2.13.

Theorem 2.15. If the linear system (2.2) admits exponential dichotomy, then the system
(2.1) has a bounded solution x(t) as follows:

x(t) =

∫ t

−∞
X(t)PX−1(σ(s))f(s)∆s−

∫ +∞

t

X(t)(I − P )X−1(σ(s))f(s)∆s,

where X(t) is the fundamental solution matrix of (2.2).

3. Almost automorphic functions on time scales

In this section, we introduce almost automorphic functions on time scales and present
their properties.

We start by introducing a definition of an invariant under translations time scale.

Definition 3.1. A time scale T is called invariant under translations if

(3.1) Π := {τ ∈ R : t± τ ∈ T, ∀t ∈ T} 6= {0}.

We say that the graininess function µ : T→ R+ is an almost automorphic function if for
every sequence (α′n) on Π, there exists a subsequence (αn) ⊂ (α′n) such that

(3.2) lim
n→∞

µ(t+ αn) = µ̄(t),

for every t ∈ T and

(3.3) lim
n→∞

µ̄(t− αn) = µ(t),

for every t ∈ T.
Combining the Theorems 1.9, 1.10 and 1.11 from [21], we obtain the following characteri-

zation of almost periodic functions f : R→ R.

Theorem 3.2. The function f : R → R is almost periodic, if and only if, from any se-
quence of the form {f(x + αn)}, where (αn) is a sequence of real numbers, one can extract
a subsequence converging uniformly on the real line.

A carefully examination of the proofs of the Theorems 1.9, 1.10 and 1.11 from [21] reveals
that the result above remains true for a general time scale. More precisely, we obtain the
next result.

Theorem 3.3. Let T be an invariant under translations time scale, then the function f :
T→ R is almost periodic, if and only if, from any sequence of the form {f(x+ αn)}, where
(αn) is a sequence on Π, one can extract a subsequence converging uniformly on T.

Therefore, using this fact and the definition of invariant under translations time scales,
we get the following result.
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Theorem 3.4. If T is an invariant under translations time scale, then the graininess func-
tion µ : T→ R+ is an almost periodic function.

Proof. If the time scale T is invariant under translation, then the equation (3.1) is satisfied.
Then, let us consider two cases: if all the points in T are right-dense (or/and left-dense) and
otherwise.

Let us consider that all the points in T are right-dense. (Notice that the cases of all points
in T are left-dense or even are right-dense and left-dense at the same time follow similarly.
Thus, we will prove only this case). From this fact and since T is invariant under translation,
we obtain that T = R, because the condition (3.1) must be satisfied. Therefore, in this case,
it follows that µ(t) = 0 for every t ∈ T and the almost periodicity of the graininess function
follows immediately.

Now, let us suppose that T has at least one point which is not right-dense (or left-dense),
then in this case, it makes sense to consider min{|τ | : τ ∈ Π}, which is clearly finite, since
τ ∈ R. Thus, denote K := min{|τ | : τ ∈ Π}.

Then, by the definition of forward jump operator σ : T→ T, we have

σ(t) ≤ t+K,

which implies that µ(t) ≤ K, for every t ∈ T.
Given a sequence (αn) ∈ Π, define µn(t) := µ(t+ αn). Obviously, by the properties of an

invariant under translations time scale, we have µn : T→ R+. Therefore, since the function
µn takes value on R+ and is bounded (0 ≤ µn(t) ≤ K), we obtain by Bolzano-Weierstrass
Theorem that µn possesses a subsequence which converges uniformly.

Thus, by Theorem 3.3 and using the fact that {µ(t+ αn)} possesses a subsequence which
converges uniformly, we obtain that µ is an almost periodic function. �

Using the fact that every almost periodic function is almost automorphic, we obtain as an
immediate consequence of the previous theorem the following result.

Corollary 3.5. If T is an invariant under translations time scales, then the graininess
function µ : T→ R+ is almost automorphic.

Remark 3.6. We point out that in the paper [40], the authors use the same definition of
an invariant under translation time scale presented here to define an almost periodic time
scale.

However, by Corollary 3.5, one can see that this concept is more general, since it can be
also applied to study almost automorphic functions. Therefore, we rewritten the definition
presented in [40] and called the time scale which satisfies the property (3.1) as invariant
under translations.

If τ1, τ2 ∈ Π, then τ1 ± τ2 ∈ Π and T is an invariant under translations time scale, then
inf T = −∞ and supT = +∞.

In what follows, we give some interesting examples of invariant under translations time
scales T.

Example 3.7. The time scales T = Z and T = R are clearly invariant under translations.

Example 3.8. Notice that T = hZ, for h ∈ Z and T = 1
n
Z , n ∈ N0 = N \ {0} are invariant

under translations time scales.
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Example 3.9. Consider the time scale

Pa,b =
∞⋃

k=−∞

[k(a+ b), k(a+ b) + a]

then

σ(t) =


t, if t ∈

∞⋃
k=−∞

[k(a+ b), k(a+ b) + a)

t+ b, if t ∈
∞⋃

k=−∞

{k(a+ b) + a}

and

µ(t) =


0, if t ∈

∞⋃
k=−∞

[k(a+ b), k(a+ b) + a)

b, if t ∈
∞⋃

k=−∞

{k(a+ b) + a}

By the definition, it follows that Pa,b is an invariant under translation time scale.

Considering a = 1 and b = 1 in the Example 3.9, we obtain that P1,1 describes the
population of certain species which its life span is one unit of time. In other words, just
before the species dies out, eggs are laid which are hatched one unit of time later. For this
specific case, see [19].

The following two examples bring more complex time scales. They might describe a
population of certain species which its life span behaves the same way as a cosine and sin
function, respectively.

Example 3.10. Let 0 < a < π
2

and consider the time scale

Pa,cos a =
∞⋃

k=−∞

[k(a+ cos a), k(a+ cos a) + a]

then

σ(t) =


t, if t ∈

∞⋃
k=−∞

[k(a+ cos a), k(a+ cos a) + a)

t+ cos t, if t ∈
∞⋃

k=−∞

{k(a+ cos a) + a}

and

µ(t) =


0, if t ∈

∞⋃
k=−∞

[k(a+ cos a), k(a+ cos a) + a)

cos t, if t ∈
∞⋃

k=−∞

{k(a+ cos a) + a}

It is clear that Pa,cos a is an invariant under translations time scale.
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Example 3.11. Let π
2
< a < π and consider the time scale

Pa,sin a =
∞⋃

k=−∞

[k(a+ sin a), k(a+ sin a) + a]

then

σ(t) =


t, if t ∈

∞⋃
k=−∞

[k(a+ sin a), k(a+ sin a) + a)

t+ sin t, if t ∈
∞⋃

k=−∞

{k(a+ sin a) + a}

and

µ(t) =


0, if t ∈

∞⋃
k=−∞

[k(a+ sin a), k(a+ sin a) + a)

sin t, if t ∈
∞⋃

k=−∞

{k(a+ sin a) + a}

Clearly, Pa,sin a is an invariant under translations time scale.

In the sequel, we present some time scales which are not invariant under translations.

Example 3.12. Clearly, T = qZ ∪ {0}, q > 1, is not invariant under translations, since T
does not satisfy the condition (3.1). Note that µ(t) = (q − 1)t.

Example 3.13. Every compact interval T = [a, b], a, b ∈ R, is not invariant under transla-
tions.

Example 3.14. The time scales T = N2
0 and T = 2N are not invariant under translations.

Here µ(t) = 2
√
t+ 1 and µ(t) = t respectively.

Now, we introduce the definition of an almost automorphic function on time scales.

Definition 3.15. Let X be (real or complex) Banach space and T be an invariant under
translation time scale. Then, an rd-continuous function f : T → X is called almost auto-
morphic on T if for every sequence (α′n) ∈ Π, there exists a subsequence (αn) ⊂ (α′n) such
that

lim
n→∞

f(t+ αn) = f̄(t)

is well defined for each t ∈ T and

lim
n→∞

f̄(t− αn) = f(t),

for every t ∈ T.

We denote the space of all almost automorphic function on time scales f : T → X by
AAT(X).

In what follows, we present some properties concerning almost automorphic function on
time scale T. The proof is inspired in Theorems 2.1.3 and 2.1.4, from [32].
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Theorem 3.16. Let T be an invariant under translations time scale and suppose the rd-
continuous functions f, g : T→ X are almost automorphic on time scales, then the following
assertions hold.

(i) f + g is almost automorphic function on time scales;
(ii) cf is almost automorphic function on time scales for every scalar c;

(iii) For each l ∈ T, the function fl : T → X defined by fl(t) := f(l + t) is almost
automorphic on time scales.

(iv) The function f̂ : T → X defined by f̂(t) := f(−t) is almost automorphic on time
scales;

(v) sup
t∈T
‖f(t)‖ <∞, that is, f is a bounded function;

(vi) sup
t∈T
‖f̄(t)‖ ≤ sup

t∈T
‖f(t)‖, where

lim
n→∞

f(t+ αn) = f̄(t) and lim
n→∞

f̄(t− αn) = f(t).

Proof. Let f, g : T → X be almost automorphic functions on time scales. Then, for every
sequence (α′n) ∈ Π, there exists a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

f(t+ αn) = f̄(t) and lim
n→∞

g(t+ αn) = ḡ(t)

is well defined for each t ∈ T and

lim
n→∞

f̄(t− αn) = f(t) and lim
n→∞

ḡ(t− αn) = g(t),

for every t ∈ T. Thus, we obtain

lim
n→∞

(f + g)(t+ αn) := f̄(t) + ḡ(t)

is well defined for each t ∈ T and

lim
n→∞

(f̄ + ḡ)(t− αn) = f(t) + g(t),

for every t ∈ T. Thus, item (i) follows.
Since f is almost automorphic function on time scales, then for every sequence (α′n) ∈ Π,

there exists a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

(cf)(t+ αn) = lim
n→∞

cf(t+ αn) = cf̄(t) = (cf̄)(t)

is well defined for each t ∈ T and

lim
n→∞

(cf̄)(t− αn) = lim
n→∞

cf̄(t− αn) = cf(t) = (cf)(t),

for every t ∈ T, which proves item (ii).
The proofs of item (iii) and (iv) follow using similar argument as before. Thus, we omit

them here.
Let us prove item (v). Let t0 ∈ T and suppose that supk∈T ‖f(k)‖ =∞, then there exists

a sequence (α′n) ⊂ Π such that

lim
n→∞

‖f(t0 + α′n)‖ =∞.
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Since f is almost automorphic, there exists a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

f(t0 + αn) = f̄(t0),

and using the continuity of norm function, we get

lim
n→∞

‖f(t0 + αn)‖ = ‖f̄(t0)‖ <∞,

which contradicts the fact that limn→∞ ‖f(t0 + α′n)‖ =∞.
Finally, let us prove item (vi). Let (α′n) be a sequence on Π, then there exists a subsequence

(αn) ⊂ (α′n) such that

‖f̄(t)‖ = ‖ lim
n→∞

f(t+ αn)‖ = lim
n→∞

‖f(t+ αn)‖ ≤ sup
t∈T
‖f(t)‖,

which implies that

(3.4) sup
t∈T
‖f̄(t)‖ ≤ sup

t∈T
‖f(t)‖.

On the other hand, we have

‖f(t)‖ = ‖ lim
n→∞

f̄(t+ αn)‖ ≤ sup
t∈T
‖f̄(t)‖,

then

(3.5) sup
t∈T
‖f(t)‖ ≤ sup

t∈T
‖f̄(t)‖.

Combining (3.4) and (3.5), we obtain

sup
t∈T
‖f(t)‖ = sup

t∈T
‖f̄(t)‖,

and the result follows as well. �

The next result generalizes item (ii) from Theorem 3.16. The proof is inspired in Theorem
2.7, from [3].

Theorem 3.17. Let T be invariant under translations and the functions f, u : T → X be
almost automorphic on time scales, then the function uf : T → X defined by (uf)(t) =
u(t)f(t) is almost automorphic on time scales.

Proof. Let (α′n) be a sequence on Π, then there exists a subsequence (α′′n) ⊂ (α′n) such that
lim
n→∞

u(t + α′′n) = ū(t) is well defined for each t ∈ T and lim
n→∞

ū(t − α′′n) = u(t) for each

t ∈ T. Since f is almost automorphic, there exists a subsequence (αn) ⊂ (α′′n) such that
lim
n→∞

f(t+αn) = f̄(t) is well defined for each t ∈ T and lim
n→∞

f̄(t−αn) = f(t) for each t ∈ T.

Thus,

‖u(t+ αn)f(t+ αn)− ū(t)f̄(t)‖ ≤ ‖u(t+ αn)(f(t+ αn)− f̄(t))‖
+ ‖(u(t+ αn)− ū(t))f̄(t)‖
< ε,

for n sufficiently large. Therefore,

lim
n→∞

u(t+ αn)f(t+ αn) = ū(t)f̄(t),
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for every t ∈ T. Analogously, we can prove that lim
n→∞

ū(t − αn)f̄(t − αn) = u(t)f(t). Thus,

we obtain that uf is an almost automorphic function on time scales. �

In the sequel, we present a result which ensures that AAT(X) is a Banach space with
the norm described in item (v) from Theorem 3.16. The proof is inspired in [32], Theorem
2.1.10.

Theorem 3.18. Let T be an invariant under translations time scale and (fn) be a sequence
of almost automorphic functions such that lim

n→∞
fn(t) = f(t) converges uniformly for each

t ∈ T. Then, f is an almost automorphic function.

Proof. Let (α′n) be a sequence on Π. Since f1 ∈ AAT(X), then there exists a subsequence
(α1

n) ⊂ (α′n) such that

lim
n→∞

f1(t+ α1
n) := f̄1(t)

is well-defined for every t ∈ T and

lim
n→∞

f̄1(t− α1
n) = f1(t),

for every t ∈ T. Since f2 ∈ AAT(X), then there exists a subsequence (α2
n) ⊂ (α1

n) such that

lim
n→∞

f2(t+ α2
n) = f̄2(t)

is well-defined for every t ∈ T and

lim
n→∞

f̄2(t− α2
n) = f2(t),

for every t ∈ T. Thus, by the diagonal procedure, we can construct a subsequence (αn) ⊂
(α′n) such that

(3.6) lim
n→∞

fi(t+ αn) = f̄i(t),

for each t ∈ T and for all i = 1, 2, 3, . . .. Notice that

‖f̄i(t)− f̄j(t)‖ ≤ ‖f̄i(t)− fi(t+ αn)‖+ ‖fi(t+ αn)− fj(t+ αn)‖
+ ‖fj(t+ αn)− f̄j(αn)‖.(3.7)

Let ε > 0, then by the uniform convergence of (fn), we can find N ∈ N sufficiently large
such that for all i, j > N , we obtain

(3.8) ‖fi(t+ sn)− fj(t+ sn)‖ < ε,

for all t ∈ T and all n = 1, 2, . . ..
Therefore, taking i, j sufficiently large in (3.7) and using (3.8) and the limit (3.6), we

obtain that (f̄i(t)) is a Cauchy sequence. Since X is a Banach space, then (f̄i(t)) is a
sequence which converges pointwisely on X. Let f̄(t) be the limit of (f̄i(t)), then for each
i = 1, 2, 3, . . ., we have

‖f(t+ αn)− f̄(t)‖ ≤ ‖f(t+ αn)− fi(t+ αn)‖+ ‖fi(t+ αn)− f̄i(t)‖
+ ‖f̄i(t)− f̄(t)‖.(3.9)
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Then, for i sufficiently large, by (3.9) and using the almost automorphicity of fi and the
convergence of the functions fi and f̄i, we obtain

lim
n→∞

f(t+ αn) = f̄(t),

for each t ∈ T. Analogously, one can prove that

lim
n→∞

f̄(t− αn) = f(t),

for every t ∈ T and we get the desired result. �

In what follows, we present a result which brings a property concerning composition of
almost automorphic function on time scales and a continuous function. The proof is inspired
in [3], Theorem 2.5.

Theorem 3.19. Let T be invariant under translations and let X, Y be Banach spaces. Sup-
pose f : T → X is an almost automorphic function on time scales and φ : X → Y is a
continuous function, then the composite function φ ◦ f : T → Y is an almost automorphic
function on time scales.

Proof. Since f ∈ AAT(X), for every sequence (α′n) on Π, there exists a subsequence (αn) ⊂
(α′n) such that lim

n→∞
f(t+αn) = f̄(t) is well defined for every t ∈ T and lim

n→∞
f̄(t−αn) = f(t)

for each t ∈ T.
By the continuity of function φ, it follows that

lim
n→∞

φ(f(t+ αn)) = φ( lim
n→∞

f(t+ αn)) = (φ ◦ f̄)(t).

Similarly, we have

lim
n→∞

φ(f̄(t− αn)) = φ( lim
n→∞

f̄(t− αn)) = (φ ◦ f)(t)

for each t ∈ T. Thus, φ ◦ f ∈ AAT(Y ). �

Now, we present the definition of an almost automorphic function on time scales depending
on one parameter. This definition is useful for applications to nonlinear dynamic equations.

Definition 3.20. Let X be a (real or complex) Banach space and T be an invariant under
translations time scale. Then, an rd-continuous function f : T × X → X is called almost
automorphic on t ∈ T for each x ∈ X, if for every sequence (α′n) ∈ Π, there exists a
subsequence (αn) ⊂ (α′n) such that

(3.10) lim
n→∞

f(t+ αn, x) = f̄(t, x)

is well defined for each t ∈ T, x ∈ X and

(3.11) lim
n→∞

f̄(t− αn, x) = f(t, x),

for every t ∈ T and x ∈ X.

In the sequel, we present a result concerning the properties of almost automorphic func-
tions on time scales to respect the first variable. We omit the proof since it is similar to
proof of Theorem 3.16.
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Theorem 3.21. Let T be invariant under translations and f, g : T × X → X be almost
automorphic functions on time scales in t for each x in X, then the following assertions
hold.

(i) f + g is almost automorphic function on time scales in t for each x in X.
(ii) cf is almost automorphic function on time scales in t for each x in X, where c is an

arbitrary scalar.
(iii) sup

t∈T
‖f(t, x)‖ = Mx <∞, for each x in X.

(iv) sup
t∈T
‖f̄(t, x)‖ = Nx < ∞, for each x in X, where f̄ is the function in the Definition

3.20.

Now, we present a result which will be essential to prove the following one. The proof is
inspired in Theorem 2.2.5 from [32].

Theorem 3.22. Let T be invariant under translations and f : T × X → X be almost
automorphic function on time scales for each x ∈ X and if f is Lipschitzian in x uniformly
in t, then f̄ given by (3.10) and (3.11) satisfies the same Lipschitz condition in x uniformly
in t.

Proof. Let L > 0 be a Lipschitz constant for the function f , that is, the following inequality

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖
holds for every x, y ∈ X uniformly in t ∈ T.

Let t ∈ T be arbitrary and ε > 0 be given. Then, by the automorphicity of function f and
the definition of f̄ , for every any sequence (α′n) ∈ Π, there exists a subsequence (αn) ⊂ (α′n)
such that

‖f̄(t, x)− f(t+ αn, x)‖ ≤ ε

2
and ‖f̄(t, y)− f(t+ αn, y)‖ ≤ ε

2
,

for n sufficiently large.
Therefore, we obtain

‖f̄(t, x)− f̄(t, y)‖ ≤ ‖f̄(t, x)− f(t+ αn, x)‖+ ‖f̄(t, y)− f(t+ αn, y)‖
+ ‖f(t+ αn, x)− f(t+ αn, y)‖
≤ ε+ L‖x− y‖.

Since ε is arbitrary, we get

‖f̄(t, x)− f̄(t, y)‖ ≤ L‖x− y‖,
for each x, y ∈ X. �

The next result will be fundamental to ensure the almost automorphicity of solutions of
nonlinear dynamic equations. Our proof is inspired in Theorem 2.10 from [3].

Theorem 3.23. Let T be an invariant under translations time scale and f : T×X → X be
an almost automorphic function on time scales in t for each x in X and satisfies Lipschitz
condition in x uniformly in t, that is

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖,



16 CARLOS LIZAMA AND JAQUELINE G. MESQUITA

for all x, y in X. Suppose φ : T → X is almost automorphic function on time scales, then
the function U : T→ X defined by U(t) = f(t, φ(t)) is almost automorphic on time scales.

Proof. Since f, φ ∈ AAT(X), then for every sequence (α′n) in Π, there exists a subsequence
(αn) ⊂ (α′n) such that lim

n→∞
f(t+αn, x) = f̄(t, x) for all t ∈ T, x ∈ X and lim

n→∞
f̄(t−αn, x) =

f(t, x) for all t ∈ T and x ∈ X. Also, we have

lim
n→∞

φ(t+ αn) = φ̄(t)

is well-defined for each t ∈ T and

lim
n→∞

φ̄(t− αn) = φ(t)

for every t ∈ T. Since f satisfies the Lipschitz condition in t uniformly in k, then

‖f(t+ αn, φ(t+ αn))− f̄(t, φ̄(t))‖ ≤ ‖f(t+ αn, φ(t+ αn))− f(t+ αn, φ̄(t))‖+

+ ‖f(t+ αn, φ̄(t))− f̄(t, φ̄(t))‖
≤ L‖φ(t+ αn)− φ̄(t)‖+ ‖f(t+ αn, φ̄(t))− f̄(t, φ̄(t))‖

and

‖f̄(t− αn, φ̄(t− αn))− f(t, φ(t))‖ ≤ ‖f̄(t− αn, φ̄(t− αn))− f̄(t− αn, φ(t))‖+

+ ‖f̄(t− αn, φ(t))− f(t, φ(t))‖
≤ L‖φ̄(t− αn)− φ(t)‖+ ‖f̄(t− αn, φ(t))− f(t, φ(t))‖.

Notice that if f satisfies Lipschitz condition in x uniformly in t, it is clear by Theorem
3.22 that f̄ also satisfies this condition in x uniformly in t for the same constant L > 0.
Applying limit as n→∞ to both inequalities above, we have the desired result. �

4. Product integration on time scales

In this section, we present some basic concepts concerning product integration on time
scales which will be essential to prove our main result. The main reference for this section
is [45].

We start this section by presenting a notion of product ∆-integral of a matrix function.
For details, see [45].

Given a matrix function A : [a, b]T → Rn×n and a tagged partition D ∈ D(a, b), we denote

P (A,D) =
1∏

i=m

(I + A(ξi)∆ti) = (I + A(ξm)∆tm) · (I + A(ξ1)∆t1).

We point out that the order is important since matrix multiplication is usually not com-
mutative.

Now, we present the concept of product ∆-integrable matrix function. See [45].

Definition 4.1. A bounded matrix function A : [a, b]T → Rn×n is called product ∆-
integrable if there exists a matrix P ∈ Rn×n with the property that for every ε > 0, there
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exists a δ > 0 such that ‖P (A,D)− P‖ < ε for every D ∈ Dδ(a, b). The matrix P is called
the product ∆-integral of A over [a, b]T and we write

b∏
a

(I + A(t)∆t) = P.

If a = b, then
∏a

a(I + A(t)∆t) = I for every matrix function A : [a, b]T → Rn×n.
Now, we present a result which will be essential to our purposes. It can be found in [45],

Theorem 2.9.

Theorem 4.2. Let A : [a, b]T → Rn×n and t ∈ T, a ≤ t ≤ σ(t) ≤ b. Then

σ(t)∏
t

(I + A(s)∆s) = I + A(t)µ(t).

The next result brings a property of Riemann ∆-integrable function. It can be found in
[45], Theorem 3.7.

Theorem 4.3. Every Riemann ∆-integrable function is product ∆-integrable.

We remind the reader that every rd-continuous function f : [a, b]T → Rn is Riemann
∆-integrable (see [11] and [12]). Thus, we can replace the previous result by the following
one.

Theorem 4.4. Every rd-continuous function is product ∆-integrable.

In what follows, we state a property of product ∆ integrals. See [45].

Theorem 4.5. If A : [a, b]T → Rn×n is Riemann ∆-integrable and c ∈ [a, b]T, then

b∏
a

(I + A(t)∆t) =
b∏
c

(I + A(t)∆t) ·
c∏
a

(I + A(t)∆t).

The next result ensures the continuity of the indefinite product ∆-integral on [a, b]T. See
[45], Theorem 4.1.

Theorem 4.6. If A : [a, b]T → Rn×n is Riemann ∆-integrable, then the indefinite product
∆-integral

Y (t) =
t∏
a

(I + A(s)∆s), t ∈ [a, b]T,

is continuous on [a, b]T.

Theorem 4.7 ([45], Theorem 5.5). If A : [a, b]T → Rn×n is a regressive Riemann ∆-

integrable function, then
∏b

a(I + A(t)∆t) is a nonsingular matrix.

If a < b, we define
∏b

a(I + A(t)∆t) =
(∏b

a(I + A(t)∆t)
)−1

provided the right-hand side

exists. See [45], Definition 5.6.
Finally, we present a result which will be fundamental to prove our main result. It can be

found in [45], Theorem 5.7.
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Theorem 4.8. If A : T→ Rn×n is a regressive rd-continuous function and t0 ∈ T, then the
function

Y (t) =
t∏
t0

(I + A(s)∆s), t ∈ T,

represents the unique solution of the dynamic equation Y ∆(t) = A(t)Y (t) such that Y (t0) =
I.

5. Almost automorphic solutions of first order linear dynamic equations
on time scales

In this section, our goal is to prove existence of an almost automorphic solution of first
order linear dynamic equation on time scales given by

(5.1) x∆(t) = A(t)x(t) + f(t)

where A : T→ Rn×n, f : T→ Rn and its associated homogeneous equation

(5.2) x∆(t) = A(t)x(t).

Throughout this section, we assume that A(t) is almost automorphic on T, which means
that given a sequence (α′n) ∈ Π, there exists a subsequence (αn) ⊂ (α′n) such that

(5.3) lim
n→∞

A(t+ αn) = Ā(t)

exists and is well-defined for every t ∈ T and

(5.4) lim
n→∞

Ā(t− αn) = A(t)

for every t ∈ T.
Also, consider the following linear dynamic system

(5.5) x∆(t) = Ā(t)x(t).

Before to proceed, we present a result which will be fundamental to our objectives. It can
be found in [44], Lemma 2.9 for the case T = Z. We give the proof here for the general case.

Lemma 5.1. Let T be invariant under translations and A(t) be almost automorphic and a
non-singular matrix on T. Also, suppose that the set {A−1(t)}t∈T is bounded. Then A−1(t) is
almost automorphic on T, that is, for every sequence (α′n) on Π, there exists a subsequence
(αn) ⊂ (α′n) such that

(5.6) lim
n→∞

A−1(t+ αn) =: Ā−1(t)

is well defined for each t ∈ T and

(5.7) lim
n→∞

Ā−1(t− αn) = A−1(t)

for each t ∈ T.
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Proof. Let (α′n) be a sequence on Π. Since A(t) is almost automorphic on time scales, there
exists a subsequence (αn) such that

lim
n→∞

A(t+ αn) =: Ā(t)

is well defined for each t ∈ T and

lim
n→∞

Ā(t− αn) = A(t)

for each t ∈ T.
Fix t ∈ T and define An := A(t+αn), n ∈ N. By hypothesis, the set {A−1

n }n∈N is bounded.
Using the identity

A−1
n − A−1

m = A−1
n (Am − An)A−1

m

and the fact that {An} is a Cauchy sequence, it follows that {A−1
n } is a Cauchy sequence.

Hence, there exists a matrix T (for each t ∈ T fixed) such that

A−1
n → T (t).

Taking the limit of AnA
−1
n = A−1

n An = I, where I denotes the identity matrix, we obtain
that Ā(t) is invertible and Ā−1(t) = T (t) for each t ∈ T. Since the map A → A−1 is
continuous on the set of non-singular matrices, it follows that

lim
n→∞

A−1(t+ αn) = Ā−1(t)

for each t ∈ T. Analogously, one can prove that

lim
n→∞

Ā−1(t− αn) = A−1(t),

for each t ∈ T. �

As an immediate consequence, we obtain for the following result for a particular case.

Corollary 5.2. Let T be invariant under translations and A(t) be almost automorphic and
a regressive matrix on T. Also, suppose that the set {(I +A(t)µ(t))−1}t∈T is bounded. Then
(I + A(t)µ(t))−1 is almost automorphic on T, that is, for every sequence (α′n) ∈ Π, there
exists a subsequence (αn) ⊂ (α′n) such that

(5.8) lim
n→∞

(I + A(t+ αn)µ(t+ αn))−1 =: (I + Ā(t)µ̄(t))−1

is well defined for each t ∈ T and

(5.9) lim
n→∞

(I + Ā(t− αn)µ̄(t− αn))−1 = (I + A(t)µ(t))−1

for each t ∈ T.

Proof. Denote B(t) := (I + A(t)µ(t)), for every t ∈ T. Since A(t) and µ(t) are almost
automorphic functions, for every sequence (α′n) on Π, there exists a subsequence (αn) ⊂ (α′n)
such that

lim
n→∞

A(t+ αn) = Ā(t) and lim
n→∞

µ(t− αn) = µ̄(t)

is well-defined and exists for every t ∈ T and

lim
n→∞

Ā(t− αn) = A(t) and lim
n→∞

µ̄(t− αn) = µ(t)
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for every t ∈ T. Thus, it follows that

lim
n→∞

B(t+ αn) = lim
n→∞

(I + A(t+ αn)µ(t+ αn)) = I + Ā(t)µ̄(t) := B̄(t)

for every t ∈ T and

lim
n→∞

B̄(t− αn) = lim
n→∞

(I + Ā(t− αn)µ̄(t− αn)) = I + A(t)µ(t) = B(t).

Therefore, B(t) is almost automorphic on T. Also, since A(t) is a regressive matrix, it
follows that B(t) is non-singular on T. By hypothesis, {B−1(t)}t∈T is bounded. Thus, all
the hypotheses of Lemma 5.1 are satisfied. As a consequence, we obtain that B−1(t) =
(I + A(t)µ(t))−1 is almost automorphic on T, that is, for every sequence (α′n) on Π, there
exists a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

B−1(t+ αn) =: B̄−1(t)

is well defined and exists for each t ∈ T and

lim
n→∞

B̄−1(t− αn) = B−1(t)

for each t ∈ T. It implies that

lim
n→∞

(I + A(t+ αn)µ(t+ αn))−1 =: (I + Ā(t)µ̄(t))−1

is well defined for each t ∈ T and

lim
n→∞

(I + Ā(t− αn)µ̄(t− αn))−1 = (I + A(t)µ(t))−1

for each t ∈ T and the result follows as well. �

Now, we present some auxiliaries results lemma which will be essential to our purposes.

Lemma 5.3. Let T be an invariant under translations and A ∈ R(T,Rn×n) is almost auto-
morphic and nonsingular on T and {A−1(t)}t∈T and {(I + µ(t)A(t))−1}t∈T are bounded on
T, then for every sequence (α′n) ∈ Π, there exists a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

X(t+ αn)X−1(s+ αn) = W (t, s)

for every s, t ∈ T, s < t and

lim
n→∞

W (t− αn, s− αn) = X(t)X−1(s),

for every s, t ∈ T and s < t, where X(t) is the fundamental matrices of (5.2) and W (t, s) :=
t∏
s

(I + Ā(τ)∆τ)

Proof. Since X(t) is the fundamental matrix of (5.2), we obtain by Theorem 4.8

X(t) =
t∏
t0

(I + A(τ)∆τ)
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which implies the following

X−1(t) = (X(t))−1 =

(
t∏
t0

(I + A(τ)∆τ)

)−1

.

Notice that, by Theorem 4.7, Πt
t0

(I+A(τ)∆τ) is a nonsingular matrix, sinceA ∈ R(T,Rn×n).
By the almost automorphicity of A(t), we obtain that for every sequence (α′n) ∈ Π, there

exists a subsequence (αn) ⊂ (α′n) such that

X(t+ αn)X−1(s+ αn) =
t+αn∏
t0

(I + A(τ)∆τ)

(
s+αn∏
t0

(I + A(τ)∆τ)

)−1

=
t+αn∏
t0

(I + A(τ)∆τ)

t0∏
s+αn

(I + A(τ)∆τ)

=
t+αn∏
s+αn

(I + A(τ)∆τ) =
t∏
s

(I + A(τ + αn)∆τ),

by Theorem 4.5. Applying the limit in both sides, we obtain

lim
n→∞

X(t+ αn)X−1(s+ αn) = lim
n→∞

t∏
s

(I + A(τ + αn)∆τ) =
t∏
s

(I + Ā(τ)∆τ) := W (t, s),

since the produt ∆-integral is a continuous function, by Theorem 4.6.
We also point out that Ā is Riemann ∆-integrable, since Ā is a bounded function (see

[12]). And thus, by Theorem 4.3, Ā is also product ∆-integrable.
Analogously, one can prove that

lim
n→∞

W (t− αn, s− αn) = X(t)X−1(s).

�

Remark 5.4. It is clear that from the previous result, by the same hypothesis, we obtain
as a consequence the following

lim
n→∞

X(t+ αn)PX−1(s+ αn) = PW (t, s)

and

lim
n→∞

PW (t− αn, s− αn) = X(t)PX−1(s),

for a projection P described in Definition 2.12 and also, we have

lim
n→∞

X(t+ αn)(I − P )X−1(s+ αn) = (I − P )W (t, s)

and

lim
n→∞

(I − P )W (t− αn, s− αn) = X(t)(I − P )X−1(s).

Lemma 5.5. Let T be an invariant under translations time scale, A(t) ∈ R(T,Rn×n) be
almost automorphic and nonsingular on T and the sets {A−1(t)}t∈T and {(I+µ(t)A(t))−1}t∈T
are bounded on T. Also, suppose the system (5.2) has an exponential dichotomy with positive
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constants K and γ. Then, given a sequence (α′n) ∈ Π, there exists a subsequence (αn) ⊂ (α′n)
such that

(5.10) lim
n→∞

X(t+ αn)PX−1(σ(s+ αn)) = PW (t, s)
(
I + Ā(s)µ̄(s)

)−1
:= Y (t, s)

exists and is well defined for t ∈ T and

(5.11) lim
n→∞

Y (t− αn, s− αn) = X(t)PX−1(σ(s)),

where µ̄(t) is given by (3.2) and (3.3), X(t) is the fundamental matrix of (5.2) and W (t, s) =∏t
s(I + Ā(τ)). Similarly, we have that given a sequence (α′n) ∈ Π, there exists a subsequence

(αn) ⊂ (α′n) such that

(5.12) lim
n→∞

X(t+ αn)(I − P )X−1(σ(s+ αn)) = (I − P )W (t, s)
(
I + Ā(s)µ̄(s)

)−1
:= Z(t, s)

exists and is well defined for t ∈ T and

(5.13) lim
n→∞

Z(t− αn, s− αn) = X(t)(I − P )X−1(σ(s)),

Proof. Since X(t) is the fundamental matrix of (5.2), we have for s < t

X(t+ αn)PX−1(σ(s+ αn)) = X(t+ αn)PX−1(s+ αn)X(s+ αn)X−1(σ(s+ αn))

= X(t+ αn)PX−1(s+ αn)

 s+αn∏
σ(s+αn)

(I + A(τ)∆τ)


= X(t+ αn)PX−1(s+ αn)

σ(s+αn)∏
s+αn

(I + A(τ)∆τ)

−1

= X(t+ αn)PX−1(s+ αn) (I + A(s+ αn)µ(s+ αn))−1 .

Applying the limit as n→∞, we have

lim
n→∞

X(t+ αn)PX−1(σ(s+ αn)) = PW (t, s)
(
I + Ā(s)µ̄(s)

)−1
:= Y (t, s),

by Remark 5.4, the automorphicity of µ and using the fact that the map I + A(s)µ(s) 7→
(I+A(s)µ(s))−1 is continuous on the set of regressive matrices. Notice that (I+Ā(s)µ̄(s))−1

is well-defined, by Corollary 5.2. We remind that the projection P commutes with X(t) (see
Definition 2.12).
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Reciprocally, we have

lim
n→∞

Y (t− αn, s− αn) := lim
n→∞

PW (t− αn, s− αn)
(
I + Ā(s− αn)µ̄(s− αn)

)−1

= X(t)PX−1(s) (I + A(s)µ(s))−1

= X(t)PX−1(s)

σ(s)∏
s

(I + A(τ)∆τ)

−1

= X(t)PX−1(s)
s∏

σ(s)

(I + A(τ)∆τ)

= X(t)PX−1(s)X(s)X−1(σ(s)) = X(t)PX−1(σ(s)),

Similarly, we obtain

X(t+ αn)(I − P )X−1(σ(s+ αn)) = X(t+ αn)(I − P )X−1(s+ αn)X(s+ αn)X−1(σ(s+ αn))

= X(t+ αn)(I − P )X−1(s+ αn)

 s+αn∏
σ(s+αn)

(I + A(τ)∆τ)


= X(t+ αn)(I − P )X−1(s+ αn)

σ(s+αn)∏
s+αn

(I + A(τ)∆τ)

−1

= X(t+ αn)(I − P )X−1(s+ αn) (I + A(s+ αn)µ(s+ αn))−1 .

Applying the limit as n→∞, we have

lim
n→∞

X(t+ αn)(I − P )X−1(σ(s+ αn)) = (I − P )W (t, s)
(
I + Ā(s)µ̄(s)

)−1
:= Z(t, s),

by Remark 5.4, the automorphicity of µ and using the fact that the map I + A(s)µ(s) 7→
(I + A(s)µ(s))−1 is continuous on the set of regressive matrices.

Reciprocally, we have

lim
n→∞

Z(t− αn, s− αn) := lim
n→∞

(I − P )W (t− αn, s− αn)
(
I + Ā(s− αn)µ̄(s− αn)

)−1

= X(t)(I − P )X−1(s) (I + A(s)µ(s))−1

= X(t)(I − P )X−1(s)

σ(s)∏
s

(I + A(τ)∆τ)

−1

= X(t)(I − P )X−1(s)
s∏

σ(s)

(I + A(τ)∆τ)

= X(t)(I − P )X−1(s)X(s)X−1(σ(s)) = X(t)(I − P )X−1(σ(s)),

and the result follows as well. �

Now, we present our main result in this section. The next result ensures that the system
(5.1) has an almost automorphic solution.
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Theorem 5.6. Let T be an invariant under translations time scale and A ∈ R(T,Rn×n) be
almost automorphic and nonsingular on T and {A−1(t)}t∈T and {(I + µ(t)A(t))−1}t∈T are
bounded. Also, suppose the equation (5.2) admits an exponential dichotomy with positive
constants K and γ and f ∈ Crd(T,Rn) is almost automorphic function on time scales. Then
the equation (5.1) has an almost automorphic solution.

Proof. By Theorem 2.15, we have that the following function

(5.14) x(t) =

∫ t

−∞
X(t)PX−1(σ(s))f(s)∆s−

∫ +∞

t

X(t)(I − P )X−1(σ(s))f(s)∆s

is a bounded solution of (2.1). It remains to prove that x : T→ Rn is an almost automorphic
function.

By the automorphicity of functions A(t), f(t) and µ(t), it follows that for every sequence
(α′n) on Π, there exists a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

A(t+ αn) = Ā(t), lim
n→∞

f(t+ αn) = f̄(t) and lim
n→∞

µ(t+ αn) = µ̄(t)

is well-defined and exists for every t ∈ T and

lim
n→∞

Ā(t− αn) = A(t), lim
n→∞

f̄(t− αn) = f(t) and lim
n→∞

µ̄(t− αn) = µ(t)

for every t ∈ T.
Let us denote

M(t) =

∫ t

−∞
X(t)PX−1(σ(s))f(s)∆s

and

M̄(t) =

∫ t

−∞
Y (t, s)f̄(s)∆s,

where Y (t, s) is given by (5.10).
Then, we have ∥∥M(t+ αn)− M̄(t)

∥∥ =

=

∥∥∥∥∫ t+αn

−∞
X(t+ αn)PX−1(σ(s))f(s)∆s−

∫ t

−∞
Y (t, s)f̄(s)∆s

∥∥∥∥
=

∥∥∥∥∫ t

−∞
X(t+ αn)PX−1(σ(s+ αn))f(s+ αn)∆s−

∫ t

−∞
Y (t, s)f̄(s)∆s

∥∥∥∥
≤
∥∥∥∥∫ t

−∞
X(t+ αn)PX−1(σ(s+ αn))f(s+ αn)∆s−

∫ t

−∞
X(t+ αn)PX−1(σ(s+ αn))f̄(s)∆s

∥∥∥∥
+

∥∥∥∥∫ t

−∞
X(t+ αn)PX−1(σ(s+ αn))f̄(s)∆s−

∫ t

−∞
Y (t, s)f̄(s)∆s

∥∥∥∥
=

∥∥∥∥∫ t

−∞
X(t+ αn)PX−1(σ(s+ αn))[f(s+ αn)− f̄(s)]∆s

∥∥∥∥
+

∥∥∥∥∫ t

−∞

[
X(t+ αn)PX−1(σ(s+ αn))− Y (t, s)

]
f̄(s)∆s

∥∥∥∥ .
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Applying limit as n→∞ and using the fact that f̄ is a bounded function (this fact follows
by automorphicity of f) and the exponential dichotomy of equation (5.2), we obtain

lim
n→∞

M(t+ αn) = M̄(t)

for each t ∈ T. Similarly, we can prove

lim
n→∞

M̄(t− αn) = M(t)

for each t ∈ T.
Let us denote

N(t) =

∫ +∞

t

X(t)(I − P )X−1(σ(s))f(s)∆s

and

N̄(t) =

∫ +∞

t

Z(t, s)f̄(s)∆s,

where Z(t, s) is given by (5.12).
Then, the same way as before, one can prove that given a sequence (α′n) ∈ Π, there exists

a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

N(t+ αn) = N̄(t)

for every t ∈ T and

lim
n→∞

N̄(t− αn) = N(t)

for each t ∈ T.
Now, define x̄(t) = M̄(t) + N̄(t), then using the definition of x from (5.14), we obtain as

an immediate consequence that

lim
n→∞

x(t+ αn) = x̄(t)

is well-defined for every t ∈ T and

lim
n→∞

x̄(t− αn) = x(t)

for each t ∈ T.
Thus, x is an almost automorphic function and we get the desired result. �

Remark 5.7. It is clear that the previous theorem remains valid for linear nabla dynamic
equations on time scales. In the other words, one can prove analogously that the nabla
dynamic equation

(5.15) x∇(t) = A(t)x(t) + f(t),

where A : T → Rn×n and f : T → Rn, has an almost automorphic solution, under similar
conditions to the ones presented in Theorem 5.6.

Choosing T = Z in the Theorem 5.6, we obtain a result for difference equations. It is the
content of the next result.
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Corollary 5.8. Let A : Z→ Rn×n be almost automorphic, regulated and nonsingular matrix
function. Also, suppose that {A−1(k)}k∈Z is bounded. Moreover, assume that (I + A(t)) is
nonsingular matrix function and {(I + A(k))−1}k∈Z is bounded, the equation

x(k + 1) = A(k)x(k)

admits an exponential dichotomy with positive constants K and γ and the function f : Z→
Rn is almost automorphic and regulated. Then the equation

x(k + 1) = A(k)x(k) + f(k)

has an almost automorphic solution.

Similarly, we can take T = hZ in Theorem 5.6 and obtain an interesting result for a
different type of difference equations.

Corollary 5.9. Let A : hZ → Rn×n be almost automorphic, regulated and nonsingular
matrix function. Also, suppose that {A−1(k)}k∈hZ is bounded. Moreover, assume that (I +
hA(t)) is nonsingular matrix function and {(I + hA(k))−1}k∈hZ is bounded, the equation

x(k + h) = A(k)x(k)

admits an exponential dichotomy with positive constants K and γ and the function f : hZ→
Rn is almost automorphic and regulated. Then the equation

x(k + h) = A(k)x(k) + f(k)

has an almost automorphic solution.

Now, taking T = R in Theorem 5.6, one can obtain a result for ordinary differential
equations.

Corollary 5.10. Let A : R → Rn×n be almost automorphic, continuous and non-singular
matrix function and {A−1(t)}t∈R is bounded. Assume also the equation

ẋ(t) = A(t)x(t)

admits an exponential dichotomy with positive constants K and γ and the function f : R→
Rn is almost automorphic and continuous. Then the equation

ẋ(t) = A(t)x(t) + f(t)

has an almost automorphic solution.

Finally, we choose T = Pa,cos a and obtain an interesting result. We do not know any result
concerning almost automorphic treating about this case.

Corollary 5.11. Let A : Pa,cos a → Rn×n, for 0 < a < π
2

be almost automorphic and, for
every k ∈ Z, be continuous at [k(a+cos a), k(a+cos a)+a), regulated at k(a+cos a)+a and
a nonsingular matrix function. Also, suppose that {A−1(t)}t∈Pa,cos a is bounded. Moreover,
assume that (I+(cos t)A(t)) is nonsingular matrix function and {(I+(cos t)A(t))−1}t∈Pa,cos a
is bounded and the equation

x∆(t) = A(t)x(t)
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admits an exponential dichotomy with positive constants K and γ and the function f :
Pa,cos a → Rn is almost automorphic and , for every k ∈ N, be continuous at [k(a+cos a), k(a+
cos a) + a) and regulated at k(a+ cos a) + a. Then the equation

x∆(t) = A(t)x(t) + f(t)

has an almost automorphic solution.

6. Almost automorphic solutions for semilinear dynamic equations on time
scales

In this section, consider the following semilinear dynamic equation

(6.1) x∆(t) = A(t)x(t) + f(t, x)

where A : T→ Rn×n and f : T× Rn → Rn and its associated homogeneous equation

(6.2) x∆(t) = A(t)x(t).

Also, consider the following linear dynamic system

(6.3) x∆(t) = Ā(t)x(t),

where Ā(t) is given by (5.3) and (5.4).
Now, we introduce a definition of solution of (6.1) in a strict sense. Here, we will restrict

ourselves for this concept of solution for (6.1).

Definition 6.1. We say that x : T → Rn is a solution of (6.1) if x satisfies the following
equation

(6.4) x(t) =

∫ t

−∞
X(t)PX−1(σ(s))f(s, x(s))∆s−

∫ +∞

t

X(t)(I−P )X−1(σ(s))f(s, x(s))∆s.

Remark 6.2. We point out that the previous definition makes sense. In fact, suppose x(t)
satisfies the equation (6.4), then

x∆(t)− A(t)x(t) =

= X∆(t)

∫ t

−∞
PX−1(σ(s))f(s, x(s))∆s+X(σ(t))PX−1(σ(t))f(t, x(t))

−X∆

∫ +∞

t

(I − P )X−1(σ(s))f(s, x(s))∆s+X(σ(t))(I − P )X−1(σ(t))f(t, x(t))

−A(t)X(t)

∫ t

−∞
PX−1(σ(s))f(s, x(s))∆s+ A(t)X(t)

∫ +∞

t

(I − P )X−1(σ(s))f(s, x(s))∆s

X(σ(t))(P + I − P )X−1(σ(t))f(t, x(t)) = f(t, x(t))

which implies
x∆ = A(t)x(t) + f(t, x(t)).

The proof of Remark 6.2 follows analogously the proof of Lemma 2.13 from [40]. We
reproduce it here for reader’s convenience.

In the sequel, we present an existence and uniqueness result of an almost automorphic
solution of (6.1).
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Theorem 6.3. Let T be an invariant under translations time scale and f ∈ Crd(T×Rn,Rn) be
almost automorphic with respect to the first variable. Assume that A ∈ R(T,Rn×n) is almost
automorphic and nonsingular matrix function, the sets {A−1(t)}t∈T and {(I+µ(t)A(t))−1}t∈T
are bounded. Suppose also the equation (6.2) admits an exponential dichotomy on T with
positive constants K and γ and the following conditions are fullfiled:

(i) There exists a constant 0 < L <
γ

2K(2 + µ̃γ)
such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖,
for every x, y ∈ Rn and t ∈ T, where µ̃ = sup

t∈T
|µ(t)|.

Then, the system (6.1) has a unique solution which is almost automorphic.

Proof. Define an operator T : AAT(Rn)→ AAT(Rn) as follows:

(Tu)(t) =

∫ t

−∞
X(t)PX−1(σ(s))f(s, u(s))∆s−

∫ +∞

t

X(t)(I − P )X−1(σ(s))f(s, u(s))∆s,

for all u ∈ AAT(Rn).
Now, let us prove that Tu ∈ AAT(Rn). Since f satisifies the Lipschitz condition, we obtain

by Theorem 3.23 that f(·, u(·)) is almost automorphic, using the fact that f, u ∈ AAT(Rn).
Since u ∈ AAT(Rn), then for every sequence (α′′n) ∈ Π, there exists a subsequence (α′n) ⊂ (α′′n)
such that

lim
n→∞

u(t+ α′n) = ū(t)

is well-defined for every t ∈ T and

lim
n→∞

ū(t− αn) = u(t),

for each t ∈ T.
Moreover, by the automorphicity of f , we obtain there exists a subsequence (αn) ⊂ (α′n)

such that

lim
n→∞

f(t+ α′n, u) = f̄(t, u)

is well-defined for every t ∈ T, u ∈ Rn and

lim
n→∞

f̄(t− αn, u) = f(t, u),

for each t ∈ T.
By Lemma 5.5, we obtain

lim
n→∞

X(t+ αn)PX−1(σ(s+ αn)) = Y (t, s)

exists and is well defined for t ∈ T and

lim
n→∞

Y (t− αn, s− αn) = X(t)PX−1(σ(s)),

where X(t) is the fundamental matrix of (6.2) and Y (t, s) is given by (5.10).
Similarly, by Lemma 5.5, we get

lim
n→∞

X(t+ αn)(I − P )X−1(σ(s+ αn)) = Z(t, s)
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exists and is well defined for t ∈ T and

lim
n→∞

Z(t− αn, s− αn) = X(t)(I − P )X−1(σ(s)),

where X(t) is the fundamental matrix of (6.2) and Z(t, s) is given by (5.12).
Let us define the following function:

h(t) =

∫ t

−∞
Y (t, s)f̄(s, ū(s))∆s−

∫ +∞

t

Z(t, s)f̄(s, ū(s))∆s,

for every t ∈ T.
Then, we obtain

‖(Tu)(t+αn)−h(t)‖ ≤
∥∥∥∥∫ t+αn

−∞
X(t+ αn)PX−1(σ(s))f(s, u(s))∆s−

∫ t

−∞
Y (t, s)f̄(s, ū(s))∆s

∥∥∥∥
+

∥∥∥∥∫ +∞

t+αn

X(t+ αn)(I − P )X−1(σ(s))f(s, u(s))∆s−
∫ +∞

t

Z(t, s)f̄(s, ū(s))∆s

∥∥∥∥
=

∥∥∥∥∫ t

−∞
X(t+ αn)PX−1(σ(s+ αn))f(s+ αn, u(s+ αn))∆s−

∫ t

−∞
Y (t, s)f̄(s, ū(s))∆s

∥∥∥∥
+

∥∥∥∥∫ +∞

t

X(t+ αn)(I − P )X−1(σ(s+ αn))f(s+ αn, u(s+ αn))∆s−
∫ +∞

t

Z(t, s)f̄(s, ū(s))∆s

∥∥∥∥
≤
∫ t

−∞

∥∥X(t+ αn)PX−1(σ(s+ αn))− Y (t, s)
∥∥∥∥f̄(s, ū(s))

∥∥∆s

+

∫ t

−∞

∥∥X(t+ αn)PX−1(σ(s+ αn))
∥∥∥∥f(s+ αn, u(s+ αn))− f̄(s, ū(s))

∥∥∆s

+

∫ +∞

t

∥∥X(t+ αn)(I − P )X−1(σ(s+ αn))− Z(t, s)
∥∥∥∥f̄(s, ū(s))

∥∥∆s

+

∫ +∞

t

∥∥X(t+ αn)(I − P )X−1(σ(s+ αn)
∥∥∥∥f(s+ αn, u(s+ αn)− f̄(s, ū(s))

∥∥∆s.

Applying the limit as n→∞ in both sides, we obtain

lim
n→∞

‖(Tu)(t+αn)−h(t)‖ ≤ lim
n→∞

∫ t

−∞

∥∥X(t+ αn)PX−1(σ(s+ αn))− Y (t, s)
∥∥∥∥f̄(s, ū(s))

∥∥∆s

+ lim
n→∞

∫ t

−∞

∥∥X(t+ αn)PX−1(σ(s+ αn))
∥∥∥∥f(s+ αn, u(s+ αn))− f̄(s, ū(s))

∥∥∆s

+ lim
n→∞

∫ +∞

t

∥∥X(t+ αn)(I − P )X−1(σ(s+ αn))− Z(t, s)
∥∥∥∥f̄(s, ū(s))

∥∥∆s

+ lim
n→∞

∫ +∞

t

∥∥X(t+ αn)(I − P )X−1(σ(s+ αn)
∥∥∥∥f(s+ αn, u(s+ αn)− f̄(s, ū(s))

∥∥∆s.

By the exponential dichotomy and the almost automorphicity of f , we obtain

lim
n→∞

Tu(t+ αn) = h(t)

for every t ∈ T, by Lemma 5.5.
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Similarly, one can prove that

lim
n→∞

h(t+ αn) = Tu(t)

for every t ∈ T and conclude that Tu is an almost automorphic function. Thus, Tu is
well-defined.

Now, let us prove that T is a contraction.

‖Tz − Ty‖ = ‖
∫ t

−∞
X(t)PX−1(σ(s))[f(s, z)− f(s, y)]∆s

−
∫ +∞

t

X(t)(I − P )X−1(σ(s))[f(s, z)− f(s, y)]∆s‖

≤
∫ t

−∞
Ke	γ(t, σ(s))L‖z − y‖∆s+

∫ +∞

t

Ke	γ(σ(s), t)L‖z − y‖∆s

≤ 1

| 	 γ|
[Ke	γ(t, t)−Ke	γ(t,−∞)]L‖z − y‖∞ +

∫ +∞

t

Keγ(t, σ(s))L‖z − y‖∆s

≤ 1

| 	 γ|
[K −Ke	γ(t,−∞)]L‖z − y‖∞ +

1

γ
[K −Keγ(t,+∞)]L‖z − y‖∞,

by Theorem 2.13. Therefore, we obtain

‖Tz − Ty‖ ≤ 1
γ

1+µ̃γ

[K −Ke	γ(t,−∞)]L‖z − y‖∞ +
1

γ
[K −Keγ(t,+∞)]L‖z − y‖∞

≤ 1 + µ̃γ

γ
[|K|+ |Ke	γ(t,−∞)|]L‖z − y‖∞ +

1

γ
[K + |Keγ(t,+∞)|]L‖z − y‖∞

≤ L‖z − y‖∞
(

2K(1 + µ̃γ)

γ
+

2K

γ

)
= L

(
2K(2 + µ̃γ)

γ

)
‖z − y‖∞ < ‖z − y‖∞,

by Theorem 2.14.
It follows that T is a contraction, then by Banach Fixed-Point Theorem, T has a unique

fixed point. By the definition of T and Definition 6.1, we obtain that the system (6.1) has
a unique solution which is almost automorphic. Therefore, we have the desired result. �

Remark 6.4. It is clear that the previous theorem remains valid for linear nabla dynamic
equations on time scales. In other words, one can prove analogously that the nabla dynamic
equation

(6.5) x∇(t) = A(t)x(t) + f(t, x(t)),

where A : T → Rn×n and f : T × Rn → Rn, has an almost automorphic solution, under
similar conditions to the ones presented in Theorem 5.6.

Choosing T = R in the Theorem 6.3, we obtain a result for semilinear differential equations.
It is the content of the next result.
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Corollary 6.5. Let f : R × Rn → Rn be continuous and almost automorphic with respect
to the first variable and A : R → Rn×n be almost automorphic, continuous and nonsingular
and the set {A−1(t)}t∈R is bounded. Suppose the equation

ẋ(t) = A(t)x(t)

admits an exponential dichotomy with positive constants K and γ and the following conditions
hold:

(i) There exists a constant 0 < L <
γ

4K
such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖,
for every x, y ∈ Rn and t ∈ R.

Then, the system

ẋ(t) = A(t)x(t) + f(t, x(t))

has a unique solution which is almost automorphic.

Taking T = Z in the Theorem 6.3, we obtain a result for semilinear difference equations.
See the result below.

Corollary 6.6. Let f : Z × Rn → Rn be regulated and almost automorphic with respect
to the first variable and A : Z → Rn×n be almost automorphic, regulated and nonsingular
and {A−1(k)}k∈Z is bounded. Also, suppose that (I + A(k)) is nonsingular and the set
{(I + A(k))−1}k∈Z is bounded. Suppose the equation

x(k + 1) = A(k)x(k)

admits an exponential dichotomy with positive constants K and γ and the following conditions
hold:

(i) There exists a constant 0 < L <
γ

2K(2 + γ)
such that

‖f(k, x)− f(k, y)‖ ≤ L‖x− y‖,
for every x, y ∈ Rn and k ∈ Z.

Then, the system

x(t+ 1) = A(t)x(t) + f(t, x(t))

has a unique solution which is almost automorphic.

We can also choose T = hZ in the Theorem 6.3, then it follows a result for a different type
of semilinear difference equations. We do not know any result in this direction.

Corollary 6.7. Let f : hZ × Rn → Rn be regulated and almost automorphic with respect
to the first variable and A : hZ → Rn×n be almost automorphic, regulated and nonsingular
and {A−1(k)}k∈hZ is bounded. Also, suppose that (I + A(k)) is nonsingular and the set
{(I + A(k))−1}k∈hZ is bounded. Suppose the equation

x(k + h) = A(k)x(k)

admits an exponential dichotomy with positive constants K and γ and the following conditions
hold:
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(i) There exists a constant 0 < L <
γ

2K(2 + hγ)
such that

‖f(k, x)− f(k, y)‖ ≤ L‖x− y‖,
for every x, y ∈ Rn and k ∈ hZ.

Then, the system

x(k + h) = A(k)x(k) + f(k, x(k))

has a unique solution which is almost automorphic.

Finally, we take T = Pa,b in the Theorem 6.3 and we get an interesting result for a different
type of equation. We do know any result in this direction. See the following result.

Corollary 6.8. Let f : Pa,b × Rn → Rn be almost automorphic with respect to the first
variable and, for every k ∈ Z, be continuous at [k(a + b), k(a + b) + a) and regulated at
k(a+b)+a and A : Pa,b → Rn×n be almost automorphic, and, for every k ∈ Z, be continuous
at [k(a + b), k(a + b) + a), regulated at k(a + b) + a and nonsingular and {A−1(t)}t∈Pa,b is
bounded. Also, suppose that (I + bA(t)) is nonsingular and {(I + bA(t))−1}t∈Pa,b is bounded.
Suppose the equation

x∆ = A(t)x(t)

admits an exponential dichotomy with positive constants K and γ and the following conditions
hold:

(i) There exists a constant 0 < L <
γ

2K(2 + bγ)
such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖,
for every x, y ∈ Rn and t ∈ Pa,b.

Then, the system

x∆ = A(t)x(t) + f(t, x(t))

has a unique solution which is almost automorphic.

7. Examples and applications

In this section, we present some examples and applications of our main results.

Example 7.1. The following economic model is known as a Keynesian-Cross model with
lagged income. It can be found in [50].

Consider these three equations in a simple closed economy:

(7.1) D(t) = C(t) + I +G;

(7.2) C(t) = C0 + cy(t);

(7.3) y∆(t) = δ[Dσ − y], t ≥ a

where D is the aggregate demand, y is the aggregate income, C is the aggregate consumption,
I is the aggregate investment, G is the government spending, δ < 1 is a positive constant
known as the speed of adjustment term and C0, c are non-negative constants.
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As in [50], we assume that G and I are constants in (7.1), and current consumption is
assumed to depend on current income in (7.2). Also, equation (7.3) means that the change
in income is a fraction of excess demand at σ(t) over income at t (see [50]).

Putting (7.1) and (7.2) into (7.3), we obtain

y∆ = δ[C0 + cyσ + I +G− y]

Now, using the formula yσ = y + µy∆ and considering 1− δcµ(t) 6= 0 for t > a, we have

y∆ =
δ(c− 1)

1− δcµ(t)
y +

δ(c0 + I +G)

1− δcµ(t)

:= f(t)y + g(t).(7.4)

Then, if T is invariant under translation, then we obtain that the graininess function µ(t)
is almost automorphic, then obviously, by the definition of function g, it follows that g is an
almost automorphic function.

Moreover, if we assume that only one of the following inequalities hold, that is, c < 1
or µ(t) > 1

cδ
for every t ∈ T, then we obtain that the equation (7.4) admits exponential

dichotomy and moreover, {f(t)−1} is bounded on T. Assume that µ(t) 6= 1
δ

for every t ∈ T.
In this case, we obtain that the function f(t) is regressive on T. Indeed, a function f(t) is
regressive if 1 + µ(t)f(t) 6= 0 for every t ∈ T. Then,

1 + µ(t)f(t) 6= 0⇔ 1 + µ(t)
δ(c− 1)

1− δcµ(t)
6= 0

⇔ 1− δcµ(t) + µ(t)δ(c− 1) 6= 0⇔ 1− µ(t)δ 6= 0,

which implies that µ(t) 6= 1
δ
. Then, it follows that f(t) is regressive on T. Therefore, all the

hypotheses of Theorem 5.6 are satisfied, then the equation (7.4) has an almost automorphic
solution.

The above example generalizes the classical Keynesian-Cross model involving difference
equations given in [28]. See [50], for instance. �

Now, we present an example which can be found in [53].

Example 7.2. Consider the following nonautonomous dynamic equation

(7.5) x∆(t) = −a(t)x(σ(t)) + b(t)

where a, b ∈ Crd(T,R+), a, b are almost automorphic functions on T and a ∈ R.
It is clear that the equation given by x∆(t) = −a(t)x(σ(t)) admits exponential dichotomy

and also, {a(t)−1} is bounded on T. Notice that the function a takes value in R+ and
thus, a(t) 6= 0, for every t ∈ T. Thus, taking T invariant under translations, then all the
hypotheses of Theorem 5.6 are satisfied, which implies that the equation (7.5) has an almost
automorphic solution.

We point out that the equation (7.5) can be used to model many single species models as
special cases. For example, taking T = R and x(t) = 1

N(t)
, then the equation (7.5) reduces

to the known Verhulst logistic equation given by

Ṅ(t) = N(t)(a(t)− b(t)N(t)).
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On the other hand, taking T = Z and x(t) = 1
N(t)

, then the equation (7.5) reduces to the

known Beverton-Holt equation given by

N(t+ 1) = (1 + a(t))
N(t)

1 + b(t)N(t)

as explained in [53]. See, for instance, [5] and [49].
Further, if we consider b(t) = a(t) ln(c(t)) and x(t) = ln(N(t)), then the equation (7.5)

reduces to the continuous Gompertz single species model given by

Ṅ(t) = a(t)N(t) ln

(
c(t)

N(t)

)
.

See [25] and [51], for more details.
Finally, taking T = R, we can obtain the discrete Gompertz single model which is given

by

N(t+ 1) = N(t)
1

1+α(t) c(t)
α(t)

1+α(t)

when T = Z. See, for instance, [52]. �

The next example is inspired in Example 4.20 from [39].

Example 7.3. Consider the following equation

(7.6) x∆(t) = Ax(t) + f(t),

where

A =

(
−4 0
0 −4

)
, µ(t) 6= 1

4
and f(t) =

(
cos
(

1
2+sin t+sin

√
2t

)
sin
√

2t+ cos t

)
.

By the definition, it is clear that I + µ(t)A is invertible for all t ∈ T and thus, A is
regressive. Also, notice that A is invertible and {A−1} is bounded on T. Moreover, since T is
invariant under translations, the graininess function µ is bounded and thus, {(I +µ(t)A)−1}
is bounded on T.

The function f is almost automorphic on T. Then, using the fact that the eigenvalues
of the coefficient matrix in (7.6) are λ1 = λ2 = −4 and applying Theorem 5.35 (Putzer
Algorithm) from [11], we obtain that the P -matrices are given by

P0 = I =

(
1 0
0 1

)
and

P1 = (A− λ1I)P0 = (A+ 4I)P0.

Then, using again Theorem 5.35 (Putzer Algorithm) from [11], we obtain

r∆
1 (t) = −4r1(t), r1(t0) = 1

r∆
2 (t) = r1(t)− 4r2(t), r2(t0) = 0.

Now, calculating r1, we get

r1(t) = e	4(t, t0)
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and by the Variation Constant Formula, we have

r2(t) = e	4(t, t0)

∫ t

t0

1

1− 4µ(s)
∆τ

Finally, applying Theorem 5.35 (Putzer Algorithm) from [11] again, we get

eA(t, t0) = r1(t)P0 + r2(t)P1 = e	4(t, t0)

(
1 0
0 1

)
.

Therefore, for t > s, we get

‖X(t)P0X
−1(s)‖ =

∥∥∥∥e	4(t, t0)

(
1 0
0 1

)
e4(s, t0)

(
1 0
0 1

)∥∥∥∥
=

∥∥∥∥( e	4(t, t0) 0
0 e	4(t, t0)

)(
e4(s, t0) 0

0 e4(s, t0)

)∥∥∥∥
≤
√

2e	4(t, s).

Taking K = 2 and γ = 4, we obtain that the equation (7.6) admits exponential dichotomy
and thus, by Theorem 5.6, we have

x(t) =

∫ t

−∞
X(t)P0X

−1(σ(s))f(s)∆s+

∫ ∞
t

X(t)(I − P0)X−1(σ(s))f(s)∆s

=

∫ t

−∞
X(t)P0X

−1(σ(s))f(s)∆s

=

∫ t

−∞

(
e	4(t, σ(s)) 0

0 e	4(t, σ(s))

)(
cos
(

1
2+sin t+sin

√
2t

)
sin
√

2t+ cos t

)
∆s.

�

In the sequel, we present a model which describes high-order Hopfield neural networks on
time scales. We borrow some ideas from [40].

Example 7.4. Consider the following high-order Hopfield neural networks on time scales:

(7.7) x∆
i (t) = −ci(t)xi(t) +

n∑
j=1

aij(fj(xj(t))) +
n∑
j=1

n∑
l=1

bijl(t)gj(xj(t))gl(xl(t)) + Ii(t),

for i = 1, 2, . . . , n, where n corresponds to the number of units in a neural network, xi(t)
corresponds to the state vector of the ith unit at the time t, ci(t) represents the rate with
which the ith unit will reset its potential to the resting state in isolation when disconnected
from the network external inputs, aij(t) and bijl(t) are the first and second-order connection
weights of neural network and Ii(t) denotes the external inputs at time t and fj and gj are
the activation functions of signal transmission.

Next, we present a result which can be found in [40], Lemma 2.15 which will be essential
to our purposes.

Lemma 7.5. Let ci(t) be an almost periodic function on T, where ci(t) > 0, −ci(t) ∈ R,
∀t ∈ T and

min
1≤i≤n

{inf
t∈T

ci(t)} = m̃ > 0,
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then the linear system

x∆(t) = diag(−c1(t),−c2(t), . . . ,−cn(t))x(t)

admits an exponential dichotomy on T.

Remark 7.6. A carefully examination of the proof of the above result reveals that we can
change the hypothesis concerning almost periodicity of ci by almost automorphicity and
obtain the same conclusion. The proof follows similarly for this other case with obvious
adaptations.

Now, we assume that the following conditions are satisfied:

(H1) ci, aij, bijl, Ii are almost automorphic functions, −ci ∈ R and ci > 0 for every i, j, l =
1, 2, . . . , n.

(H2) There exist positive constants Mj, Nj, j = 1, 2, . . . , n such that |fj(x)| ≤ Mj and
|gj(x)| ≤ Nj for j = 1, 2, . . . , n, x ∈ R.

(H3) Functions fj(u), gj(u), j = 1, 2, . . . , n satisfy the Lipschitz condition, that is, there
exist constants Lj, Hj > 0 such that |fj(u1)−fj(u2)| ≤ Lj‖u1−u2|, |gj(u1)−gj(u2)| ≤
Hj|u1 − u2|, j = 1, 2, . . . , n.

(H4) max
1≤i≤n

{
n∑
j=1

aijLj +
n∑
j=1

n∑
l=1

bijlNjHl +
n∑
j=1

n∑
l=1

bijlNlHj/ci

}
< 1, where

ci = inf
t∈T
|ci(t)|, ci = sup

t∈T
|ci(t)|, aij = sup

t∈T
|aij(t)|, bijl = sup

t∈T
|bijl(t)|, Ii = sup

t∈T
|Ii(t)|.

Then, by hypotheses (H1), (H2), (H3) and (H4) and using Lemma 7.5, we obtain that
all hypotheses of Theorem 6.3 are satisfied, then the system (7.7) possesses a unique almost
automorphic solution. �

In the sequel, we present an example which can be found in [53]. The equation of the
following example can be known as continuous or discrete Lasota-Wazewska model without
delay taking T = R and T = Z, respectively. For more details about this model with delays,
see [18], [38], [54].

Example 7.7. Consider the following dynamic equation on time scales:

(7.8) x∆(t) = −rx(σ(t)) + η(t)e−γx(t)

where r, γ are all positive conditions and the initial values of (7.8) are also positive.
Suppose that the function η is almost automorphic. In this case, it it is bounded and let

us denote η̃ = supt∈T η(t). Also, define the function g(t, x(t)) = η(t)e−γx(t). Then, we have

|g(t, x1(t))− g(t, x2(t))| = |η(t)e−γx1(t) − η(t)e−γx2(t)| ≤ η̃γ|x1(t)− x2(t)|.
Consider η̃γ < γ1

2K(2+µ̃γ1)
, where K, γ1 are the constants from the exponential dichotomy

condition and µ̃ = supt∈T |µ(t)|. Assume also that T is invariant under translations, we
obtain that all hypotheses of Theorem 6.3 are satisfied which implies that the equation (7.8)
has an almost automorphic solution. �

Finally, we present an example which can be found in [53]. Notice that for a specific time
scale, that is, T = R, the equation in the following example reduces to a single artificial
effective neuron with dissipation model. See, for instance, [25] and [31].
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Example 7.8. Consider the dynamic equation given by

(7.9) x∆(t) = −a(t)x(σ(t)) + b(t) tanh(x(t)) + γ(t)

where a, b, γ ∈ Crd(T,R+) and a, b, γ are almost automorphic functions and regressives on T.
It is clear that the equation given by x∆(t) = −a(t)x(σ(t)) admits exponential dichotomy
and also, {a(t)−1} is bounded on T. Notice that the function a takes value in R+ and thus,
a(t) 6= 0, for every t ∈ T.

Moreover, notice that | tanh(x1) − tanh(x2)| ≤ |x1 − x2| for x1, x2 ∈ T. Then, denoting
g(t, x(t)) = b(t) tanh(x(t)) + γ(t), we obtain

|g(t, x1(t))− g(t, x2(t))| = |b(t) tanhx1(t) + γ(t)− b(t) tanhx2(t)− γ(t)|
≤ |b(t)||x1(t)− x2(t)| ≤ b̃|x1(t)− x2(t)|,

where b̃ = supt∈T |b(t)|. If we suppose that b̃ < γ1
2K(2+µ̃γ)

, where γ1, K are the constants

from the exponential dichotomy and µ̃ = supt∈T |µ(t)| and assume that T is invariant under
translations, then all hypotheses of Theorem 6.3 are satisfied which implies that the equation
(7.9) has an almost automorphic solution. �
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