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A B S T R A C T

We study the accuracy of machine learning methods for inferring the parameters of noisy
fractional Wu–Baleanu trajectories with some missing initial terms. Our model is based on
a combination of convolutional and recurrent neural networks (LSTM), which permits the
extraction of characteristics from trajectories while preserving time dependency. We show that
these approach exhibit good accuracy results despite the poor quality of the data.

. Introduction

Discrete Fractional Calculus (DFC) is a valuable tool to characterize dynamical systems representing real-world processes of
iscrete nature with long-term connections between different time steps. In particular, DFC is a powerful tool for modeling
henomena in science and engineering that exhibit non-local and memory properties. Since the first preliminary works on discrete
ractional calculus [1–4], it has attracted the interest of researchers in the analysis of dynamical systems [5–8], with the recent
ppearance of new definitions of fractional derivatives [9].

Until 1976, when May [10] introduced the logistic equation (1), dynamical properties of systems were described using simple
irst-order difference equations, which implied that nonlinear dynamical characteristics were not considered. The logistic equation
s expressed as:

𝑥(𝑛 + 1) = 𝜂𝑥(𝑛)(1 − 𝑥(𝑛)), for 𝑛 ∈ N0, (1)

here 𝑥(0) ∈ [0, 1] and 𝜂 ∈ R. This equation is well defined in the interval 0 ≤ 𝜂 ≤ 4, converging to 0 if 0 ≤ 𝜂 < 1, and presenting
ontrivial dynamical behavior for 1 ≤ 𝜂 ≤ 4. Applying the change of variable 𝑥(𝑛) = 𝜂

𝜂−1𝑥(𝑛), one can transform the logistic equation
o extend it with a discrete fractional derivative. Therefore, alternately to compute the term 𝑥(𝑛 + 1) by recurrence, the forward
uler operator 𝛥 can substitute the nonlinear right term of the logistic as follows

𝛥𝑥(𝑛) ∶= 𝑥(𝑛 + 1) − 𝑥(𝑛), (2)
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having added the difference operator, which allows the derivative approximation, rescaling the initial condition by a factor 𝜇+1
𝜇 ,

yielding

𝛥𝑥(𝑛) = 𝜇𝑥(𝑛)(1 − 𝑥(𝑛)), 𝑥(0) =
𝜇 + 1
𝜇

𝑥(0). (3)

A natural generalization to discrete fractional calculus of the logistic equation through a discrete fractional operator and the
aputo derivative was provided by [11]. They started from the expression 𝛥𝑥(𝑛) ∶= 𝑥(𝑛 + 1) − 𝑥(𝑛), where 𝛥 is the forward Euler
perator, and replaced the Euler operator with the left Caputo discrete difference operator 𝛥𝜈 as follows:

𝛥𝜈𝑥(𝑛) ∶=
𝑛
∑

𝑗=0
𝑘−𝜈 (𝑛 − 𝑗)𝑥(𝑗), 𝑛 ∈ N0, (4)

here 𝑘−𝜈 (𝑗) is defined by the generating series
∞
∑

𝑗=0
𝑘−𝜈 (𝑗)𝑧𝑗 = (1 − 𝑧)𝜈 , 𝜈 ∈ R, (5)

hich in turn results in the following expression for the fractional logistic map

𝑥(𝑛) = 𝑥(0) +
𝜇

𝛤 (𝜈)

𝑛
∑

𝑗=1

𝛤 (𝑛 − 𝑗 + 𝜈)
𝛤 (𝑛 − 𝑗 + 1)

𝑥(𝑗 − 1)(1 − 𝑥(𝑗 − 1)), (6)

where 𝜇 is a parameter, and 𝜈 indicates the fractional derivation order. This expression can also be stated as a convolution, through
the Cesàro numbers of order 𝜈, 𝑘𝜈 (𝑗) = 𝛤 (𝜈+𝑗)

𝛤 (𝜈)𝛤 (𝑗+1) with 𝑗 ∈ N0, as a memory kernel in terms of the fractional derivation order 𝜈 [12].
When trajectories are obtained from physical experiments, they may be noisy or incomplete. Under these conditions, machine

learning techniques may help us to overcome these difficulties and help us to infer the model’s parameters from such poor data. It is
worth noting that while they have shown great promise in modeling complex systems, they also have limitations. For example, the
accuracy of these methods heavily depends on the quality and quantity of available data, which can be a challenge in real-world
applications.

Machine learning has provided powerful tools for estimating model parameters, as we can see in the case of anomalous
diffusion [13–17], when inferring the anomalous diffusion exponent. This has been possible if we process trajectories with machine
learning models based on LSTM recurrent neural networks [18–20] and transformers [21] and deep learning [22,23] architectures.
The LSTM and transformers architectures are able to learn from sequential ordered data despite some values were missing or slightly
modified. The values with more impact in the prediction are the ones in the last positions.

In fractional calculus, inference of missing parameters and model structure from fractional models has been achieved using
evolutionary algorithms such as the composite differential evolution (CoDE) algorithm [24] or by refined nonlinear least-squares
objective functions [25]. Machine learning methods have been recently used for inferring parameter models in discrete fractional
models [26,27].

We have also seen that these models can help us infer the underlying model’s parameters when we have short trajectories from
a Wu–Baleanu model [28] or from the corresponding delayed model [29] obtaining on average, an error of the same order of
magnitude as the parameter step size discretization. A more general panoramic of the last advances of the conjunction of fractional
calculus and machine learning can be found in [30–34].

In trajectories with memory, as in the case of the fractional models, this can be extremely helpful when training and testing
the model for obtaining a high accuracy. Therefore, we also want to explore how accurate these models can be when dealing with
trajectories with some initial missing terms. Besides, since we want to know to which extent these models can help to deal with
experimental data, we also have incorporated noise in the trajectories at each step in the trajectory, as this is a common practice
when developing models to infer parameters from experimental data [13,35,36].

In this paper, we investigate the accuracy of machine learning methods for modeling Wu–Baleanu trajectories in the presence
of noise and with missing initial terms. Our work is organized as follows: Section 2 describes how the data was obtained and
the configuration of the machine learning model. Later, in Section 3, we show the results obtained when predicting the model’s
parameters. Finally, in Section 4, we summarize the results and discuss their limitation.

2. Methodology

The combination of convolutional and LSTM networks to work with time series has recently been used in the study of time series
of many types, in particular for trajectories obtained from dynamical systems, either to predict the behavior of the system [37–40].
See also for its comparison with transformer-based architectures [41]. Sometimes, the mix of convolutional neural networks (CNNs)
with LSTMs us to extract informative characteristics from the trajectory while preserving the temporal dependencies, improving the
accuracy of the models [42–45]. Such an idea has been successfully applied in different applications such as in astrophysics [46,47],
weather forecasting [48], or signal processing [49,50].

In this work, we use the architecture described in [28]: two convolutional layers, three bidirectional Long Short Term Memory
(LSTM) networks [51], and two dense layers. Primarily, data flows through the convolutional layers, which behave as a feature
extractor or encoder, and their output becomes the input for the LSTM layers, which learn the temporal patterns.
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Fig. 1. Scheme of an LSTM layer.

The two convolutional layers are used for feature extraction. A one-dimensional (1D) convolutional layer can extract spatial
features from a 1D trajectory. The kernel of size five behaves as a sliding window that moves along the trajectory, focusing on
different parts of it and extracting features related to the spatial arrangement of the trajectory. Stacking two convolutional layers
results in the extraction of characteristics of different levels of abstraction. The three bidirectional LSTM layers learn from the
sequential features extracted by the convolutional networks. In Fig. 1, we depict a scheme of an LSTM unit; an LSTM layer comprises
a given number of these units concatenated. LSTM units include a cell state (denoted by h, see Fig. 1) that is passed from time t to
time t + 1 and allows to retain some memory of the critical information in a trajectory. In this way, the LSTM unit output combines
both the input at time t and the inputs of the time steps prior to t, which are kept by the cell state h. Since the information kept or
removed from the cell state is done in one direction, we use bidirectional LSTM, which simultaneously performs the same operation
but forward and backward. Therefore, any critical information that the forward LSTM could have discarded could be incorporated
by the backward one, and vice-versa.

We have trained four different models for simultaneously predicting 𝜇 and 𝜈, that are described as follows:

1. Raw model (R): This model has been trained with trajectories from the fractional version of the logistic equation by Wu and
Baleanu as in (6). The trajectories were generated with the following ranges for the parameters: 𝜇 ∈ [2.0, 3.2] with increments
of 0.001, 𝜈 ∈ [0.001, 1.0] with an increment of 0.01, and 𝑥(0) (initial value) ∈ [0.0, 1.0] with increments of 0.01.

2. Noisy model (N): We have trained a model with noisy trajectories with the same range of parameters as in the previous case.
We have added noise sampled from a Gaussian distribution with 0 mean and standard deviation equal to 0.01. Given 𝑥(0) as
the initial condition and 𝜀0 as a noise term, we define �̃�(0) = 𝑥(0) + 𝜀0, where. We compute 𝑥(1) as in (6) using �̃�(0) as initial
condition. Then we add a noise term 𝜀1, and this new value will be denoted as �̃�(1) = 𝑥(1) + 𝜀1. We proceed inductively and
compute �̃�(𝑛)

�̃�(𝑛) = 𝑥(0) + 𝜀0 +
𝜇

𝛤 (𝜈)

( 𝑛
∑

𝑗=1

𝛤 (𝑛 − 𝑗 + 𝜈)
𝛤 (𝑛 − 𝑗 + 1)

�̃�(𝑗 − 1)(1 − �̃�(𝑗 − 1))

)

+ 𝜀𝑛, (7)

where 𝜀𝑛 is a noise term added in the time step 𝑛. Therefore, the noise in the trajectory is incremental.
3. Raw missing data model (RM): This model has been trained with a data set built like in the raw model 𝑅. However, after

computing each trajectory, we remove a random number between 5 and 10 of the initial terms from that trajectory.
4. Noisy missing data model (NM): This model has been trained with a data set built with the same procedure as in the noisy

model N case, but we remove a random number between 5 and 10, of the initial terms from each trajectory, as in the previous
case.

For each model, we generate a training data set (learn the data distribution) and a validation data set to evaluate the model’s
performance at each epoch (or iteration over the data) during the training stage, enabling the model to adjust the internal weights
after each epoch to improve the accuracy. We also generate four data sets for testing, one per model.

All trajectories have been generated with a variable length ranging from 10 to 50. The reason is that in many experiments, such
as single-particle-tracking ones, it is very common that the lengths of trajectories obtained from experiments were really short [52].
This premise limits the number of initial elements that can be removed from any trajectory. Since data input to a convolutional
layer needs to be of a fixed length, we insert as many zeros as needed at the beginning of each trajectory (in other words, we
pad the trajectories) to make them of length 50. Therefore, all trajectories will be of the same length, even after removing initial
elements, and we let the model learn that these initial elements with values equal to zero are of no importance to infer the 𝜇 and
𝜈 parameters. In Table 1, we show the data sets used to train, validate, and test the models.
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Table 1
Number of trajectories in the train, validation, and test data sets generated per each model.

Train Validation Evaluation

Raw model 618,199 142,800 190,334
Noisy model 612,624 141,435 187,566
Raw missing data model 465,349 107,563 143,050
Noisy missing data model 458,103 106,064 141,187

Fig. 2. 𝜇 predictions scatter plot for each model with its own test data: 𝑅 on 𝐸𝑅 (up left), 𝑁 on 𝐸𝑁 (up right), 𝑅𝑀 on 𝐸𝑅𝑀 (bottom left), and 𝑁𝑀 on 𝐸𝑁𝑀
(bottom right).

The aforementioned training data sets will be denoted as 𝑇𝑅, 𝑇𝑁 , 𝑇𝑅𝑀 , and 𝑇𝑁𝑀 respectively, while 𝑉𝑅, 𝑉𝑁 , 𝑉𝑅𝑀 , and 𝑉𝑁𝑀 denote
the validation data sets, and the test data sets 𝐸𝑅, 𝐸𝑁 , 𝐸𝑅𝑀 , and 𝐸𝑁𝑀 used for evaluation. We will refer to them to evaluate the
performance on the prediction of 𝜇 and 𝜈 parameters.

Our 𝑅,𝑁,𝑅𝑀 , and 𝑁𝑀 models are used to predict the 𝜇 and 𝜈 parameters’ values, and these predictions were evaluated with
the actual values for 𝜇 and 𝜈. In order to shed light on the importance of the addition of noise and the deletion of some of the initial
terms of a trajectory, we will evaluate each model with its corresponding test data set and with all the other test data sets. In this
way, we analyze how the elements removal, the addition of noise, or the combination of both actions affect the models’ ability to
infer the 𝜇 and 𝜈 parameters. Sixteen experiments were conducted, as every model was evaluated on every test data set. Our results
to evaluate the accuracy when inferring the 𝜇 and 𝜈 parameters are expressed in terms of the mean absolute error (MAE), defined
as the mean of the absolute value of the errors obtained when inferring all the parameters of the trajectories in a given data set.
We analyze the obtained results in the next section.

3. Results

We discuss the performance of the four models over the aforementioned described models. Firstly, Fig. 2 shows a scatter plot
of the real (x-axis) and predicted values (y-axis) of the parameter 𝜇 given by each model over its corresponding test data set. It is
straightforward but worth mentioning that the closer the resulting values are to the diagonal, the better the model’s performance
at inferring the 𝜇 values is.

In Table 2, we show the MAE of each model when evaluated on each evaluation data set for predicting 𝜇. We see that each
model outperforms others when tested on its corresponding evaluation data set. Nevertheless, in all the cases, the MAE is within the
same order of magnitude as the discretization used for generating the trajectories, in the line of what was already observed in [28].

Despite all the models used for inferring 𝜇 show very small errors, looking back at Fig. 2, models used over complete trajectories
(𝑅 and 𝑁) show a homogeneous behavior along the entire range of values of 𝜇. In contrast, the models 𝑅𝑀 and 𝑁𝑀 show higher
1279
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Table 2
MAE results for the models 𝑅,𝑁,𝑅𝑀, and 𝑁𝑀 evaluated on the data sets 𝐸𝑅, 𝐸𝑁 , 𝐸𝑇 and 𝐸𝑇𝑁
for predicting 𝜇.

𝐸𝑅 𝐸𝑁 𝐸𝑅𝑀 𝐸𝑁𝑀

Raw model (𝑅) 0.025329 0.035202 0.141953 0.145223
Noisy model (𝑁) 0.027816 0.025865 0.163869 0.163828
Raw missing data model (𝑅𝑀) 0.046035 0.075430 0.04244 0.077100
Noisy missing data model (𝑁𝑀) 0.046757 0.046734 0.046294 0.043667

Fig. 3. Scatter plots for the predictions of 𝜈 from each model evaluated on its own evaluation data: 𝑅 on 𝐸𝑅 (up left), 𝑁 on 𝐸𝑁 (up right), 𝑅𝑀 on 𝐸𝑅𝑀
(bottom left), and 𝑁𝑀 on 𝐸𝑁𝑀 (bottom right).

Table 3
MAE results for the models 𝑅,𝑁,𝑅𝑀, and 𝑁𝑀 evaluated on the data sets 𝐸𝑅, 𝐸𝑁 , 𝐸𝑅𝑀 and
𝐸𝑁𝑀 for predicting 𝜈.

𝐸𝑅 𝐸𝑁 𝐸𝑅𝑀 𝐸𝑁𝑀

Raw model 0.018583 0.021626 0.058359 0.058972
Noisy model 0.021908 0.017560 0.087582 0.084969
Raw missing data model 0.033385 0.040394 0.032015 0.041381
Noisy missing data model 0.029028 0.026269 0.0287648 0.024460

Similarly, Fig. 3 shows the scatter plot of the predictions of 𝜈 by each considered model with respect to their corresponding
evaluation data sets: 𝑅 respect to 𝐸𝑅(𝜈), 𝑁 respect to 𝐸𝑁 and so on. Here, MAEs are lower than the ones obtained for 𝜇. We also
see that the predictions present higher variability for values of 𝜈 close to 0 or to 1 than in the rest of the range of 𝜈.

Table 3 shows the MAEs obtained by each model when evaluated on the four evaluation data sets. Again, for each data set,
its corresponding model outperforms the other ones, except for the case of 𝐸𝑅𝑀 in which the other model generated with missing
values, 𝑁𝑀 , presents better results than the 𝑅𝑀 model.

In Fig. 4, we can quickly notice that adding incremental noise to the trajectories worsens the model’s accuracy as expected.
However, we can still infer the 𝜇 value within an acceptable error margin along the complete range of values. Nevertheless, removing
some steps from the beginning of the trajectories results in much more error when inferring the 𝜇 values, which is coherent with
the results presented in [28,29], where the importance of the starting point to generate the trajectories to determine its behavior
was established.

An analogous result can be seen when analyzing the performance of the noisy model 𝑁 . As shown in Fig. 5, the model 𝑁 trained
with cumulative noise in the trajectories presents a similar performance as the raw model 𝑅 on the evaluation data sets 𝐸𝑅 and 𝐸𝑁 .
However, the lack of the initial terms of the trajectory highly affects the model’s performance. The horizontal spot of dots at height
1280
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Fig. 4. Scatter plots for the predictions of 𝜇 obtained from the raw model 𝑅 evaluated on the data sets 𝐸𝑅 (up left), 𝐸𝑁 (up right), 𝐸𝑅𝑀 (bottom left), and
𝐸𝑁𝑀 (bottom right).

2 on the scatter plots of model 𝑁 evaluated on 𝐸𝑅𝑀 and 𝐸𝑁𝑀 show how the model has difficulties when predicting the values of
𝜈.

In Fig. 6, we show the results of the 𝑅𝑀 model evaluated on the different evaluation data sets for predicting 𝜇. As seen in
Table 2, this model achieves its best performance on the 𝐸𝑅 and 𝐸𝑅𝑀 data sets. Adding incremental noise introduces errors in the
model predictions, especially for values of 𝜇 in the range [2, 2.5].

In Fig. 7, we depict the results for the 𝑁𝑀 model. Interestingly, predictions tend to fall below the diagonal in contrast to what
can be seen in Fig. 6. However, in these cases, the error made when predicting the 𝜇 value is more significant, with no noticeable
influence of the absence or presence of cumulative noise in the test data sets 𝐸𝑁 and 𝐸𝑁𝑀 .

Similar results can be seen with the parameter 𝜈 inference. In Fig. 8, we depict the performance of all four models 𝑅,𝑁,𝑅𝑀 ,
and 𝑁𝑀 when predicting the parameter 𝜈 on 𝐸𝑁𝑀 . We can see that the model trained with missing initial terms achieves better
performance than the others, outstanding with the 𝐸𝑁𝑀 data set. That is, with data similar to the used to train the model. Here, it is
noticeable how the initial conditions, or starting point, are conditioning the model’s performance, as we pointed out when inferring
the 𝜇 parameter.

We have also compared the accuracy of these models in the inference of the parameters when the missing values are randomly
distributed along the sequence and not extracted from the beginning of the trajectory.

We have generated new data sets of equal size for training validation and evaluation of new raw models. On the one hand, when
predicting 𝜇, the new raw model has a MAE of 0.056875 compared to 0.04244. On the other hand, when predicting 𝜈, the model
provides a MAE of 0.043843, which is higher than the MAE provided by the raw model trained with trajectories with missing values
at the beginning of the trajectory, with a MAE of 0.032015.

To see the importance of removing missing values at the beginning of the trajectory, we have tried another experiment. We have
chose a random position in the trajectory and we have replaced a consecutive number of random positions, between 5 and 10.

The errors are still higher respect to the raw model, with MAE of 0.047577 instead of 0.04244 when predicting 𝜇 and MAE of
0.037227 instead of 0.032015 when predicting 𝜈. This also shows that removing trajectories at the beginning of the trajectory is less
relevant than removing in other positions which is linked to the LSTM architecture that gives more importance to the last elements
than to the first ones.

4. Conclusions

In this work, we have analyzed the usefulness of machine learning methods to infer the parameters of fractional Wu–Baleanu
trajectories under four scenarios simulating data obtained from physical experiments, like noisy or incomplete trajectories.
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Fig. 5. Scatter plots for the predictions of 𝜇 obtained from the noisy model 𝑁 evaluated on the data sets 𝐸𝑅 (up left), 𝐸𝑁 (up right), 𝐸𝑅𝑀 (bottom left), and
𝐸𝑁𝑀 (bottom right).

Fig. 6. Scatter plots for the predictions of 𝜇 obtained from the raw model trained with missing initial terms 𝑅𝑀 evaluated on the data sets 𝐸𝑅 (up left), 𝐸𝑁
(up right), 𝐸𝑅𝑀 (bottom left), and 𝐸𝑁𝑀 (bottom right).
1282
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Fig. 7. Scatter plots for the predictions of 𝜇 obtained from the raw model trained with missing initial terms 𝑁𝑀 evaluated on the data sets 𝐸𝑅 (up left), 𝐸𝑁
(up right), 𝐸𝑅𝑀 (bottom left), and 𝐸𝑁𝑀 (bottom right).

Fig. 8. Scatter plots for the predictions of 𝜈 obtained from the four models, raw model 𝑅 (up left), noisy model 𝑁 (up right), raw missing data model 𝑅𝑀
(bottom left), and noisy missing data model 𝑁𝑀 (bottom right), evaluated on the 𝐸𝑁𝑀 data set.
1283
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We have shown that models trained with data corresponding to each scenario can effectively infer the 𝜇 and 𝜈 parameters.
Additionally, we have pointed out the importance of having complete trajectories, in the sense of what we pointed out in our
work [28] since models trained with raw or noisy data struggle to correctly predict both parameters, while models trained with
truncated data (noisy or not) obtain more accurate predictions for both parameters. Moreover, models trained with truncated
trajectories can, on average, predict 𝜇 and 𝜈 parameters with lower error, suggesting that despite the error being higher than when
using the corresponding models, the models can still generalize the distribution of the trajectories. We have also seen that if the
initial terms are missing, the errors are, in general pretty smaller than when removing items from other positions in the sequence.

Even in the presence of chaos, the models do not show a worse accuracy, as it can be deduce when comparing the Feigenbaum
diagrams from [28] where, depending on the values 𝜈, chaos starts to appear beyond 2.2 or 2.3, but not close to 0.

Given a trajectory susceptible to showing fractional behavior, the four models used in this paper can be used to infer the 𝜇 and 𝜈
parameters, which can be used to generate a new trajectory to be compared to the original one and find out the parameters’ values
that fit the original trajectory the best. We also suggest studying models for classifying a given trajectory among the four scenarios
considered in this work and applying the corresponding model to minimize the error at parameters inference.
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