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Abstract
Wepropose the qualitativemathematical analysis of discretemodels by replacing the classical
Euler scheme of order 1 with Lubich quadrature time-stepping schemes. As the first study
with this new paradigm, we compare the bifurcation diagrams for the logistic and sine maps
obtained from discretizations of orders 1, 2, and 1/2.

Keywords Dynamical systems · Bifurcation diagrams · Logistic map · Sine map ·
Time-stepping schemes
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1 Introduction

Since Verhulst’s introduction of the logistic equation and later popularized by May, a great
deal of research has been done from a mathematical and applied point of view. An essential
task to understand this model’s dynamics is to construct its bifurcation diagram. In fact, given
an initial condition y0, the iterations obtained through

yn+1 = ηyn(1 − yn), n ∈ N0, (1)

show regimes of stability, periodicity, and chaos, depending on the values of the control
parameter η > 0. It can be noted that after the change of variable xn = η

η−1 yn the equation
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(1) is equivalent to
xn+1 − xn = μxn(1 − xn) (2)

whereμ := η−1, see [1, 10]. Our key observation—and starting point—in this article is that
the term xn+1 − xn represents a discretization of the first order derivative, say u′, inherited
from the continuous model

u′(t) = μ f (u(t)), t ≥ 0, (3)

where f is a given real-valued function. The discretization with step size one used on the
left-hand side of (2) corresponds to what is commonly known as Euler’s method in numerical
analysis. From this observation, it is natural to ask:

(Q) what happens if we change the Euler discretization method for another?
In this work, we answer the previous question by proposing a new idea: we propose the

problem
n+1∑

j=0

bn+1− j x j = μ f (xn), n ∈ N0, (4)

where (bn)n is a given sequence. To understand the consequences of this modification in the
dynamics of discrete models, our objective of this article is twofold. First, to describe how to
handle (4) by a methodology that uses inversion on its left side using a special convolution
operator and, second, compare bifurcation diagrams of the associated dynamical systems for
some representative cases.

It is worth noting that the left-hand side of (4) contains an important number of classical
time-stepping schemes. For example, if we take bn = δ0n − δ1n, where δ jn denotes the
Kronecker delta, we get (2) for f (x) := x(1 − x).

From a numerical point of view, the sequences bn are called quadrature weights. They
arise from Lubich’s quadrature methods [7], and we can determine them from the following
generating power series (with step size τ = 1)

G(ξ) =
∞∑

n=0

bnξ
n, (5)

named the symbol, or characteristic function, of the scheme [2].
For example for G(ξ) = 1− ξ we must have bn = δ0n − δ1n, described previously. Other

examples are the second order difference scheme which is given by the symbol G(ξ) =
(1 − ξ) + 1

2 (1 − ξ)2 (see [2] ) and that produces bn = 3
2 δ0n − 2δ1n + 1

2 δ2n; and the Euler

scheme of order 1/2 given by the symbol G(ξ) = (1 − ξ)1/2 that produces bn = Γ (n−1/2)
Γ (−1/2)n! .

The first two cases are named local because they have a finite number of bn different from
zero. The third case is named non-local, and they usually incorporate memory effects in
the model. For other examples, we refer to the works of Jin [2], Murillo-Arcila and Lizama
[6] about maximal regularity of time-stepping schemes, the works of Wu and Baleanu that
introduced a discrete version of the left Caputo differential operator [10, 11], and the work of
Nieto for the solution of the logistic differential equation of fractional order without singular
kernel [8, 13].

This article is organized as follows: In Sect. 2, we describe the general methodology that
we follow to solve the problem (4), which allows it to be rewritten as an iterative equation
of discrete convolutional type, with an explicit sequence kernel (as long as b0 �= 0). This
procedure is exemplified in three dynamical systems, two local and one non-local, in the
sense that the number of terms bn �= 0 is finite or infinite, respectively. As final observation,
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we discussed about the possibility of studying the separation rate of nearby trajectories of
the dynamical system (4).

In Sect. 3, we particularize the general setting described in Sect. 2 to the following cases:
f (x) = x(1 − x) and f (x) = sin(x). We study graphically bifurcation diagrams.
Finally, in Sect. 4, we relate the equations obtained by means of the procedure indicated

in Sect. 2, with models of viscoelasticity theory. This correspondence is found by means of
the so called Poisson transformation, a method of discretization introduced in the reference
[4]. For each model studied in the previous Sect. 3, the corresponding viscoelastic model is
identified.

2 Methodology

In order to solve (4), we assume that there exists a sequence an such that an ∗bn = δ0n where
an ∗ bn = ∑n

j=0 an− j b j denotes the convolution product between an and bn and δ0n is the
Kronecker delta. Then, given x0 and convolving with an in (4) we obtain

xn = μ

n∑

j=1

an− j f (x j−1), n ∈ N. (6)

Note that an always exists if b0 �= 0 and is given by the recurrence

a0 = 1

b0
an = − 1

b0

n∑

j=1

an− j b j . (7)

In other words, whenever b0 �= 0 we have that the convolution operator Kb(x)n := bn ∗ xn
that defines the left hand side in (4) has inverse Ka where a is defined as in (7). In fact, since
clearly the convolution product is associative, we have

Ka(Kb(x))n = an ∗ Kb(x)n = an ∗ (bn ∗ xn) = (an ∗ bn) ∗ xn = δ0n ∗ xn = xn,

and analogously Kb(Kb(x))n = xn because the convolution product is commutative. More
generally, given any sequence bn satisfying b0 �= 0 we have that K−1

b exists and K−1
b = Ka

where an satisfy the property an ∗ bn = δ0n, and is given explicitly by (7).
Using in (7) the sequences bn obtained in the previous section, we have:

(a) For bn = δ0n − δ1n we obtain the constant sequence an = 1. Indeed, b0 = 1 �= 0 and
an ∗ bn = ∑n

j=0 an− j b j = ∑n
j=0 b j = ∑n

j=0 δ0n − ∑n
j=0 δ1n = 1 for n = 0 and 0

otherwise. Moreover,

Kb(x)n =
n∑

j=0

bn− j x j = xn − xn−1, K−1
b (x)n = Ka(x)n =

n∑

j=0

x j .

(b) For bn = 3
2 δ0n−2δ1n+ 1

2 δ2n we obtain the sequence an = 1− 1
3n+1 , see [5, Example 4.2].

Moreover,

Kb(x)n =
n∑

j=0

bn− j x j = 3

2
xn − 2xn−1 + 1

2
xn−2, K−1

b (x)n =
n∑

j=0

(
1 − 1

3n− j+1

)
x j .

(c) For bn = Γ (n − 1/2)

Γ (−1/2)n! we obtain the sequence an = (2n)!
4n(n!)2 , see [5, Example 4.1]. The

operator Kb(x) and its inverse K−1
b (x) can be defined analogously.
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Table 1 Euler approximation schemes of orders 1, 2 and 1/2, with the explicit formulas of the general solution

Scheme General solution

(a) Euler (1st order) xn = μ

n∑

j=1

f (xn−1)

(b) Euler (2nd order) xn = μ

n∑

j=1

(
1 −

(
1

3

)n− j+1
)

f (x j−1)

(c) Euler (1/2 order) xn = μ

n∑

j=1

(2(n − j))!
4(n− j) ((n − j)!)2 f (x j−1)

Using (a), (b) and (c) above we obtain, respectively, the general schemes shown in Table 1
It is worth noting that from a qualitative point of view, the maximum Lyapunov exponent

defined by

σ := lim
p→∞

1

p

p∑

j=1

ln | f ′(x j )|, (8)

where p is the period of an orbit xi , plays a fundamental role in chaos theory. The maximum
Lyapunov exponent measures the exponential rate of separation of nearby trajectories in a
dynamical system, and it is used to determine the level of chaos in a system and provides
information about its long-term predictability. A positive maximum Lyapunov exponent
indicates chaotic behavior, while a negative exponent suggests stability.

We observe that the definition (8) depends on the left-hand side of (4). Specifically, the
logarithm and the derivative have to do with the exponential nature of the solution to the
linearized problem (Taylor series expansion):

u′(t) = f ′(x)u(t), (9)

where x = u(t0). For this reason, a plausible general equivalent of (8) in the discrete case
(or even the continuous scenario) remains an open problem. For specific cases, for example
fractional cases, a good assumption should have to do with the Mittag–Leffler function. We
leave these considerations for a future article.

3 Results: bifurcation diagrams

For constructing the bifurcation diagrams, we consider pairs (x0, μ), where x0 is an initial
condition and μ is taken in an interval where we want to illustrate the dynamics. For some
diagrams presented in this work, we have taken several initial conditions, not only one, to
improve the illustration of the dynamics. Given a pair (x0, μ), we have computed the first 200
terms of each trajectory and represented the last 50 terms, namely x151, . . . , x200. In Fig. 1,
we have the bifurcation diagrams for first-order Euler models, xn = μ

∑n
k=1 xk−1(1− xk−1)

and xn = μ
∑n

k=1 sin(xk−1).
The first is the logistic map diagram; the second can also be found in [12]. We can observe

that they are very similar since, as we have commented with the equivalences of (1) and (2),
we can pass from one to the other one with a change of variable.
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Fig. 1 Bifurcation diagrams for the logistic map (top left), the first-order logistic map (top right), and the
first-order sine map for x0 = 0.3 (bottom left) and x0 ∈ {0.3, 0.5} (bottom right). The μ step size is 10−4

In order to avoid numerical precision problems in the computation of the bifur-
cation diagrams of second-order models, we have used the recurrent formula xn =
2
3

(
2xn−1 − 1

2 xn−2 + μ f (xn−1)
)
that directly appears from (4). Although a second-order

model is numerically more stable than a first-order one, we can still find chaos in some
regions, as shown in Fig. 2. We have simultaneously used several initial conditions to get
better bifurcation diagram plots. For the case of the logistic term, we can find a chaotic
region for μ ∈ [3.83, 3.85]. Here, the step size for μ has been decreased up to 10−5. For the
sinus term, we show chaos in some regions of μ ∈ [6, 7] with a μ step size of 10−4. For
better plotting the behavior in the interval [6.18, 6.22] we have used 100 initial conditions,
x0 ∈ {0.01, 0.02, . . . , 0.99}, computing the first 200 times of each trajectory, and plotting
the last 25 terms of each one.

For the half-order case, where we have introduced thememory effect, themodel resembles
the fractional logistic models inspired by the fractional version of (2) [11], showing a blurry
part in the region of chaos, as we can see in Fig. 3.

4 Analysis and conclusions

We have performed a comparative analysis of the dynamics exhibited by some time-stepping
schemes originating from quadrature methods. From the recent literature, it is known that
these methods are related to some linear viscoelasticity models. For instance, the Euler
method is linked with a Newtonian fluid, the second order difference scheme is related to
a Maxwell fluid, and the Euler scheme of order 1/2 with a power type material function,
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Fig. 2 Bifurcation diagrams for the second-order logistic map (top left) and for the second-order sine map
(top right). In this second case, we can find smaller regions in the interval [6.18, 6.22] (bottom left and right)

Fig. 3 Bifurcation diagrams for the half-order logistic map (left) and for the half-order sine map (right)

see [5]. On the other hand, from [9], it is well known that each one of the above-mentioned
models has an associated material function. For instance, for a Newtonian fluid, the material
function is a(t) = 1, for a Maxwell fluid a(t) = 1− e−ct where c ∈ R is a constant, and for
a power type material, the function is a(t) = tα

Γ (α+1) where α ∈ (0, 1), see [9, Section 5.2].
Now, we observe that each sequence an obtained for the time-stepping schemes in (6)

corresponds in some sense to a discrete version of this material functions, namely, for a(t) :=
1we have an = 1; for a(t) := 1−e2t/3 we have an = 1− 1

3n+1 and for a(t) := t1/2
Γ (3/2) we have

an = (2n)!
4n(n!)2 . We can even give a mathematical argument to prove this correspondence. For

that, we consider the Poisson transformation [4] of a real-valued function f : [0,∞) → R
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Table 2 Comparative table of the numerical schemes and properties

Scheme Viscoelastic model Material function Discrete kernel Bifurcation diagram

Euler Newtonian fluid a(t) = 1 an = 1 Figure1

Second order Maxwell fluid a(t) = 1 − e−2t/3 an = 1 − 1
3n+1 Figure2

Half order Power type a(t) = t1/2
Γ (3/2) an = Γ (1/2+n)

Γ (1/2)n! Figure3

defined by

f̂ (n) :=
∫ ∞

0
pn(t) f (t)dt, n ∈ N,

where pn(t) = tn
n! e

−t and note that a computation produces â(n) = 1 = an, â(n) = 1− 1
3n =

an−1 and â(n) = Γ (1/2+n)
Γ (1/2)n! = (2n)!

4n(n!)2 = an, respectively. We summarize the characteristic of
the models and diagrams in Table 2.

In all cases, we have obtained explicit formulas for computing all the terms of the tra-
jectory, as shown in Table 1. We have also shown the chaos phenomena in all these cases
through bifurcation diagrams. In the models from half and first-order schemes, the bifur-
cation diagrams given by the logistic and sine functions present similar shapes, albeit with
different parameter values. However, the similarities disappear when we observe the same
maps with the second-order difference schemes. In these last cases, chaos is also present,
but one has to look for small regions where it is present. Such dynamical systems show
less chaotic behavior and are less powerful for encryption [3]. It will be interesting to study
the dynamical properties of these dynamical systems and the connections with the physical
properties of the associated viscoelastic models.
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