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Abstract

In this work we provide a new and effective characterization for the
existence and uniqueness of solutions for nonlocal time-discrete equations
with delays, in the setting of vector-valued Lebesgue spaces of sequences.
This characterization is given solely in terms of the R-boundedness of the
data of the problem, and in the context of the class of UMD Banach spaces.
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1. Introduction

The recent technological innovations have caused a considerable interest
in the study of dynamical processes that are of a mixed continuous and dis-
crete nature. For instance, discrete-time linear models appear in the study
of the solution to optimal control problems in dynamic programming [10].
Moreover, they are also used for modeling coal liquefaction mechanisms [34]
and robust energy filtering in signal processing [25], among others fields of
interest. In the biological context, qualitative behavior of discrete models
with delays has been examined in [19] and [42]. A classical textbook is the
monograph by Rugh [32].
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LEBESGUE REGULARITY FOR NONLOCAL . . . 697

Starting with the works of Weis [38], and Amann [6], characterizations
of Lebesgue regularity using multiplier theorems for operator valued sym-
bols have appeared in several papers in the last decade. See for instance
the ones of Bu [12, 13], Chill and Srivastava [15], the special volume [11]
and references therein.

Lebesgue regularity of discrete time evolution equations in abstract
spaces was first considered by Blünk [9] and Portal [30, 31]. In [20], Kovács,
Li and Lubich studied maximal regularity using Blunk’s results for numer-
ical schemes. In the same line, Kemmochi [22] introduced the notion of
discrete maximal regularity for the finite difference method. Other recent
contributions are [4, 24] and [23]. A recent textbook on this topic is the
monograph [3], where several applications in different contexts are given.

The analysis of �p-maximal regularity for difference equations of frac-
tional order α > 0 in the form{

Δαu(n) = Tu(n) + f(n), n ∈ N0,

u(0) = 0,

where T is a bounded operator defined on a Banach space X was studied
in [26] for the range 0 < α ≤ 1 and in [27] for 1 < α ≤ 2. Here Δα

denotes the fractional difference operator of order α > 0 in the Riemann-
Liouville sense, see Definition 2.2 below. In [28] �p-maximal regularity for
the equation (1.1) with infinite delay was studied in Z for all α > 0 when T
is an unbounded operator. Recently, in [29] the authors characterized the
�p-maximal regularity for the finite delayed equation{

Δαu(n) = Tu(n) + βu(n − τ) + f(n), n ∈ N0, n ≥ 1, β ∈ R,

u(j) = 0, j = −τ, ..., 0, τ ∈ N0,

(1.1)
whenever 0 < α ≤ 1. However, the validity of such characterization for the
case of 1 < α ≤ 2 was left as an open problem.

The main purpose of this work is to give a positive answer to this open
problem.

An interesting feature that involves our model is that the fractional dif-
ference operator Δα can be realized as sampling, by means of the Poisson
distribution, of the classical fractional Riemann-Liouville operator. See [26,
Theorem 3.5], where this remarkable connection has been discovered. This
nonlocal operator has recently appeared in several research of increasing in-
terest to different but related fields. For instance, in relation to the notion
of Césaro operators of order α > 0 [2], chaos for fractional delayed logistic
maps [39] and almost automorphic solutions of fractional difference equa-
tions [1]. Concerning applications, we note that fractional difference models
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698 C. Leal, C. Lizama, M. Murillo-Arcila

have been considered in areas such as nano-mechanics [35, 36], economics
[37], numerics [40, 41] and stability [14] among others.

In order to present our main results, this paper is organized as follows:
In Section 2 we provide the reader information about differences of frac-
tional order and we show the main methods on operator-valued Fourier
multipliers that we will use. In Section 3, we introduce the new concept
of ατ resolvent operators in the range 1 < α ≤ 2, which is an important
tool for the construction of the solution of (1.1). This family, denoted by
{Mα(n)}n≥−τ , incorporates directly the finite delay in its definition. Then,
we will prove that a general solution for our model, with initial conditions
u(j) = xj , j = −τ, . . . , 0, 1, can be written as

u(n) = Mα(n)u(0) + Fα(n− 1)[u(1) − u(0)]

+ β

τ∑
j=1

Fα(n − 2 + j − τ)u(−j) + (Fα ∗ f)(n− 2), n ≥ 2.
(1.2)

Here, hα(n) = (α − 1)n and Fα(n) = (Mα ∗ hα)(n). Note that in the case
α = 2 and β = 0, the resolvent family M2(n) perfectly coincides with the
notion of discrete cosine operator which was introduced and studied by
Chojnacki [16] in the context of UMD Banach spaces.

We remark that the representation (1.2) is not straightforward but it
is one of the main tasks that we have overcome in order to achieve the
solution of our problem.

Finally, in Section 4, we prove the main result of this work. We will
show that if X is a UMD space and the condition supn∈N ‖Mα(n)‖ < ∞
is satisfied, then the maximal �p-regularity of equation (1.1) and the R-
boundedness of the sets{

z2−α(z − 1)α(z2−α(z − 1)α − βz−τ − T )−1 : |z| = 1, z 	= 1
}
,

and {
z−τ (z2−α(z − 1)α − βz−τ − T )−1 : |z| = 1, z 	= 1

}
,

are equivalent. This characterization coincides perfectly as the counterpart
of the result achieved in the paper [29] where also an R-boundedness con-
dition on two sets is needed. We note that in practice, tools to check this
condition are generally not easy to find. However, the monograph [3] shows
a way in the general case. For the case of Hilbert spaces, we observe that
R-boundedness can be replaced merely by uniform boundedness. For such
a case, we are able to provide a very simple criterion on T that ensures
maximal �p-regularity of equation (1.1), namely:

||T || < ωα,β,τ := min
|z|=1

|fα,β,τ (z)| < 1where fα,β,τ (z) := z2−α(z− 1)α−βz−τ .
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See Corollary 5.1 below. We finish our work with the following examples:

x(n+ 3)− 2x(n+ 2) + qx(n+ 1) + rx(n) = f(n),

with initial conditions: x(0) = x(1) = x(2) = 0. We show that maximal �p-
regularity of this equation for f ∈ �p(N0) is guaranteed whenever 1 < q < 2
and 1− q < r < −1 +

√
2− q.

In the fractional order case 1 < α ≤ 2, we consider

Δαx(n) = (1− q)x(n)− rx(n− 1) + f(n)

and a sufficient condition for maximal �p- regularity on the parameters
r, q ∈ R is provided: ω(r) := min|z|=1 |z3−α(z− 1)α + r| < 1 and 1−ω(r) <
q < 1 + ω(r).

2. Preliminaries

In this section we define some preliminary concepts related to fractional
differences, UMD spaces, Fourier multiplier theorems, discrete Fourier
transforms, and R-boundedness. In what follows we denote by s(N0;X)
the vector space of all vector-valued sequences f : N0 → X. The forward
Euler operator is defined as

Δf(n) = f(n+ 1)− f(n), n ∈ N0,

and Δ0 ≡ I, where I is the identity operator. The following fractional
sum was introduced in [26, Formula 2.2]. This definition corresponds to a
particular case of fractional sum proposed by Eloe and Atici in [8].

Definition 2.1. Let α > 0 and f ∈ s(N0;X) be given. We define the
fractional sum of order α as follows

Δ−αf(n) =

n∑
k=0

kα(n− k)f(k), n ∈ N0, (2.1)

where

kα(j) =
Γ(α+ j)

Γ(α)Γ(j + 1)
, j ∈ N0.

We also define kα(j) = 0 otherwise.

Remark 2.1. Note that kα(n) is the n-th coefficient of the generating
function (1− z)−α, that is,

∞∑
n=0

kα(n)zn =
1

(1− z)α
, |z| < 1, (2.2)

and therefore the kernel (kα(n))n∈N0 satisfies the semigroup property, kα ∗
kβ = kα+β for α, β ∈ C.
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700 C. Leal, C. Lizama, M. Murillo-Arcila

As a function of n, kα is increasing for α > 1, decreasing for 0 < α < 1
and k1(n) = 1 for n ∈ N ([43, Theorem III.1.17]). Furthermore, kα(n) ≤
kβ(n) for β ≥ α > 0 and n ∈ N0.

The following definition corresponds to an analogous version of frac-
tional derivative in the sense of Riemann-Liouville, see [7].

Definition 2.2. Let f ∈ s(N0;X) be given, we define the fractional
difference operator of order α > 0 (in sense of Riemann-Liouville) as follows

Δαf(n) := Δm ◦Δ−(m−α)f(n), n ∈ N0,

where m− 1 < α < m, m = �α�.

Recall that the finite convolution between two sequences f, g ∈ s(N0;X)
is defined by:

(f ∗ g)(n) :=
n∑

j=0

f(n− j)g(j), n ∈ N0.

The Z-transform of a sequence f ∈ s(N0;X) is defined by

f̃(z) :=

∞∑
j=0

z−jf(j),

where z is a complex number. Note that this series is convergent for |z| > R,
for a sufficiently large R. The discrete time Fourier transform of a sequence
f ∈ s(Z;X) is defined by

f̂(z) :=
∑
j∈Z

z−jf(j), where z = eit, t ∈ (−π, π), (2.3)

whenever the right side of the above identity exists. The inverse transform
is given by

f̌(n) =
1

2πi

∫
C
f(z)zn−1dz = sum of residues of f(z)zn−1, (2.4)

where C is a circle centered at the origin of the complex plane, that encloses
all poles of u(z)zn−1.

We finish this section with the following Fourier multiplier theorem
established by Blunck [9] in the context of UMD Banach spaces (for more
information, see [5, Section III.4.3-III.4.5]). Firstly, we recall the notion of
R-boundedness.

Definition 2.3. Let X and Y be two Banach spaces. A subset of
T ⊂ B(X,Y ) is said to be R-bounded if there exists a constant C ≥ 0 such
that
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LEBESGUE REGULARITY FOR NONLOCAL . . . 701

‖(T1x1, . . . , Tnxn)‖R ≤ C ‖(x1, . . . , xn)‖R ,

for each T1, . . . , Tn ∈ T , x1, . . . , xn ∈ X, n ∈ N, where

‖(x1, . . . , xn)‖R :=
1

2n

∑
εj∈{−1,1}n

∥∥∥∥∥∥
n∑

j=1

εjxj

∥∥∥∥∥∥ ,
for x1, . . . , xn ∈ X.

Remark 2.2. Note that the Banach space B(X,Y ) is equipped with
the uniform operator topology.

For more details about R-boundedness and its properties see[3, Section
2.2]. In what follows we denote by T := (π, π) \ {0}.

Theorem 2.1. [9, Theorem 1.3] Let p ∈ (1,∞) and let X be a UMD
space. Let M : T −→ B(X) be differentiable function such that the set{

M(t), (z − 1)(z + 1)M ′(t) : z = eit, t ∈ T
}

is R-bounded. Then there exists an operator TM ∈ B(�p(Z;X)) such that

(T̂Mf)(z) = M(t)f̂(z), for all z = eit, t ∈ T. (2.5)

The converse of Blunck’s Theorem also holds without any restriction on
the Banach space X.

Theorem 2.2. [9, Proposition 1.3] Let p ∈ (1,∞) and let X be a UMD
space. Let M : T −→ B(X) be an operator-valued function. Suppose that
there exists an operator TM ∈ B(�p(Z;X)) such that the identity (2.5)
holds. Then the set

{M(t) : t ∈ T}
is R-bounded.

3. Resolvent families with delay: 1 < α ≤ 2

In this section we study the existence and uniqueness of solutions for
the following problem:{

Δαu(n) = Tu(n) + βu(n − τ) + f(n), n ∈ N0, τ ∈ N0, β ∈ R,

u(j) = xj , j = −τ, . . . , 0, 1,
(3.1)

where 1 < α ≤ 2 and T ∈ B(X). We start with the following definition.
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702 C. Leal, C. Lizama, M. Murillo-Arcila

Definition 3.1. Let T be a bounded linear operator defined in a
Banach space X, and let 1 < α ≤ 2 and τ ∈ N be given. We say that
T is a generator of an ατ -resolvent sequence if there exists a sequence
of bounded and linear operators {Mα(n)}n≥−τ ⊂ B(X) that satisfies the
following properties:

(i) Mα(0) = Mα(1) = I,
(ii) Mα(−j) = 0, j = 1, . . . , τ ,
(iii) ΔMα(n+ 1)) = T (Mα ∗ kα−1)(n) + Δkα−1(n+ 1)I

− (2− α)kα−1(n+ 1)I + β(M τ
α ∗ kα−1)(n) for each n ∈ N0,

where {M τ
α(n)}n∈N0 is defined by M τ

α(n) := Mα(n − τ).

Remark 3.1. Note that in the case when β = 0, Definition 3.1 coin-
cides with the definition of resolvent sequence defined in [27].

Example 3.1. Suppose that
{
z2−α(z − 1)α − βz−τ

}
z∈C ⊂ ρ(T ), where

ρ(T ) denotes the resolvent set of T and C is a circle centered at the origin
that encloses all singularities of zn(z − (α− 1))(z2−α(z − 1)α − βz−τ )−1 in
its interior. Then for any n ∈ N, n ≥ 2, the formula

Mα(n) :=

⎧⎪⎪⎨⎪⎪⎩
1

2πi

∫
C
zn(z − (α − 1))(z2−α(z − 1)α − βz−τ − T )−1dz;

I n = 0, 1;

0 n = −τ, . . . ,−1,

(3.2)
defines an ατ -resolvent sequence of operators with generator T . This fact
can be formally checked using the time discrete Fourier transform method
to equation (3.1) and comparing it with the formula given in Theorem 3.1
below.

Now, we recall the following Lemma proved in [29].

Lemma 3.1. Let 1 < α ≤ 2, a : N0 −→ C and S : N0 −→ X be given.
Then

Δα(a∗S)(n) =
n∑

j=0

ΔαS(n−j)a(j)+S(0)a(n+2)−αS(0)a(n+1)+S(1)a(n+1).

Before establishing the main result of this section, we define for any
1 < α ≤ 2 the sequences

hα(n) :=

{
(α− 1)n, n ∈ N0

0, otherwise
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and

Fα(n) :=

{
(Mα ∗ hα)(n), n ∈ N0

0, otherwise.

Theorem 3.1. Let 1 < α ≤ 2 and f ∈ s(N0;X) be given. Assume
that T is a generator of an ατ -resolvent sequence Mα(n). Then the unique
solution of (3.1) is given by

u(n+ 2) = Mα(n + 2)u(0) + (Mα ∗ hα)(n + 1)[u(1) − u(0)]

+ β

τ∑
j=1

Fα(n − τ + j)u(−j) + (Mα ∗ hα ∗ f)(n), n ∈ N0.

P r o o f. We define a vector-valued sequence v as follows. For n =
−τ, . . . , 0, 1, v(n) = xn and for n ≥ 2,

v(n) = Mα(n)u(0)+(Mα∗hα)(n−1)[u(1)−u(0)]+β

τ∑
j=1

Fα(n−2−τ+j)u(−j).

(3.3)
First, we will show that v is a solution of (3.1) with f = 0. Indeed, applying
Δα to v, we get

Δαv(n+ 2) = ΔαMα(n+ 2)u(0) +Δα(Mα ∗ hα)(n + 1)[u(1) − u(0)]

+ β

τ∑
j=1

ΔαFα(n− τ + j)u(−j), n ∈ N0.

From Definition 3.1, we have that

ΔαMα(n+ 2) = ΔαMα(n+ 1) + TΔαFα(n) + Δαkα−1(n+ 2)I

− (α− 1)Δαkα−1(n+ 1)I + βΔα(M τ
α ∗ kα−1)(n),

for all n ∈ N0. Since Δαkα−1 ≡ 0, then for any n ∈ N0 we have

ΔαMα(n+2) = ΔαMα(n+1)+TΔα(Mα ∗kα−1)(n)+βΔα(M τ
α ∗kα−1)(n).

(3.4)
From Lemma 3.1, we obtain that

Δα(Mα ∗ kα−1)(n) = (Δαkα−1 ∗Mα)(n) +Mα(n+ 2)

− αMα(n+ 1) + (α− 1)Mα(n+ 1)

= Mα(n + 2)−Mα(n+ 1) = ΔMα(n + 1).

(3.5)

Thus, replacing (3.5) in (3.4), we obtain for any n ∈ N0

ΔαMα(n+ 2) = ΔαMα(n+ 1) + TΔMα(n+ 1) + βΔM τ
α(n+ 1),

or equivalently
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704 C. Leal, C. Lizama, M. Murillo-Arcila

ΔΔαMα(n+ 1) = TΔMα(n+ 1) + βΔM τ
α(n+ 1). (3.6)

From (3.6), if ΔαMα(0) = TMα(0)+βMα(−τ) = T , we get ΔαMα(n+
1) = TMα(n+1) + βM τ

α(n+1) for all n ∈ N0. Indeed, from Definition 2.1
and definition of kα, we have

ΔαMα(n) = Δ2(k2−α ∗Mα)(n) = (k2−α ∗Mα)(n+ 2)

− 2(k2−α ∗Mα)(n + 1) + (k2−α ∗Mα)(n).

In particular, for n = 0,

ΔαMα(0) = (k2−α ∗Mα)(2) − 2(k2−α ∗Mα)(1) + (k2−α ∗Mα)(0). (3.7)

Since

(k2−α ∗Mα)(2) = k2−α(0)Mα(2) + k2−α(1)Mα(1) + k2−α(2)Mα(0)

= T + (5− 2α)I
(3.8)

and

(k2−α ∗Mα)(1) = k2−α(1)Mα(0) + k2−α(0)Mα(1) = (3− α)I, (3.9)

as well as

(k2−α ∗Mα)(0) = k2−α(0)Mα(0) = I, (3.10)

replacing (3.10), (3.9) and (3.8) in (3.7), we get that

ΔαMα(0) = T + (5− 2α)I − 2(3− α)I + I = T. (3.11)

On the other hand TMα(0) + βM τ
α(0) = T . By Lemma 3.1,

Δα(Mα ∗ hα)(n) = (ΔαMα ∗ hα)(n) + hα(n+ 2)− (α− 1)hα(n+ 1)

= (ΔαMα ∗ hα)(n)
= T (Mα ∗ hα)(n) + β(M τ

α ∗ hα)(n).
Finally, we conclude that

Δαv(n) = TMα(n)u(0) + βM τ
α(n)u(0) + T (Mα ∗ hα)(n − 1)[u(1) − u(0)]

+ β(M τ
α ∗ hα)(n − 1)[u(1) − u(0)] + β

τ∑
j=1

TFα(n− 2− τ + j)u(−j)

+ β2
τ∑

j=1

(F τ
α ∗ hα)(n − 2− τ + j)u(−j) = Tv(n) + βv(n − τ).

Then, (3.3) is the solution of the equation (3.1) with f = 0. Now, we define
a vector-valued sequence w as follows

w(n) =

{
(Mα ∗ hα ∗ f)(n− 2), n ≥ 2,

0, n = −τ, . . . , 1.
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Since Mα(n) = 0, for all n = −τ, . . . ,−1, from Lemma 3.1 and the last
claim, we obtain

Δαw(n) = Δα(Mα ∗ hα ∗ f)(n− 2)

= (Δα(Mα ∗ hα) ∗ f)(n− 2) + (Mα ∗ hα)(0)f(n)
− α(Mα ∗ hα)(0)f(n − 1) + (Mα ∗ hα)(1)f(n − 1)

= T (Mα ∗ hα ∗ f)(n− 2) + β(M τ
α ∗ hα ∗ f)(n− 2) + f(n)

= Tw(n) + βw(n − τ) + f(n),

for all n ≥ 2. Then, w solves (3.1) with initial conditions w(j) = 0, j =
−τ, . . . , 0, 1. Finally we claim that u = v + w is solution of (3.1). Indeed,

Δαu(n) = Tv(n) + βv(n − τ) + Tw(n) + βw(n − τ) + f(n)

= Tu(n) + βu(n− τ) + f(n), n ∈ N0

and u(j) = xj , for j = −τ, . . . , 1 and the theorem is proved. �

4. Maximal �p-regularity

Let T ∈ B(X) and f ∈ s(N0;X) be given. In this section, we consider
the following nonlocal time-discrete equation with delay τ ∈ N :{

Δαu(n) = Tu(n) + βu(n− τ) + f(n), n ∈ N0,

u(j) = 0, j = −τ, . . . , 1,
(4.1)

where 1 < α ≤ 2 and β ∈ R. Assume that T is a generator of an ατ -
resolvent sequence Mα(n). Since u(j) = 0 for all j = −τ, ..., 1 we obtain by
Theorem 3.1, that the solution of (4.1) can be represented by

u(n) = (Mα ∗ hα ∗ f)(n− 2), n ∈ N, n ≥ 2.

Furthermore, from Lemma 3.1, we have the representation

Δαu(n) = T (Mα ∗ hα ∗ f)(n− 2) + β(M τ
α ∗ hα ∗ f)(n− 2) + f(n). (4.2)

This motivates the following definition.

Definition 4.1. Let 1 < p < ∞, 1 < α ≤ 2 and T ∈ B(X) be given
and suppose that T is a generator of an ατ -resolvent sequence Mα(n). We
say that the equation (4.1) has maximal �p-regularity if the operators Kα

and Pα, defined by

(Kαf)(n) : = T

n∑
j=0

Mα(n− j)(hα ∗ f)(j) and

(Pαf)(n) : =

n∑
j=0

M τ
α(n− j)(hα ∗ f)(j),
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706 C. Leal, C. Lizama, M. Murillo-Arcila

are linear bounded operators in �p(N0;X) for some p > 1.

Remark 4.1. Observe that, in contrast with the continuous context,
the discrete maximal �p-regularity ensures the stability of the solution and
its fractional difference in the sense that |u(n)| → 0 and |Δαu(n)| → 0 as
n → ∞.

In what follows we need the following hypothesis:

(H)α sup
n∈N0

‖Mα(n)‖ < ∞, and

(z2−α(z − 1)αI − βz−τ − T ) is invertible, for all |z| = 1, z 	= 1.

Now, we prove the main result of this paper.

Theorem 4.1. Let 1 < p < ∞, 1 < α ≤ 2 and let X be a UMD
space. Let T ∈ B(X) be given such that T is a generator of an ατ -resolvent
sequence Mα(n) and the hypothesis (H)α is satisfied. Then the following
assertions are equivalent:

(i) Equation (4.1) has maximal �p-regularity.
(ii) The sets{

z2−α(z − 1)α(z2−α(z − 1)α − βz−τ − T )−1 : |z| = 1, z 	= 1
}
,{

z−τ (z2−α(z − 1)α − βz−τ − T )−1 : |z| = 1, z 	= 1
}

are R-bounded.

P r o o f. Suppose that (ii) holds. Then we define N(t) = z2−α(z −
1)α(z2−α(z−1)α−βz−τ−T )−1 y S(t) = z−τ (z2−α(z−1)α−βz−τ−T )−1 for
all z = eit, t ∈ (−π, π). Moreover, if we denote fα(t) = e2it(1− e−it)α, then
we can rewrite N(t) = fα(t)(fα(t) − βe−itτ − T )−1 y S(t) = e−itτ (fα(t) −
βe−itτ − T )−1. Since f ′

α(t) =

(
2i+

iα

eit − 1

)
fα(t), a simple computation

gives us

N ′(t) =
(
2i+

iα

eit − 1

)
(N(t)−N(t)2)− βiτN(t)S(t),

S′(t) = −iτS(t)− βiτS(t)2 −
(
2i+

iα

eit − 1

)
N(t)S(t).

Then,

(z − 1)(z + 1)N ′(t) = aα(t)N(t)− aα(t)N(t)2 − βbτ (t)N(t)S(t)

(z − 1)(z + 1)S′(t) = −bτ (t)S(t)− βbτ (t)S(t)
2 − aα(t)N(t)S(t),
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where aα(t) = 2i(z−1)(z+1)+ iα(z+1) and bτ (t) = −iτ(z+1)(z−1) are
clearly bounded for z = eit, t ∈ (−π, π). We conclude from [3, Proposition
2.2.5] that the sets{

(z − 1)(z + 1)N ′(t) : z = eit, t ∈ T0

}
and{

(z − 1)(z + 1)S′(t) : z = eit, t ∈ T0

}
are R-bounded. Then, by Blunck’s Theorem 2.1, we conclude that there
exist operators Tα, Uα ∈ B(�p(Z;X)) such that

(̂Tαf)(z) = N(t)f̂(z), z = eit, t ∈ T,

(̂Uαf)(z) = S(t)f̂(z), z = eit, t ∈ T,
(4.3)

for all f ∈ �p(Z;X). From the identity

T (z2−α(z − 1)α − βz−τ − T )−1

= (z2−α(z − 1)α − βz−τ )(z2−α(z − 1)α − βz−τ − T )−1 − I,

and (4.3), we obtain that the left hand side in the identity

T (z2−α(z − 1)α − βz−τ − T )−1f̂(z)

= (z2−α(z − 1)α − βz−τ )(z2−α(z − 1)α − βz−τ − T )−1f̂(z)− f̂(z), (4.4)

defines an operator Rα ∈ B(�p(Z;X)) given byRαf(n) = Tαf(n)−βUαf(n)−
f(n). Now, for each f ∈ �p(Z;X), we define the operator

Kαf(n) =

{
T (Mα ∗ hα ∗ f)(n), n ∈ N0,

0, otherwise.

Observe that the Z-transform of Mα ∗ hα exists by hypothesis (H)α and
definition of hα, and

(z2−α(z − 1)α − βz−τ − T )M̂α ∗ hα(z) = z2I.

Then, from the identity (4.3), we have that the discrete Fourier transform
of Kαf(n− 2) coincides with the discrete Fourier transform of Rαf(n) for
n ≥ 2. So, Kαf(n − 2) = Rαf(n) for each n ≥ 2 by uniqueness. On the
other hand, we define

Pαf(n) =

{
(M τ

α ∗ hα ∗ f)(n), n ∈ N0

0, otherwise.

Using again the identity (4.3), we obtain that the discrete Fourier transform
of Pαf(n− 2) coincides with the discrete Fourier transform of Uαf(n). So,
Pαf(n− 2) = Uαf(n) for each n ≥ 2 by uniqueness. This proves (i). Now,
we suppose that (i) is satisfied. We define the following operators

Cαf(n) =

{
Kαf(n), n ∈ N0

0, otherwise
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and

Dαf(n) =

{
Pαf(n), n ∈ N0

0, otherwise.

Then, Cα and Dα are bounded linear operators on �p(Z;X). Let Tαf(n) :=
Cαf(n − 2) + f(n), y Uαf(n) := Dαf(n − 2), n ∈ Z. Given z = eit, t ∈
(−π, π), we have that

T̂αf(z) =
∑
j∈Z

z−jTαf(j) =

∞∑
j=2

z−jCαf(j − 2) +
∑
j∈Z

z−jf(j)

= z−2
∞∑
j=0

z−jCαf(j) +
∑
j∈Z

z−jf(j) = z−2
∞∑
j=0

z−jCαf(j) + f̂(z).

By hypothesis (H)α, the Z-transform of Mα ∗ hα exists for |z| = 1, z 	= 1.
Finally, using the identity (4.3), we obtain

T̂αf(z) = z−2T (M̂α ∗ hα)(z)f̂ (z) + f̂(z)

= z−2Tz(z − (α− 1))(z2−α(z − 1)α − βz−τ − T )−1 z

z − (α− 1)
f̂(z)

= T (z2−α(z − 1)α − βz−τ − T )−1f̂(z) + f̂(z)

= (z2−α(z − 1)α − βz−τ )(z2−α(z − 1)α − βz−τ − T )−1f̂(z)

− f̂(z) + f̂(z) = (N(t)− βS(t))f̂(z),

where Mα is defined by

Mα(n) =

{
Mα(n), n ∈ N0

0, otherwise.

On the other hand,

Ûαf(z) = z−2
∞∑
j=0

z−jPα(j)f(j)

= z−2(M̂τ
α ∗ hα)(z)f̂ (z) = z−2z−τ (M̂α ∗ hα)f̂(z)

= z−2−τz(z − (α− 1))(z2−α(z − 1)α − βz−τ − T )−1 z

z − (α− 1)
f̂(z)

= z−τ (z2−α(z − 1)α − βz−τ − T )−1f̂(z) = S(t)f̂(z),

where Mτ
α is defined by Mτ

α(n) = Mα(n− τ).

Then, from Theorem 2.2, we conclude that (ii) holds. �

Remark 4.2. In the case of Hilbert spaces, the R-boundedness coin-
cides with boundedness. See e.g. [3]. As a consequence, condition (ii) of
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Theorem 4.1 can be replaced by the following equivalent assertion:

sup
|z|=1, z �=1

∥∥z2−α(z − 1)α(z2−α(z − 1)α − βz−τ − T )−1
∥∥ < ∞ and

sup
|z|=1, z �=1

∥∥z−τ (z2−α(z − 1)α − βz−τ − T )−1
∥∥ < ∞.

Remark 4.3. With the same proof and obvious modifications, the
theorem is also true when we consider a finite number of delays in the
equation (4.1).

We immediately obtain the following corollary (compare with [29]).

Corollary 4.1. If the hypothesis of Theorem 4.1 hold, then we have
u,Δαu, Tu ∈ �p(N0;X) and there exists a constant C > 0 (independent of
f ∈ �p(N0;X)) such that the following inequality holds

‖Δαu‖�p(N0;X) + ‖u‖�p(N0;X) + ‖Tu‖�p(N0;X) ≤ C‖f‖�p(N0;X).

5. Applications

Let us consider the following difference equation

x(n+ 3)− 2x(n+ 2) + qx(n+ 1) + rx(n) = f(n), (5.1)
where q, r ∈ R. This equation was studied in the homogeneous case by
Györi and Ladas in [21] and in [18, Section 5.1]. We study a particular
case of this equation with initial conditions x(0) = x(1) = x(2) = 0. Note
that this equation can be reformulated as follows

Δ2x(n) = (1− q)x(n)− rx(n− 1) + f(n− 1), (5.2)
with initial conditions x(−1) = x(0) = x(1) = 0. Note that equation (5.2)
can be posed into the scheme of (4.1) with α = 2, T = (1 − q)I, β = −r
and τ = 1. We first compute the family {Mα(n)}n≥−1 in order to obtain a
solution x of (5.2). Indeed, using the inverse formula of the Z-transform,
we get that

M2(n) =
1

2πi

∫
C
zn−1z(z − 1)((z − 1)2 + rz−1 − (1− q))−1dz

=
1

2πi

∫
C

zn+1(z − 1)

(z3 − 2z2 + qz + r)
dz

=
1

2πi

∫
C

zn+1(z − 1)

(z − λ1)(z − λ2)(z − λ3)
dz

=
(λn+2

1 − λn+1
1 )

(λ1 − λ2)(λ1 − λ3)
− (λn+2

2 − λn+1
2 )

(λ1 − λ2)(λ2 − λ3)
+

(λn+2
3 − λn+1

3 )

(λ1 − λ3)(λ2 − λ3)
,
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where C is a circle centered at the origin that encloses the roots λ1, λ2, λ3

of the equation z3 − 2z2 + qz + r = 0 in its interior.
It follows from the Schur-Cohn criterion (see [18, Theorem 5.1]) or the

Samuelson criterion (see for example [33]) that all these roots lie inside of
the unitary disc D if and only if |r−2| < 1+q and |q+2r| < 1−r2 which, in
turn, is equivalent to 1 < q < 2 and 1− q < r < −1 +

√
2− q. See Figure

1 below. Then, under this restriction on the parameters of equation (5.2),
we obtain that supn∈N |M2(n)| < ∞. That means that the first part of the
condition (H)2 hold. In particular, we also have z3 − 2z2 + qz + r 	= 0 for
|z| = 1 and consequently,

sup
|z|=1,z �=1

|(z − 1)2((z − 1)2 + rz−1 − (1− q))−1| < ∞,

and
sup

|z|=1,z �=1
|z−1((z − 1)2 + rz−1 − (1− q))−1| < ∞.

Therefore all the conditions given in Theorem 4.1 holds and we conclude
that whenever 1 < q < 2 and 1 − q < r < −1 +

√
2− q and f ∈ �p(N0),

there exists a unique u ∈ �p(N0) solving (5.2).

Figure 1. The sector |r − 2| < 1 + q and |q + 2r| < 1− r2

In order to handle fractional models, the following result will be useful.

Corollary 5.1. Let 1 < α ≤ 2, β ∈ R, τ ∈ N0. Let X be a Hilbert
space and T ∈ B(X) satisfying the following condition
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||T || < ωα,β,τ := min
|z|=1

|fα,β,τ (z)| < 1, where fα,β,τ (z) := z2−α(z−1)α−βz−τ .

Then equation (4.1) has maximal �p-regularity.

P r o o f. We first prove that T is the generator of an ατ -resolvent
sequence Mα(n) and the hypothesis (H)α is satisfied. Indeed, by hypothesis
and an application of the minimum principle, we obtain that fα,β,τ (z) ∈
ρ(T ) and

(fα,β,τ (z) − T )−1 =
∞∑
n=0

T n

(fα,β,τ (z))n+1
,

whenever |z| ≤ 1. Hence there exists a circle Γ centered at the origin of
radius R < 1 such that for any n ∈ N, n ≥ 2,

Mα(n) :=

⎧⎪⎨⎪⎩
1

2πi

∫
Γ
zn(z − (α− 1))

(
z2−α(z − 1)α − βz−τ − T

)−1
dz,

I, n = 0, 1
0, n = −τ, ..., 0,

defines an ατ -resolvent family. Observe that we also have

||(fα,β,τ (z)− T )−1|| ≤ 1

|fα,β,τ (z)| − ||T || <
1

ωα,β,τ − ||T || . (5.3)

As a consequence, for all n ∈ N, we have

||Mα(n)|| <
Rn+1(R+ |α− 1|)

ωα,β,τ − ||T || ,

and then supn∈N ||Mα(n)|| < ∞. This proves the claim. Moreover,

sup
|z|=1,z �=1

‖z1−α(z − 1)α(fα,β,τ (z)− T )−1‖ < ∞

and
sup

|z|=1,z �=1
‖z−τ (fα,β,τ (z)− T )−1‖ < ∞.

Then, part (ii) of Theorem 4.1 holds and we conclude that equation (4.1)
has maximal �p-regularity. �

Example 5.1. Motivated by the model given by (5.2) we consider the
fractional equation

Δαx(n) = (1− q)x(n)− rx(n− 1) + f(n− 1), 1 < α ≤ 2, (5.4)

with initial conditions x(−1) = x(0) = x(1) = 0. We illustrate the validity
of the condition in the previous corollary plotting the graph of the complex
function

fα,−r,1(z) = z2−α(z − 1)α + rz−1, |z| = 1,
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712 C. Leal, C. Lizama, M. Murillo-Arcila

for different values of 1 < α ≤ 2 and r ∈ R. Observe that given α and r,
there are cases where there exists a number q satisfying the hypothesis of
Corollary 5.1. See Figures 2 and 3 below. Moreover, the graphs show
that ωα,−r,1 → 0 as α → 1 for some values of r (for instance when r = 0.6).

- 0.5 0.5 1.0 1.5 2.0

- 3

- 2

- 1

1

2

3

Figure 2. α = 1.5 and r = 0.6. Observe that the mini-
mum value ω1.5,−0.6,1 is attained approximately at 0.5 and
consequently 0.5 < q < 1.5.

- 2 - 1 1 2 3 4 5

- 1.0

- 0.5

0.5

1.0

Figure 3. α = 1.5 and r = −2. Observe that the mini-
mum value ω1.5,−0.6,1 is attained approximately at 0.2 and
consequently 0.8 < q < 1.2.
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