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Abstract. In the present paper, we study the non-autonomous difference equations given
by u(k+1) = A(k)u(k)+f(k) and u(k+1) = A(k)u(k)+g(k, u(k)) for k ∈ Z, where A(k) is
a given non-singular n× n matrix with elements aij(k), 1 ≤ i, j ≤ n, f : Z→ En is a given
n×1 vector function, g : Z×En → En and u(k) is an unknown n×1 vector with components
ui(k), 1 ≤ i ≤ n. We obtain the existence of a discrete almost automorphic solution for both
the equations, assuming that A(k) and f(k) are discrete almost automorphic functions and
the associated homogeneous system admits an exponential dichotomy. Also, assuming the
function g satisfies a global Lipschitz type condition, we prove the existence and uniqueness
of an almost automorphic solution of the nonlinear difference equation.

1. Introduction

In the present work, our aim is to investigate the existence of almost automorphic solutions
of non-autonomous linear difference equations. Also, we investigate conditions to ensure the
existence and uniqueness of almost automorphic solutions of non-autonomous semilinear
difference equations.

Our interest to study difference equations comes from the fact that these equations are a
powerful tool for applications and to describe interesting models. The investigations concern-
ing the qualitative properties of their solutions have been increased a lot, specially related
to their periodicity. For instance, the study of periodic solutions for these equations were
developed by several authors (see [1], [2], [3], [11], [14], [18], [25], [28], for instance). Also,
several papers have been treated about almost periodic solutions of these equations (see [3],
[19], [21], [26], [27], [28], for instance).

On the other hand, the literature concerning discrete almost automorphic functions is
still really scarce. Recently, the concept of discrete almost automorphic functions was for-
mally introduced and developed by Araya et al [4], after previous work of Minh, Naito
and N’Guérékata [24]. In their paper, they investigate the existence of almost automorphic
solutions of autonomous nonlinear difference equations.

Later, in 2009, Caraballo and Cheban (see [9] and [10]) proved a result concerning existence
of almost automorphic solutions of non-autonomous linear difference equations. Their result
says that if (A, f) ∈ C(Z,B(X))×C(Z, X) is Poisson stable and almost automorphic (where
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X is a Banach space) and if the equation

(1.1) u(k + 1) = A(k)u(k) + f(k)

admits a relatively compact solution ψ(k, u0, (A, f)) and all the relatively compact solutions
of

(1.2) u(k + 1) = A(k)u(k)

tend to zero as the time k tends to∞, then they prove that the equation (1.1) has an almost
automorphic solution. See Corollary 4.14 from [9]. However, although Caraballo-Cheban’s
treatment is very general and well-established, their conditions seem not to be simple to
check in practice, e.g., in finite dimensional cases.

In the present work, we take a new approach assuming different conditions to ensure
the existence of an almost automorphic solution of (1.1). More precisely, we will assume
dichotomy of the homogeneous linear system (1.2). We remark that exponential dichotomies
in the discrete case have been studied extensively by Agarwal [1] and Elaydi [14](see also
the references therein). In this way, our conditions are simpler than the ones presented in
[9] and thus, are easier to check.

Further, we prove the existence and uniqueness of an almost automorphic solution of the
non-autonomous semilinear difference equation given by

(1.3) u(k + 1) = A(k)u(k) + f(k, u(k)), k ∈ Z,

where A(k) is a given non-singular n × n matrix with elements aij(k), 1 ≤ i, j ≤ n, f :
Z × En → En is a given n × 1 vector function and u(k) is an unknown n × 1 vector with
components ui(k), 1 ≤ i ≤ m. We remark that this problem appear not to be studied in the
existing literature, except very recently by Diagana [13].

Our paper is organized as follows. The second section is devoted to present the basic con-
cepts and results concerning discrete almost automorphic functions and difference equations.
In the third section, we prove a result concerning existence of an almost automorphic solu-
tion of the non-autonomous linear difference equation and present an example to illustrate it.
Finally, the last section is devoted to prove the existence and uniqueness of almost automor-
phic solution of the non-autonomous semilinear difference equation (1.3). More precisely, if
A(k) is discrete almost automorphic and a non-singular matrix and

sup
k∈Z
‖A−1(k)‖ <∞.

Also, if the equation (1.2) admits an exponential dichotomy on Z with positive constants
η, ν, β, α and the function f : Z × En → En is discrete almost automorphic in k for each u
in En, and Lipschitz with constant L > 0 satisfying the following condition:

0 < L <
(1− e−α)(eβ − 1)

η(eβ − 1) + ν(1− e−α)
.

Then, the semilinear system (1.3) has a unique almost automorphic solution. Also, we
present some examples to illustrate it as well.
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2. Preliminaries

In this section, we present some basic concepts and results which will be essential to prove
our main results.

We start by recalling the definition of a discrete almost automorphic function. See [4].

Definition 2.1. Let X be a (real or complex) Banach space. A function u : Z→ X is said to
be discrete almost automorphic if for every integer sequence (k′n), there exists a subsequence
(kn) such that

(2.1) lim
n→∞

u(k + kn) =: ū(k)

is well defined for each k ∈ Z and

(2.2) lim
n→∞

ū(k − kn) = u(k)

for each k ∈ Z.

Throughout the paper, we denote by AAd(X) the set of discrete almost automorphic
functions taking values on X. As it was showed in [4], the discrete almost automorphicity
is a more general concept than discrete almost periodicity.

The next result brings the properties of discrete almost automorphic functions. It can be
found in [4], Theorem 2.4.

Theorem 2.2. Let u, v be discrete almost automorphic functions, then the following asser-
tions are valid.

(i) u+ v is discrete almost automorphic;
(ii) cu is discrete almost automorphic for every scalar c;

(iii) For each fixed l ∈ Z, the function ul : Z→ X defined by ul(k) := u(k + l) is discrete
almost automorphic;

(iv) The function û : Z→ X defined by û(k) := u(−k) is discrete almost automorphic;
(v) sup

k∈Z
‖u(k)‖ <∞, that is, u is a bounded function;

(vi) sup
k∈Z
‖ū(k)‖ ≤ sup

k∈Z
‖u(k)‖, where

lim
n→∞

u(k + kn) = ū(k) and lim
n→∞

ū(k − kn) = u(k).

We consider the space of discrete almost automorphic functions provided with the norm

‖u‖d := sup
k∈Z
‖u(k)‖.

Remark 2.3. Notice that AAd(X) with this norm is a Banach space (see [4]).

In what follows, we recall the definition of a discrete almost automorphic function u :
Z ×X → X. It is an important concept for applications to nonlinear difference equations.
See [4].

Definition 2.4. A function u : Z×X → X is said to be discrete almost automorphic in k
for each x ∈ X, if for every sequence of integers numbers (k′n), there exists a subsequence
(kn) such that

(2.3) lim
n→∞

u(k + kn, x) =: ū(k, x)
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is well defined for each k ∈ Z, x ∈ X and

(2.4) lim
n→∞

ū(k − kn, x) = u(k, x)

for each k ∈ Z and x ∈ X.

The next result can be found in [4], Theorem 2.9. It describes the properties of discrete
almost automorphic functions u : Z×X → X.

Theorem 2.5. If u, v : Z×X → X are discrete almost automorphic functions in k for each
x in X, then the following assertions are true.

(i) u+ v is discrete almost automorphic in k for each x in X.
(ii) cu is discrete almost automorphic in k for each x in X, where c is an arbitrary scalar.

(iii) sup
k∈Z
‖u(k, x)‖ = Mx <∞, for each x in X.

(iv) sup
k∈Z
‖ū(k, x)‖ = Nx <∞, for each x in X, where ū is the function in Definition 2.4.

The next result will be essential to prove our main result. It can be found in [4], Theorem
2.10.

Theorem 2.6. Let u : Z × X → X be discrete almost automorphic in k for each x in X,
satisfying a Lipschitz condition in x uniformly in k, that is,

‖u(k, x)− u(k, y)‖ ≤ L‖x− y‖, for all x, y ∈ X.
Suppose ϕ : Z→ X is discrete almost automorphic, then the function U : Z→ X defined by
U(k) = u(k, ϕ(k)) is discrete almost automorphic.

In the sequel we use the letter E to stand for either R or C, so En then represents either
Rn or Cn, and En×n either Rn×n or Cn×n.

Now, consider the following system of non-autonomous linear difference equations

(2.5) u(k + 1) = A(k)u(k) + f(k), k ∈ Z
where A(k) are given non-singular n × n matrices with elements aij(k), 1 ≤ i, j ≤ n,
f : Z → En is a given n × 1 vector function and u(k) is an unknown n × 1 vector with
components ui(k), 1 ≤ i ≤ n.

Its associated homogeneous linear difference equation is given by

(2.6) u(k + 1) = A(k)u(k), k ∈ Z.
Definition 2.7. The matrix U(k, k0) which satisfies the equation (2.6) and U(k0, k0) = I is
called principal fundamental matrix. We will denote U(k, k0) by U(k)U−1(k0).

We recall that any n × n matrix V (k) whose columns are linearly independent solutions
of the system (2.6) is called a fundamental matrix. If V (k) is a fundamental matrix of the
system (2.6) and C is any nonsingular matrix, then V (k)C is also a fundamental matrix.
See [1].

Definition 2.8. A matrix function A(k) is said to be discrete almost automorphic if each
entry of the matrix is discrete almost automorphic function. In the other words, for every
sequence of integers numbers (k′n), there exists a subsequence (kn) such that

(2.7) lim
n→∞

A(k + kn) =: Ā(k)
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is well defined for each k ∈ Z and

(2.8) lim
n→∞

Ā(k − kn) = A(k)

for each k ∈ Z.

In what follows, we prove a result which describes a property of almost automorphic matrix
functions.

Lemma 2.9. Suppose A(k) is discrete almost automorphic and a non-singular matrix on Z.
Also, suppose that the set {A−1(k)}k∈Z is bounded. Then A−1(k) is almost automorphic on
Z, that is, for every sequence of integers numbers (k′n), there exists a subsequence (kn) such
that

(2.9) lim
n→∞

A−1(k + kn) =: Ā−1(k)

is well defined for each k ∈ Z and

(2.10) lim
n→∞

Ā−1(k − kn) = A−1(k)

for each k ∈ Z

Proof. Let (k′n) be a sequence of integers numbers. Since A(k) is discrete almost automorphic,
there exists a subsequence (kn) such that

lim
n→∞

A(k + kn) =: Ā(k)

is well defined for each k ∈ Z and

lim
n→∞

Ā(k − kn) = A(k)

for each k ∈ Z.
Fix k ∈ Z and define An := A(k+kn), n ∈ N. By hypothesis, the set {A−1n }n∈N is bounded.

Using the identity
A−1n − A−1m = A−1n (Am − An)A−1m

and the fact that {An} is a Cauchy sequence, it follows that {A−1n } is a Cauchy sequence.
Hence, there exists a matrix T (for each k ∈ Z fixed) such that

A−1n → T (k).

Taking the limit of AnA
−1
n = A−1n An = I, where I denotes the identity matrix, we obtain

that Ā(k) is invertible and Ā−1(k) = T (k) for each k ∈ Z. Since the map A → A−1 is
continuous on the set of non-singular matrices, it follows that

lim
n→∞

A−1(k + kn) = Ā−1(k)

for each k ∈ Z. Analogously, one can prove that

lim
n→∞

Ā−1(k − kn) = A−1(k),

for each k ∈ Z. �

Now, we present a result which describes the solution of (2.6). This result can be found
in [1], Theorem 2.4.1.
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Theorem 2.10. The following holds

(2.11) U(k)U−1(k0) =



k−1∏
l=k0

A(k0 + k − 1− l), for all k0 ≤ k ∈ Z,

k0−1∏
l=k

A−1(l), for all k0 ≥ k ∈ Z,

In what follows, we recall the definition of exponential dichotomy and ordinary dichotomy
for the system (2.6) (see [1, Chapter 5, section 5.8]).

Definition 2.11. Let U(k) be the principal fundamental matrix of the difference system
(2.6). The system (2.6) is said to possess an exponential dichotomy if there exists a projection
P , which commutes with U(k), and positive constants η, ν, α, β such that for all k, l ∈ Z, we
have ∥∥U(k)PU−1(l)

∥∥ ≤ ηe−α(k−l), k ≥ l∥∥U(k)(I − P )U−1(l)
∥∥ ≤ νe−β(l−k), l ≥ k.

On the other hand, it is said to possess an ordinary dichotomy if the inequalities above hold
for α = β = 0. In the other words, if we have the following inequalities∥∥U(k)PU−1(l)

∥∥ ≤ η, k ≥ l∥∥U(k)(I − P )U−1(l)
∥∥ ≤ ν, l ≥ k.

Now, we present the following result which will be essential to prove our main result. It
can be found in [23, Lemma 2.13] for a general time scale T. We repeat the proof here for
the particular case T = Z for reader’s convenience.

Theorem 2.12. If the system (2.6) possesses an exponential dichotomy and the function
f : Z→ En is bounded, then the system (2.5) has a bounded solution which is given by

(2.12) u(k) =
k−1∑
j=−∞

U(k)PU−1(j + 1)f(j)−
∞∑
j=k

U(k)(I − P )U−1(j + 1)f(j),

where U(k) is a fundamental matrix of (2.6).

Proof. Let U(k) be a fundamental matrix of (2.6), then

u(k + 1)− A(k)u(k) =

=
k∑

j=−∞

U(k + 1)PU−1(j + 1)f(j)−
∞∑

j=k+1

U(k + 1)(I − P )U−1(j + 1)f(j)

−A(k)
k−1∑
j=−∞

U(k)PU−1(j + 1)f(j) + A(k)
∞∑
j=k

U(k)(I − P )U−1(j + 1)f(j)

=
k∑

j=−∞

U(k + 1)PU−1(j + 1)f(j)−
∞∑

j=k+1

U(k + 1)(I − P )U−1(j + 1)f(j)
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−
k−1∑
j=−∞

U(k + 1)PU−1(j + 1)f(j) +
∞∑
j=k

U(k + 1)(I − P )U−1(j + 1)f(j)

= U(k + 1)PU−1(k + 1)f(k) + U(k + 1)(I − P )U−1(k + 1)f(k)

= U(k + 1)(P + I − P )U−1(k + 1)f(k) = f(k)

and we obtain the desired result.
It remains to prove that u(k) is a bounded function, for every k ∈ Z. Then, by the

exponential dichotomy and boundedness of f , we have

‖u(k)‖ =

∥∥∥∥∥
k−1∑
j=−∞

U(k)PU−1(j + 1)f(j)−
∞∑
j=k

U(k)(I − P )U−1(j + 1)f(j)

∥∥∥∥∥
≤

k−1∑
j=−∞

ηe−α(k−j−1)‖f(j)‖+
∞∑
j=k

νe−β(j+1−k)‖f(j)‖

=
∞∑
j=0

ηe−αj‖f(j)‖+
∞∑
j=1

νe−βj‖f(j)‖

≤
∞∑
j=0

ηe−αjC +
∞∑
j=1

νe−βjC = ηC
1

1− e−α
+ νC

e−β

1− e−β
=: M,

where C = supj∈Z ‖f(j)‖. Thus, for every k ∈ Z, we obtain

‖u(k)‖ ≤M,

where M = ηC 1
1−e−α + νC e−β

1−e−β and the desired result follows as well. �

3. Almost automorphic solutions of non-autonomous difference equations

In this section, consider the following non-autonomous linear difference equation

(3.1) u(k + 1) = A(k)u(k) + f(k), k ∈ Z

where A(k) are given non-singular n × n matrices with elements aij(k), 1 ≤ i, j ≤ n,
f : Z×En → En is a given n× 1 vector function and u(k) is an unknown n× 1 vector with
components ui(k), 1 ≤ i ≤ n. Its associated homogeneous equation is given by

(3.2) u(k + 1) = A(k)u(k), k ∈ Z.

We start by proving a result concerning existence of an almost automorphic solution of
the equation (3.1).

Theorem 3.1. Suppose A(k) is discrete almost automorphic and a non-singular matrix and
the set {A−1(k)}k∈Z is bounded. Also, suppose the function f : Z→ En is a discrete almost
automorphic function and the equation (3.2) admits an exponential dichotomy with positive
constants ν, η, β and α. Then, the system (3.1) has an almost automorphic solution on Z.
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Proof. Since A(k) is discrete almost automorphic, then for every sequence (k′n) ∈ Z, there
exists a subsequence (k′′n) ⊂ (k′n) such that

(3.3) lim
n→∞

A(k + k′′n) =: Ā(k)

exists and is well-defined for each k ∈ Z and

(3.4) lim
n→∞

Ā(k − k′′n) = A(k)

for each k ∈ Z. Also, since f(k) is a discrete almost automorphic function, there exists a
subsequence (kn) ⊂ (k′′n) such that

(3.5) lim
n→∞

f(k + kn) =: f̄(k)

exists and is well-defined for each k ∈ Z and

(3.6) lim
n→∞

f̄(k + kn) = f(k)

for each k ∈ Z.
Consider the following system

(3.7) v(k + 1) = Ā(k)v(k),

where Ā(k) is defined by (3.3). Remember that by hypothesis, and Lemma 2.9, the matrix
Ā(k) is non-singular. Consider also that its non-homogenous system is given by

(3.8) v(k + 1) = Ā(k)v(k) + f̄(k),

where f̄ : Z→ En is given by (3.5).
Let V (k) be a fundamental matrix of (3.7). Then, by Theorem 2.10, we get

V (k)V −1(m) =
k−1∏
l=m

Ā(m+ k − 1− l)

for k ≥ m, k,m ∈ Z and

U(k + kn)U−1(m+ kn) =
k+kn−1∏
l=m+kn

A(m+ kn + k + kn − 1− l)

=
k−1∏
l=m

A(m+ kn + k + kn − 1− (l + kn))

=
k−1∏
l=m

A(m+ kn + k − 1− l).

Thus, for every k ≥ m and k,m ∈ Z, we have∥∥U(k + kn)U−1(m+ kn)− V (k)V −1(m)
∥∥

≤

∥∥∥∥∥
k−1∏
l=m

A(m+ k + kn − 1− l)−
k−1∏
l=m

Ā(m+ k − 1− l)

∥∥∥∥∥ n→∞→ 0,
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by automorphicity of A, using the fact that k + m − 1 + l ∈ Z and (v) − (vi) of Theorem
2.2. Thus,

(3.9) lim
n→∞

∥∥U(k + kn)U−1(m+ kn)− V (k)V −1(m)
∥∥ = 0.

It is clear from equation (3.9) that

(3.10) lim
n→∞

∥∥U(k + kn)PU−1(m+ kn)− V (k)PV −1(m)
∥∥ = 0,

for every k,m ∈ Z and k ≥ m, using the fact that P commutes with U(k). By the same
reason, we have

(3.11) lim
n→∞

∥∥U(k + kn)(I − P )U−1(m+ kn)− V (k)(I − P )V −1(m)
∥∥ = 0,

for each k,m ∈ Z and k ≤ m.
Now, define the following functions:

M(k) =
k−1∑
j=−∞

U(k)PU−1(j + 1)f(j)

and

M̄(k) =
k−1∑
j=−∞

V (k)PV −1(j + 1)f̄(j).

Then, we have

‖M(k + kn)− M̄(k)‖ =

∥∥∥∥∥
k+kn−1∑
j=−∞

U(k + kn)PU−1(j + 1)f(j)−
k−1∑
j=−∞

V (k)PV −1(j + 1)f̄(j)

∥∥∥∥∥
=

∥∥∥∥∥
k−1∑
j=−∞

U(k + kn)PU−1(j + kn + 1)f(j + kn)−
k−1∑
j=−∞

V (k)PV −1(j + 1)f̄(j)

∥∥∥∥∥
≤

k−1∑
j=−∞

∥∥[U(k + kn)PU−1(j + kn + 1)− V (k)PV −1(j + 1)]f̄(j)
∥∥

+
k−1∑
j=−∞

∥∥[U(k + kn)PU−1(j + kn + 1)[f(j + kn)− f̄(j)]
∥∥

≤
k−1∑
j=−∞

C
∥∥U(k + kn)PU−1(j + kn + 1)− V (k)PV −1(j + 1

)
‖

+
k−1∑
j=−∞

ηe−α(k−j−1)
∥∥f(j + kn)− f̄(j)

∥∥ ,
where C = sup

z∈Z
‖f̄(z)‖. Thus, it is clear by (3.10) and by automorphicity of f , that

(3.12) ‖M(k + kn)− M̄(k)‖ n→∞→ 0.
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Therefore, lim
n→∞

M(k + kn) = M̄(k), for each k ∈ Z. Similarly, we can prove that

(3.13) lim
n→∞

M̄(k − kn) = M(k),

for each k ∈ Z.
Now, define the following functions:

N(k) =
∞∑
j=k

U(k)(I − P )U−1(j + 1)f(j)

and

N̄(k) =
∞∑
j=k

V (k)(I − P )V −1(j + 1)f̄(j).

The same way as before and using (3.11), one can prove that for every k ∈ Z, we get

(3.14) lim
n→∞

N(k + kn) = N̄(k)

and

(3.15) lim
n→∞

N̄(k − kn) = N(k).

By Theorem 2.12, the system (3.1) has a bounded solution which is given by

y(k) =
k−1∑
j=−∞

U(k)PU−1(j + 1)f(j)−
∞∑
j=k

U(k)(I − P )U−1(j + 1)f(j).

Then, using the equations (3.12), (3.13), (3.14) and (3.15), we obtain

lim
n→∞

y(k + kn) = lim
n→∞

M(k + kn) +N(k + kn) = M̄(k) + N̄(k) = (M̄ + N̄)(k) =: ȳ(k)

is well defined for each k ∈ Z and

lim
n→∞

ȳ(k − kn) = lim
n→∞

(M̄ + N̄)(k − kn) = lim
n→∞

M̄(k − kn) + N̄(k − kn) = y(k)

for each k ∈ Z. Thus, it follows that y : Z→ En is an almost automorphic function and we
have the desired result. �

Example 3.2. Let A(k) = A be a non-singular n×n-matrix and suppose that the intersec-
tion σp(A) ∩ S1 is empty, where σp(A) denotes the set of eigenvalues of A. Let f(k) be an
almost automorphic function. Then, the system

(3.16) u(k + 1) = Au(k) + f(k)

has an almost automorphic solution.
In fact, if the intersection σp(A) ∩ S1 is empty, then it follows that the equation

u(k + 1) = Au(k)

admits an exponential dichotomy (see [1, Section 5.8]).
Thus, all the hypothesis of Theorem 3.1 are satisfied, then the system (3.16) has an almost

automorphic solution.
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4. Almost automorphic solutions for semilinear nonautonomous difference
equations

In this section, we consider the following system

(4.1) u(k + 1) = A(k)u(k) + f(k, u(k)), k ∈ Z,

where A(k) is a given non-singular n × n matrix with elements aij(k), 1 ≤ i, j ≤ n, f :
Z × En → En is a given n × 1 vector function and u(k) is an unknown n × 1 vector with
components ui(k), 1 ≤ i ≤ n.

Its associated homogeneous linear difference equation is given by

(4.2) u(k + 1) = A(k)u(k), k ∈ Z.

Here, we will restrict ourselves for the following concept of solution for the equation (4.2).

Definition 4.1. We say that u : Z→ En is a solution of (4.1), if it satisfies

(4.3) u(k) =
k−1∑
j=−∞

U(k)PU−1(j + 1)f(j, u(j))−
∞∑
j=k

U(k)(I − P )U−1(j + 1)f(j, u(j)),

for every k ∈ Z.

Remark 4.2. The previous definition makes sense, since u(k) given by (4.3) satisfies the
equation (4.1). Indeed, notice that

u(k + 1)− A(k)u(k) =

=
k∑

j=−∞

U(k + 1)PU−1(j + 1)f(j, u(j))−
∞∑

j=k+1

U(k + 1)(I − P )U−1(j + 1)f(j, u(j))

−A(k)
k−1∑
j=−∞

U(k)PU−1(j + 1)f(j, u(j)) + A(k)
∞∑
j=k

U(k)(I − P )U−1(j + 1)f(j, u(j))

=
k∑

j=−∞

U(k + 1)PU−1(j + 1)f(j, u(j))−
∞∑

j=k+1

U(k + 1)(I − P )U−1(j + 1)f(j, u(j))

−
k−1∑
j=−∞

U(k + 1)PU−1(j + 1)f(j, u(j)) +
∞∑
j=k

U(k + 1)(I − P )U−1(j + 1)f(j, u(j))

= U(k + 1)PU−1(k + 1)f(k, u(k)) + U(k + 1)(I − P )U−1(k + 1)f(k, u(k))

= U(k + 1)(P + I − P )U−1(k + 1)f(k, u(k)) = f(k, u(k)),

which implies

u(k + 1) = A(k)u(k) + f(k, u(k)).

Now, let us prove the following result which ensures the existence and uniqueness of an
almost automorphic solution of (4.1).
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Theorem 4.3. Suppose A(k) is discrete almost automorphic and a non-singular matrix
and the set {A−1(k)}k∈Z is bounded. Also, assume the equation (4.2) admits an exponential
dichotomy on Z with positive constants η, ν, β, α and the function f : Z×En → En is discrete
almost automorphic in k for each u in En, satisfying the following condition:

(i) There exists a constant 0 < L <
(1− e−α)(eβ − 1)

η(eβ − 1) + ν(1− e−α)
such that

(4.4) ‖f(k, u)− f(k, v)‖ ≤ L‖u− v‖,
for every u, v ∈ En and k ∈ Z.

Then, the system (4.1) has a unique almost automorphic solution.

Proof. Define an operator T : AAd(E
n)→ AAd(E

n) as follows:

(Tu)(k) =
k−1∑
j=−∞

U(k)PU−1(j + 1)f(j, u(j))−
∞∑
j=k

U(k)(I − P )U−1(j + 1)f(j, u(j)),

for all u ∈ AAd(En) and U is the fundamental matrix of (4.1).
Let u(k) ∈ AAd(En), then since the function f satisfies the global Lipschitz-type condition,

we obtain by Theorem 2.6 that f(·, u(·)) is in AAd(E
n).

Thus, by the automorphicity of u, it follows that for every sequence of integers numbers
(k′′n), there exists a subsequence (k′n) such that

lim
n→∞

u(k + k′n) = ū(k)

for each k ∈ Z and
lim
n→∞

ū(k − k′n) = u(k),

for every k ∈ Z. And by the automorphicity of f , there exists a subsequence (kn) ⊂ (k′n)
such that

lim
n→∞

f(k + kn, u(k + kn)) = f̄(k, ū(k))

for each k ∈ Z and
lim
n→∞

f̄(k − kn, ū(k − kn) = f(k, u(k)),

for every k ∈ Z.
Also, using the same arguments as Theorem 3.1, one can prove that

(4.5) lim
n→∞

∥∥U(k + kn)PU−1(m+ kn)− V (k)PV −1(m)
∥∥ = 0,

for every k,m ∈ Z such that k ≥ m. Also,

(4.6) lim
n→∞

∥∥U(k + kn)(I − P )U−1(m+ kn)− V (k)(I − P )V −1(m)
∥∥ = 0,

for each k,m ∈ Z such that k ≤ m, where V is the fundamental matrix of the equation

v(k + 1) = Ā(k)v(k), k ∈ Z.
Now, we define the following function h : Z→ En:

h(k) :=
k−1∑
j=−∞

V (k)PV −1(j + 1)f̄(j, ū(j))−
∞∑
j=k

V (k)(I − P )V −1(j + 1)f̄(j, ū(j)),
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where V , f̄ and ū are defined as above.
Let us prove that Tu ∈ AAd(En). In fact,

‖Tu(k + kn)− h(k)‖ ≤

≤

∥∥∥∥∥
k+kn−1∑
j=−∞

U(k + kn)PU−1(j + 1)f(j, u(j))−
k−1∑
j=−∞

V (k)PV −1(j + 1)f̄(j, ū(j))

∥∥∥∥∥+

+

∥∥∥∥∥
∞∑

j=k+kn

U(k + kn)(I − P )U−1(j + 1)f(j, u(j))−
∞∑
j=k

V (k)(I − P )V −1(j + 1)f̄(j, ū(j))

∥∥∥∥∥
=

∥∥∥∥∥
k−1∑
j=−∞

[U(k + kn)PU−1(j + kn + 1)f(j + kn, u(j + kn))− V (k)PV −1(j + 1)f̄(j, ū(j))]

∥∥∥∥∥+

+

∥∥∥∥∥
∞∑
j=k

[U(k + kn)(I − P )U−1(j + kn + 1)f(j + kn, u(j + kn))− V (k)(I − P )V −1(j + 1)f̄(j, ū(j))]

∥∥∥∥∥
≤

k−1∑
j=−∞

∥∥U(k + kn)PU−1(j + kn + 1)− V (k)PV −1(j + 1)
∥∥∥∥f̄(j, ū(j))

∥∥+

+
k−1∑
j=−∞

∥∥U(k + kn)PU−1(j + kn + 1)
∥∥∥∥f(j + kn, u(j + kn))− f̄(j, ū(j))

∥∥+

+
k−1∑
j=−∞

∥∥U(k + kn)(I − P )U−1(j + kn + 1)− V (k)(I − P )V −1(j + 1)
∥∥∥∥f̄(j, ū(j))

∥∥+

+
k−1∑
j=−∞

∥∥U(k + kn)(I − P )U−1(j + kn + 1)
∥∥∥∥f(j + kn, u(j + kn))− f̄(j, ū(j))

∥∥+

Then, using the exponential dichotomy and the fact that f(·, u(·)) ∈ AAd(En), we obtain

lim
n→∞

‖Tu(k + kn)− h(k)‖ = 0,

by the equations (4.5) and (4.6).
Therefore, we obtain

lim
n→∞

Tu(k + kn) = h(k),

for every k ∈ Z. Analogously, one can prove that

lim
n→∞

h(k − kn) = Tu(k),

for every k ∈ Z.
It follows that Tu(k) ∈ AAd(E

n) and thus, T is well-defined. Now, let us prove that
T : AAd(E

n)→ AAd(E
n) is a contraction.
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‖Tu− Tv‖∞ = ‖
k−1∑
j=−∞

U(k)PU−1(j + 1)[f(j, u(j))− f(j, v(j))]

−
+∞∑
j=k

U(k)(I − P )U−1(j + 1)[f(j, u(j))− f(j, v(j))]‖∞.

Then, by the exponential dichotomy and Lipschitz condition, we have

‖Tu− Tv‖∞ ≤
k−1∑
j=−∞

ηe−α(k−j−1)L‖u− v‖∞ +
+∞∑
j=k

νe−β(j+1−k)L‖u− v‖∞

≤ η
+∞∑
j=0

e−αjL‖u− v‖∞ +
+∞∑
j=1

νe−βjL‖u− v‖∞

≤ η
1

1− e−α
L‖u− v‖∞ + ν

e−β

1− e−β
L‖u− v‖∞

=

[
η

1

1− e−α
+ ν

e−β

1− e−β

]
L‖u− v‖∞.

Thus, using the fact that L <
(1− e−α)(eβ − 1)

η(eβ − 1) + ν(1− e−α)
, we obtain that T is a contraction.

Then by Banach Fixed-Point Theorem, T has a unique fixed point. By the definition of T ,
Definition 4.1 and Theorem 2.12, it follows that the system (4.1) has a unique solution which
is almost automorphic. �

We finish this section presenting an example which illustrates the Theorem 4.3.

Example 4.4. Let A(k) = A be a non-singular matrix such that σp(A) ∩ S1 = ∅. Also, let
f(k, u) = h(k)g(u) be a function such that h ∈ AAd(E) and g is a Lipschitz function, that
is, for every u, v ∈ En, there exists a constant L > 0 such that

‖g(u)− g(v)‖ ≤ L‖u− v‖.
Since σp(A) ∩ S1 = ∅, the system

u(k + 1) = Au(k)

admits a exponential dichotomy with positive constants α, β, ν and η (see [1, Section 5.8],

for instance). If we suppose that L <
(1− e−α)(eβ − 1)

η(eβ − 1) + ν(1− e−α)
, then the system

u(k + 1) = Au(k) + f(k, u)

has a unique almost automorphic solution by Theorem 4.3.

Remark 4.5. After this work was submitted for publication, we learn that a paper by T.
Diagana [13] has recently been published on the same topic of the present article, but in which
the singular case is studied and then applied to study the existence of globally attracting
almost automorphic solutions to some higher-order difference equations in a Banach space.
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In particular, Theorem 3.3 from [13] extends our Theorem 3.1 to the singular case. Also,
the results in [13] are in the context of general Banach spaces.

We remark that the results in the present work can be stated in the more general context
of Banach spaces, and hence consider bounded linear operators A(k) rather than matrices,
taking into consideration the definitions given in the reference [13].
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