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Abstract. We completely characterize the uniform well-posedness of the
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1. Introduction

Let A : D(A) → X and M : D(M) → X be closed linear operators defined on
a Banach space X satisfying D(A) ⊂ D(M). In this article we are concerned
with the following second-order degenerate equation

Mu′′(t) + Au(t) = 0, t ∈ [0, π], (1)

together with Dirichlet boundary conditions

Mu(0) = x0 and Mu(π) = xπ, (2)

where x0 and xπ are elements of X.

In case M = I, the identity operator in X, and A = −Δ the negative
Laplacian operator, (1) is the well-known wave equation. If M �= I the model
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(1) corresponds to a degenerate partial differential equation. Degenerate equa-
tions appear in many problems of physics and mechanics. For example, choos-
ing Mf(x) = xf(x) and Af(x) = f ′′(x) Eq. (1) corresponds to the Tricomi
equation [23]

xutt(t, x) + uxx(t, x) = 0.

Tricomi’s equation plays a relevant role in the study of transonic flow. A gener-
alization that considers Mf(x) = m(x)f(x) where m(x) represents the velocity
of the flow, which is positive at subsonic and negative at supersonic speeds, is
the so-called Chapligyn equation [17]. We note that the Chapligyn equation is
also relevant for the study the deformations of prestressed linear elastic solids.
A study of spatial decay estimates for the solutions of the Chapligyn equation
has been carried out by Quintanilla [21]. See also the reference [13] for a re-
cent overview. On the other hand, abstract degenerate differential equations
of second order in time in the form of (1) have been studied in a systematic
way by Favini and Yagi in the monograph [12, Chapter VI].

One of the most intriguing and difficult problems from a mathematical
point of view is to find necessary and sufficient conditions for well-posedness in
some sense, only in terms of the data and the structure of abstract differential
equations. In the case where M = I, this question for the initial value problem
corresponding to (1) (that is, with u(0) and u′(0) specified) was solved in
full generality a long time ago, and is well known as the starting point for
the theory of strongly continuous cosine families of operators [1, Chapter 3].
The M �= I case is much more subtle [12] and in many cases depends on the
geometrical structure of the Banach space under consideration.

Recently, G. Dore [11] studied the Dirichlet boundary value problem (1)–
(2) in case M = I and A a closed and densely defined linear operator in a
Banach space X. He gave necessary conditions for the uniform well-posedness
in terms of the resolvent operator of A. In particular, he proved that if the
Dirichlet boundary value problem (1)–(2) is uniformly well-posed then

(i) N
2 ⊂ ρ(A), the resolvent set of A,

(ii) supk∈N ‖k(k2I − A)−1‖ < ∞, and
(iii)

∑∞
k=1(k

2I − A)−1 converges in operator norm.
However, he did not give sufficient conditions for uniform well-posedness,

except in the situation where the operator A is bounded [11, Theorem 5.2].
Therefore, the following questions arise:

• Can we find sufficient conditions for uniform well-posedness of (1)–(2) in
the case M = I and A unbounded?.

• More generally, is it possible to find necessary and sufficient conditions
for uniform well-posedness of (1)–(2) in the case M �= I?.
The objective of this article is to give a positive answer to these open

questions. As a result, we are able to generalize Dore’s results, and gain new
insights into the behavior of the model (1) in the cases M = I and M �= I as
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well as a new characterization of the uniform well-posedness of the Dirichlet
boundary value problem (1)–(2) which is provided here for the first time.

We note that characterizations of well-posedness for abstract equations
like (1) have appeared previously in the literature. For example, Arendt and
Bu [2, Theorem 6.3] proved that in a Hilbert space H and M = I the following
conditions are equivalent
(a) For all f ∈Lp(0,π;H) there exists a unique u∈Lp(0,π;D(A))∩H2,p(0,π;H)

satisfying
{

u′′(t) + Au(t) = f(t), t ∈ [0, π],
u(0) = 0, u(π) = 0

(b) N
2 ⊂ ρ(A) and supk∈N ‖k2(k2I − A)−1‖ < ∞.

Analogously, they treat the Neumann problem in [2, Theorem 6.4]. Later, Bu
[7, Theorems 2.7 and 2.8] and Bu and Cai [8, Theorem 2.3] proved an analogous
result for the non homogenous problem (1) but with boundary conditions
u(0) = u(2π), (Mu′)(0) = (Mu′)(2π) that works under the conditions
(c) 0 ∈ ρ(A),
(d) N

2 ⊂ ρM (A), the M -resolvent of A, and

sup
k∈N

‖k(k2M − A)−1‖ < ∞ and sup
k∈N

‖k2M(k2M − A)−1‖ < ∞,

see also the references [3–5,9,15,18,19].
In this paper, for M = I case, we show that if X is a Hilbert space,

conditions (i), (ii) are also sufficient for uniform well-posedness, provided the
operator −A is the generator of a strongly continuous cosine operator fam-
ily and 0 ∈ ρ(A). We note that strongly continuous cosine families play a
significant role in the study of abstract Cauchy problems of second order [1].

For general M , we find in the context of a general Banach space a neces-
sary and sufficient condition for uniform well-posedness of (1)–(2) that requires
the above mentioned condition (d), plus a compatibility condition between the
operators A and M , but that in contrast to the case M = I, does not require
that A be a generator nor 0 ∈ ρ(A). It is notable that our characterization
is not trivial only for M �= I. Otherwise, the operator A must be bounded,
which resembles the above mentioned result of Dore [11].

2. Preliminaries

Let A and M be closed linear operators with domains D(A) and D(M) defined
in a Banach space X such that D(A) ⊆ D(M) and define the set M(D(A)) :=
{x ∈ X : My = x, for some y ∈ D(A)}. We introduce the following definition
of solution.

Definition 2.1. We call solution of Eq. (1) a function v : [0, π] → X such that
(1) v ∈ C2([0, π],D(M)) ∩ C([0, π],D(A));
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(2) for all t ∈ [0, π], Mv′′(t) + Av(t) = 0.
We call solution of problem (1)–(2) a solution v of Eq. (1) such that Mv(0) =
x0 and Mv(π) = xπ.

Obviously a solution of the problem with the condition (2) can exist only
if x0, xπ ∈ M(D(A)).

We introduce the notion of well-posedness as follows.

Definition 2.2. We say that problem (1)–(2) is uniformly well-posed if
(1) for all x0, xπ ∈ M(D(A)), problem (1)–(2) has solution;
(2) there exists C > 0 such that for any solution v of Eq. (1) we have

sup
t∈[0,π]

‖v(t)‖ ≤ C(‖Mv(0)‖ + ‖Mv(π)‖).

Remark 2.3. From (2) in Definition 2.2, it follows that if a solution exists, it
is unique.

For later use we recall from [11, Lemma 3.2] the following Lemma.

Lemma 2.4. The series of functions
∑∞

k=1
(−1)k+1

k sin(kt) converges pointwise
for t ∈ [0, π], the sequence of partial sums is uniformly bounded and

∞∑

k=1

(−1)k+1

k
sin(kt) =

{
1
2 t, if 0 ≤ t < π,

0, if t = π.

Analogously we have the following result [11, Lemma 5.1].

Lemma 2.5. The series of functions
∑∞

k=1
(−1)k+1

k3 sin(kt) converges uniformly
for t ∈ [0, π] and

2
π

∞∑

k=1

(−1)k+1

k3
sin(kt) =

π

6
t − 1

6π
t3.

3. Main Results

The following result characterizes the uniform well-posedness of Problem (1)–
(2) in terms of the existence of a one-parameter family of strongly continuous
operators that satisfy certain properties. In case M = I and if we further
assume that −A generates a cosine family, the family used here is formally
related to the associated sine family ( see [1, Section 3.15]).

Theorem 3.1. Let A and M be closed linear operators in a Banach space X
with D(A) ⊆ D(M) and M(D(A)) dense in X. Problem (1)–(2) is uniformly
well-posed if and only if there exists S : [0, π] → L(X) such that

(i) for all x ∈ M(D(A)), the function S(·)x is solution of Eq. (1);
(ii) for all x ∈ X the function S(·)x is continuous;
(iii) for all x ∈ X, S(0)x, S(π)x ∈ D(M) and MS(0)x = 0, MS(π)x = x;
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(iv) if v : [0, π] → X is a solution of Eq. (1), then

v(t) = S(t)Mv(π) + S(π − t)Mv(0).

Proof. Suppose that problem (1)–(2) is uniformly well-posed. Let x ∈ M(D(A))
and consider the problem

{
Mu′′(t) + Au(t) = 0, t ∈ [0, π],
Mu(0) = 0 and Mu(π) = x.

(3)

Then there exists a unique solution vx of Eq. (3) such that

vx ∈ C2([0, π],D(M)) ∩ C([0, π],D(A)).

For t ∈ [0, π] put S̃(t)x = vx(t). Then S̃(t) is a linear operator in X and,
because of the uniform well-posedness, there exists C > 0 such that ‖S̃(t)x‖ ≤
C‖x‖, for every x ∈ M(D(A)). Since M(D(A)) is dense in X, S̃(t) can be
extended to a bounded linear operator S(t) in X and ‖S(t)‖ ≤ C.

If x ∈ M(D(A)), then S(·)x = S̃(·)x = vx where vx is the unique solution
of the problem (3). So, S(·)x is a solution of Eq. (1). Therefore (i) is satisfied.

Since for all x ∈ M(D(A)) the function S(·)x is a solution of Eq. (1), it
follows that S(·)x is continuous for all x ∈ M(D(A)). Now, for x ∈ X, there
exist a sequence {xn}n∈N ⊆ M(D(A)) such that xn → x. The functions S(·)xn

are continuous. Since

‖S(t)x − S(t0)x‖ = ‖S(t)x − S(t)xn + S(t)xn − S(t0)xn + S(t0)xn − S(t0)x‖
≤ ‖S(t)x−S(t)xn‖+‖S(t)xn−S(t0)xn‖+‖S(t0)xn−S(t0)x‖
= ‖S(t)(x − xn)‖ + ‖S(t)xn − S(t0)xn‖ + ‖S(t0)(xn − x)‖
≤ C‖x − xn‖ + ‖S(t)xn − S(t0)xn‖ + C‖xn − x‖,

we see that S(·)x is continuous. Therefore (ii) is satisfied.
Given that for all x ∈ M(D(A)) the function S(·)x is solution of the

Eq. (3), then MS(0)x = 0 and MS(π)x = x for all x ∈ M(D(A)). Now,
for x ∈ X, there exists a sequence {xn}n∈N ⊆ M(D(A)) such that xn →
x. Since S(0) and S(π) are bounded operators, then S(0)xn → S(0)x and
S(π)xn → S(π)x. Since MS(0)xn → 0 and MS(π)xn → x and M is closed,
then S(0)x, S(π)x ∈ D(M) and MS(0)x = 0, MS(π)x = x. Therefore (iii) is
satisfied.

Let v be a solution of Eq. (1). Then it is a solution of the Dirichlet
problem {

Mu′′(t) + Au(t) = 0, t ∈ [0, π],
Mu(0) = Mv(0) and Mu(π) = Mv(π).

Since Mv(π), Mv(0) ∈ M(D(A)), by (i), the function t �→ S(t)Mv(π) +
S(π − t)Mv(0) is solution of the same problem, hence, by the uniqueness of
the solution, we have v(t) = S(t)Mv(π) + S(π − t)Mv(0). Therefore (iv) is
satisfied.
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Conversely, suppose that there exists S satisfying conditions (i) to (iv).
Since, for all x ∈ X, the function S(·)x is continuous, it is bounded, hence
by the Uniform Boundedness Principle, the set {S(t) : t ∈ [0, π]} is bounded.
Therefore, there exists C > 0 such that ‖S(t)‖ ≤ C, for all t ∈ [0, π].

For x0, xπ ∈ M(D(A)) define v : [0, π] → X by v(t) = S(t)xπ+S(π−t)x0.
From (i) we have that v ∈ C2([0, π],D(M)) ∩ C([0, π],D(A)) and for all t ∈
[0, π], Mu′′(t) + Au(t) = 0. By (iii) Mv(0) = x0 and Mv(π) = xπ. Hence
problem (1)–(2) has a solution.

Let v be a solution of Eq. (1). Then by (iv) v(t) = S(t)Mv(π) + S(π −
t)Mv(0). Since ‖S(t)‖ ≤ C, for all t ∈ [0, π], we have

‖v(t)‖ = ‖S(t)Mv(π) + S(π − t)Mv(0)‖
≤ ‖S(t)‖‖Mv(π)| + ‖S(π − t)‖‖Mv(0)‖
≤ C(‖Mv(π)‖ + ‖Mv(0)‖).

Hence problem (1)–(2) is uniformly well-posed. �

Remark 3.2. Note that if problem (1)–(2) is uniformly well-posed then, by
Theorem 3.1-(iii), M must have a bounded right inverse.

We define the M -resolvent set of A, ρM (A), by

ρM (A)={λ ∈ C : λM − A : D(A)→X is bijective and (λM − A)−1∈L(X)}
Thus, λ ∈ ρM (A) if and only if the linear operator (λM −A)−1 is a continuous
isomorphism from X onto D(A). Here, we consider D(A) and D(M) as normed
spaces equipped with their respective graph norms. These are Banach spaces
since the linear operators A and M are closed. Since D(A) ⊂ D(M), we have
M(λM − A)−1, A(λM − A)−1 ∈ L(X) by the Closed Graph Theorem and the
closedness of M and A. Moreover, ρM (A) is an open subset of C, the function
RM (λ) := (λM − A)−1 is analytic and d

dλRM (λ) = −RM (λ)MRM (λ). For a
proof, see [6, Lemma 3]. Note that ρI(A) = ρ(A), the resolvent set of A. Here,
I denotes the identity operator in X.

The following result establishes necessary conditions for well-posedness.

Theorem 3.3. Let A and M be closed linear operators defined in a Banach
space X. Assume that any of the following conditions holds:

(i) D(A) ⊆ D(M) and M(D(A)) = X,
(ii) M is bounded and M(D(A)) is dense in X.

Then if problem (1)–(2) is uniformly well-posed, we have k2 ∈ ρM (A) for all
k ∈ N and supk∈N ‖k(k2M − A)−1‖ < ∞.

Proof. Let S be the operator valued function whose existence is guaranteed
by Theorem 3.1 and C = supt∈[0,π] ‖S(t)‖. For k ∈ N, the operator k2M − A

is injective. Indeed if x ∈ D(A) is such that k2Mx = Ax, it is easy to check
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that the function t �→ sin(kt)x is solution of the problem
{

Mu′′(t) + Au(t) = 0, t ∈ [0, π],
Mu(0) = 0 and Mu(π) = 0.

Since zero is also a solution of this problem, by uniqueness we conclude that
x = 0. For k ∈ N and x ∈ X let

N(k)x :=
(−1)k+1

k

∫ π

0

sin(ks)S(s)xds.

Then N(k) defines a bounded linear operator on X for every k ∈ N. Moreover,

‖kN(k)x‖ ≤
∫ π

0

| sin(ks)|‖S(s)x‖ds ≤ C‖x‖
∫ π

0

| sin(ks)|ds = 2C‖x‖.

So, we obtain supk∈N ‖kN(k)‖ < ∞.
Let x ∈ M(D(A)). Since S(·)x ∈ D(A) and A is closed, then N(k)x ∈

D(A) and

AN(k)x =
(−1)k+1

k

∫ π

0

sin(ks)AS(s)xds

=
(−1)k

k

∫ π

0

sin(ks)MS′′(s)xds

= −x + k2MN(k)x.

In case (i) AN(k)x = −x+ k2MN(k)x for all x ∈ X = M(D(A)). In case (ii),
given x ∈ X, there exists {xn}n∈N ⊆ M(D(A)) such that xn → x. Since M
and N(k) are bounded, then

N(k)xn → N(k)x and AN(k)xn = −xn + k2MN(k)xn → −x + k2MN(k)x.

By the closedness of A, we have N(k)x ∈ D(A) and AN(k)x = −x+k2MN(k)x.
Hence, for all x ∈ X, (k2M − A)N(k)x = x.

In both cases AN(k)x = −x+k2MN(k)x for all x ∈ X. Therefore, N(k)
is the right inverse of (k2M − A). For x ∈ D(A), we have

(k2M − A)N(k)(k2M − A)x = (k2M − A)x.

Since (k2M − A) in injective, then N(k)(k2M − A)x = x. Hence, k2M − A is
invertible and N(k) = (k2M − A)−1. Therefore, k2 ∈ ρM (A) for all k ∈ N and
supk∈N ‖k(k2M − A)−1‖ < ∞. �

We remark that the necessary condition found in the above theorem, was
also considered in connection with second order operators of elliptic type by
Gorbachuk and Knyazyuk [14]. If M = I, then the operator −A and is named
π-positive [14] and implies that the sequence RN = 1

N

∑N−1
n=0

∑n
k=−n(k2−A)−1

is bounded in L(X), see [10, Proposition 2.3]. This observation, motivates the
following result that extends [11, Theorem 3.3] to M �= I.
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Theorem 3.4. Let A and M be closed linear operators in a Banach space X.
Assume that (i) or (ii) of Theorem 3.3 holds. If problem (1)–(2) is uniformly
well-posed, then the series

∑∞
k=1(k

2M − A)−1 converges in operator norm.
Moreover, if S(·) is the operator-valued function introduced in Theorem 3.3,
then

∞∑

k=1

(k2M − A)−1x =
1
2

∫ π

0

sS(s)xds, for all x ∈ X.

Proof. From the proof of Theorem 3.3 we know that for all k ∈ N, x ∈ X.

(k2M − A)−1x =
(−1)k+1

k

∫ π

0

sin(ks)S(s)xds

Then
∥
∥
∥
∥
∥

n∑

k=1

(k2M − A)−1x − 1
2

∫ π

0

tS(s)x

∥
∥
∥
∥
∥

≤
∫ π

0

∥
∥
∥
∥
∥

(
n∑

k=1

(−1)k+1

k
sin(ks) − 1

2
s

)

S(s)x

∥
∥
∥
∥
∥

ds

≤ C‖x‖
∫ π

0

∥
∥
∥
∥
∥

(
n∑

k=1

(−1)k+1

k
sin(ks) − 1

2
s

)∥
∥
∥
∥
∥

ds.

By Lemma 2.4 the series of functions
∑∞

k=1
(−1)k+1

k sin(kt) converges pointwise
to 1

2 t and the partial sums are uniformly bounded. Therefore, by the dominated
convergence theorem, the right hand side in the above inequality converges to
0 as n tends to ∞. �

We arrive at the main result of this article that completely characterize
the well-posedness of Dirichlet boundary value problem (1)–(2) under an ad-
ditional condition involving A and M. It generalizes [11, Theorem 5.2] to the
situation that A is unbounded and M �= I. In what follows we recall that an
operator B ∈ L(X) is a bounded right inverse of M if MBx = x for all x ∈ X.

A standard example is Mf(t) := f ′(t) and Bg(t) :=
∫ t

0
g(s)ds in X = C([0, 1]).

Theorem 3.5. Let A and M be closed linear operators in a Banach space X
such that D(A) ⊆ D(M) and M has a bounded right inverse B with B(X) :=
{y ∈ X : Bx = y, x ∈ X} ⊆ D(A). The following assertions are equivalent.

(a) Problem (1)–(2) is uniformly well-posed;
(b) N

2 ⊆ ρM (A), supk∈N ‖k(k2M − A)−1‖ < ∞ and supk∈N ‖k2M(k2M −
A)−1‖ < ∞.

Proof. First note that since B is a bounded right inverse of M and B(X) ⊆
D(A) ⊆ D(M), then M(D(A)) = X.
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Assume that problem (1)–(2) is uniformly well-posed, then by Theorem
3.3-(i) we have that N2 ⊆ ρM (A) and supk∈N ‖k(k2M −A)−1‖ < ∞. From the
proof of Theorem 3.3, we have that for k ∈ N and x ∈ X,

(k2M − A)−1x =
(−1)k+1

k

∫ π

0

sin(ks)S(s)xds.

Therefore, for x ∈ M(D(A)) = X, we have that S(·)x ∈ C2([0, π],D(M)) ∩
C([0, π],D(A)) and by integration by parts, we obtain

‖k2M(k2M − A)−1x‖ =
∥
∥
∥
∥(−1)k+1k

∫ π

0

sin(ks)MS(s)xds

∥
∥
∥
∥

=
∥
∥
∥
∥x − (−1)k+1

k

∫ π

0

sin(ks)MS′′(s)xds

∥
∥
∥
∥

≤ ‖x‖ + Cx.

So, supk∈N ‖k2M(k2M − A)−1x‖ < ∞ for every x ∈ X. Then by the Uniform
Boundedness Principle supk∈N ‖k2M(k2M − A)−1‖ < ∞.

Now we prove the converse. We will use Theorem 3.1. Since A is closed
and B is bounded, then AB is closed linear operator. Since B(X) ⊆ D(A),
then D(AB) = X. Now by the Closed Graph Theorem AB is bounded. Let
t ∈ [0, π] and x ∈ X. Define

S(t)x =
2
π

∞∑

k=1

(−1)k+1

k3
sin(kt)(k2M − A)−1(AB)2x

+
(

π

6
t − 1

6π
t3

)

B(AB)x +
t

π
Bx. (4)

By hypothesis (b), there exists a constant C > 0 such that

‖k(k2M − A)−1‖ ≤ C, k ∈ N. (5)

Then there exists a constant C ′ > 0 such that

‖S(t)x‖ ≤ 2
π

∞∑

k=1

1
k4

C‖AB‖2‖x‖ +
π2

9
√

3
‖B‖‖AB‖‖x‖ +

t

π
‖B‖‖x‖ ≤ C ′‖x‖.

This estimate shows that the series (4) is uniformly convergent. Hence S(t)x is
well defined, S(t) ∈ L(X) and the function S(·)x is continuous. Hence Theorem
3.1-(ii) is satisfied.

Now, observe that S(0)x ∈ D(M) and MS(0)x = 0 because S(0)x = 0.
Since M is closed and for any x ∈ X we have (k2 M − A)−1(AB)2x ∈ D(A) ⊆
D(M) and B(AB)x,Bx ∈ B(X) ⊆ D(A) ⊆ D(M), we obtain that S(t)x ∈
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D(A) ⊆ D(M) for any t ≥ 0 and

MS(t)x =
2
π

∞∑

k=1

(−1)k+1

k3
sin(kt)M(k2M − A)−1(AB)2x

+
(

π

6
t − 1

6π
t3

)

(AB)x +
t

π
x.

where we have used the fact that MB = I. In particular, for each x ∈ X
we have S(π)x ∈ D(M) and MS(π)x = x. Therefore, Theorem 3.1-(iii) is
satisfied.

From the estimate (5) we also obtain that the series

S′(t)x =
2
π

∞∑

k=1

(−1)k+1

k2
cos(kt)(k2M − A)−1(AB)2x

+
(

π

6
− 1

2π
t2

)

B(AB)x +
1
π

Bx,

S′′(t)x =
2
π

∞∑

k=1

(−1)k

k
sin(kt)(k2M − A)−1(AB)2x − 1

π
tB(AB)x,

are uniformly convergent. A similar argument as for S(t) shows that S′(t)x,
S′′(t)x ∈ D(M) for any t ≥ 0 and x ∈ X.

Since by hypothesis MB = I and the set {k2 M(k2 M − A)−1}k∈N is
uniformly bounded, we obtain that the series

MS′(t)x =
2
π

∞∑

k=1

(−1)k+1

k2
cos(kt)M(k2M − A)−1(AB)2x

+
(

π

6
− 1

2π
t2

)

(AB)x +
1
π

x,

MS′′(t)x =
2
π

∞∑

k=1

(−1)k

k
sin(kt)M(k2M − A)−1(AB)2x − 1

π
t(AB)x,

are uniformly convergent. Finally, the identity A(k2M − A)−1 = −I + k2M
(k2M − A)−1 shows that the set {A(k2M − A)−1}k∈N is uniformly bounded
and, since S(t)x ∈ D(A), we conclude that the series

AS(t)x =
2
π

∞∑

k=1

(−1)k+1

k3
sin(kt)A(k2M − A)−1(AB)2x

+
(

π

6
t − 1

6π
t3

)

(AB)2x +
t

π
ABx,
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is uniformly convergent too. Hence S(·)x ∈ C2([0, π],D(M)) ∩ C([0, π],D(A))
and, for all t ∈ [0, π],

MS′′(t)x + AS(t)x

=
2
π

∞∑

k=1

(−1)k

k3
sin(kt)k2M(k2M − A)−1(AB)2x − t

π
ABx

+
2
π

∞∑

k=1

(−1)k+1

k3
sin(kt)A(k2M − A)−1(AB)2x

+
(

π

6
t − 1

6π
t3

)

(AB)2x +
t

π
ABx

=
2
π

∞∑

k=1

(−1)k

k3
sin(kt)(AB)2x +

(
π

6
t − 1

6π
t3

)

(AB)2x = 0,

where the last equality follows from Lemma 2.5. Therefore, Theorem 3.1-(i) is
satisfied.

To prove Theorem 3.1-(iv) we first show the uniqueness of the solution
of problem (1)–(2). Let v ∈ C2([0, π],D(M))∩C([0, π],D(A)) be a solution of
the problem

{
Mu′′(t) + Au(t) = 0, t ∈ [0, π],
Mu(0) = 0 and Mu(π) = 0.

For k ∈ N, we define v(k) :=
∫ π

0

sin(ks)v(s)ds. Then

Av(k) =
∫ π

0

sin(ks)Av(s)ds = −
∫ π

0

sin(ks)Mv′′(s)ds = k2Mv(k).

Hence (k2M − A)−1v(k) = 0. Since (k2M − A)−1 is injective, this proves that
v(k) = 0. Therefore all the Fourier coefficients of the 2π-periodic extension of
the odd extension of v are null, hence v(t) = 0 for a.e. t. Since v is continuous,
v(t) = 0 for all t.

The function v(t) = S(t)Mv(π) + S(π − t)Mv(0) is solution of problem
(1), but the solution is unique, hence every solution of problem (1) coincides
with that function. Therefore Theorem 3.1-(iv) is satisfied. �
Remark 3.6. When M = I the identity k(k2 − A)−1 = 1

kk2(k2 − A)−1, k ∈
N shows that we need only the assumption supk∈N ‖k2(k2 − A)−1‖ < ∞.
Moreover, in such case we have B(X) = X which implies that D(A) = X and
hence A must be bounded.

4. Case M = I : A Spectral Characterization

Before we give our main result of this section, we recall the following concepts
about cosine operator functions: if −A generates a strongly continuous cosine
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operator function Cos(t), then by definition, Sin(t) :=
∫ t

0

Cos(s)ds is the

associated sine family. In this case there exists a unique Banach space V such

that D(A) ↪→ V ↪→ X and the operator matrix
(

0 I
−A 0

)

with domain D(A)×V

generates a C0-semigroup in V ×X. The space V ×X is called the phase space
associated with −A, see [1, Section 3.14].

Our main result of this section provides a converse to [11, Theorem 3.1]
on Hilbert spaces when −A is the generator of a cosine function.

Theorem 4.1. Let H be a Hilbert space and suppose that −A generates a cosine
function {Cos(t)}t∈R on H and 0 ∈ ρ(A). Then the following assertions are
equivalent:
(a) The problem

{
u′′(t) + Au(t) = 0, t ∈ (0, π),
u(0) = x0, u(π) = xπ.

(6)

is uniformly well-posed.
(b) {k2 : k ∈ N} ∪ {0} ⊆ ρ(A) and supk∈N ‖kR(k2;A)‖ < ∞.

Proof. (a) implies (b) follows from [11, Theorem 3.1] and the hypothesis 0 ∈
ρ(A). Suppose (b) holds. Since H is a Hilbert space, by [10, Theorem 3.2] we
conclude that 1 ∈ ρ(Cos(2π)).

Now, by [10, Theorem 2.1, (c)], (see also [20]), we have {k2 : k ∈ N} ∪
{0} ⊆ ρ(A) and

P := lim
N→∞

RN , Q := lim
N→∞

SN

define bounded operators in X, where

RN :=
1
N

N−1∑

n=0

n∑

k=−n

R(−k2;−A) (7)

and

SN := − 1
N

N−1∑

n=0

n∑

k=−n

AR(−k2;−A).

Moreover, the proof of [10, Theorem 2.1], formulas (10) and (11) shows that

RN (1 − Cos(2π)) =
1
N

N−1∑

n=0

n∑

k=−n

∫ 2π

0

e−iksSin(s)ds

and

SN (1 − Cos(2π)) =
1
N

N−1∑

n=0

n∑

k=−n

∫ 2π

0

e−iks (s − 2π)Cos(s) − Sin(s)
2

ds,
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respectively. By Fejér’s theorem (see e.g. [10, Theorem 1.1]), we obtain

P (I − Cos(2π)) = πSin(2π),

and

Q(I − Cos(2π)) = −2π2I + πSin(2π)
2

.

It follows that I = 1
2π2 (2Q−P )(I −Cos(2π)). From the cosine identity Cos(t+

s) − Cos(t − s) = −2ASin(t)Sin(s) taking t = s = π we obtain that (I −
Cos(2π)) = 2ASin(π)Sin(π). Thus,

I =
1
π2

(2Q − P )ASin(π)Sin(π).

From this, it follows that Sin(π) is injective.
Since Sin(π) is a bounded operator which commutes with RN and SN ,

we conclude that it also commutes with P and Q. Let x ∈ V . Then by [22,
Proposition 2.2, formula (2.18)] or [1, Theorem 3.4.11], we have that Sin(π)x ∈
D(A) and

x =
1
π2

(2Q − P )Sin(π)ASin(π)x = Sin(π)
1
π2

(2Q − P )ASin(π)x.

This proves that Sin(π) : X → V is onto. Then, as a consequence of the
open mapping theorem, we conclude that the operator Sin−1(π) : V → X
is bounded. Now, recalling from [22, Proposition 2.2, formula (2.17)] or [1,
Theorem 3.14.11] that Sin(s)x ∈ V for all x ∈ X and all s ≥ 0, we conclude
that Sin(π)−1Sin(s) are well defined and bounded operators in X for all s ∈
[0, π]. Then the function u defined by

u(t) = Sin(π)−1Sin(t)xπ + Sin(π)−1Sin(π − t)x0. (8)

is the unique solution of (6) and the result follows. �

We end this article with the following examples showing how our abstract
results apply.

Example 1. Consider the problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂3u

∂x∂t2
(t, x) =

∂u

∂x
(t, x), for all (t, x) ∈ [0, π] × [0, 1],

∂u

∂x
(0, x) = ϕ0(x) and

∂

∂x
u(π, x) = ϕπ(x) for all x ∈ [0, 1],

u(t, 0) = 0 for all t ∈ [0, π]

(9)

where ϕ0, ϕπ ∈ X := C([0, 1]).

Let M := − ∂

∂x
with D(M) = C1([0, 1]) and A :=

∂

∂x
with D(A) = {u ∈

C1([0, 1]) : u(0) = 0}. Note that A and M are closed linear operators in X
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such that D(A) ⊆ D(M). Define Bf(x) = − ∫ x

0
f(s)ds then B ∈ L(X) is the

right inverse of M and clearly B(X) = D(A).

A computation shows that (λM − A)−1f =
1

λ + 1
Bf for all λ ∈ C\{−1}

and f ∈ C([0, 1]). Therefore, we have that N
2 ⊆ ρM (A) and

supk∈N ‖k(k2M − A)−1‖ ≤ supk∈N sup
‖f‖≤1

sup
x∈[0,1]

| k

k2 + 1
Bf(x)|

≤ sup
‖f‖≤1

sup
x∈[0,1]

|Bf(x)|

≤ sup
‖f‖≤1

‖f‖ ≤ 1,

as well as supk∈N ‖k2 M(k2 M − A)−1‖ ≤ 1. Therefore, by Theorem 3.5, the
problem (9) is uniformly well-posed. Furthermore, using formula (4) we obtain
that

S(t)f(x) =

[
2
π

∞∑

k=1

(−1)k

k3(k2 + 1)
sin(kt) +

(
π

6
t − 1

6π
t3

)

− t

π

] ∫ x

0

f(s)ds,

and that the function

u(t, x) = S(t)ϕπ(x) + S(π − t)ϕ0(x), (t, x) ∈ [0, π] × [0, 1],

is the unique solution of problem (9). In particular, observe that u(0, x) =
S(π)ϕ0(x) = − ∫ x

0
ϕ0(s)ds and u(π, x) = S(π)ϕπ(x) = − ∫ x

0
ϕπ(s)ds imply

Mu(0, x) = − ∂
∂x (u(0, x)) = ϕ0(x) and Mu(π, x) = − ∂

∂x (u(π, x)) = ϕπ(x),
respectively.

Example 2. Let X = l2(N,C). Choose α such that 0 < α < 1 and let A be the
operator in X defined by

D(A) = {x = (xn)n∈N : (n2xn)n∈N ∈ X}, (Ax)n = (n − α)2xn.

Define B on X by

D(B) = {x = (xn)n∈N : (nxn)n∈N ∈ X}, (Bx)n = i(n − α)xn.

Then B generates the C0-group U given by U(t)x = (ei(n−α)txn)n∈N. There-
fore, by [1, Corollary 3.16.8.] and [1, Example 3.14.15.], we have that B2 = −A
generates the cosine function Cos(t)x = (cos((n − α)t)xn)n∈N. The associated

sine operator function is given by: Sin(t)x =
(

sin((n − α)t)
n − α

xn

)

n∈N

. Note that

Sin(π)x =
(

sin((n − α)π)
n − α

xn

)

n∈N

. Therefore Sin−1(π)x =
(

n − α

sin((n − α)π)
xn

)

n∈N

. If k ∈ N0 we can check that k2 − A is invertible

and, for all x ∈ X, n ∈ N, we have ((k2I − A)−1x)n =
xn

k2 − (n − α)2
.



A Characterization of Uniform Well Posedness Page 15 of 17   167 

Recall that for a multiplication operator T on l2(N) given by Ten =
anen, n ∈ N (where (an)n∈N ∈ l∞(N)), the norm of T is given by ‖T‖ =
‖(an)‖l∞(N). Therefore, for each k ∈ N, we obtain after a computation

‖k(k2 − A)−1‖ = supn∈N

k

|k2 − (n − α)2| ≤ max
{

1
α(2 − α)

,
1

2(1 − α)

}

.

Thus, we have show that {k2 : k ∈ N}∪{0} ⊆ ρ(A) and supk∈N ‖k(k2−A)−1‖ <
∞. Therefore, by Theorem 4.1, we have that the semidiscrete problem

⎧
⎪⎪⎨

⎪⎪⎩

∂2u

∂t2
(t, n) + (n − α)2u(t, n) = 0, t ∈ (0, π), n ∈ N,

u(0, n) = x0(n), u(π, n) = xπ(n),

is uniformly well-posed. Moreover, the unique solution is given by

u(t, n) = Sin−1(π)Sin(t)xπ(n) + Sin−1(π)Sin(π − t)x0(n)

=
sin((n − α)t)
sin((n − α)π)

xπ(n) +
sin((n − α)(π − t))

sin((n − α)π)
x0(n), t ∈ (0, π), n∈N.
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