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ABSTRACT

We utilize a new definition for the fractional delta operator and prove that

it is equivalent by translation to the more commonly used operator. By

means of the convolution operation we demonstrate that this new operator

is strongly connected to the positivity, monotonicity, and convexity of the

functions on which it operates. We also analyze the case of compositions

of discrete fractional operators. Finally, since the operator we study here

is translationally related to the more commonly used discrete fractional

operators, we are able to establish many new results for all types of dis-

crete fractional differences, and we explicitly demonstrate that our results

improve all known existing results in the literature.
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1. Introduction

In recent years the notion of a “discrete fractional calculus” has been de-

veloped as a counterpart to the classical integer-order calculus. Using the

notation

Na := {a, a+ 1, a+ 2, . . . },

for some a ∈ R, recall that given a function f : Na → R the first-order forward

(or delta) difference of f at t ∈ Na, denoted (∆f)(t), is defined by

(∆f)(t) := f(t+ 1)− f(t).

Then one may define iteratively the higher order differences ∆n, for n ∈ N, by

writing

(∆nf)(t) := (∆ ◦∆n−1f)(t).

By contrast, a fractional forward difference of order α > 0 may be defined by

(see Gray and Zhang [35] or Atici and Eloe [11, 12, 13])

(1.1) (∆ν
af)(t) :=

1

Γ(−ν)

t+ν∑

s=a

(t− s− 1)−ν−1f(s), t ∈ Na+N−ν ,

where N ∈ N1 is the unique integer satisfying N − 1 < ν < N , and the map

t 7→ tν is defined by

tν :=
Γ(t+ 1)

Γ(t+ 1− ν)
.

We observe that the operator f 7→ ∆ν
af defined by (1.1) is nonlocal since the

quantity ∆ν
af(t) involves a linear combination of the collection {f(s)}t+ν

s=a. Due

to the nonlocal nature of the fractional difference operator, analyzing its qual-

itative properties remains a challenging avenue of study. For example, the

relationship between the sign of (∆ν
af)(t) and the monotonicity or convexity

of f is far more complicated than when ν is an integer.

Recently, Lizama [44] proposed an alternative definition to (1.1) by setting

(1.2) (∆αf)(n) := ∆N

[ n∑

j=0

kN−α(n− j)f(j)

]

,
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where N − 1 < α < N , N ∈ N, and the kernel n 7→ kα(n) is defined by

kα(n) :=
Γ(α+ n)

Γ(α)Γ(n+ 1)
.

It turns out that (1.2) behaves extremely nicely with respect to convolution

since, as explained in Section 2, (1.2) can be recast as

∆N (kα ∗ f)(n),

where ∗ is the discrete convolution operator. The definition (1.2) has been used

in some recent papers that opened new lines of research: maximal regularity

characterizations for abstract fractional difference equations in Lebesgue spaces

of sequences [43, 45, 46, 42, 47, 41]; existence and uniqueness of qualitative

properties of solutions for abstract fractional difference equations [2, 8]; exis-

tence and uniqueness of solutions for nonlinear fractional difference equations

in the abstract setting [48, 36]; and generalized Césaro sums and their interplay

with algebra homomorphisms and other subjects of interest in harmonic and

functional analysis [4, 1, 3]. However, it has not been used to study either the

monotonicity or convexity of the function f .

While definitions (1.1) and (1.2) appear to be somewhat dissimilar, in Sec-

tion 4 we prove that definitions (1.1) and (1.2) are strongly related by a sort-of

translation property, which is captured by the fact that the diagram below is

commutative.

s(N0;R) s(N0;R)

s(Na;R) s(Na+1−α;R)

∆α

τa

∆α

a

τa+1−α

Since the diagram commutes this allows us to deduce results about the opera-

tor ∆α and then readily deduce the corresponding property for the operator ∆α
a .

We call this property “transference” since by the commutative diagram above

we are able literally to transfer properties about ∆α to those about ∆α
a . In this

sense, theorems that we are able to deduce regarding the new operator ∆α may

be readily translated into theorems regarding the old operator ∆α
a .

This notion of transference is of deep importance, as we demonstrate in this

article, since due to the fact that Lizama’s definition (1.2) for the fractional

difference is easily realizable as a convolution of kα with f , we can use the simple

operational properties of ∗ in order to produce elegant and straightforward

calculations involving ∆α. Succinctly, our typical plan of attack, which we are
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able to repeat again and again in a variety of contexts (see Sections 5, 6, and 7),

is as follows.

(1) We consider a question regarding the entire class of discrete fractional

operators—for example, whether there is a connection between the sign

of the operator when 1 < α < 2 and the monotonicity of the function

f on which it acts.

(2) We use the properties of convolution together with definition (1.2) in

order to answer our question in a computationally clean and elegant

manner—something that would be quite difficult if we dealt with defi-

nition (1.1) directly.

(3) Finally, by the property of transference and the commutative diagram

above we translate the result in the language of the operator ∆α to the

language of the operator ∆α
a , thereby attaining a result that may have

been very difficult to deduce directly from (1.1).

The power of transference is, therefore, that by using the simple properties of

convolution, we can obtain a result about ∆α, a result that would be difficult to

deduce by using the original definition (1.1) directly, and then by transference

obtain the corresponding result for the operator ∆α
a . In this sense, the inherent

complexity of (1.1) is avoided.

As already intimated, one of our main goals is to understand more clearly

the connections between the sign of (∆αf)(t) and either the positivity, mono-

tonicity, or convexity of f . We are especially interested in the relationship when

we consider sequential fractional differences—that is, compositions of fractional

differences in a particular order such as ∆β ◦ ∆α with the orders α and β in

a particular range; these were first considered by Goodrich [25] in the context

of a boundary value problem. As we will explain momentarily, discrete sequen-

tial fractional differences display particularly complex qualitative behavior. By

great contrast, in the integer-order setting the order of composition is irrelevant

since the delta operators are identical and of integer order—and, especially, they

commute in the sense that

∆m ◦∆n ≡ ∆n ◦∆m

for all m, n ∈ N. Moreover, there is a straightforward connection between

the sign of (∆f)(t) and of (∆2f)(t) and, respectively, the monotonicity and

convexity of the function f—see, in the case of convexity, the article by Atici

and Yaldız [15] for more details.
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When considering a fractional-order forward difference, however, the simplic-

ity of the integer-order setting vanishes. More specifically, in recent papers by

Atici and Uyanik [14], Baoguo et al. [16, 17], Dahal and Goodrich [19, 20, 21],

Goodrich [26, 29, 30, 31, 32], and Jia et al. [38, 39] various connections between

the sign of an appropriate discrete fractional operator, the corresponding mono-

tonicity and convexity of f was considered—see also the survey article by Erbe

et al. [22]. In particular, it has been shown that the condition ∆ν
af(t) ≥ 0,

in case ν ∈ (1, 2), is not sufficient to guarantee the monotonicity of f on its

domain; this is in great contrast to the integer-order case. Likewise the condi-

tion ∆ν
af(t) ≥ 0, in case ν ∈ (2, 3), is not sufficient to guarantee the convexity

of f on its domain, and this also contrasts greatly with the integer-order setting.

In addition, the qualitative properties of discrete fractional operators can be

studied for their mathematical interest, and, indeed, the case of sequential op-

erators is particularly interesting and has only been recently considered. Not

only is this construction of potential interest since in, say, the sequential oper-

ator ∆ν ◦ ∆µ, the number µ does not necessarily equal the number ν (again,

unlike in the integer-order case), it is also of interest due to the following result

of Holm [37], which shows us that discrete fractional operators are, in general,

noncommutative.

Theorem 1.1: Let f :Na→R be given and suppose ν, µ > 0, with N−1<ν≤N

and M − 1 < µ ≤ M , where M , N ∈ N1. Then for t ∈ Na+M−µ+N−ν it holds

that

(1.3)

∆ν
a+M−µ∆

µ
af(t)

=∆ν+µ
a f(t)−

M−1∑

j=0

h−ν−M+j(t−M + µ, a)∆j−M+µ
a f(a+M − µ),

where N − 1 < ν < N. If ν = N , then (1.3) simplifies to

∆ν
a+M−µ∆

µ
af(t) = ∆ν+µ

a f(t), t ∈ Na+M−µ.

In particular, this renders reduction of the order of fractional difference equa-

tions impossible.

An interesting and surprising aspect of the sequential case is that in the results

obtained so far the type of result obtained seems to depend on the specific choice

of µ and ν. To see what is meant by this consider the following result, which

can be found in [32, Theorem 1.1, Corollary 1.2].
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Theorem 1.2: Consider the following conditions:

(1) f(a) ≥ 0,

(2) ∆f(a) ≥ 0,

(3) ∆ν
1+a−µ∆

µ
af(t) ≥ 0,

for each t∈N2+a−µ−ν := {2 + a− µ− ν, 3 + a− µ− ν, . . . }.

In addition, define the sets M , R1, R2 ⊆ [0, 1]× [0, 1] as follows.

M := {(µ, ν) ∈ [0, 1]× [0, 1] : 1 < µ+ ν < 2},

R1 :=
{

(µ, ν) ∈ [0, 1]× [0, 1] : ν ≥ −
1

2
(µ− 2)

}

,

R2 :=
{

(µ, ν) ∈ [0, 1]× [0, 1] : ν < −
1

2
(µ− 2)−

1

2
µ2

}

.

(1) Suppose that f : Na → R and that each of conditions (1)–(3) above

holds. If (µ, ν) ∈ M ∩ R1, then f is monotone increasing on Na—i.e.,

∆f(t) ≥ 0 for each t ∈ Na.

(2) Assume that conditions (1)–(3) above hold. Then for each pair

(µ, ν) ∈ M ∩ R2 there exists a function f : Na → R such that f is

not monotone increasing on Na—i.e., there exists a point t0 ∈ Na+1

such that ∆f(t0)<0.

Theorem 1.2 demonstrates that with regard to condition (1)–(3), these condi-

tions are sufficient to imply the monotonicity of f only if the parameters (µ, ν)

live in a specific region of the parameter space [0, 1]× [0, 1]. More specifically,

when (µ, ν) ∈ M ∩ R1 conditions (1)–(3) are sufficient to deduce the mono-

tonicity of f , whereas when (µ, ν) ∈ M \ R1 conditions (1)–(3) are insufficient

to deduce the monotone behavior of f . This is represented in the drawing below

by, respectively, the dark grey and light grey regions.

0.5 1

0.5

1

M ∩ R1

M \ R1

µ

ν



Vol. 236, 2020 TRANSFERENCE PRINCIPLE FOR NONLOCAL OPERATORS 539

Thus, with respect to the definition of the discrete fractional difference as given

by (1.1) we see that the discrete sequential difference exhibits a complexity that

appears to be absent in the non-sequential case. For additional results, similar

to Theorem 1.2, in the sequential setting, we direct the reader to the papers

[21, 29, 30, 31, 32].

In this paper we want to give a qualitative and quantitative jump in this

investigation into the connection between the sign of an appropriate fractional

difference operator and its subsequent relationship to monotonicity and convex-

ity. Indeed, in contrast to the previously mentioned references, in this work we

take a different approach, which yields new results and insights. In fact, there

are a couple of novelties to the work we pursue in this paper.

First of all, and as already mentioned, here we consider a newer defini-

tion (1.2) for the fractional difference, which differs from the more extensively

used definition in (1.1). As we have already explained at the beginning of this

section, this newer definition involves an appropriate discrete convolution, and

it has some appealing properties, which we exploit in this paper. We are not

aware of any papers that treat monotonicity and convexity results (either se-

quential or non-sequential) for this new definition. Consequently, in light of

the burgeoning literature for definition (1.1), it seems interesting to see what

changes, if any, are encountered when trying to transfer results, such as The-

orem 1.1, to this new setting. Due to the fact that we do not directly use

definition (1.1) here, the proofs of our monotonicity and convexity results are

quite different than those given in other papers. Hence, there is, we believe,

interest in not only the results we produce but also the proof methodology.

Second, regarding the specific results we provide here we note that they are,

in many cases, cleaner. For example, as will be seen in Sections 5–7, our re-

sults apply on the full range of the parameter space—this is in contrast to the

situation described earlier in this section regarding the existing results for def-

inition (1.1). This reason for this improvement is a consequence of our novel

proof methodology yielding slightly different hypotheses than those that have

been previously used. So, the method of proof introduced in this paper yields

better insight into the range of results one can recover and, more precisely, the

relationship between sequential discrete fractional operators and monotonicity

and convexity.
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Finally, we would like to mention also that one important task that arises in

the study of fractional difference equations of the form

∆ν
au(n) = f(n+ a+N − ν, u(n+ a+N − ν)), n ∈ N0, N − 1 < ν < N,

is to understand how properties on the forcing term f and initial conditions

of the equation affect the qualitative properties of the solution u, whenever it

exists. Indeed, there are many papers in the literature that analyze precisely

this type of problem in the context of both initial and boundary value problems.

So, a potential application of the results we present here is to the theory of

fractional difference equations as well as any discrete fractional models that

involve difference equations.

We conclude by mentioning that, in addition to the references already men-

tioned, there exists now a wide and increasing literature in the discrete fractional

calculus. We do not attempt to give an exhaustive accounting here, but wish

to mention that there are many other active lines of research presently being

pursued. For example, much work has been completed in the area of boundary

value problems—see, for example, papers by Ferreira [24], Goodrich [27], Lv,

Gong and Chen [49], Sitthiwirattham, Tariboon and Ntouyas [51] and Sitthi-

wirattham [50]. In addition, many papers have provided an analysis of various

abstract properties of discrete fractional operators—see, for example, the papers

by Abdeljawad [5, 6], Anastassiou [9], Atici and Acar [10], Bastos, Mozyrska

and Torres [18], Ferreira [23], Lizama [43], Lizama and Murillo-Arcila [45], and

Xu and Zhang [52]. All in all, there no exist many interesting research direc-

tions as concerns the discrete fractional calculus, and we hope that this work

will continue to further this research, especially as concerns the relatively new

definition of the fractional difference that we employ here.

2. Preliminaries

In this section we collect some preliminary results that will be used through-

out the paper. For additional background on the discrete fractional calculus

and related topics we direct the interested reader to the recent monograph by

Goodrich and Peterson [33].

For any α ∈ C we define

kα(n) :=
α(α + 1) · · · (α+ n− 1)

n!
, n ∈ N1
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and

kα(0) := 1.

In case α = 1 we denote k1(n) ≡ k(n). For α ∈ C \ {0,−1,−2, . . .}, we have

(2.1) kα(j) =
Γ(α+ j)

Γ(α)Γ(j + 1)
=

(
j + α− 1

α− 1

)

= (−1)n
(
−α

j

)

, j ∈ N0.

Remark 2.1: We note that the kernels kα(j) have appeared in the literature in

connection with summability of Fourier series [53, Chapter 3] among others. It

plays the same role that the kernel

gβ(t) :=
tβ−1

Γ(β)
, β > 0

plays in the continuous case. This connection is reinforced by the fact that the

following identity holds

kα(n) =

∫ ∞

0

pn(t)gα(t)dt,

where

pn(t) := e−t t
n

n!
is the Poisson distribution; see [44, Example 3.3]. The integral on the right hand

side is named the Poisson transformation of gα and was defined in [44]. Some

important properties of the kernels kα(j) are described in the next section.

Let a ∈ R be given. In what follows we denote by s(Na;R) the vectorial space

that consists of all sequences f : Na → R. The definition of the α-th fractional

sum on the set N0 is given by:

Definition 2.2: For each α > 0 and f ∈ s(N0;R), we define the fractional sum

of order α as follows:

∆−αf(n) :=

n∑

j=0

kα(n− j)f(j), n ∈ N0.

For example, in case α = 1 we have k1(j) ≡ 1 for all j ∈ N0 and, hence,

∆−1f(n) =
∑n

j=0 f(j), n ∈ N0. More generally, for α = m ∈ N we have

∆−mf(n) =
n∑

j=0

(n− j +m− 1)!

(m− 1)!(n− j)!
f(j),

for all n ∈ N0.
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Definition 2.2 corresponds to the definition of the nabla fractional sum oper-

ator, ∇−α
a , due to Atici and Eloe, in a very special case (consider [12, Definition

(2)] or [11, Definition (2.1)] with a = 0). In such a case, the definition of the

operator

∇−α
0 ≡ ∆−α

admits a convolutional form that turns out to be more flexible and appropriate

for mathematical analysis. This special case of the nabla operator was high-

lighted by Lizama in [44] and used, for instance, by Abad́ıas et al. in [4] where

the algebraic structure of Cesáro sums and their relationship with the theory of

fractional sums and fractional semigroups of operators are investigated. In such

paper it is shown how the connection provides new insight into the properties

of Cesáro sums and their interplay with algebra homomorphisms. For further

information on this line of research see the work of Abad́ıas [1], Abadias and

Miana [3] and Lizama [43, 48, 45, 47]. Historically, we note that by editorial

delay in the publication, the paper [44] appeared after the above mentioned

references.

Given a ∈ R, we define the translation (by a ∈ R) operator

τa : s(Na;R) → s(N0;R)

by

(2.2) τaf(n) := f(a+ n), n ∈ N0.

Note that

τ−1
a = τ−a and τa+b = τa ◦ τb = τb ◦ τa.

We also recall that the finite convolution ∗ of two sequences f, g ∈ s(N0;R) is

defined by

(f ∗ g)(n) :=
n∑

j=0

f(n− j)g(j), n ∈ N0.

Therefore, by definition, we have

∆−αf(n) = (kα ∗ f)(n), n ∈ N0,

where the convolution operator ∗ enjoys algebraic properties like commutativity

and associativity, which will be very useful to simplify and better understand

the proof of some results. In this context, a very useful result is the following.
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Lemma 2.3: Let f, g ∈ s(N0;R) be sequences. Then for each p = 1, 2, . . . we

have

(f ∗ τpg)(n) = τp(f ∗ g)(n)−

p−1
∑

j=0

τpf(n− j)g(j).

In particular, for p = 1 we have

(f ∗ τ1g)(n) = (f ∗ g)(n+ 1)− f(n+ 1)g(0),

and

(f ∗ τ2g)(n) = (f ∗ g)(n+ 2)− f(n+ 2)g(0)− f(n+ 1)g(1)

in case p = 2 and

(f ∗ τ3g)(n) = (f ∗ g)(n+ 3)− f(n+ 3)g(0)− f(n+ 2)g(1)− f(n+ 1)g(2)

in case p = 3.

An immediate consequence of the definition of the operator of a fractional

sum, is the well known law of exponents and the power rule. We note that

compared with [11, Theorem 2.2 and Lemma 2.3] and [12, Theorem 2.1] (case

a = 0) our one-line proofs are simpler.

Corollary 2.4: (a) For α, β > 0 and f ∈ s(N0,R) we have

∆−α(∆−βf)(n) = ∆−(α+β)f(n) = ∆−β(∆−αf)(n), ∀n ∈ N0.

(b) For α, β > 0, we have

∆−αkβ(n) = kα+β(n), ∀n ∈ N0.

Proof. (a) For all f ∈ s(N0;X), we have

∆−α(∆−βf) = ∆(kβ ∗f) = kα ∗ (kβ ∗f) = (kα ∗kβ)∗f = kα+β ∗f = ∆−(α+β)f.

Interchanging the role of α and β, we obtain the claim.

(b) For α, β > 0, we get

∆−αkβ = kα ∗ kβ = kα+β,

obtaining the desired result.

The following definitions have been used in several recent papers. They were

introduced by Lizama in the article [44] to study the abstract fractional Cauchy
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problem on the time scale N0 and used, for the first time, in the work [43] for

the analysis of linear abstract difference equations in the form

∆αu(n) = Tu(n) + f(n), n ∈ N0,

where T is a bounded linear operator defined on a Banach space X . In [43]

the maximal regularity property on Lebesgue sequence spaces was studied by

Lizama. By using Blunck’s operator-valued Fourier multiplier theorem, the

author completely characterized the existence and uniqueness of solutions in

Lebesgue sequence spaces with fractional order. Further research in the same

vein are the papers of Lizama and Murillo [45, 47] and Leal et al. [41]. See also

the monograph of Agarwal, Cuevas and Lizama [7] for more information on the

method used in the above-cited references, as well as applications in the setting

of abstract difference equations. After these works, in [48], Lizama and Velasco

studied existence and uniqueness of solutions for the abstract problem

∆αu(n) = Tu(n) + f(n, u(n)), n ∈ N0.

Additional research on this nonlinear problem is found in the paper by He et

al. [36].

Definition 2.5: The fractional difference operator ∆α : s(N0;R) → s(N0;R) of

order α > 0 (in the sense of Riemann–Liouville) is defined by

(2.3) ∆αf(n) := ∆m ◦∆−(m−α)f(n), n ∈ N0,

where m− 1 < α < m, m := ⌈α⌉, the least integer that is greater than or equal

to α.

As has been pointed out by Lizama in the reference [44], the operator ∆α

corresponds to a special case of the nabla fractional difference operator of order

α > 0. We refer to the papers by Atici and Eloe [11] and [12] for more infor-

mation on the nabla operator. We note that the symbol ∆α instead of ∇α
0 has

been used in several earlier papers, e.g., [4, 8, 11, 41, 42, 44, 43, 48, 45].

Remark 2.6: We observe that the above definition is given in [44] in the context

of the vector-valued space of sequences s(N0, X) where X is a Banach space.

Since in this paper we will study positivity, monotonicity and convexity, we

consider X = R. However, all of the results in this paper remain valid if we

replace X by any suitable ordered Banach space.
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Definition 2.7: We define the fractional difference (in the sense of Caputo) of

order α > 0 by

C∆
αf(n) := ∆−(m−α)(∆mf)(n), n ∈ N0,

where m− 1 < α < m, m := ⌈α⌉.

In both definitions, for α = 0 we define ∆0 = I, which is the identity operator

on s(N0;R).

Remark 2.8: Concerning the case of sequences defined on the set Z, we note that

a suitable definition of fractional difference in the Weyl-like sense was introduced

by Abadias and Lizama [2], as follows: We consider the weighted Lebesgue space

ℓ1ρ(Z, X) where ρ(n) = |n|α−1, α > 0, n ∈ Z, and for f ∈ ℓ1ρ(Z, X) we define the

α-th fractional sum

∆−αf(n) =

n∑

j=−∞

kα(n− j)f(j), n ∈ Z, α > 0,

and then the definition of fractional difference of order α > 0 follows the same

rule as that in (2.3) but for sequences in ℓ1ρ(Z, X). With such notion, in the pa-

per [2] the authors achieved the existence and uniqueness of almost automorphic

solutions for abstract difference equations in the form

∆αu(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z,

where A is the generator of a C0-semigroup. Further research on this line of

investigation are the papers by Alvarez and Lizama [8], Lizama and Murillo [46]

and Leal et al. [42].

We conclude by listing some properties of the operator of fractional difference.

These will be useful to us on several occasions in the sequel.

Proposition 2.9: The following properties hold:

(i) For any a ∈ s(N0;R) we have ∆(k ∗ a)(n) = a(n+ 1).

(ii) For any 0 < α < 1 and b ∈ s(N0;R) we have (∆◦∆αb)(n) = (∆α+1b)(n).

(iii) For any 1 < α < 2 and b ∈ s(N0;R) we have (∆◦∆αb)(n) = (∆α+1b)(n).

(iv) For any 0 < α < 1 and b ∈ s(N0;R) we have

∆α ◦∆b(n) = ∆ ◦∆αb(n)−∆k1−α(n+ 1)b(0).

(v) For any a, b∈s(N0;R) we have∆(a∗b)(n)=(∆a∗b)(n)+b(n+1)a(0) and

(∆a ∗ b)(n) = (a ∗∆b)(n) + a(n+ 1)b(0)− a(0)b(n+ 1).
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Proof. (i) is clear from the definition, since k(n) ≡ k1(n). To prove (ii) we note

that by definition

∆αb(n)=∆(k1−α∗b)(n) and ∆α+1b(n)=∆2(k2−(α+1)∗b)(n)=∆2(k1−α∗b)(n).

Therefore

∆ ◦∆αb(n) = ∆ ◦∆(k1−α ∗ b)(n) = ∆2(k1−α ∗ b)(n) = ∆α+1b(n).

To prove (iii) we note that by definition

∆αb(n)=∆2(k2−α∗b)(n) and ∆α+1b(n)=∆3(k3−(α+1)∗b)(n)=∆3(k2−α∗b)(n).

Therefore

∆ ◦∆αb(n) = ∆ ◦∆2(k2−α ∗ b)(n) = ∆3(k2−α ∗ b)(n) = ∆α+1b(n).

To show (iv) we first note that by definition ∆αb(n) = ∆(k1−α ∗ b)(n) which

imply ∆◦∆αb(n) = (∆2k1−α∗b)(n). Now, using definition of ∆α and Lemma 2.3

we get

∆α ◦∆b(n) = ∆(k1−α ∗∆b)(n)

= ∆(k1−α ∗ [τ1b− b])(n)

= ∆(k1−α ∗ τ1b)(n)−∆(k1−α ∗ b)(n)

= ∆(k1−α ∗ b)(n+ 1)−∆k1−α(n+ 1)b(0)−∆(k1−α ∗ b)(n)

= ∆2(k1−α ∗ b)(n)−∆k1−α(n+ 1)b(0)

= ∆ ◦∆αb(n)−∆k1−α(n+ 1)b(0),

which completes the proof. Finally, we check (v). We have by Lemma 2.3 and

commutativity

(∆a ∗ b)(n) = ([τ1a− a] ∗ b)(n) = (τ1a ∗ b)(n)− (a ∗ b)(n)

= (b ∗ a)(n+ 1)− b(n+ 1)a(0)− (a ∗ b)(n)

= ∆(a ∗ b)(n)− b(n+ 1)a(0).

The last line in (iv) is a consequence of the above identity and the commutativity

of the convolution.
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3. Properties of the kernel kα

In this section we wish to collect some important properties of the map

n 7→ kα(n).

These will be essential in what follows. To begin we mention that the kernel kα

satisfies each of the following ten properties.

Proposition 3.1: The following properties hold:

(i) For α > 0, kα(n+ 1) = α+n
n+1 k

α(n), n ∈ N0.

(ii) For α > 0, kα(n) > 0, n ∈ N0.

(iii) For 0 < α < 1, kα(n) is decreasing and kα(n) → 0 as n → ∞.

(iv) For α > 1, kα(n) is increasing.

(v) The generation formula:

∞∑

j=0

kα(j)zj =
1

(1− z)α
for all z ∈ C, |z| < 1.

(vi) The identity

kα(j) = (−1)j
Γ(1− α)

Γ(1 + j)Γ(1− α− j)
, j ∈ N0.

(vii) For α, β ∈ C, we have the semigroup property

kα+β(n) =

n∑

j=0

kα(n− j)kβ(j) =: (kα ∗ kβ)(n), n ∈ N0.

(viii) kα(n) = nα−1

Γ(α) (1 +O( 1
n
)), n ∈ N.

(ix) kα(n) ≤ kβ(n) for 0 < α ≤ β, n ∈ N0.

(x) (n+1)α−1

Γ(α) < kα(n) < nα−1

Γ(α) , n ∈ N, 0 < α < 1.

Proof. (i) follows from the definition and the recurrence property for the Gamma

function. (ii) is a consequence of the definition and the first part of (iii) fol-

lows from (i). The second part follows from (viii) which, in turn, is proved in

[53, Vol. I, p. 77 (1.18)] and indicated in [4]. In the last reference, also the

property (vii) is shown. (iv) and (ix) are straightforward to check. (x) a is

consequence of the Gautschi inequality [4]. The generation formula (v) can be
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proved as follows: Recall the following identity:

(3.1) (1 + w)β =

∞∑

j=0

(
β

j

)

wj =

∞∑

j=0

Γ(1 + β)

Γ(1 + j)Γ(β − j + 1)
wj for all |w| < 1,

which is valid for all β ∈ C \ N0 (see [34, Formula 1.110]). Using (3.1) with

w = −z and β = −α it follows that for all α > 0 the coefficients in the power

series of 1/(1− z)α are

(−1)j
Γ(1 − α)

Γ(1 + j)Γ(1 − α− j)
, j ∈ N0,

whenever |z| < 1. Now, using the identity Γ(1−z)Γ(z) = π/sin(πz) for z = α+j

and for z = α, respectively, we get

(3.2) Γ(1− α− j)Γ(α+ j) =
π

sinπ(α+ j)

and

(3.3) Γ(1− α)Γ(α) =
π

sinπα
.

Then, using (3.2) and (3.3), we obtain

(−1)jΓ(1 − α)

Γ(1− α− j)Γ(j + 1)
=

sin(πα)

sin(πα)(−1)j
Γ(1− α)

Γ(1− α− j)Γ(j + 1)

=
sin(πα)Γ(1 − α)

π

1

Γ(1 − α− j)Γ(j + 1)

π

sinπ(α+ j)

=
1

Γ(α)

1

Γ(1− α− j)Γ(j + 1)

π

sinπ(α+ j)

=
1

Γ(α)

Γ(α+ j)

Γ(j + 1)
= kα(j),

for all j ∈ N0, proving (v). In particular, the above identities prove (vi).

Other properties that will be important in the development of this article are

described in the following Lemma.

Lemma 3.2: For any α > 0, the following identities hold:

(i) ∆kα(n) = (α − 1)k
α(n)
n+1 .

(ii) ∆2kα(n) = (α− 2)(α− 1) kα(n)
(n+1)(n+2) .

(iii) ∆3kα(n) = (α− 3)(α− 2)(α− 1) kα(n)
(n+1)(n+2)(n+3) .
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Proof. The identity (i) follows from the equality

(3.4) kγ(n+ 1) =
γ + n

n+ 1
kγ(n)

valid for all γ > 0. To prove (ii) we use the identity (3.4) to compute

∆
[kα(n)

n+ 1

]

=
kα(n+ 1)

n+ 2
−

kα(n)

n+ 1
=

α+ n

(n+ 1)(n+ 2)
kα(n)−

kα(n)

n+ 1

=
kα(n)

(n+ 1)

[α+ n

n+ 2
− 1

]

= (α− 2)
kα(n)

(n+ 1)(n+ 2)
.

Hence, by (i) we obtain

∆2kα(n) = (α − 1)∆
[kα(n)

n+ 1

]

= (α− 1)(α− 2)
kα(n)

(n+ 1)(n+ 2)
.

Finally, we compute

∆
[ kα(n)

(n+ 1)(n+ 2)

]

=
kα(n+ 1)

(n+ 2)(n+ 3)
−

kα(n)

(n+ 1)(n+ 2)

=
α+ n

(n+ 1)(n+ 2)(n+ 3)
kα(n)−

kα(n)

(n+ 1)(n+ 2)

=
kα(n)

(n+ 1)(n+ 2)

[α+ n

n+ 3
− 1

]

= (α− 3)
kα(n)

(n+ 1)(n+ 2)(n+ 3)
.

By the use of (ii) we conclude from the above identity that

∆3kα(n) =(α− 1)(α− 2)∆
[ kα(n)

(n+ 1)(n+ 2)

]

=(α− 1)(α− 2)(α− 3)
kα(n)

(n+ 1)(n+ 2)(n+ 3)
.

As an immediate consequence, we obtain

Corollary 3.3: We have:

(i) ∆kα(n) ≤ 0 if and only if 0 ≤ α ≤ 1.

(ii) ∆2kα(n) ≤ 0 if and only if 1 ≤ α ≤ 2.

(iii) ∆3kα(n) ≤ 0 if and only if α ∈ [0, 1] ∪ [2, 3].
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Remark 3.4: By simple induction, we observe that the above Lemma and its

Corollary can be generalized to

∆Nkα(n) =
N∏

j=1

(α− j

n+ j

)

kα(n), α > 0, n ∈ N0, N ∈ N1,

and

∆Nkα(n) ≤ 0 for all n ∈ N0 if and only if

N∏

j=1

(α− j) ≤ 0, N ∈ N1.

4. Transference

In this section we relate definition (1.1) with definition (2.3) by means of the

operator of translation (2.2). The next result has important consequences, since

it highlights the fact that it is possible to transfer properties from one definition

to another with a clear advantage of the definition (2.3) because it allows the use

of simpler, cleaner and transparent algebraic manipulations that only involves

the convolution of given sequences with the distinguished sequence kernel kα.

Our main result in this section is the following.

Theorem 4.1: Let 0 < α < 1 and a ∈ R. For each sequence f ∈ s(Na;R) we

have

τa+1−α ◦∆α
af = ∆α ◦ τaf.

In other words, the following diagram is commutative:

s(N0;R) s(N0;R)

s(Na;R) s(Na+1−α;R).

∆α

τa

∆α

a

τa+1−α

Proof. Given n ∈ N0 we set t = a + 1 − α + n ∈ Na+1−α. Then a simple

manipulation of the definition shows that

∆α
af(t) =

Γ(1− α)

Γ(−α)

n+1∑

p=0

1

n− p+ 1
k1−α(n− p)f(a+ p).
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On the other hand, we note that

(4.1)

∆−(1−α)
a f(t+ 1)−∆−(1−α)

a f(t)

=

n+1∑

p=0

k1−α(n+ 1− p)f(a+ p)−

n∑

p=0

k1−α(n− p)f(a+ p).

Using the fact that k1−α(−1) = 0, where we use the convention that 1/Γ(0) := 0

in (2.1), we obtain

∆−(1−α)
a f(t+ 1)−∆−(1−α)

a f(t)

=
n+1∑

p=0

[k1−α(n+ 1− p)− k1−α(n− p)]f(a+ p).

A computation using the definition of kβ shows that

k1−α(n+ 1− p)− k1−α(n− p) =
−α

(n+ 1− p)
k1−α(n− p).

Consequently, using the identity zΓ(z) = Γ(z + 1) we obtain that

∆α
af(t) = ∆−(1−α)

a f(t+ 1)−∆−(1−α)
a f(t).

Finally, we have by definition (2.3) and the identity (4.1)

(∆α ◦ τaf)(n) =∆α(τaf)(n)

=(k1−α ∗ τaf)(n+ 1)− (k1−α ∗ τaf)(n)

=∆α
af(t) = (τa+1−α ◦∆α

af)(n),

for each n ∈ N0, proving the theorem.

Corollary 4.2: Let 0 < α < 1 and β, a ∈ R. We have

τ1−β ◦∆α
a+1−β = ∆α

a ◦ τ1−β .

Proof. By Theorem 4.1 we have ∆γ
b = τ−b−1+γ ◦∆

γ ◦ τb for any 0 < γ < 1 and

b ∈ R. Therefore,

τ1−β ◦∆α
a+1−β =τ1−β ◦ τ−a−1+β−1+α ◦∆α ◦ τa+1−β

=(τ−a−1+α ◦∆α ◦ τa) ◦ τ1−β = ∆α
a ◦ τ1−β .

More generally, we can prove the following result. We omit the proof.
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Theorem 4.3: Let N − 1 < α < N, N ∈ N1 and a, β ∈ R. For each sequence

f ∈ s(Na;R) we have

τa+N−α ◦∆α
af = ∆α ◦ τaf,

and

τN−β ◦∆α
a+N−βf = ∆α

a ◦ τN−βf.

Remark 4.4: Let α > 0 and a ∈ R be given. By definition, between the operators

∇α
a : s(Na;R) → s(Na;R) and ∆α : s(N0;R) → s(N0;R) we have the following

relation:

τa ◦ ∇
α
a = ∆α ◦ τa.

From this identity and Theorem 4.3 we retrieve the following identity stated in

[12, Lemma 2.1 (i)]:

τa+N−α ◦∆α
a = τa ◦ ∇

α
a ,

where N − 1 < α < N.

5. Positivity and α-monotonicity

In this section we prove several interrelated results. Because of the transference

property identified in Section 4, our strategy is to prove results for the oper-

ator ∆α, which allows us to take advantage of its good operational properties

with respect to convolution, and then to transfer these results to the opera-

tor ∆α
a . Our main goal is to show that under certain reasonable conditions on

either (∆αu)(t) or (∆β ◦∆αu)(t) one may deduce the positivity of u as well as,

respectively, the α- or (α + β)-monotonicity—see Definition 5.1 for the defini-

tion of α-monotonicity, which is a weaker form of monotonicity suitable for the

fractional setting (see also Atici and Uyanik [14]).

More specifically, our first result, which is Theorem 5.4, is both a positivity

and an α-monotonicity result in the case of a non-sequential fractional dif-

ference ∆α. Then by transference we recover a corresponding result, namely

Corollary 5.6, for the operator ∆α
a . We note that Theorem 5.4 is an analogue

of [14, Theorem 3.5]. In this latter result, Atici and Uyanik proved that if, for a

function y : N0 → R, it holds that y(0) ≥ 0 and ∆ν
0y(t) ≥ 0 for each t ∈ N1−ν ,

then y is ν-increasing on N0, by which it is meant that y(t + 1) ≥ νy(t), for

each t ∈ N0.
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Our next collection of results concerns fractional sequential operators of the

form either ∆β ◦∆α or ∆β
1−a−α ◦∆α

a , the latter being obtained by transference

of the results regarding the former operator. The first result in this collection

is Theorem 5.8. As far as we know, a result of the type given by Theorem 5.8,

that is, a positivity-type result in the sequential setting, has never been for-

mally stated. Moreover, the (α + β)-th monotonicity likewise has never been

considered, so far as we are aware. We emphasize that once we have the re-

sult for ∆β ◦ ∆α, which allows us to utilize the convolution operator, then it

is easy (see Corollary 5.10) to transfer the result to the case of the sequential

operator ∆β
1−a−α ◦∆α

a .

We begin by introducing the following definition:

Definition 5.1: Let 0 ≤ α ≤ 1. We say that a sequence u ∈ s(N0,R) is

α-monotone increasing (decreasing) if

u(n+ 1) ≥ αu(n)

(respectively, u(n+ 1) ≤ αu(n)) for all N0.

When α = 1 we recover the classical notion of monotonicity. Otherwise, the

notion of α-monotonicity is more general. Note that 0-monotone increasing

means that a sequence is positive.

Remark 5.2: We have the following properties that can be directly checked from

the definition.

(i) Subordination: If 0 ≤ α ≤ β ≤ 1, then β-monotone increasing im-

plies α-monotone increasing; in particular, each monotone increasing

sequence is α-monotone.

(ii) If u is α-monotone increasing and u(0) ≥ 0, then u is positive.

Corresponding properties for α-monotone decreasing sequences hold.

Example 5.3: By (i) of Proposition 3.1 we have that the sequence kβ(n) is

β-monotone increasing for all 0 ≤ β ≤ 1. However, for α fixed in the same

range 0 < α < 1, kα(n) is decreasing (see (iii) of Proposition 3.1). Observe

that k0(n) ≡ 0, using that 1/Γ(0) = 0, and k1(n) ≡ 1. This example shows that

the notion of α-monotonicity reflects, in some sense, a measure of the curvature

to the distribution of the points in a given sequence, in terms of α (compare

with (ix) of Proposition 3.1).
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Theorem 5.4: Let 0 ≤ α ≤ 1 and u ∈ s(N0;R) be a given sequence. Suppose

that

(i) (∆αu)(n) ≥ 0 for all n ∈ N0,

(ii) u(0) ≥ 0.

Then u is positive and α-monotone increasing on N0.

Proof. The cases α = 0 and α = 1 are trivial because ∆0 ≡ I and ∆1 ≡ ∆,

respectively. Suppose 0 < α < 1. We have

(5.1)

∆αu(n) =∆(k1−α ∗ u)(n) = (k1−α ∗ u)(n+ 1)− (k1−α ∗ u)(n)

=(k1−α ∗ τ1u)(n) + k1−α(n+ 1)u(0)− (k1−α ∗ u)(n)

=(k1−α ∗ [τ1u− u])(n) + k1−α(n+ 1)u(0)

=(k1−α ∗∆u)(n) + τ1k
1−α(n)u(0), n ∈ N0.

Convolving with kα and using the semigroup property and Lemma 2.3 we obtain

the identity

u(n+ 1)− u(0) =(kα ∗∆αu)(n)− (kα ∗ τ1k
1−α)(n)u(0)

=(kα ∗∆αu)(n)− u(0) + kα(n+ 1)u(0).

Therefore

u(n+ 1) = (kα ∗∆αu)(n) + kα(n+ 1)u(0),

for all n ∈ N0. From (i) and (ii) we conclude that u is positive on N0.

On the other hand, using (i) of Proposition 2.9 and (5.1) we have

0 ≤ ∆αu(n) =

n+1∑

j=0

k1−α(n+ 1− j)u(j)−

n∑

j=0

k1−α(n− j)u(j)

=

n∑

j=0

[k1−α(n+ 1− j)− k1−α(n− j)]u(j) + u(n+ 1)

=

n∑

j=0

∆k1−α(n− j)u(j) + u(n+ 1)

=

n∑

j=0

−α

n− j + 1
k1−α(n− j)u(j) + u(n+ 1).
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Therefore, using the fact that u is positive on N0, we obtain

u(n+ 1) ≥α
n∑

j=0

1

n− j + 1
k1−α(n− j)u(j)

=αu(n) + α

n−1∑

j=0

1

n− j + 1
k1−α(n− j)u(j) ≥ αu(n),

for all n ∈ N0. This proves the theorem.

For a given c ∈ R, we denote c : N0 → X by c(n) = c for all n ∈ N0.

Example 5.5: Let us consider the equation

∆αu(n) = c, 0 < α ≤ 1,

with initial condition u(0). If we assume c > 0 and u(0) ≥ 0, then we deduce

from Theorem 5.4 that the unique solution must be positive and α-monotone

increasing on N0. This can be also directly checked from the following explicit

representation of the solution:

u(n) = kα(n)
[

u(0) +
c n

α

]

; n ∈ N0.

From the transference Theorem 4.1 we obtain the following corollary.

Corollary 5.6: Let 0 < α < 1, a ∈ R and v ∈ s(Na;R) be a given sequence.

Suppose that

(i) (∆α
av)(t) ≥ 0 for all t ∈ Na+1−α,

(ii) v(a) ≥ 0.

Then v is positive and v(t+ 1) ≥ αv(t) for all t ∈ Na.

Proof. Define u : N0 → X by u(n) := (τav)(n). Then (i) implies

∆αu(n) = (τa+1−α ◦∆α
a ◦ τ−au)(n) = (∆α

av)(n + a− 1− α) = (∆α
av)(t) ≥ 0,

t :=n+ a− 1−α ∈ Na−1−α.

Also u(0) = v(a) ≥ 0. Therefore, Theorem 5.4 gives v(t + 1) ≥ αv(t) for

all t ∈ Na.

Concerning the composition of fractional difference operators, we prove the

following important connection between the operators ∆β ◦∆α and ∆α+β :
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Theorem 5.7: Assume 0 < α < 1 and 0 < β < 1. If 0 < α+ β < 1, then

(∆β ◦∆αu)(n) = (∆α+βu)(n+ 1)− (∆k1−β)(n+ 1)u(0).

Proof. Since 0 < β < 1, we have

(5.2)
(∆β ◦∆αu)(n) =∆β(∆αu)(n)

=(k1−β ∗∆αu)(n+ 1)− (k1−β ∗∆αu)(n),

where, using Lemma 2.3,

(∆αu)(j) = (k1−α ∗ u)(j + 1)− (k1−α ∗ u)(j)

= (k1−α ∗ τ1u)(j) + k1−α(j + 1)u(0)− (k1−α ∗ u)(j)

= (k1−α ∗ τ1u)(j) + τ1k
1−α(j)u(0)− (k1−α ∗ u)(j),

because 0 < α < 1. Convolving with k1−β we obtain

(k1−β ∗∆αu)(n)

=(k1−β ∗ k1−α ∗ τ1u)(n) + (k1−β ∗ τ1k
1−α)(n)u(0)− (k1−β ∗ k1−α ∗ u)(n).

Applying again Lemma 2.3 and the semigroup property:

(k1−β ∗∆αu)(n)

=(k2−(α+β) ∗ τ1u)(n) + (k1−β ∗ τ1k
1−α)(n)u(0)− (k2−(α+β) ∗ u)(n)

=[(k2−(α+β) ∗ u)(n+ 1)− k2−(α+β)(n+ 1)u(0)]

+ [(k1−β ∗ k1−α)(n+ 1)− k1−β(n+ 1)k1−α(0)]u(0)− (k2−(α+β) ∗ u)(n)

=(k2−(α+β) ∗ u)(n+ 1)− k1−β(n+ 1)u(0)− (k2−(α+β) ∗ u)(n)

=(k ∗ k1−(α+β) ∗ u)(n+ 1)− k1−β(n+ 1)u(0)− (k ∗ k1−(α+β) ∗ u)(n)

=[k ∗ τ1(k
(1−(α+β) ∗ u)](n) + k(n+ 1)(k1−(α+β) ∗ u)(0)

− k1−β(n+ 1)u(0)− (k ∗ k1−(α+β) ∗ u)(n)

=k ∗ [τ1k
1−(α+β) ∗ u− k1−(α+β) ∗ u](n) + (1− k1−β(n+ 1))u(0),

because k(n+1) ≡ 1 and (k1−(α+β) ∗ u)(0) = u(0) (since (a ∗ b)(0) = a(0)b(0)).

Observe that 0 < α+ β < 1 implies by definition

(∆α+βu)(n) = (k1−(α+β) ∗ u)(n+ 1)− (k1−(α+β) ∗ u)(n)

= τ1(k
1−(α+β) ∗ u)(n)− (k1−(α+β) ∗ u)(n).
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That is,

∆α+βu = τ1k
1−(α+β) ∗ u− k1−(α+β) ∗ u.

Replacing in the above identity we obtain

(k1−β ∗∆αu)(n) = k ∗∆α+βu(n) + (1 − k1−β(n+ 1))u(0).

Hence, replacing the preceding identity in (5.2) we obtain

(∆β ◦∆αu)(n) =k ∗∆α+βu(n+ 1) + (1− k1−β(n+ 2))u(0)

− k ∗∆α+βu(n)− (1− k1−β(n+ 1))u(0)

=∆(k ∗∆α+βu)(n)−∆k1−β(n+ 1)u(0).

Since k(n) ≡ 1, a simple calculation shows that

∆(k ∗∆α+βu)(n) = ∆α+βu(n+ 1),

thus proving the theorem.

Our main result concerning positivity is the following theorem. As mentioned

at the beginning of this section, this sort of positivity result in the sequential

setting has not, to the best of our knowledge, been reported for any particular

type of fractional difference.

Theorem 5.8: Let 0 < α < 1 and 0 ≤ β < 1 be given and assume that

(i) 0 < α+ β < 1;

(ii) (∆β ◦∆αu)(n) ≥ β
2 (1− β)u(0), for all n ∈ N0;

(iii) u(0) ≥ 0;

(iv) u(1) ≥ (α + β)u(0).

Then u is positive and (α + β)-monotone increasing on N0.

Proof. The case β = 0 is Theorem 5.4 because ∆αu(0) ≥ 0 is the same as (iv).

Since kγ(n) ≥ 0 and decreasing for 0 < γ < 1 we have

∆k1−β(n+ 1) = −β
k1−β(n+ 1)

n+ 2
≥ −

β

2
k1−β(1) = −

β

2
(1− β).

Hence, by Theorem 5.7, and hypotheses (ii) and (iii) we obtain

(5.3)

(∆α+βu)(n+ 1) =(∆β ◦∆αu)(n) + ∆k1−β(n+ 1)u(0)

≥(∆β ◦∆αu)(n)−
β

2
(1− β)u(0) ≥ 0
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for all n ∈ N0. Observe that for any 0 < γ < 1 we have

∆γu(0) = ∆(k1−γ ∗ u)(0) = u(1)− γu(0).

Hence (i) and (iv) together with (5.3) imply

(∆α+βu)(n) ≥ 0

for all n ∈ N0. Using (i) and Theorem 5.4 the conclusion follows.

We can simplify hypothesis (ii) assuming stronger conditions on the initial

data, and obtain a new result in the whole sector [0, 1] × [0, 1], such as the

following result shows.

Theorem 5.9: Let 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 be given, and assume that

(i) (∆β ◦∆αu)(n) ≥ 0, for all n ∈ N0;

(ii) u(1) ≥ αu(0);

(iii) u(0) ≥ 0.

Then u is positive and α-monotone increasing on N0.

Proof. Let v = ∆αu. By hypotheses (i) and (ii) we have ∆βv(n) ≥ 0 for all

n ∈ N0 and v(0) ≥ 0, respectively. From Theorem 5.4 we obtain that v is

positive and β-monotone increasing on N0. Since u(0) ≥ 0, a new application of

Theorem 5.4 to u shows that u is positive and α-monotone increasing on N0.

By using the transference Theorem 4.1 and its corollary, we can prove the

following result.

Corollary 5.10: Let 0 < α < 1 and 0 ≤ β < 1 be given and assume that

(i) 0 < α+ β < 1;

(ii) (∆β
1−a−α ◦∆α

av)(t) ≥
β
2 (1− β)v(a), for all t ∈ Na+2−α−β ;

(iii) v(a) ≥ 0;

(iv) v(a+ 1) ≥ (α + β)v(a).

Then v is positive and v(t+ 1) ≥ (α+ β)v(t) for all t ∈ Na+1.

Proof. Define u : N0 → X by

u(n) := (τav)(n).
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By Theorem 4.1 we have ∆γ = τb+1−γ ◦∆γ
b ◦ τ−b for all 0 < γ < 1 and b ∈ R.

Then (ii) and Corollary 4.2 implies that

∆β ◦∆αu(n) = (τa+1−β ◦∆β
a ◦ τ−a ◦ τa+1−α ◦∆α

a ◦ τ−au)(n)

= (τa+1−β ◦ (∆β
a ◦ τ1−α) ◦∆

α
a ◦ τ−au)(n)

= (τa+1−β ◦ (τ1−α ◦∆β
1+a−α) ◦∆

α
a ◦ τ−au)(n)

= (τa+2−α−β ◦∆β
1+a−α ◦∆α

av)(n)

= (∆β
1+a−α ◦∆α

av)(a+ 2− α− β + n)

= (∆β
1+a−α ◦∆α

av)(t)

≥
β

2
(1− β)v(a)

=
β

2
(1− β)u(0),

for all t = a+ 2− α− β + n ∈ Na+2−α−β. Also

u(0) = v(a) ≥ 0 and u(1) = v(a+ 1) ≥ (α+ β)v(a) = (α+ β)u(0).

Therefore, Theorem 5.8 gives u(n+ 1) ≥ (α+ β)u(n) for all n ∈ N0 and hence

v(n + 1 + a) ≥ v(n + a) for all n ∈ N0 which means v(t + 1) ≥ (α + β)v(t) for

all t ∈ Na+1.

6. Monotonicity and α-convexity

In this section we assume 1 < α + β < 2, and we will consider the following

cases:

(a) 0 < α < 1 and 0 < β < 1.

(b) 1 ≤ α < 2 and 0 ≤ β < 1.

(c) 0 < α < 1 and 1 < β < 2.

We first introduce the following concept.

Definition 6.1: Let 1 ≤ α ≤ 2. We say that a sequence u ∈ s(N0,R) is α-convex

(resp. α-concave) if

u(n+ 2)− αu(n+ 1) + (α− 1)u(n) ≥ 0, n ∈ N0

(with obvious modification in the case of α-concave). When α = 2 we recover

the notion of convexity and when α = 1 the concept of monotonicity (increasing)

on the set N1.
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Remark 6.2: The function u is α-convex if and only if ∆u is (α− 1)-monotone

increasing.

We start with the following result concerning the case β = 0 in (b)—that is

to say, we consider first the (trivial) sequential operator

∆0 ◦∆α ≡ ∆α.

Regarding the existing results in the literature, we mention that Theorem 6.3

recovers in our setting a more general form of a result of Dahal and Goodrich

[19]—see also Dahal and Goodrich [20] and Jia et al. [38]. The result of Dahal

and Goodrich states that if ∆ν
0y(t) ≥ 0, for each t ∈ N2−ν , and if ∆y(0) ≥ 0,

then y is monotone increasing on N0. Since, in the statement of Theorem 6.3,

we require that

u(1) ≥ αu(0),

it is seen that this is a weaker condition than the theorems of Dahal and

Goodrich in [19] or Jia et al. [38].

Theorem 6.3: Let 1 ≤ α < 2 be given and assume that

(i) (∆αu)(n) ≥ 0, for all n ∈ N0;

(ii) u(1) ≥ αu(0);

(iii) u(0) ≥ 0.

Then u is monotone increasing on N1 and positive on N0. Moreover, u is α-

convex, inclusive in case α = 2.

Proof. The cases α = 1 and α = 2 are trivial by (i). Assume 1 < α < 2. By

definition and Lemma 2.3 we have

(6.1)

∆αu(n) =(k2−α ∗ u)(n+ 2)− 2(k2−α ∗ u)(n+ 1) + (k2−α ∗ u)(n)

=(k2−α ∗ τ2u)(n) + k2−α(n+ 2)u(0) + k2−α(n+ 1)u(1)

− [(k2−α ∗ τ1u)(n) + k2−α(n+ 1)u(0)] + (k2−α ∗ u)(n)

=(k2−α ∗∆2u)(n) + k2−α(n+ 1)[u(1)− 2u(0)]

+ k2−α(n+ 2)u(0).

Then,

(k2−α ∗∆2u)(n) = ∆αu(n)− τ1k
2−α(n)[∆u(0)− u(0)]− τ2k

2−α(n)u(0).
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Convolving with kα−1 we obtain

(kα−1∗k2−α ∗∆2)u(n)

=(kα−1 ∗∆αu)(n)− (kα−1 ∗ τ1k
2−α)(n)[∆u(0)− u(0)]

− (kα−1 ∗ τ2k
2−α)(n)u(0)

=(kα−1 ∗∆αu)(n)

− [kα−1∗k2−α(n+ 1)−kα−1(n+ 1)k2−α(0)][∆u(0)− u(0)]

− [kα−1∗k2−α(n+ 2)−kα−1(n+ 2)k2−α(0)−kα−1(n+ 1)k2−α(1)]u(0).

Hence,

∆u(n+ 1)−∆u(0) =(kα−1 ∗∆αu)(n)− [∆u(0)− u(0)]

+ kα−1(n+ 1)[∆u(0)− u(0)]

− u(0) + kα−1(n+ 2)u(0) + (2 − α)kα−1(n+ 1)u(0).

Therefore, for all n ∈ N0 we have

(6.2)

∆u(n+ 1) =(kα−1 ∗∆αu)(n) + kα−1(n+ 2)u(0)

+ kα−1(n+ 1)[∆u(0)− u(0) + (2− α)u(0)]

=(kα−1 ∗∆αu)(n) + kα−1(n+ 2)u(0)

+ kα−1(n+ 1) [u(1) + αu(0)]
︸ ︷︷ ︸

≥0

,

concluding by hypothesis that ∆u(m) ≥ 0 for all m ∈ N1. Hence, (6.2) proves

that u is monotone increasing on N1 and, by (ii)–(iii), positive on N0. Next,

from (6.1) and (v) of Proposition 2.9 we obtain

0 ≤ ∆αu(n) =(∆u ∗∆k2−α)(n) + ∆u(n+ 1)k2−α(0)− k2−α(n+ 1)∆u(0)

+ k2−α(n+ 1)[∆u(0)− u(0)] + k2−α(n+ 2)u(0)

=

n∑

j=0

∆u(n− j)∆k2−α(j) + ∆u(n+ 1) + ∆k2−α(n+ 1)u(0)

=

n∑

j=1

∆u(n− j)∆k2−α(j) + (1 − α)∆u(n)

+ ∆u(n+ 1) + ∆k2−α(n+ 1)u(0),

where we have used that k2−α(0) = 1 and k2−α(1) = 2 − α. Finally, observe

that 0 < 2−α < 1 implies ∆k2−α(m) ≤ 0 by Corollary 3.3, and also ∆u(m) ≥ 0
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on N1 by what was previously proved. Therefore, the above inequality implies

(1−α)∆u(n)+∆u(n+1) ≥ −
n∑

j=1

∆u(n− j)∆k2−α(j)−∆k2−α(n+1)u(0) ≥ 0,

for all n ∈ N0, which is precisely α-convexity.

Remark 6.4: Note that condition (ii) does not actually require that u satisfy

∆u(0) ≥ 0. If it does, then one can strengthen the conclusion to u increasing

on all of N0 rather than N1.

Remark 6.5: If we replace hypothesis (ii) in Theorem 6.3 by the stronger one

(ii)′ u(1) ≥ u(0),

then we can conclude that u is monotone increasing on N0, positive and α-

convex by the following simple argument: We first observe that an application

of (ii) and (iv) of Proposition 2.9 shows that the following identity holds:

∆αu(n) = (∆(α−1)+1u)(n) = (∆α−1 ◦∆u)(n) + ∆k2−α(n+ 1)u(0).

Let v = ∆u. From the above identity and hypothesis (i) we have

(∆α−1v)(n) = ∆αu(n)−∆k2−α(n+ 1)u(0) ≥ −∆k2−α(n+ 1)u(0) ≥ 0,

where in the last inequality we have used hypothesis (iii), and item (i) of Corol-

lary 3.3. Since by (ii)′ we also have v(0) = ∆u(0) ≥ 0, then, by Theorem 5.4,

we conclude that v = ∆u is positive and (α − 1)-monotone increasing on N0.

Therefore, u is monotone increasing on N0, positive, and Remark 6.2 shows

that u is α-convex.

Remark 6.6: Condition (ii)′ is precisely what is required in Dahal and Goodrich

[19] and Jia et al. [38].

Remark 6.7: We observe that convexity coincides with the notion of α-convexity

(which is defined for 1 ≤ α < 2) in the upper limit case α = 2. We also note that

in the lower limit case α = 1 we obtain that u is monotone. This way, the notion

of α-convexity interpolates between the concept of convexity and monotonicity

for 1 ≤ α ≤ 2. Graphically, we can think of a discrete set of points drawing a

line with positive slope that can be “continuously deformed,” as α goes from 1

to 2, into a convex set of points. In the same way, the notion of α-increasing

sequence (defined for 0 ≤ α < 1) interpolates between the notion of positivity

(when α = 0) and monotonicity (when α = 1). Since we are dealing with the
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concept of fractional differences, it seems to be “natural,” in some sense, that

an appropriate geometrical interpretation of the fractional order should vary

with α. Our findings show that this notable and important property occurs.

Another way to think of this property is that α is a measure of the discrete

curvature of the set of points u(n). It is interesting to make a graph of the

example below, setting, for instance, u(0) = u(1) = 1 and c = 1. Then, one can

look at the cases α = 1, α = 1.5 and α = 2, for instance.

For a given c ∈ R, recall that we denote c : N0 → R by c(n) = c for all

n ∈ N0.

Example 6.8: We consider the problem

∆αu(n) = c, 1 < α < 2.

If we assume c > 0 it follows, using Theorem 6.3, that the (unique) solution is

monotone increasing and positive on N1 whenever u(1) ≥ αu(0) and u(0) ≥ 0.

This can be directly verified by means of the following explicit representation

of the solution:

u(n) = kα(n)
[

u(0)− (αu(0)− u(1))
n

α+ n− 1
+ c

n(n− 1)

(α+ n− 2)(α+ n− 1)

]

,

n ∈N1.

Corollary 6.9: Let 1 ≤ α < 2 and a ∈ R be given and assume that

(i) (∆α
av)(t) ≥ 0, for all t ∈ Na+2−α;

(ii) v(a+ 1) ≥ αv(a);

(iii) v(a) ≥ 0.

Then v is monotone increasing and positive on Na+1. Moreover, v is α-convex—

i.e.,

v(t+ 2)− αv(t+ 1) + (α − 1)v(t) ≥ 0, t ∈ Na.

Proof. Define u(n) := τav(n) and note that for each n ∈ N0 we have, by (i) and

Theorem 4.3 with N = 2:

∆αu(n) = (τa+2−α ◦∆α
a ◦ τ−au)(n) = (τa+2−α ◦∆α

av)(n) = ∆α
av(t) ≥ 0,

for t := n+ a+ 2− α ∈ Na+2−α. Moreover,

u(1) = v(a+ 1) ≥ αv(a) = αu(0) and u(0) = v(a) ≥ 0.

The conclusion follows from Theorem 6.3.
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Remark 6.10: We note that Corollary 6.9 may also be compared directly to [17,

Corollary 2.1.1]. In that result and with ν ∈ (1, 2), Erbe et al. proved that if

∆ν
af(t) ≥ 0, for each t ∈ Na+2−ν , f(a) ≥ 0, and f(a + 1) ≥ ν

2f(a), then f

was monotone increasing on Na+1. Note, for example, that if ν = 3
2 , then their

result yields the condition

f(a+ 1) ≥
3

4
f(a).

However, in our case above, if we take α = 3
2 , then condition (ii) becomes

u(a+ 1) ≥
1

2
u(a),

which is actually less restrictive. In fact, since

α

2
≥ (α− 1),

whenever α ≤ 2, it follows that the condition we obtain in our Corollary 6.9 is

better than the condition given in Erbe et al. [17, Corollary 2.11].

6.1. Case (a): 0 < α < 1 and 0 < β < 1. The key result in this case is the

following theorem.

Theorem 6.11: Assume 0 < α < 1 and 0 < β < 1. If 1 < α+ β < 2, then

(∆β ◦∆αu)(n) = (∆α+βu)(n)− (∆k1−β)(n+ 1)u(0).

Proof. Since 0 < β < 1, we have

(6.3)
(∆β ◦∆αu)(n) = ∆β(∆αu)(n)

= (k1−β ∗∆αu)(n+ 1)− (k1−β ∗∆αu)(n),

where, using Lemma 2.3,

(∆αu)(j) = (k1−α ∗ u)(j + 1)− (k1−α ∗ u)(j)

= (k1−α ∗ τ1u)(j) + k1−α(j + 1)u(0)− (k1−α ∗ u)(j)

= (k1−α ∗ τ1u)(j) + τ1k
1−α(j)u(0)− (k1−α ∗ u)(j),

because 0 < α < 1. Convolving with k1−β we obtain

(k1−β ∗∆αu)(n)

=(k1−β ∗ k1−α ∗ τ1u)(n) + (k1−β ∗ τ1k
1−α)(n)u(0)− (k1−β ∗ k1−α ∗ u)(n).
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Applying again Lemma 2.3 and the semigroup property

(k1−β ∗∆αu)(n)

=(k2−(α+β) ∗ τ1u)(n) + (k1−β ∗ τ1k
1−α)(n)u(0)− (k2−(α+β) ∗ u)(n)

=[(k2−(α+β) ∗ u)(n+ 1)− k2−(α+β)(n+ 1)u(0)]

+ [(k1−β ∗ k1−α)(n+ 1)− k1−β(n+ 1)k1−α(0)]u(0)

− (k2−(α+β) ∗ u)(n)

=(k2−(α+β) ∗ u)(n+ 1)− k1−β(n+ 1)u(0)− (k2−(α+β) ∗ u)(n)

=∆(k2−(α+β) ∗ u)(n)− k1−β(n+ 1)u(0).

Replacing the above identity in (6.3) and using that 1 < α+ β < 2 we obtain

(∆β ◦∆αu)(n) =[∆(k2−(α+β) ∗ u)(n+ 1)− k1−β(n+ 2)u(0)]

− [∆(k2−(α+β) ∗ u)(n)− k1−β(n+ 1)u(0)]

=∆2(k2−(α+β) ∗ u)(n)−∆k1−β(n+ 1)u(0)

=(∆α+βu)(n)− (∆k1−β)(n+ 1)u(0),

proving the theorem.

With a similar proof to Theorem 5.8 we obtain the main result of this sub-

section. We note that this theorem is somewhat different (and, in a certain

sense, better) than the corresponding result in Dahal and Goodrich [21] and

Goodrich [30]. In particular, and as mentioned in Section 1, in those papers

the monotonicity result only applies on a proper subset of the parameter space

[0, 1] × [0, 1]. In our Theorem 6.12, by contrast, the result applies on the en-

tire parameter space. In part, this is because condition (i) of Theorem 6.12 is

different than the corresponding condition in those papers—namely, the right-

hand side is simply 0 in [21, 30]. Moreover, if we recall Theorem 5.9 from

Section 5, we note that in Theorem 5.9 with simply a zero lower bound on the

quantity (∆β ◦ ∆αu)(n), together with the auxiliary conditions u(1) ≥ αu(0)

and u(0) ≥ 0, we obtained the α-monotonicity on the entire parameter space

[0, 1]× [0, 1]. Therefore, Theorem 5.9 and Theorem 6.12 together with transfer-

ence yield the following new insights, heretofore unreported:
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(1) if we require a nonzero lower bound on the sequential difference, such as

(∆β ◦∆αu)(n) ≥
β

2
(1− β)u(0),

then we can deduce both (classical) monotonicity and (α+β)-convexity

on the entire sparameter space [0, 1]×[0, 1] when 1 ≤ α+β < 2; whereas

(2) if we require a zero lower bound on the sequential difference, that is

(∆β ◦∆αu)(n) ≥ 0,

then we can deduce both positivity and (α + β)-monotonicity on the

entire parameter space [0, 1]× [0, 1] when 0 ≤ α+ β < 1.

Theorem 6.12: Let 0 < α < 1 and 0 ≤ β < 1 be given, and assume both that

1 ≤ α+ β < 2 and that

(i) (∆β ◦∆αu)(n) ≥ β
2 (1− β)u(0), for all n ∈ N0;

(ii) u(1) ≥ (α + β)u(0);

(iii) u(0) ≥ 0.

Then u is monotone increasing and (α+ β)-convex on N0.

Proof. Observe that the limit case β = 1−α coincides with Theorem 5.8. Since

kγ(n) ≥ 0 and decreasing for 0 < γ < 1 we have

∆k1−β(n+ 1) = −β
k1−β(n+ 1)

n+ 2
≥ −

β

2
k1−β(1) = −

β

2
(1− β).

Hence, by Theorem 6.11, and (i) and (iii) we obtain

(∆α+βu)(n) =(∆β ◦∆αu)(n) + ∆k1−β(n+ 1)u(0)

≥(∆β ◦∆αu)(n)−
β

2
(1− β)u(0) ≥ 0

for all n ∈ N0. Using (ii) and Theorem 6.3 the conclusion follows.

Remark 6.13: Similar to Remark 6.6, condition (ii) can be replaced by:

(ii)′ ∆u(0) ≥ u(0).

Analogously to Corollary 5.10 we can prove with the help of Theorem 4.3 (case

N = 1) the following more general result in the context of Definition (1.1).
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Corollary 6.14: Let a ∈ R, 0 < α < 1 and 0 ≤ β < 1 be given, and assume

both that 1 ≤ α+ β < 2 and that

(i) (∆β
a+1−α ◦∆α

av)(t) ≥
β
2 (1− β)v(a), for all t ∈ Na+2−α−β ;

(ii) v(1 + a) ≥ (α + β)v(a);

(iii) v(a) ≥ 0.

Then v is monotone increasing and (α+ β)-convex on Na.

6.2. Case (b): 1 < α < 2 and 0 < β < 1. We start with a general result in

the parameter space [1, 2)× [0, 1].

Theorem 6.15: Suppose that 1 ≤ α < 2, 0 ≤ β < 1. In addition, suppose that

(i) (∆β ◦∆αu)(n) ≥ 0, for each n ∈ N0;

(ii) ∆αu(0) ≥ 0;

(iii) ∆αu(1) ≥ α∆αu(0); and

(iv) u(0) ≥ 0.

Then u is monotone increasing and positive on N1. Moreover, u is α-convex on

N0, even in case α = 2.

Proof. Let v = ∆αu. By hypotheses (i) and (ii) we obtain that the assumptions

of Theorem 5.4 are satisfied and, consequently, we obtain that v is positive

and β-monotone increasing on N0. In particular, the positivity together with

hypotheses (iii) and (iv) imply that the conditions of Theorem 6.3 are satisfied.

We conclude that u is monotone increasing and positive on N1. Moreover, u is

α-convex on N0, even in case α = 2.

A key result for the forthcoming results is the following.

Theorem 6.16: Suppose that 1 < α < 2, 0 < β < 1, and 1 < α+β < 2. Then

∆β◦∆αu(n)

=∆α+βu(n+ 1)−∆2k1−β(n+ 1)u(0)−∆k1−β(n+ 1)∆α−1u(0).

Proof. Since 1 < α < 2, 0 < β < 1 and 1 < α + β < 2, we obviously have

0 < α − 1 < 1, 0 < β < 1 and 0 < (α − 1) + β < 1. Therefore, applying

Theorem 5.7 we have the identity

(∆β ◦∆α−1u)(n) = (∆α−1+βu)(n+ 1)− (∆k1−β)(n+ 1)u(0).
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Hence,

(6.4)
∆ ◦ (∆β◦∆α−1u)(n)

=∆ ◦ (∆α+β−1u)(n+ 1)−∆ ◦ (∆k1−β)(n+ 1)u(0).

Using item (ii) of Proposition 2.9 we have

∆ ◦∆α+β−1 = ∆α+β .

On the other hand, using item (iv) and again item (ii) of Proposition 2.9 we

have

(6.5)
∆ ◦∆β ◦∆α−1u(n) =∆β ◦∆ ◦∆α−1u(n) + ∆k1−β(n+ 1)∆α−1u(0)

=∆β ◦∆αu(n) + ∆k1−β(n+ 1)∆α−1u(0).

Inserting (6.5) into (6.4) we get

∆β◦∆αu(n)

=∆α+βu(n+ 1)−∆2k1−β(n+ 1)u(0)−∆k1−β(n+ 1)∆α−1u(0),

which completes the proof of the theorem.

Our next result, Theorem 6.17, is our sequential fractional difference mono-

tonicity result in case 1 ≤ α < 2, 0 ≤ β < 1, and 1 ≤ α+ β < 2.

Theorem 6.17: Suppose that 1 ≤ α < 2, 0 ≤ β < 1, and 1 ≤ α + β < 2. In

addition, suppose that

(i) (∆β ◦∆αu)(n) ≥ β
2 (1− β)∆α−1u(0), for each n ∈ N0;

(ii) u(1) ≥ (α + β)u(0); and

(iii) u(0) ≥ 0.

Then u is monotone increasing and (α+ β)-convex on N0.

Proof. Since ∆0 ≡ I, the case β = 0 is Theorem 6.3 and the case α = 1 is

Theorem 6.12. For 0 < β < 1 and by Theorem 6.16 we have

(6.6)
(∆β ◦∆αu)(n)

=(∆α+βu)(n+ 1)−∆2k1−β(n+ 1)u(0)−∆k1−β(n+ 1)∆α−1u(0)

where

∆k1−β(n+ 1) = −β
k1−β(n+ 1)

n+ 2
≥ −

β

2
k1−β(1) = −

β

2
(1− β),(6.7)
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because kγ(n) is decreasing for 0 < γ < 1. Moreover,

∆2k1−β(n+ 1) = β(1 + β)
k1−β(n+ 1)

(n+ 2)(n+ 3)
≥ 0.(6.8)

Inserting (6.7) and (6.8) in (6.6) and taking into account (ii) and (iii) we obtain

(∆α+βu)(n+ 1) ≥(∆β ◦∆αu)(n) + ∆k1−β(n+ 1)∆α−1u(0)

≥(∆β ◦∆αu)(n)−
β

2
(1− β)∆α−1u(0),

for all n ∈ N0. Moreover, (ii) implies ∆α+βu(0) ≥ 0. We conclude the result

from (i) and Theorem 6.3.

Remark 6.18: According to Remark 6.6, condition (ii) can be replaced by:

(ii)′ ∆u(0) ≥ u(0).

By using the transference property we can recast Theorem 6.17 into the fol-

lowing Corollary 6.19. One may compare Corollary 6.19 to a recent paper

of Goodrich [31], in which the author considered monotonicity-type results

for sequential discrete fractional differences of the type (1.1). More specifi-

cally, there condition (i) in our Theorem 6.17 was replaced by the condition

∆ν
1−µ∆

µ
0f(t) ≥ 0, for t ∈ N3−µ−ν . Assuming that µ + ν ∈ (1, 2), it was

shown that when µ ∈ (0, 1) and ν ∈ (1, 2) this condition, in addition to

f(0) ≥ 0, ∆f(0) ≥ 0, and ∆f(1) ≥ 0, were sufficient to deduce the mono-

tonicity of f on N0. On the other hand, when µ ∈ (1, 2) and ν ∈ (0, 1) the

situation was more complicated—see [31, Theorem 2.9]. In this second case, a

monotonicity-type result was only obtained on a proper subset of the parameter

space (µ, ν) ∈ (1, 2)× (0, 1). So, we conclude that

(1) Theorem 6.17 demonstrates that by using the nonzero lower bound

condition

(∆β ◦∆αu)(n) ≥
β

2
(1− β)∆α−1u(0)

we can instead get a clean result holds on the entire parameter space

(α, β) ∈ [1, 2)× [0, 1); and

(2) by subsequently using the transference property in Section 5, we can

obtain Corollary 6.19, which connects Theorem 6.17 back to the case

studied in [31].
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Corollary 6.19: Let a ∈ R be given. Suppose that 1 < α < 2, 0 ≤ β < 1,

and 1 ≤ α+ β < 2. In addition, suppose that

(i) (∆β
a+2−α ◦∆

α
av)(t) ≥

β
2 (1−β)∆α−1

a v(a+2−α), for each t ∈ Na+3−α−β ;

(ii) v(a+ 1) ≥ (α + β)v(a); and

(iii) v(a) ≥ 0.

Then v is monotone increasing and (α+ β)-convex on Na.

Proof. Define u := τav. Then, using the transference theorems we have

∆β ◦∆αu(n) = τa+1−β ◦∆β
a ◦ τ−a ◦ τa+2−α ◦∆α

a ◦ τ−au(n)

= τa+1−β ◦ (∆β
a ◦ τ2−α) ◦∆

α
a ◦ τ−au(n)

= τa+1−β ◦ (τ2−α ◦∆β
a+2−α) ◦∆

α
av(n)

= τa+3−β−α ◦∆β
a+2−α ◦∆α

av(n),

for each n ∈ N0. Therefore,

∆β ◦∆αu(n) = ∆β
a+2−α ◦∆α

av(t),

where t := n+a+3−α−β ∈ Na+3−α−β . Moreover, since 0 < α−1 < 1 we have

∆α−1u(n) = τa+2−α ◦∆α−1
a ◦ τ−au(n) = ∆α−1

a v(n+ a+ 2− α),

which implies ∆α−1u(0) = ∆α−1
a v(a + 2 − α). The result follows from Theo-

rem 6.17.

6.3. Case (c): 0 < α < 1 and 1 < β < 2. The general result in the parameter

space [0, 1]× [1, 2] is the following theorem.

Theorem 6.20: Suppose that 1 ≤ α < 2, 0 ≤ β < 1. In addition, suppose that

(i) (∆β ◦∆αu)(n) ≥ 0, for each n ∈ N0;

(ii) ∆αu(0) ≥ 0;

(iii) ∆αu(1) ≥ β∆αu(0); and

(iv) u(0) ≥ 0.

Then u is α-monotone increasing and positive on N0.

Proof. Let v = ∆αu. By hypotheses (i) and (iii) we obtain that the assump-

tions of Theorem 6.3 are satisfied and, consequently, we obtain that v is pos-

itive and monotone increasing on N1. Since (ii) holds, we deduce that ∆αu
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is positive on N0. This, together with hypothesis (iv), implies that the condi-

tions of Theorem 5.4 are satisfied. We conclude that u is α-monotone increasing

and positive on N0.

Our pivotal result in this subsection is the following Theorem 6.21.

Theorem 6.21: Suppose that 0 < α < 1, 1 < β < 2, and 1 < α+β < 2. Then

(∆β ◦∆αu)(n) = (∆α+βu)(n+ 1)−∆2k2−β(n+ 1)u(0).(6.9)

Proof. Since 0 < α < 1, 1 < β < 2 and 1 < α + β < 2 we obviously have

0 < α < 1, 0 < β − 1 < 1 and 0 < α + (β − 1) < 1. Therefore, applying

Theorem 5.7 we have the identity:

(∆β−1 ◦∆αu)(n) = (∆α+β−1u)(n+ 1)− (∆k1−(β−1))(n+ 1)u(0)

= (∆α+β−1u)(n+ 1)− (∆k2−β)(n+ 1)u(0).

Hence,

∆ ◦ (∆β−1 ◦∆αu)(n) = ∆ ◦ (∆α+β−1u)(n+ 1)−∆ ◦ (∆k2−β)(n+ 1)u(0).

Using item (ii) of Proposition 2.9 we have

∆ ◦∆β−1 = ∆β and ∆ ◦∆α+β−1 = ∆α+β .

Consequently, we obtain (6.9) from the above equality.

The main result of this subsection is the following Theorem 6.22. As sug-

gested in the previous subsection, we note that this result can be compared to

[31, Theorem 2.4]. The result there, in addition to supposing an analogue of

condition (i) below, in [31, Theorem 2.4] it was also assumed that f(0) ≥ 0,

∆f(0) ≥ 0, and ∆f(1) ≥ 0. By contrast, we see that Theorem 6.22 below

does not involve a condition on u(2), and so, in this particular sense, is an

improvement of the corresponding result deduced in [31].

Theorem 6.22: Suppose that 0 < α < 1, 1 ≤ β < 2, and 1 < α + β < 2. In

addition, suppose that

(i) (∆β ◦∆αu)(n) ≥ 0 for each n ∈ N0;

(ii) u(1) ≥ (α + β)u(0); and

(iii) u(0) ≥ 0.

Then u is monotone increasing and (α+ β)-convex on N0.
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Proof. The case β = 1 is exactly Theorem 6.12. Suppose 1 < β < 2. By

Theorem 6.21 we have

(∆α+βu)(n+ 1) = (∆β ◦∆αu)(n) + ∆2k2−β(n+ 1)u(0)

= (∆β ◦∆αu)(n) + β(β − 1)
k−β(n+ 1)

(n+ 2)(n+ 3)
u(0)

≥ (∆β ◦∆αu)(n)u(0) ≥ 0.

We also observe that (ii) implies

∆α+βu(0) ≥ 0.

The conclusion follows from Theorem 6.3.

Remark 6.23: Similar to Remark 6.6, condition (ii) can be replaced by:

(ii)′ ∆u(0) ≥ u(0).

Corollary 6.24: Suppose that 0 < α < 1, 1 ≤ β < 2, and 1 < α+ β < 2. In

addition, suppose that

(i) (∆β
a+1−α ◦∆α

av)(t) ≥ 0 for each t ∈ Na+3−α−β ;

(ii) v(a+ 1) ≥ (α + β)v(a); and

(iii) v(a) ≥ 0.

Then v is monotone increasing and (α+ β)-convex on Na.

Proof. Set u = τav. Then, using the transference theorems, we have

∆β ◦∆αu(n) = (τa+2−β ◦∆β
a ◦ τ−a) ◦ (τa+1−α ◦∆α

a ◦ τ−a)u(n)

= τa+2−β ◦ (∆β
a ◦ τ1−α) ◦∆

α
av(n)

= τa+2−β ◦ (τ1−α ◦∆β
a+1−α) ◦∆

α
av(n)

= τa+3−α−β ◦∆β
a+1−α ◦∆α

av(n)

= ∆β
a+1−α ◦∆α

av(t),

where

t = n+ a+ 3− α− β ∈ Na+3−α−β .

Since (ii) and (iii) transfer to u(1) ≥ (α+β)u(0) and u(0) ≥ 0, the result follows

from Theorem 6.22.
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7. Convexity

In this section we will consider the following cases.

(a) 0 < α < 1 and 2 < β < 3

(b) 0 < α < 1 and 1 < β < 2

(c) 1 < α < 2 and 1 < β < 2

(d) 1 < α < 2 and 0 < β < 1

(e) 2 < α < 3 and 0 < β < 1

The following new convexity result (in the non-sequential setting) is central. We

note that this result can be compared to earlier results in the delta discrete frac-

tional setting using definition (1.1)—for example, see Goodrich [26, 28] and Jia

et al. [39]. In these papers, typical conditions, in addition to the nonnegativity

of the discrete fractional difference ∆ν
af(t), where 2 < ν < 3, was that f(0) ≤ 0,

∆f(0) ≥ 0, and ∆2f(0) ≥ 0. Moreover, Goodrich [28] replaced these conditions

with somewhat more flexible conditions that required ∆ν
af(t) ≥ 0 together with

an inequality involving a linear combination of f(0), f(1), and f(2)—see [28,

Theorem 2]. So, we see that Theorem 7.1 utilizes different conditions that do

not seem to have appeared exactly in the existing literature.

Theorem 7.1: Let 2 ≤ α < 3 be given and assume that

(i) (∆αu)(n) ≥ 0, for all n ∈ N0;

(ii) ∆2u(0) + (α−2)(α−1)
2 u(0) ≥ (α− 2)∆u(0);

(iii) u(1) ≥ αu(0);

(iv) u(0) ≥ 0.

Then u is convex on N0.

Proof. If α = 2 then the result is clear. We assume 2 < α < 3. By definition

and Lemma 2.3 we have

∆αu(n)

=(k3−α ∗ u)(n+ 3)− 3(k3−α ∗ u)(n+ 2) + 3(k3−α ∗ u)(n+ 1)−(k3−α ∗ u)(n)

=[(k3−α ∗ τ3u)(n) + k3−α(n+ 3)u(0) + k3−α(n+ 2)u(1) + k3−α(n+ 1)u(2)]

− 3[(k3−α ∗ τ2u)(n) + k3−α(n+ 2)u(0) + k3−α(n+ 1)u(1)]

+ 3[(k3−α ∗ τ1u)(n) + k3−α(n+ 1)u(0)]− (k3−α ∗ u)(n)

=(k3−α ∗ [τ3u− 3τ2u+ 3τ1u− u])(n) + k3−α(n+ 3)u(0)

+ k3−α(n+ 2)[u(1)− 3u(0)] + k3−α(n+ 1)[u(2)− 3u(1) + 3u(0)].



574 C. GOODRICH AND C. LIZAMA Isr. J. Math.

That is,

k3−α∗∆3u(n)

=∆αu(n)− k3−α(n+ 1)x1 − k3−α(n+ 2)x2 − k3−α(n+ 3)x3

=∆αu(n)− τ1k
3−α(n)x1 − τ2k

3−α(n)x2 − τ3k
3−α(n)x3,

where

x1 :=∆2u(0)−∆u(0) + u(0);

x2 :=∆u(0)− 2u(0);

x3 :=u(0).

We have

kα−2 ∗ k3−α ∗∆3u(n)

=kα−2 ∗∆αu(n)− kα−2 ∗ τ1k
3−α(n)x1

− kα−2 ∗ τ2k
3−α(n)x2 − kα−2 ∗ τ3k

3−α(n)x3

=kα−2 ∗∆αu(n)− [kα−2 ∗ k3−α(n+ 1)− kα−2(n+ 1)k3−α(0)]x1

− [kα−2 ∗ k3−α(n+ 2)− kα−2(n+ 2)k3−α(0)− kα−2(n+ 1)k3−α(1)]x2

− [kα−2 ∗ k3−α(n+ 3)− kα−2(n+ 3)k3−α(0)

− kα−2(n+ 2)k3−α(1)− kα−2(n+ 1)k3−α(2)]x3.

Since for any γ > 0, kγ(0) = 1,

kγ(1) = γ and kγ(2) = (γ + 1)γ/2,

we obtain

(7.1)

∆2u(n+ 1)−∆2u(0)

=kα−2 ∗∆αu(n)− [1− kα−2(n+ 1)]x1

− [1− kα−2(n+ 2)− kα−2(n+ 1)(3− α)]x2

−
[

1−kα−2(n+3)−kα−2(n+2)(3−α)−kα−2(n+1)
(4−α)(3−α)

2

]

x3

=kα−2 ∗∆αu(n)− (x1 + x2 + x3) + kα−2(n+ 3)x3

+ kα−2(n+ 2)[x2 + (3− α)x3]

+ kα−2(n+ 1)
[

x1 + (3− α)x2 +
(4− α)(3 − α)

2
x3

]

,
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where x1 + x2 + x3 = ∆2u(0), x3 = u(0), x2 + (3− α)x2 = u(1)− αu(0) and

(7.2)

x1 + (3 − α)x2+
(4− α)(3 − α)

2
x3

=∆2u(0) +
(α− 2)(α− 1)

2
u(0)− (α− 2)∆u(0)

=∆2u(0)− (α− 2)u(1) +
(α− 2)(α+ 1)

2
u(0).

We conclude that

∆2u(n+ 1) =kα−2 ∗∆αu(n) + kα−2(n+ 3)u(0) + kα−2(n+ 2)[u(1)− αu(0)]

+ kα−2(n+ 1)
[

∆2u(0) +
(α− 2)(α− 1)

2
u(0)− (α− 2)∆u(0)

]

,

for all n ∈ N0. Finally, note that (ii) (using the identity (7.2)), (iii) and (iv)

show that

∆2u(0) ≥(α− 2)u(1)−
(α− 2)(α− 1)

2
u(0)

≥
[

(α− 2)α−
(α− 2)(α− 1)

2

]

u(0) =
(α− 2)(α+ 1)

2
u(0) ≥ 0.

This proves that ∆2u(m) ≥ 0 for all m ∈ N0—i.e., u is convex.

Remark 7.2: According to the proof (see(7.1)) we can replace conditions (ii)–(iv)

by the following:

(ii)′ ∆2u(0) ≥ ∆u(0).

(iii)′ ∆u(0) ≥ 2u(0);

(iv)′ u(0) ≥ 0.

Note that (ii)′ can be rewriten as ∆u(1) ≥ 2∆u(0). As already noted, these

conditions appear to be somewhat different than any that have appeared in the

existing literature.

Remark 7.3: Note that for 1 < γ < 2 an easy calculation using the definition

shows that

∆γu(0) = ∆2(k2−γ ∗ u)(0) =
γ(γ − 1)

2
u(0)− γu(1) + u(2).

Note that from this we cannot directly replace condition (ii) by

∆αu(0) ≥ 0.

In the parameter space [1, 2)× [1, 2) we give the following general result.
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Theorem 7.4: Let 1 ≤ α < 2 and 1 ≤ β < 2 be given and assume that

(i) (∆β ◦∆αu)(n) ≥ 0, for all n ∈ N0;

(ii) ∆αu(1) ≥ β∆αu(0);

(iii) ∆αu(0) ≥ 0; and

(iv) u(0) ≥ 0.

Then u is monotone increasing on N1 and positive on N0. Moreover, u is α-

convex, inclusive of case α = 2.

Proof. Let v = ∆αu. By hypothesis ∆βv ≥ 0. Moreover,

v(1) = ∆αu(1) ≥ (β − 1)∆αu(0) = (β − 1)v(0)

and

v(0) ≥ 0.

By Theorem 6.3 we obtain that ∆αu(n) = v(n) ≥ 0 for all n ∈ N0. Note that

by (iii) and (iv) we have

u(1) ≥ αu(0) ≥ (α− 1)u(0).

Therefore, again by Theorem 6.3, we deduce the assertion.

In the parameter space [2, 3)× [0, 1] we have

Theorem 7.5: Let 2 ≤ α < 3 and 0 ≤ β ≤ 1 be given and assume that

(i) (∆β ◦∆αu)(n) ≥ 0, for all n ∈ N0;

(ii) ∆αu(0) ≥ 0;

(iii) ∆2u(0) + (α−2)(α−1)
2 u(0) ≥ (α− 2)∆u(0);

(iv) u(1) ≥ αu(0); and

(v) u(0) ≥ 0.

Then u is convex on N0.

Proof. Let v = ∆αu. By Theorem 5.4 and (ii) of the hypothesis we obtain that v

is positive on N0. Then, by Theorem 7.1 and hypotheses (iii)–(v), we have the

conclusion.

Remark 7.6: We note that condition (ii) is equivalent to

α(α − 1)

2
u(1) + u(3) ≥ αu(2) +

α(α − 1)(α− 2)

6
u(0).

In case of the parameter space [2, 3)× [1, 2) we have
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Theorem 7.7: Let 2 ≤ α < 3 and 1 ≤ β < 2 be given and assume that

(i) (∆β ◦∆αu)(n) ≥ 0, for all n ∈ N0;

(ii) ∆αu(0) ≥ 0;

(iii) ∆αu(1) ≥ β∆αu(0)

(iv) ∆2u(0) + (α−2)(α−1)
2 u(0) ≥ (α− 2)∆u(0);

(v) u(1) ≥ αu(0); and

(vi) u(0) ≥ 0.

Then u is convex on N0.

Proof. Let v = ∆αu. By Theorem 6.3 and (ii)–(iii) of the hypotheses we obtain

that v is positive on N0. Then, by Theorem 7.1 and hypotheses (iv)–(vi), we

have the conclusion.

The key result for remaining sequential results on convexity is the following

theorem.

Theorem 7.8: Assume 2 < α+ β < 3.

(a) If 0 < α < 1 and 2 < β < 3, then

∆β ◦∆αu(n) = ∆α+βu(n+ 1)−∆3k3−β(n+ 1)u(0).

(b) If 0 < α < 1 and 1 < β < 2, then

∆β ◦∆αu(n) = ∆α+βu(n)−∆2k2−β(n+ 1)u(0).

(c) If 1 < α < 2 and 1 < β < 2, then

∆β◦∆αu(n)

=∆α+βu(n+ 1)−∆2k2−β(n+ 1)∆α−1u(0)−∆3k2−β(n+ 1)u(0).

(d) If 1 < α < 2 and 0 < β < 1, then

∆β◦∆αu(n)

=∆α+βu(n)−∆2k1−β(n+ 1)u(0)−∆k1−β(n+ 1)∆α−1u(0).

(e) If 2 < α < 3 and 0 < β < 1, then

∆β ◦∆αu(n) =∆α+βu(n+ 1)−∆3k1−β(n+ 1)u(0)

−∆2k1−β(n+ 1)∆α−2u(0)−∆k1−β(n+ 1)∆α−1u(0).
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Proof. (a) We have 0 < α < 1, 1 < β−1 < 2 and 1 < α+(β−1) < 2. Applying

Theorem 6.21 we obtain

∆β−1 ◦∆αu(n) = ∆α+β−1u(n+ 1)−∆2k2−(β−1)(n+ 1)u(0).

Hence,

∆ ◦∆β−1 ◦∆αu(n) = ∆ ◦∆α+β−1u(n+ 1)−∆ ◦∆2k3−β(n+ 1)u(0).

Therefore, item (iii) of Proposition 2.9 implies

∆β ◦∆αu(n) = ∆α+βu(n+ 1)−∆3k3−β(n+ 1)u(0),

proving (a).

(b) We have 0 < α < 1, 0 < β − 1 < 1 and 1 < α + (β − 1) < 2. Applying

Theorem 6.11 we obtain

(∆β−1 ◦∆αu)(n) = (∆α+β−1u)(n)− (∆k1−(β−1))(n+ 1)u(0).

Hence,

∆ ◦∆β−1 ◦∆αu(n) = ∆ ◦∆α+β−1u(n)−∆ ◦∆k2−β(n+ 1)u(0).

Therefore, item (ii) of Proposition 2.9 implies

∆β ◦∆αu(n) = ∆α+βu(n)−∆2k2−β(n+ 1)u(0),

proving (b).

(c) We have 1 < α < 2, 0 < β − 1 < 1 and 1 < α + β − 1 < 2. Applying

Theorem 6.16 we obtain

∆β−1 ◦∆αu(n)

=∆α+β−1u(n+ 1)−∆k1−(β−1)(n+ 1)∆α−1u(0)−∆2k1−(β−1)(n+ 1)u(0).

Hence,

∆◦∆β−1 ◦∆αu(n)

=∆ ◦∆α+β−1u(n+ 1)−∆2k2−β(n+ 1)∆α−1u(0)−∆3k2−β(n+ 1)u(0).

Therefore, item (ii) of Proposition 2.9 implies

∆β ◦∆αu(n) = ∆α+βu(n+1)−∆2k2−β(n+1)∆α−1u(0)−∆3k2−β(n+1)u(0).

proving (c).
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(d) We have 0 < α − 1 < 1 and 0 < β < 1 and 1 < α− 1 + β < 2. Applying

Theorem 6.11 we obtain

∆β ◦∆α−1u(n) = ∆α−1+βu(n)−∆k1−β(n+ 1)u(0).

Hence,

∆ ◦∆β ◦∆α−1u(n) = ∆ ◦∆α−1+βu(n)−∆2k1−β(n+ 1)u(0).

Therefore, item (iv) of Proposition 2.9 implies

∆β ◦∆ ◦∆α−1u(n) + ∆k1−β(n+ 1)∆α−1u(0)

=∆ ◦∆α−1+βu(n)−∆2k1−β(n+ 1)u(0).

Now, by items (ii) and (iii) of Proposition 2.9 we obtain

∆β◦∆αu(n)

=∆α+βu(n)−∆2k1−β(n+ 1)u(0)−∆k1−β(n+ 1)∆α−1u(0),

proving (d).

(e) We have 1 < α− 1 < 2 and 0 < β < 1 and 1 < α− 1 + β < 2. Applying

Theorem 6.16 we obtain

∆β◦∆α−1u(n)

=∆α−1+βu(n+ 1)−∆2k1−β(n+ 1)u(0)−∆k1−β(n+ 1)∆α−1−1u(0).

Hence,

∆ ◦∆β ◦∆α−1u(n)

=∆ ◦∆α−1+βu(n+ 1)−∆3k1−β(n+ 1)u(0)−∆2k1−β(n+ 1)∆α−2u(0).

Therefore, item (iv) of Proposition 2.9 implies

∆β◦∆ ◦∆α−1u(n) + ∆k1−β(n+ 1)∆α−1u(0)

=∆ ◦∆α−1+βu(n+ 1)−∆3k1−β(n+ 1)u(0)−∆2k1−β(n+ 1)∆α−2u(0).

Consequently, by item (ii) of Proposition 2.9 we obtain

∆β ◦∆αu(n) =∆α+βu(n+ 1)−∆3k1−β(n+ 1)u(0)

−∆2k1−β(n+ 1)∆α−2u(0)−∆k1−β(n+ 1)∆α−1u(0),

proving the theorem.



580 C. GOODRICH AND C. LIZAMA Isr. J. Math.

We now arrive at our main results concerning convexity, which are the fol-

lowing sequence of theorems. In particular, these treat the different parameter

spaces for (α, β) enumerated at the beginning of this section.

Theorem 7.9: Suppose that 0 < α < 1, 2 < β < 3, and 2 < α + β < 3. In

addition, suppose that

(i) ∆β ◦∆αu(n) ≥ β(β − 1)(β − 2) (3−β)
24 u(0), for all n ∈ N0;

(ii) u(2) ≥ (α + β)u(1)− 1
2 (α+ β)(α + β − 1)u(0);

(iii) u(1) ≥ (α + β)u(0);

(iv) u(0) ≥ 0.

Then u is convex on N0.

Proof. We have

∆α+βu(n+ 1) = ∆β ◦∆αu(n) + ∆3k3−β(n+ 1)u(0),

where by item (iii) of Lemma 3.2 and the fact that 0 < 3− β < 1

∆3k3−β(n+ 1) =− β(β − 1)(β − 2)
k3−β(n+ 1)

(n+ 2)(n+ 3)(n+ 4)

≥− β(β − 1)(β − 2)
k3−β(1)

24
.

Therefore,

∆α+βu(n+ 1) =∆β ◦∆αu(n) + ∆3k3−β(n+ 1)u(0)

≥∆β ◦∆αu(n)− β(β − 1)(β − 2)
(3− β)

24
u(0),

and the conclusion follows from Theorem 7.1.

Remark 7.10: According to Remark 7.2 we can replace conditions (ii)–(iv) by

the following:

(ii)′ ∆2u(0) ≥ ∆u(0);

(iii)′ ∆u(0) ≥ 2u(0);

(iv)′ u(0) ≥ 0.

Theorem 7.11: Suppose that 0 < α < 1, 1 < β < 2, and 2 < α + β < 3. In

addition, suppose that

(i) ∆β ◦∆αu(n) ≥ 0, for all n ∈ N0;

(ii) u(2) ≥ (α + β)u(1)− 1
2 (α+ β)(α + β − 1)u(0);
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(iii) u(1) ≥ (α + β)u(0);

(iv) u(0) ≥ 0.

Then u is convex on N0.

Proof. We have

∆β ◦∆αu(n) = ∆α+βu(n)−∆2k2−β(n+ 1)u(0),

where by item (ii) of Lemma 3.2

∆2k2−β(n+ 1) = β(β − 1)
k2−β(n+ 1)

(n+ 2)(n+ 3)
≥ 0.

Therefore,

∆α+βu(n) =∆β ◦∆αu(n) + ∆2k2−β(n+ 1)u(0)

≥∆β ◦∆αu(n) ≥ 0,

and the conclusion follows from Theorem 7.1.

Remark 7.12: According to Remark 7.2 we can replace conditions (ii)–(iv) by

the following:

(ii)′ ∆2u(0) ≥ ∆u(0);

(iii)′ ∆u(0) ≥ 2u(0);

(iv)′ u(0) ≥ 0.

Theorem 7.13: Suppose that 1 < α < 2 and 1 < β < 2, and 2 < α + β < 3.

In addition, suppose that

(i) ∆β ◦∆αu(n) ≥ β(1 + β)(β − 1) (2−β)
24 u(0), for all n ∈ N0;

(ii) u(2) ≥ (α + β)u(1)− 1
2 (α+ β)(α + β − 1)u(0);

(iii) u(1) ≥ (α + β)u(0);

(iv) u(0) ≥ 0.

Then u is convex on N.

Proof. We have

∆β◦∆αu(n)

=∆α+βu(n+ 1)−∆2k2−β(n+ 1)∆α−1u(0)−∆3k2−β(n+ 1)u(0),
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where by item (ii) of Lemma 3.2 we have ∆2k2−β(n + 1) ≥ 0 and, since

0 < 2− β < 1,

∆3k2−β(n+ 1) =− β(1 + β)(β − 1)
k2−β(n+ 1)

(n+ 2)(n+ 3)(n+ 4)

≥− β(1 + β)(β − 1)
k2−β(1)

24
.

Also, observe that by (ii) and (i) we have

(7.3)

∆α−1u(0) =u(1)− (α− 1)u(0)

≥(α + β)u(0)− (α− 1)u(0)

=(β + 1)u(0) ≥ 0.

Therefore,

∆α+βu(n+ 1) =∆β ◦∆αu(n) + ∆2k2−β(n+ 1)∆α−1u(0) + ∆3k2−β(n+ 1)u(0)

≥∆β ◦∆αu(n)− β(1 + β)(β − 1)
(2− β)

24
u(0),

and the conclusion follows from the hypothesis and Theorem 7.1.

Remark 7.14: According to Remark 7.2 we can replace conditions (ii)–(iv) by

the following:

(ii)′ ∆2u(0) ≥ ∆u(0);

(iii)′ ∆u(0) ≥ 2u(0);

(iv)′ u(0) ≥ 0, replacing the argument in (7.3) by the following:

∆α−1u(0) =u(1)− (α− 1)u(0) = u(1)− αu(0) + u(0)

≥u(1)− αu(0)

≥3u(0)− αu(0)

=(3− α)u(0) ≥ 0.

Theorem 7.15: Suppose that 1 < α < 2 and 0 < β ≤ 1, and 2 < α + β < 3.

In addition, suppose that

(i) ∆β ◦∆αu(n) ≥ β
2 (1− β)∆α−1u(0), for all n ∈ N0;

(ii) u(2) ≥ (α + β)u(1)− 1
2 (α+ β)(α + β − 1)u(0);

(iii) u(1) ≥ (α + β)u(0);

(iv) u(0) ≥ 0.

Then u is convex on N.



Vol. 236, 2020 TRANSFERENCE PRINCIPLE FOR NONLOCAL OPERATORS 583

Proof. The limit case β = 1 coincides with Theorem 7.13. We have

∆β◦∆αu(n)

=∆α+βu(n)−∆2k1−β(n+ 1)u(0)−∆k1−β(n+ 1)∆α−1u(0),

where by item (ii) of Lemma 3.2 we have

∆2k1−β(n+ 1) = β(1 + β)
k1−β(n+ 1)

(n+ 2)(n+ 3)
≥ 0.

And since 0 < 1− β < 1, it follows that

∆k1−β(n+ 1) = −β
k1−β(n+ 1)

n+ 2
≥ −β

k1−β(1)

2
.

Also, since 0 < α− 1 < 1, we observe that by (ii) and (i) we have

(7.4)

∆α−1u(0) =u(1)− (α− 1)u(0)

≥(α + β)u(0)− (α− 1)u(0)

=(β + 1)u(0) ≥ 0.

Therefore

∆α+βu(n+ 1) =∆β ◦∆αu(n) + ∆2k1−β(n+ 1)u(0) + ∆k1−β(n+ 1)∆α−1u(0)

≥∆β ◦∆αu(n)−
β

2
(1− β)∆α−1u(0),

and the conclusion follows from the hypothesis and Theorem 7.1.

Remark 7.16: According to Remark 7.2 we can replace conditions (ii)–(iv) by

the following:

(ii)′ ∆2u(0) ≥ ∆u(0).

(iii)′ ∆u(0) ≥ 2u(0);

(iv)′ u(0) ≥ 0, replacing the argument in (7.4) by the following:

∆α−1u(0) =u(1)− (α− 1)u(0)

=u(1)− αu(0) + u(0)

≥u(1)− αu(0)

≥3u(0)− αu(0)

=(3− α)u(0) ≥ 0.

We finally prove:
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Theorem 7.17: Suppose that 2 < α < 3 and 0 < β < 1, and 2 < α + β < 3.

In addition, suppose that

(i) ∆β ◦ ∆αu(n) ≥ β(1 + β)(2 + β) (1−β)
24 u(0) + β (1−β)

2 ∆α−1u(0), for all

n ∈ N0;

(ii) ∆u(1) ≥ 2∆u(0);

(iii) ∆u(0) ≥ 2u(0);

(iv) u(0) ≥ 0.

Then u is convex on N.

Proof. We have

∆β ◦∆αu(n) =∆α+βu(n+ 1)−∆3k1−β(n+ 1)u(0)

−∆2k1−β(n+ 1)∆α−2u(0)−∆k1−β(n+ 1)∆α−1u(0),

where by item (ii) of Lemma 3.2 we have

∆2k1−β(n+ 1) = β(1 + β)
k1−β(n+ 1)

(n+ 2)(n+ 3)
≥ 0.

And since 0 < 1− β < 1 it also follows that

∆k1−β(n+ 1) = −β
k1−β(n+ 1)

n+ 2
≥ −β

k1−β(1)

2
.

Moreover,

∆3k1−β(n+ 1) =− β(1 + β)(2 + β)
k1−β(n+ 1)

(n + 2)(n+ 3)(n+ 4)

≥− β(1 + β)(2 + β)
k1−β(1)

24
.

Also, since 0 < α− 2 < 1, we observe that by (iii) and (iv) we have

∆α−2u(0) =u(1)− (α − 2)u(0)

=u(1)− αu(0) + 2u(0)

≥u(1)− αu(0)

≥(3 − α)u(0) ≥ 0,
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and since 1 < α−1 < 2, we obtain from Remark 7.3 as well as (iv), (ii) and (iii)

that

∆α−1u(0) =
1

2
(α− 1)(α− 2)u(0)− (α− 1)u(1) + u(2)

≥− (α− 1)u(1) + u(2)

≥− (α− 1)u(1) + 3u(1)− 2u(0)

=(3− α)u(1) + u(1)− 2u(0)

≥u(1)− 2u(0)

≥3u(0)− 2u(0)

=u(0)

≥0.

Therefore,

∆α+βu(n+ 1) =∆β ◦∆αu(n) + ∆3k1−β(n+ 1)u(0)

+ ∆2k1−β(n+ 1)∆α−2u(0) + ∆k1−β(n+ 1)∆α−1u(0)

≥∆β ◦∆αu(n)− β(1 + β)(2 + β)
(1 − β)

24
u(0)

− β
(1− β)

2
∆α−1u(0),

and the conclusion follows from the hypothesis and Theorem 7.1.

We finish this paper with the following illustrative numerical example.

Example 7.18: As an application for the results established in the previous

sections we consider time-stepping schemes for fractional differential equations

given in the form

Dα
t u(t) = f(t, u(t)), t > 0,

where Dα
t denotes the Riemann–Liouville fractional derivative of order α > 0.

A number of schemes in time t with a constant time step size τ > 0 has been

considered by several authors; see [40] and references therein. Here, we consider

the approximation ∂
α

τ u(n) to Dα
t u(tn); tn = nτ given by

∂
α

τ u(n) := τ−α∆αu(n).
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We observe that it amounts to a convolution quadrature generated by the ker-

nel z1−α(1− z)α; see [40]. We now consider the following time-stepping scheme

(7.5) τ−α∆αu(n) = f(n, u(n)), n ∈ N0.

As a consequence of Theorem 5.4, Theorem 6.3, Theorem 7.1 and Remark 7.3

we have the following result.

Theorem 7.19: Let f : N0 × R → R be given and assume in (7.5) that

f(n, x) ≥ 0 for all n ∈ N0 and all x ∈ R. Then:

(i) In case 0 < α < 1: If u(0) ≥ 0 then u(n+ 1) ≥ αu(n) for all n ∈ N0.

(ii) In case 1 < α < 2: If u(1) ≥ αu(0) ≥ 0 then u is monotone increasing

on N1 and u(n+ 2) ≥ αu(n+ 1)− (α− 1)u(n) for all n ∈ N0.

(iii) In case 2 < α < 3: If ∆2u(0) ≥ ∆u(0) ≥ 2u(0) ≥ 0 then ∆2u(n) ≥ 0

for all n ∈ N0—i.e., u is convex.
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