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Abstract: Given an injective closed linear operator A defined in a Banach space X, and writing CFDα
t

the Caputo–Fabrizio fractional derivative of order α ∈ (0, 1), we show that the unique solution
of the abstract Cauchy problem (∗) CFDα

t u(t) = Au(t) + f (t), t ≥ 0, where f is continuously
differentiable, is given by the unique solution of the first order abstract Cauchy problem u′(t) =
Bαu(t)+ Fα(t), t ≥ 0; u(0) = −A−1 f (0), where the family of bounded linear operators Bα constitutes
a Yosida approximation of A and Fα(t)→ f (t) as α→ 1. Moreover, if 1

1−α ∈ ρ(A) and the spectrum
of A is contained outside the closed disk of center and radius equal to 1

2(1−α)
then the solution of (∗)

converges to zero as t → ∞, in the norm of X, provided f and f ′ have exponential decay. Finally,
assuming a Lipchitz-type condition on f = f (t, x) (and its time-derivative) that depends on α, we
prove the existence and uniqueness of mild solutions for the respective semilinear problem, for all
initial conditions in the set S := {x ∈ D(A) : x = A−1 f (0, x)}.

Keywords: Caputo–Fabrizio fractional derivative; Yosida approximation; stability; linear and semi-
linear abstract Cauchy problem; one-parameter semigroups of operators

MSC: 47D06; 35R11; 35B35

1. Introduction

In 2015, the authors Caputo and Fabrizio proposed a new concept of fractional deriva-
tive with a regular kernel [1]. This concept has proven to have valuable properties that
make it very useful in various areas of science and engineering (see [2–13]).

For example, in [2], Abbas, Benchohra and Nieto provided sufficient conditions to
ensure the existence of solutions for functional fractional differential equations with in-
stantaneous impulses involving the Caputo–Fabrizio derivative. As methods, they used
fixed point theory and measure of noncompactness. In [4], Baleanu, Jajarmi, Mohammadi
and Rezapour proposed a new fractional model for the human liver involving the Caputo–
Fabrizio derivative. In the paper, comparative results with real clinical data indicated the
superiority of the new fractional model over the preexisting integer order model with
ordinary time derivatives. A similar study carried out by the aforementioned authors, but
for the Rubella disease model, was performed in reference [5], while in [6] the analysis
was performed in terms of a differential equation model for COVID-19. In the paper [14],
Baleanu, Sajjadi, Jajarmi and Defterli analyzed the complicated behaviors of a nonlinear
suspension system in the framework of the Caputo–Fabrizio derivative. They showed
that both the chaotic and nonchaotic behaviors of the considered system can be identified
by the fractional order mathematical model. Very recently, in the reference [15], Kumar,
Das and Ong analyzed tumor cells in the absence and presence of chemotherapeutic treat-
ment by use of the Caputo–Fabrizio derivative. This is one of the few studies, together
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with the references [13,16], where the presence of partial differential equations with the
Caputo–Fabrizio derivative over time was considered.

Although this notion of fractional derivative appears to be very auspicious in a variety
of concrete applications, so far an unified analysis in the context of abstract partial differen-
tial equations, where there is a wider range of mathematical models, remains undeveloped.
In this context, one of the basic problems to be studied corresponds to the so-called abstract
Cauchy problem.

In this article, our concern is the study of existence, uniqueness and qualitative prop-
erties for the solutions of the abstract Cauchy problem

CFDα
t u(t) = Au(t) + f (t), t ≥ 0, (1)

and semilinear versions of it, i.e., where the term f (·) is replaced by f (·, u(·)). In Equation (1),
A is a closed linear operator with domain D(A) defined in a Banach space X and CFDα

t
denotes the Caputo–Fabrizio fractional derivative of order α ∈ (0, 1).

One of the motivations for this study is that, to our knowledge, similar work has not
been done before in abstract spaces with Caputo-Fabrizio or other fractional derivatives
that have non-singular kernels. Our goal is to clarify to what extent this type of fractional
derivative offers advantages/disadvantages in this abstract scenario.

In the existing literature, the problem (1) has been studied when A is scalar or even a
matrix, but when A is simply a closed linear operator, e.g., partial differential operators
such as the Laplacian, the problem (1) remains unsolved.

In the border case α = 1, it is well-known that solving the linear problem

u′(t) = Au(t) + f (t), t ≥ 0, (2)

requires A as the generator of a C0-semigroup.
In contrast, in this article we will show that this requirement is not necessary for the

study of (1). Such an advantageous property occurs because we realize in this article that
solving the problem (1) is equivalent to solving the following problem:{

u′(t) = Bαu(t) + Fα(t), t ≥ 0;
u(0) = −A−1 f (0),

(3)

where Bα are bounded linear operators that behave like a Yosida approximation of A, being
Bα → A and Fα(t)→ f (t) as α→ 1, in an appropriate sense. In this way, some qualitative
properties for (1) could be directly deduced from the corresponding ones of (3) with due
care, given the special initial condition u(0) = −A−1 f (0) that appears in our new context.

Once this key result is established, we study the important issue of stability. We show
that under a simple condition, which depends on α, about the location of the spectrum
of the operator A, and a decay condition on f , we can conclude that the unique solution
u of the nonhomogeneous Equation (1) satisfies ‖u(t)‖ → 0 as t → ∞. A concrete example
is shown that illustrates this asymptotic behavior and how the connection between (1)
and (3) works.

Finally, if A is a closed linear operator, we show existence and uniqueness of mild
solutions for the nonlinear equation

CFDα
t u(t) = Au(t) + f (t, u(t)), t ∈ [0, T], T > 0, (4)

under a Lipschitz type condition on f that also depends on α. In particular, assuming that
A is densely defined, we realize that as α → 1, our result matches a classical result for
Equation (2) stated in ([17], Theorem 6.1.2), where the condition for A to be the generator
of a C0 semigroup appears. Our studies reveal that this condition turns out to be natural
thanks to the property Bα → A as a Yosida approximation, mentioned before.



Mathematics 2022, 10, 3540 3 of 20

It should be noted that one of the keys that was taken into account to carry out this
work is that the Caputo-Fabrizio fractional derivative has a non-singular kernel. Therefore,
it is natural to ask—and we leave it as an open problem—in what extent the results of this
article could be reproduced if the Caputo-Fabrizio derivative is replaced by another type
of fractional derivatives with non-singular kernel. For example, there are fractional time
derivatives by the use of Gaussian kernels [18] (Section 8), or Mittag-Leffler kernels [19],
the last also known as the Atangana-Baleanu-Caputo derivative.

2. Preliminaries

In this section, we recall some preliminary results and definitions that will be used
throughout the paper. Let X be a Banach space; by B(X) we denote the space of all bounded
linear operators from X to X. If A is a closed linear operator in X, we denote by D(A) the
domain of A.

Definition 1 ([11], Definition 2). Let 0 < α < 1 and u : R+ → X be a continuously
differentiable function. The Caputo–Fabrizio fractional derivative of u of order α is given by:

CFDα
t u(t) :=

1
1− α

∫ t

0
exp

(
−α(t− s)

1− α

)
u′(s)ds, t ≥ 0.

We recall two important properties (see [1], Section 2):

(i) For α→ 1 we have that
lim
α→1

CFDα
t u(t) = u′(t). (5)

(ii) We denote by L [u] the Laplace Transform of a function u. The Laplace Transform of
the fractional operator CFDα

t with 0 < α < 1 is:

L [CFDα
t u](λ) =

λL [u](λ)− u(0)
λ(1− α) + α

, λ > 0.

Remark 1. Note that the Caputo–Fabrizio fractional derivative has a non-singular kernel, namely,
exp

(
− αt

1−α

)
. This special feature, when compared with the classical Caputo or Riemann–Liouville

fractional derivative that instead has the singular kernel gα(t) = tα−1

Γ(α) , 0 < α < 1, allows us to
obtain distinguished properties of the non-local operator CFDα

t . One of these properties, which is
obvious but important in our analysis, is the following:

CFDα
t u(0) = 0, (6)

whenever 0 < α < 1. This behavior has been remarked by Diethelm, Garrapa, Giusti and Stynes [20],
where the general issue of the use of regular kernels in the theory of fractional calculus is discussed.

For further use, we recall the following definition.

Definition 2 ([21], Definition II.4.1, [17], Section 2.2.5). A closed linear operator A with dense
domain D(A) in a Banach space X is called sectorial (of angle δ) if there exists 0 < δ < π/2 such
that the sector

Σ := {λ ∈ C : | arg λ| < π/2 + δ} ∪ {0}

is contained in the resolvent set ρ(A), and if there exists M ≥ 1 such that

||(λ− A)−1|| ≤ M/|λ| for λ ∈ Σ, λ 6= 0.
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3. Well-Posedness

Let X be a complex Banach space and A : D(A) ⊂ X → X be a closed linear operator
on X. Given 0 < α < 1 and f : [0, ∞)→ X be a function.In this section, we are concerned
with the problem of existence of solutions to the equation

CFDα
t u(t) = Au(t) + f (t), t ≥ 0. (7)

Definition 3. A function u : [0, ∞)→ X is said to be a strong solution of (7) if u is continuously
differentiable with u(t) ∈ D(A), t ≥ 0, and satisfies (7).

Remark 2. Observe that in Equation (7) when t = 0 we have CFDα
t u(0) = Au(0) + f (0), i.e.,

Au(0) = − f (0). Therefore, the value u(0) is implicitly prescribed although it is not given as an
initial condition. This condition will be important to show that the solution is unique in the classical
sense depending on the properties of the operator A.

Let 0 < α < 1 be fixed. Assuming that 1
1−α ∈ ρ(A), we define

Nα := (I − (1− α)A)−1 ∈ B(X).

Since Bα := α
1−α (Nα − I) is a bounded operator, it defines the uniformly continuous group

(Tα(t))t∈R on X, given by (see [21], Theorem I.3.7):

Tα(t) = exp(tBα) =
∞

∑
k=0

tkBk
α

k!
, t ∈ R. (8)

Let f : [0, ∞)→ X be continuously differentiable and define

Fα(t) := (1− α)Nα f ′(t) + αNα f (t).

Note that Fα(t) ∈ D(A) for all t ∈ [0, ∞). For each x0 ∈ X, we define:

u(t) = Tα(t)x0 +
∫ t

0
Tα(t− τ)Fα(τ)dτ, t ≥ 0. (9)

Then, it is well-known ([17], Section 4.2) that u is a strong solution of

u′(t) = Bαu(t) + Fα(t), t ≥ 0. (10)

Observe from (9) that x0 = u(0). If x0 ∈ D(A) is such that Ax0 = − f (0) then u solves the
following particular initial value problem{

u′(t) = Bαu(t) + Fα(t), t ≥ 0;
Au(0) = − f (0).

(11)

Note that in the initial condition we are not yet assuming any conditions on the invertibility
of A.

We recall the following definitions, applied to (11).

Definition 4. Let x0 ∈ X be given. The function u defined by (9) is called a mild solution of the
initial value problem (11).

Definition 5. A function u : [0, ∞) → X is a strong solution of (11) if u is continuously
differentiable with u(0) ∈ D(A) and satisfies (11).

The following result is well-known, except for the new necessary condition imposed
on the operator A.
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Proposition 1. Every strong solution of (11) is also a mild solution, and, if A is injective and
u(0) ∈ D(A) then every mild solution of (11) is also a strong solution.

Proof. Suppose u is a strong solution of (11), then it is well-known that u is defined by

u(t) = Tα(t)u(0) +
∫ t

0
Tα(t− τ)Fα(τ)dτ, t ≥ 0,

and is a mild solution (see [17], Section 4.2). Now, if A is injective, then u defined by

u(t) = −Tα(t)A−1 f (0) +
∫ t

0
Tα(t− τ)Fα(τ)dτ, , t ≥ 0 (12)

verifies (10) and, since u(0) ∈ D(A), we have Au(0) = −ATα(0)A−1 f (0) = − f (0). Hence,
(12) is a strong solution of (11).

Next, we collect some important properties of the operators previously defined.

Proposition 2. Let 0 < α < 1, β := α
1−α , A be a closed linear operator on X with domain D(A),

1
1−α ∈ ρ(A) and Tα(t) = exp(tBα), t ∈ R, where Bα = β(Nα− I) and Nα = (I− (1− α)A)−1.
The following statements hold:

(i) Bαx = αNα Ax and ANαx = Nα Ax, for x ∈ D(A);
(ii) Bk

αx ∈ D(A) and Bk
α Ax = ABk

αx, for x ∈ D(A) and k ∈ N0;
(iii) Tα(t)x ∈ D(A) and ATα(t)x = Tα(t)Ax, for t ∈ R and x ∈ D(A);
(iv) Bk

αNαx = NαBk
αx, for x ∈ X and k ∈ N0;

(v) NαTα(t)x = Tα(t)Nαx, for t ∈ R and x ∈ X.

Proof. (i) For x ∈ D(A), we have Ix = NαN−1
α x = Nαx− (1− α)Nα Ax then Nαx− Ix =

(1− α)Nα Ax, obtaining the claim.
(ii) First, by proceeding by induction on k, we prove that Bk

αx ∈ D(A), for x ∈ D(A). In
fact, for k = 0 is trivial and for k = 1, by property (i), we have Bαx = αNα Ax ∈ D(A),
for all x ∈ D(A). Suppose that for k ∈ N0, we have Bk

αx ∈ D(A), for all x ∈ D(A).
Then, for k + 1 and x ∈ D(A), we obtain Bk+1

α x = Bk
α(Bαx) ∈ D(A).

Now, again by proceeding by induction on k, we prove that Bk
α Ax = ABk

αx, for
x ∈ D(A). Indeed, for k = 0 is trivial and for k = 1, by property (i) and the above
case, we have for x ∈ D(A)

Bα Ax = β(Nα − I)Ax = β[Nα Ax− Ax] = β[ANαx− Ax] = A[β(Nα − I)]x = ABαx.

Suppose that for k ∈ N0, we have Bk
α Ax = ABk

αx, for all x ∈ D(A). Then, by property
(i), we obtain for k + 1 and x ∈ D(A):

Bk+1
α Ax = Bk

α(Bα A)x = Bk
α(ABα)x = (Bk

α A)Bαx = (ABk
α)Bαx = ABk+1

α x.

(iii) Let n ∈ N0 and x ∈ D(A), define Tα,n(t)x := ∑n
k=0

tk Bk
α

k! x, t ∈ R. By property (ii), we
have Tα,n(t)x ∈ D(A), for n ∈ N0, and

lim
n→∞

Tα,n(t)x = Tα(t)x, t ∈ R.

Note that by property (ii), we obtain for x ∈ D(A)

ATα,n(t)x =
n

∑
k=0

tk ABk
α

k!
x =

n

∑
k=0

tkBk
α A

k!
x = Tα,n(t)Ax, t ∈ R.

Hence, by the above identities, we have for x ∈ D(A)
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lim
n→∞

ATα,n(t)x = lim
n→∞

Tα,n(t)Ax = Tα(t)Ax, t ∈ R.

Thus, since A is a closed operator, for x ∈ D(A) we obtain Tα(t)x ∈ D(A) and

ATα(t)x = Tα(t)Ax, t ∈ R.

(iv) By proceeding by induction on k. For k = 0 is trivial and for k = 1, we have for x ∈ X:
BαNαx = β(Nα − I)Nαx = β[N2

α x− Nαx] = Nα[β(Nα − I)]x = NαBαx.
Suppose that for k ∈ N0, we have Bk

αNαx = NαBk
αx, for all x ∈ X. Then, we obtain for

k + 1 and x ∈ X:

Bk+1
α Nαx = Bk

α(BαNα)x = Bk
α(NαBα)x = (Bk

αNα)Bαx = (NαBk
α)Bαx = NαBk+1

α x.

(v) We define Tα,n(t)x := ∑n
k=0

tk Bk
α

k! x, t ∈ R, for n ∈ N0 and x ∈ X. Since Nα is a bounded
operator, we have for x ∈ X

NαTα(t)x = Nα lim
n→∞

Tα,n(t)x = lim
n→∞

NαTα,n(t)x, t ∈ R.

By property (iv), we have for x ∈ X

NαTα,n(t)x =
n

∑
k=0

tk NαBk
α

k!
x =

n

∑
k=0

tkBk
αNα

k!
x = Tα,n(t)Nαx, t ∈ R.

Thus, NαTα(t)x = Tα(t)Nαx, t ∈ R, for all x ∈ X.

Remark 3. Let 0 < α < 1 and A be a closed linear operator on X with 1
1−α ∈ ρ(A). First note

that by Proposition 2 part (i), we have

Bαx = αANαx = αA(I − (1− α)A)−1x =
α

1− α
A(

1
1− α

I − A)−1x, for all x ∈ D(A).

Thus, by the above identity, we obtain

lim
α→1

Bαx = Ax, for all x ∈ D(A). (13)

Now, let s := 1
1−α , we define for every s > 1

Bs := (s− 1)A(sI − A)−1 = (1− s)[s(sI − A)−1 − I].

Note that if A is a densely defined operator on X then we deduce the following: Bs is a Yosida
approximation of A ([17], Theorem 1.3.1). Moreover, since each Bs is bounded, it generates a
uniformly continuous semigroup (Ts(t))t>0 on X. Then, there exists M ≥ 1 such that

||Ts(t)||B(X) ≤ M for all t ≥ 0. (14)

Observe that for α→ 1 we have s→ ∞. Thus, by (13), we obtain

lim
s→∞

Bsx = Ax, for all x ∈ D(A). (15)

Since 1
1−α ∈ ρ(A), we have for α→ 1 that

(ω, ∞) ⊂ ρ(A), ω > 1. (16)

Therefore, by ([22], Corollary 3.6.3), (14)–(16), we have that A generates a C0-semigroup T and for
all x ∈ X,

lim
s→∞

Ts(t)x = T(t)x
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uniformly for t ∈ [0, τ] for all τ > 0.

The following is the main result of this section, and one of the main theorems of this
paper: We show that (7) is well-posed if and only if (11) is well-posed.

Theorem 1. Let 0 < α < 1, A be a closed linear operator on X with domain D(A) and f :
[0, ∞) → X continuously differentiable. Assume that {0, 1

1−α} ⊂ ρ(A). Then, the problem
given by

CFDα
t v(t) = Av(t) + f (t), t ≥ 0, (17)

has a unique strong solution if and only if the initial value problem given by{
u′(t) = Bαu(t) + Fα(t), t ≥ 0;
u(0) = −A−1 f (0),

(18)

has a unique strong solution, where Bα = α
1−α (Nα − I) and Fα(t) = (1− α)Nα f ′(t) + αNα f (t)

with Nα = (I − (1− α)A)−1.

Proof. Suppose that v is the unique strong solution of (18). Then, v is continuously differ-
entiable with v(0) ∈ D(A) and satisfies (18). In particular, v is a mild solution of (18). Thus,
by Definition 4

v(t) = Tα(t)v(0) +
∫ t

0
Tα(t− τ)Fα(τ)dτ, t ≥ 0, (19)

where (Tα(t))t∈R is the uniformly continuous group generated by Bα.
We first observe that v(t) ∈ D(A), t ≥ 0. Indeed, by hypothesis, v(0) ∈ D(A) and by

Proposition 2, part (iii), we have Tα(t)v(0) ∈ D(A). Again by Proposition 2, part (iii), we
obtain that

∫ t
0 Tα(t− τ)Fα(τ)dτ ∈ D(A), because Fα(t) ∈ D(A) and A is a closed operator.

This proves that
v(t) ∈ D(A), t ≥ 0.

Next, we observe some identities that v verifies. Since v is a strong solution, we have
v(0) ∈ D(A) and v(0) = −A−1 f (0), i.e., Av(0) = − f (0). Then, by Proposition 2, part (iii),
we have

ATα(t)v(0) = Tα(t)Av(0) = −Tα(t) f (0).

Thus, applying A to the identity (19) and using the above identity, we obtain that v verifies

Av(t) = −Tα(t) f (0) + A
∫ t

0
Tα(t− τ)Fα(τ)dτ, t ≥ 0. (20)

Note that by Proposition 2, part (i), we have

Nα A
∫ t

0
Tα(t− τ)Fα(τ)dτ = ANα

∫ t

0
Tα(t− τ)Fα(τ)dτ, t ≥ 0, (21)

since that
∫ t

0 Tα(t− τ)Fα(τ)dτ ∈ D(A) for all t ≥ 0. Then, operating by αNα the identity (20)
and using the identity (21), we have

αNα Av(t) = −αNαTα(t) f (0) + αANα

∫ t

0
Tα(t− τ)Fα(τ)dτ, t ≥ 0.

By Proposition 2, part (i), and the property of group, we have that the previous identity is
equivalent to

Bαv(t) = −αNαTα(t) f (0) + αANα

∫ t

0
Tα(t)Tα(−τ)Fα(τ)dτ, t ≥ 0. (22)
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After these preliminaries, we will show that v satisfies (17). By definition of the
Caputo–Fabrizio fractional derivative and the fact that v satisfies Equation (18), we have

CFDα
t v(t) =

1
1− α

∫ t

0
exp

(
−α(t− s)

1− α

)
v′(s)ds

=
1

1− α

∫ t

0
exp

(
−α(t− s)

1− α

)
[Bαv(s) + Fα(s)]ds

=
exp

(
− αt

1−α

)
1− α

[∫ t

0
exp

(
αs

1− α

)
Bαv(s)ds +

∫ t

0
exp

(
αs

1− α

)
Fα(s)ds

]
=

exp
(
− αt

1−α

)
1− α

∫ t

0
exp

(
αs

1− α

)
Bαv(s)ds

+
exp

(
− αt

1−α

)
1− α

∫ t

0
exp

(
αs

1− α

)
Fα(s)ds.

(23)

In the above identity, we will find an equivalent representation of the following
expression:

exp
(
− αt

1−α

)
1− α

∫ t

0
exp

(
αs

1− α

)
Bαv(s)ds. (24)

Replacing the identity (22) in
∫ t

0 exp
(

αs
1−α

)
Bαv(s)ds, we obtain

∫ t

0
exp

(
αs

1− α

)
Bαv(s)ds = −αNα

∫ t

0
exp

(
αs

1− α

)
Tα(s) f (0)ds

+ αANα

∫ t

0

∫ s

0
exp

(
αs

1− α

)
Tα(s)Tα(−τ)Fα(τ)dτds.

(25)

Observe that (exp
(

αt
1−α

)
Tα(t))t∈R is a group whose generator is α

1−α I + Bα = α
1−α Nα. Hence,

by ([21], Chapter II), we have

αNα

∫ t

τ
exp

(
αs

1− α

)
Tα(s) f (0)ds = (1− α)[exp

(
αt

1− α

)
Tα(t)− exp

(
ατ

1− α

)
Tα(τ)] f (0). (26)

Thus, using the identity (26) in (25), we obtain∫ t

0
exp

(
αs

1− α

)
Bαv(s)ds = (1− α) f (0)− (1− α) exp

(
αt

1− α

)
Tα(t) f (0)

+ αANα

∫ t

0

∫ s

0
exp

(
αs

1− α

)
Tα(s)Tα(−τ)Fα(τ)dτds.

(27)

Note that, using Fubini’s theorem, Proposition 2, part (v), and the identity (26), we obtain
that

αANα

∫ t

0

∫ s

0
exp

(
αs

1− α

)
Tα(s)Tα(−τ)Fα(τ)dτds

= αANα

∫ t

0

∫ t

τ
exp

(
αs

1− α

)
Tα(s)Tα(−τ)Fα(τ)dsdτ

= A
∫ t

0
Tα(−τ)αNα

∫ t

τ
exp

(
αs

1− α

)
Tα(s)Fα(τ)dsdτ

= A
∫ t

0
Tα(−τ)(1− α)

[
exp

(
αt

1− α

)
Tα(t)− exp

(
ατ

1− α

)
Tα(τ)

]
Fα(τ)dτ

= (1− α) exp
(

αt
1− α

)
A
∫ t

0
Tα(t− τ)Fα(τ)dτ − (1− α)A

∫ t

0
exp

(
ατ

1− α

)
Fα(τ)dτ.

(28)



Mathematics 2022, 10, 3540 9 of 20

Thus, replacing (28) in (27) and using the identity (20), we obtain∫ t

0
exp

(
αs

1− α

)
Bαv(s)ds

= (1− α) f (0)− (1− α) exp
(

αt
1− α

)
Tα(t) f (0)

+ (1− α) exp
(

αt
1− α

)
A
∫ t

0
Tα(t− τ)Fα(τ)dτ − (1− α)A

∫ t

0
exp

(
ατ

1− α

)
Fα(τ)dτ

= (1− α) f (0) + (1− α) exp
(

αt
1− α

)[
−Tα(t) f (0) + A

∫ t

0
Tα(t− τ)Fα(τ)dτ

]
− (1− α)A

∫ t

0
exp

(
ατ

1− α

)
Fα(τ)dτ

= (1− α) f (0) + (1− α) exp
(

αt
1− α

)
Av(t)− (1− α)A

∫ t

0
exp

(
ατ

1− α

)
Fα(τ)dτ.

(29)

Therefore, multiplying by 1
1−α exp

(
− αt

1−α

)
the identity (29), we finally obtain (24):

exp
(
− αt

1−α

)
1− α

∫ t

0
exp

(
αs

1− α

)
Bαv(s)ds

= exp
(
−αt

1− α

)
f (0) + Av(t)− exp

(
−αt

1− α

)
A
∫ t

0
exp

(
ατ

1− α

)
Fα(τ)dτ.

(30)

This gives us the desired representation.
We return to the identity (23). Replacing (30) in (23), we obtain

CFDα
t v(t) = exp

(
−αt

1− α

)
f (0) + Av(t)− exp

(
−αt

1− α

)
A
∫ t

0
exp

(
ατ

1− α

)
Fα(τ)dτ

+
exp

( −αt
1−α

)
1− α

∫ t

0
exp

(
αs

1− α

)
Fα(s)ds

= Av(t) + exp
(
−αt

1− α

)
f (0)

+

[
− exp

(
−αt

1− α

)
A +

exp
( −αt

1−α

)
1− α

I

] ∫ t

0
exp

(
αs

1− α

)
Fα(s)ds.

(31)

Now, we calculate
∫ t

0 exp
(

αs
1−α

)
Fα(s)ds. By definition of Fα and integration by parts, we have

∫ t

0
exp

(
αs

1− α

)
Fα(s)ds

=
∫ t

0
exp

(
αs

1− α

)
[(1− α)Nα f ′(s) + αNα f (s)]ds

= (1− α)Nα

∫ t

0
exp

(
αs

1− α

)
f ′(s)ds + αNα

∫ t

0
exp

(
αs

1− α

)
f (s)ds

= (1− α)Nα

[
exp

(
αt

1− α

)
f (t)− f (0)− α

1− α

∫ t

0
exp

(
αs

1− α

)
f (s)ds

]
+ αNα

∫ t

0
exp

(
αs

1− α

)
f (s)ds

= (1− α)Nα

[
exp

(
αt

1− α

)
f (t)− f (0)

]
= (1− α) exp

(
αt

1− α

)
Nα f (t)− (1− α)Nα f (0).

(32)
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Thus, replacing (32) in (31) and using the identity I = Nα − (1− α)ANα, we obtain

CFDα
t v(t)

= Av(t) + exp
(
−αt

1− α

)
f (0)

+

[
− exp

(
−αt

1− α

)
A +

exp
( −αt

1−α

)
1− α

I

][
(1− α) exp

(
αt

1− α

)
Nα f (t)− (1− α)Nα f (0)

]
= Av(t) + exp

(
−αt

1− α

)
f (0)− (1− α)ANα f (t)

+ (1− α) exp
(
−αt

1− α

)
ANα f (0) + Nα f (t)− exp

(
−αt

1− α

)
Nα f (0)

= Av(t) + [Nα − (1− α)ANα] f (t) + exp
(
−αt

1− α

)
[I + (1− α)ANα − Nα] f (0)

= Av(t) + f (t).

The above shows that v is a strong solution of (17) and, by (19):

v(t) = Tα(t)v(0) +
∫ t

0
Tα(t− τ)Fα(τ)dτ. (33)

Finally, we show uniqueness. Assume that w is a strong solution of (17) and set
s := v− w. Then, by linearity of the operator CFDα

t , we have that s is a strong solution of
the equation

CFDα
t s(t) = As(t), t ≥ 0. (34)

Since CFDα
t s(0) = 0, then As(0) = 0. Thus, s(0) = 0 because A is injective. Using

the identity (33) for the problem (34) ( f ≡ 0), we have s(t) = Tα(t)s(0) = 0. Hence,
v(t) = w(t), t ≥ 0. This proves the first part of the theorem.

Conversely, assume that v is the unique strong solution of (17). Then, v is continuously
differentiable with v(t) ∈ D(A), t ≥ 0, and satisfies (17), i.e.,

CFDα
t v(t) = Av(t) + f (t), t ≥ 0. (35)

Note that since Bα is a bounded operator and f is continuously differentiable, then we can
define the function u by

u(t) := Tα(t)v(0) +
∫ t

0
Tα(t− τ)Fα(τ)dτ, t ≥ 0, (36)

where (Tα(t))t∈R is the group generated by Bα. By identities (35) and (36), we have that

u(0) = v(0) ∈ D(A). (37)

We claim that the function u defined by (36) is continuously differentiable and satisfies (18).
In fact, it is clear that it is continuously differentiable because (Tα(t))t∈R is a uniformly
continuous group. We will check that it satisfies (18). First, note that by ([21], Section VI.7)
it clearly satisfies the identity

u′(t) = Bαu(t) + Fα(t), t ≥ 0.

It remains to check that it satisfies the initial condition. In fact, using (35) and (37), we
have Au(0) = Av(0) =CF Dα

t v(0)− f (0) = − f (0) since CFDα
t v(0) = 0 by Remark 1. Thus,

u(0) = −A−1 f (0) because A is injective. This proves the claim. Therefore, u is a strong
solution of (18).
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We show uniqueness. Assume that w is strong solution of (18) and set s := u− w.
Then, s(0) ∈ D(A) and is a strong solution of the problem

s′(t) = Bαs(t), t ≥ 0.

It is well-known that s(t) = Tα(t)s(0), t ≥ 0, with Tα(t) the group generated by Bα.
Note that s(0) = u(0)− w(0) = 0, then s(t) ≡ 0, t ≥ 0. Hence, u(t) = w(t), t ≥ 0.

Remark 4. Examining the previous proof, we deduce that if A is a non-injective operator, then∫ t
0 Tα(t− τ)Fα(τ)dτ ∈ D(A) and that a strong solution v of (17) (and of (18)) verifies Av(0) =
− f (0) and

Av(t) = Tα(t)Av(0) + A
∫ t

0
Tα(t− τ)Fα(τ)dτ, t ≥ 0,

where (Tα(t))t∈R is a uniformly continuous group generated by Bα = α
1−α (Nα − I) and Fα(t) =

(1− α)Nα f ′(t) + αNα f (t).

Remark 5. Note that Theorem 1 does not assume A to be the generator of any one-parameter family
of operators, or A to be densely defined, in contrast with the limit case α = 1 that requires A to be the
generator of a C0-semigroup. This reveals an important advantage of the fractional abstract Cauchy
problem (1) when compared with the abstract Cauchy problem (2). However, we have a restriction
over the spectrum, namely: {0, 1

1−α} ⊂ ρ(A). In conclusion, although the Cauchy problem with
the Caputo–Fabrizio fractional derivative can always be theoretically reduced to a first order abstract
Cauchy problem, the first could be much more flexible when dealing with applications. This is
probably the reason why problems with the Caputo–Fabrizio derivative find many applications in
the real world.

Remark 6. If f ≡ 0 in Theorem 1 since u(0) = −A−1 f (0) = 0, then the unique strong solution
u of (17) (and of (18)) is u ≡ 0.

Remark 7. If f is not zero in Theorem 1, then the unique strong solution u of (17) (and of (18)) is

u(t) = Tα(t)A−1 f (0) +
∫ t

0
Tα(t− τ)Fα(τ)dτ, t ≥ 0.

In order to avoid the hypothesis of injectivity, we now introduce the following definitions.

Definition 6. Let A be a closed linear operator. A function u : [0, ∞) → X is called an A-
unique strong solution of (7)–(11) if and only if any strong solution v of (7)–(11) satisfies that
Au(t) = Av(t), t ≥ 0.

Remark 8. Observe that if A is an injective operator, then an A-unique strong solution is unique
in the classical sense.

With the above preliminaries, we show the following corollary of Theorem 1.

Corollary 1. Let 0 < α < 1, A be a closed linear operator on X with domain D(A) and f :
[0, ∞)→ X continuously differentiable. Assume that 1

1−α ∈ ρ(A). Then, the problem given by

CFDα
t v(t) = Av(t) + f (t), t ≥ 0, (38)

has an A-unique strong solution if and only if the initial value problem given by{
u′(t) = Bαu(t) + Fα(t), t ≥ 0;
Au(0) = − f (0),

(39)
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has an A-unique strong solution, where Bα = α
1−α (Nα − I) and Fα(t) = (1 − α)Nα f ′(t) +

αNα f (t) with Nα = (I − (1− α)A)−1 ∈ B(X).

Proof. The proof of the existence of strong solutions for problems (38) and (39) is the same
as Theorem 1. We show A-uniqueness. Let v be a strong solution of (38). By Remark 4 we
have that v verifies

Av(t) = Tα(t)Av(0) + A
∫ t

0
Tα(t− τ)Fα(τ)dτ, t ≥ 0. (40)

Assume that w is another strong solution of (38) and set s := v−w, then we have that s is a
strong solution of the following

CFDα
t s(t) = As(t), t ≥ 0. (41)

Since CFDα
t s(0) = 0, then As(0) = 0. Using identity (40) for problem (41) ( f ≡ 0), we have

As(t) = Tα(t)As(0) = 0. Hence, Av(t) = Aw(t), t ≥ 0.
Now, let u be a strong solution of (39) and assume that w is another strong solution

of (39). We set s := u− w, then s(0) ∈ D(A) and is a strong solution of the following

s′(t) = Bαs(t), t ≥ 0, and As(0) = 0.

Therefore, we obtains(t) = Tα(t)s(0), t ≥ 0, with Tα(t) the group generated by Bα.
By Proposition 2, part (iii), we obtain s(t) = Tα(t)s(0) ∈ D(A), t ≥ 0, and As(t) =
ATα(t)s(0) = Tα(t)As(0) = 0, since s(0) ∈ D(A) and As(0) = 0. Hence, Au(t) = Aw(t),
t ≥ 0.

Remark 9. If f ≡ 0 in Corollary 1, then the A-unique strong solution u of (17) (and of (18)) is
not zero for an initial condition in the kernel of A.

Next, we present an immediate consequence of the above results.

Corollary 2. Let 0 < α < 1, A be a sectorial operator on X of angle δ ∈ (0, π/2) with domain
D(A) and f : [0, ∞)→ X continuously differentiable. Then, the problem given by

CFDα
t v(t) = Av(t) + f (t), t ≥ 0, (42)

has a unique strong solution if and only if the initial value problem given by{
u′(t) = Bαu(t) + Fα(t), t ≥ 0;
u(0) = −A−1 f (0),

(43)

has a unique strong solution.

Remark 10. By ([17], Corollary II.4.7), if A is a normal operator on a Hilbert space H satisfying

σ(A) ⊂ {z ∈ C : arg(−z) < δ}

for some δ ∈ [0, π/2), then A generates a bounded analytic semigroup, and hence A is sectorial.
Therefore, Corollary 2 applies.

4. Stability

The stability of the fractional order linear systems has been studied for many years,
and powerful criteria have been proposed. The best known one is Matignon’s stability
theorem [23], and it is the starting point for several useful and important results in the
field. The stability of the linear fractional order systems described by the Caputo–Fabrizio



Mathematics 2022, 10, 3540 13 of 20

derivative has recently been studied in reference [10], where the authors gave necessary
and sufficient conditions for the stability of the solutions of the problem

CFDα
t u(t) = Au(t), t ≥ 0,

where A is a matrix. In what follows, we will extend the results of [10] to the case of closed
linear operators A.

After recalling some spectral properties, we study the asymptotic behavior of the
solutions for the problem

CFDα
t u(t) = Au(t) + f (t), t ≥ 0, (44)

where A is a closed injective linear operator.

Remark 11. We recall that the Spectral Mapping Theorem for the resolvent operator ([21], Theorem
IV.1.13) and for polynomials ([24], Proposition A.6.2, [25], Theorem VII.9.10) says that given
A : D(A) ⊂ X → X, a closed operator with nonempty resolvent set ρ(A), we have

(i) σ((β− A)−1) \ {0} = (β− σ(A))−1 for each β ∈ ρ(A).
(ii) σ(q(A)) = q(σ(A)) for each polynomial q ∈ C[z].

Using the previous spectral properties, we can prove the following result.

Proposition 3. Let 0 < α < 1 and A be a closed operator on X. Assume that 1
1−α ∈ ρ(A). Let

Bα = α
1−α (Nα − I), where Nα = (I − (1− α)A)−1, then the following identity holds

σ(Bα) =
α

1− α

[
1

1− (1− α)σ(A)
− 1
]

.

Proof. By Remark 11, we have

σ(Bα) = σ

(
α

1− α
(Nα − I)

)
=

α

1− α
σ(Nα − I) =

α

1− α
[σ(Nα)− 1].

Thus, by definition of Nα, we obtain

σ(Bα) =
α

1− α
[σ((I − (1− α)A)−1)− 1] =

α

1− α

[
1

1− (1− α)σ(A)
− 1
]

,

and we obtain the claim.

Remark 12. Note that by Proposition 3, we obtain

σ(A) =
1

1− α
I − 1

1− α

α

(1− α)σ(Bα) + α
.

We recall that a semigroup (T(t))t>0 on a Banach space X is called uniformly expo-
nentially stable if there exist constants ω > 0, M ≥ 1 such that

||T(t)||B(X) ≤ Me−ωt for all t ≥ 0.

Remark 13. Let 0 < α < 1. Since (Tα(t))t>0 is the uniformly continuous semigroup generated
by Bα, by ([21], Proposition I.3.12 and Theorem I.3.14), the following assertions are equivalent

(i) (Tα(t))t>0 is uniformly exponentially stable.
(ii) limt→∞ ||Tα(t)||B(X) = 0.
(iii) Re(λ) < 0 for all λ ∈ σ(Bα).
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On the other hand, by Proposition 3, we obtain the following result that will be
important for our main result on stability. In what follows, we denote by D(z, r) := {w ∈
C : |w− z| ≤ r} the closed disk of center z and radius r > 0.

Proposition 4. Let 0 < α < 1 and A be a closed operator on X. Assume that 1
1−α ∈ ρ(A). Let

Bα = α
1−α (Nα − I), where Nα = (I − (1− α)A)−1, then we have

σ(A) ⊂ C \D( 1
2(1− α)

,
1

2(1− α)
) ⇐⇒ Re(λ) < 0 for all λ ∈ σ(Bα).

Proof. Suppose µ ∈ σ(A) such that µ = a + ib ∈ C. Since σ(A) ⊂ C \D( 1
2(1−α)

, 1
2(1−α)

),

we have that µ verifies
(

a− 1
2(1−α)

)2
+ b2 >

(
1

2(1−α)

)2
which, after a computation, is

equivalent to

a− (1− α)(a2 + b2) < 0. (45)

By Proposition 3, we have

λ =
α

1− α

[
1

1− (1− α)µ
− 1
]
∈ σ(Bα),

where after some computations, we obtain the equivalent representation

λ = α
[a− (1− α)(a2 + b2)] + ib

(1− (1− α)a)2 + ((1− α)b)2 . (46)

Hence, by identity (46), we have Re(λ) < 0 for all λ ∈ σ(Bα) if and only if a− (1− α)(a2 +
b2) < 0. Thus, by equivalence (45), we conclude the claim.

Remark 14. Observe that the condition σ(A) ⊂ C \D( 1
2(1−α)

, 1
2(1−α)

) implies that the operator
A is injective.

Next, we apply Theorem 1 to study the stability of the solution to the problem (44).
The following is our main result in this section.

Theorem 2. Let 0 < α < 1, A be a closed operator on X with domain D(A) and f : [0, ∞)→ X
continuously differentiable. Assume that

(i) 1
1−α ∈ ρ(A),

(ii) σ(A) ⊂ C \D( 1
2(1−α)

, 1
2(1−α)

),

(iii) there exist constants β, M > 0 such that

|| f (t)||X + || f ′(t)||X ≤ Me−βt, t ≥ 0.

Then, the problem given by

CFDα
t u(t) = Au(t) + f (t), t ≥ 0, (47)

has a unique strong solution u such that

lim
t→∞
||u(t)||X = 0.

Proof. Suppose f ≡ 0, then we have that the problem (47) has a unique strong solution
u ≡ 0, by Remark 6. Thus, the theorem holds.
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Now, suppose f is not zero. By Remark 7, we have that problem (47) has a unique
strong solution given by

u(t) = Tα(t)A−1 f (0) +
∫ t

0
Tα(t− τ)Fα(τ)dτ, t ≥ 0,

where (Tα(t))t∈R is a uniformly continuous group generated by Bα = α
1−α (Nα − I) and

Fα(t) = (1− α)Nα f ′(t) + αNα f (t) with Nα = (I − (1− α)A)−1 ∈ B(X). Thus, we have

||u(t)||X ≤ ||Tα(t)A−1 f (0)||X +
∫ t

0
||Tα(t− τ)||B(X)||Fα(τ)||Xdτ, t ≥ 0. (48)

Note that by Proposition 4 and Remark 13, we have that there exist constants ωα > 0,
Mα ≥ 1 such that ||Tα(t)||B(X) ≤ Mαe−ωαt for all t ≥ 0. Hence, from inequality (48), we
obtain

||u(t)||X ≤ ||Tα(t)A−1 f (0)||X +
∫ t

0
Mαe−ωα(t−τ)||Fα(τ)||Xdτ. (49)

On the other hand, by hypothesis (iii) we have

||Fα(t)||X ≤ (1− α)||Nα f ′(t)||X + α||Nα f (t)||X
≤ (1− α)||Nα||B(X)|| f ′(t)||X + α||Nα||B(X)|| f (t)||X
≤ (1− α)||Nα||B(X)Me−βt + α||Nα||B(X)Me−βt

= ||Nα||B(X)Me−βt,

where Cα := ||Nα||B(X)M is a positive constant. Let γα := min{β, ωα/2}, then we ob-
tain that

||Fα(t)||X ≤ Cαe−γαt, t ≥ 0.

Therefore, by (49) we have

||u(t)||X ≤ ||Tα(t)A−1 f (0)||X +
∫ t

0
Mαe−ωα(t−τ)Cαe−γατdτ

= ||Tα(t)A−1 f (0)||X + MαCαe−ωαt
∫ t

0
e(ωα−γα)τdτ

= ||Tα(t)A−1 f (0)||X +
MαCα

ωα − γα
e−ωαt[e(ωα−γα)t − 1]

= ||Tα(t)A−1 f (0)||X +
MαCα

ωα − γα
[e−γαt − e−ωαt].

(50)

Observe that by Proposition 4 and Remark 13, we obtain

lim
t→∞
||Tα(t)A−1 f (0)||X = 0.

Finally, by the above identity and (48), we conclude

lim
t→∞
||u(t)||X ≤ lim

t→∞

MαCα

ωα − γα
[e−γαt − e−ωαt] = 0.

This proves the claim.

The following example illustrates how Theorems 1 and 2 can be applied to obtain
solutions of CFDα

t u(t) = Au(t) + f (t), t ≥ 0, and know about its behavior.
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Example 1. Fix 0 < α < 1 and consider in X := C([0, 1]) the operator Au(x) = u′′(x),
x ∈ [0, 1], with D(A) = {u ∈ C2([0, 1]) : u(0) = u(1) = 0}. Since σ(A) = {−π2k2 : k ∈ N},
we have that A is an injective operator and

A−1g(x) = −x
∫ 1

0
(1− s)g(s)ds +

∫ x

0
(x− s)g(s)ds, x ∈ [0, 1].

Let us now consider the problem

CFDα
t u(t, x) = uxx(t, x) + γe−βt sin(x),

where γ, β > 0, x ∈ [0, 1] and t > 0. Since the equation forces the initial condition, we obtain

u(0, x) = A−1[γ sin(x)] = γ[x sin(1)− sin(x)].

Our results show that the solution is given by

u(t, x) = Tα(t)γ[x sin(1)− sin(x)] +
∫ t

0
Tα(t− τ)Fα(τ, x)dτ, (51)

where (Tα(t))t≥0 is the uniformly continuous semigroup generated by Bα = α
1−α (Nα − I) and

Fα(t, x) = γ[α(1 + β)− β]e−βtNα sin(x) with Nα = (I − (1− α)A)−1 ∈ B(X).
By Theorem 1, we have that (51) is also the solution of the problem

ut(t, x) = Bαu(t, x) + Fα(t, x), t ≥ 0, x ∈ [0, 1].

A computation shows that for f : [0, ∞)× X → X we have

Nα f (x) =
√

1− α

1− α

sinh ( x√
1−α

)

sin ( 1√
1−α

)

∫ 1

0
sinh (

1− y√
1− α

) f (y)dy

−
√

1− α

1− α

∫ x

0
sinh (

x− y√
1− α

) f (y)dy.

In particular, using [26] we have

Nα sin(x) =
sin(x)
2− α

− sin(1)
(2− α) sinh ( 1√

1−α
)

sinh (
x√

1− α
)

and hence we conclude that

Fα(t, x) = γe−βt[α(1 + β)− β][
sin(x)
2− α

− sin(1)
(2− α) sinh ( 1√

1−α
)

sinh (
x√

1− α
)].

On the other hand, by Theorem 2, we conclude that the solution (51) satisfies

lim
t→∞

sup
x∈[0,1]

|u(t, x)| = 0.

Remark 15. Let f ≡ 0 in Example 1, i.e., γ = 0, then from (51) we see that the solution is
u(t, x) ≡ 0.

5. The Semilinear Problem

Let 0 < α < 1 and assume that A : D(A) ⊂ X → X is a closed linear operator defined
on a complex Banach space X and {0, 1

1−α} ⊂ ρ(A). We recall that Bα := α
1−α (Nα − I),

where Nα := (I− (1− α)A)−1 ∈ B(X), defines the uniformly continuous group (Tα(t))t∈R
on X, given by (8).
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Let f : [0, ∞)× X → X be continuously differentiable in t ∈ [0, ∞). We define

Fα(t, x) := (1− α)Nα ft(t, x) + αNα f (t, x).

For each u0 ∈ X, we consider the integral equation:

u(t) = Tα(t)u0 +
∫ t

0
Tα(t− τ)Fα(τ, u(τ))dτ, t ≥ 0. (52)

Let u0 ∈ X be given. It is well-known (see [17], Chapter 6) that a continuous solution
u of the integral Equation (52) is called a mild solution of the following semilinear initial
value problem: {

u′(t) = Bαu(t) + Fα(t, u(t)), t ≥ 0;
u(0) = u0.

For our purposes, we use the equivalence given by Theorem 1 to extend the previous
terminology as follows.

Definition 7. Assume that 0 ∈ ρ(A) and let S := {x ∈ D(A) : x = A−1 f (0, x)}. A
continuous solution u of the integral equation

u(t) = −Tα(t)A−1 f (0, u0) +
∫ t

0
Tα(t− τ)Fα(τ, u(τ))dτ, t ≥ 0 (53)

is called a mild solution of the initial value problem{
CFDα

t u(t) = Au(t) + f (t, u(t)), t ≥ 0;
u(0) = u0 ∈ S .

(54)

We finish with the following result that assures the existence and uniqueness of mild
solutions of (54) for Lipschitz continuous functions f and A an injective operator. The proof
is relatively standard, but we give it for completeness.

Theorem 3. Let 0 < α < 1 and A be a closed linear operator on a complex Banach space X.
Suppose {0, 1

1−α} ⊂ ρ(A) and f : [0, T]× X → X is continuously differentiable in t on [0, T] and
satisfies the following Lipschitz type condition with constant L on X:

(1− α)|| ft(t, x)− ft(t, y)||X + α|| f (t, x)− f (t, y)||X ≤ L||x− y||X

for all x, y ∈ X. Then, the problem given by{
CFDα

t u(t) = Au(t) + f (t, u(t)), 0 ≤ t ≤ T;
u(0) = u0 ∈ S ,

(55)

has a unique mild solution in C([0, T] : X).

Proof. By hypothesis, we define Nα = (I − (1− α)A)−1 ∈ B(X). Then, we obtain

||Fα(t, x)− Fα(t, y)||X = ||Nα[(1− α) ft(t, x) + α f (t, x)]− Nα[(1− α) ft(t, y) + α f (t, y)]||X
≤ ||Nα||B(X)||[(1− α) ft(t, x) + α f (t, x)]− [(1− α) ft(t, y) + α f (t, y)]||X
≤ ||Nα||B(X)[(1− α)|| ft(t, x)− ft(t, y)||+ α|| f (t, x)− f (t, y)||X ]
≤ ||Nα||B(X)L||x− y||X .

(56)
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Hence, Fα is uniformly Lipschitz continuous with constant L||Nα||B(X). Moreover, we recall
that (Tα(t))t≥0 is the uniformly continuous semigroup generated by Bα = α

1−α (Nα − I). In
particular, there exists M = M(α, T) ≥ 1 such that

||Tα(t)||B(X) ≤ M for all t ∈ [0, T]. (57)

For a given u0 ∈ S , we define a mapping G : C([0, T] : X)→ C([0, T] : X) by

(Gαu)(t) := −Tα(t)A−1 f (0, u0) +
∫ t

0
Tα(t− s)Fα(s, u(s))ds, t ∈ [0, T]. (58)

Denoting by ||u||∞ the norm of u as an element of C([0, T] : X) it follows readily from the
definition of G and (56) and (57) that

||(Gαu)(t)− (Gαv)(t)|| = ||
∫ t

0
Tα(t− s)[Fα(s, u(s))− Fα(s, v(s))]ds||

≤
∫ t

0
||Tα(t− s)||B(X)||Fα(s, u(s))− Fα(s, v(s))||Xds

≤
∫ t

0
M||Nα||B(X)L||u(s)− v(s)||Xds

≤ M||Nα||B(X)Lt||u− v||∞.

(59)

In general, we obtain using (58) and (59) and induction on n that

||(Gn
α u)(t)− (Gn

α v)(t)|| ≤
(M||Nα||B(X)Lt)n

n!
||u− v||∞

whence

||Gn
α u− Gn

α v|| ≤
(M||Nα||B(X)LT)n

n!
||u− v||∞.

Since
(M||Nα ||B(X)LT)n

n! < 1 for n is sufficiently large, applying the contraction principle
we conclude that Gα has a unique fixed point u in C([0, T] : X). This fixed point is the
desired solution of the integral Equation (54). Thus, by Definition 7, we have that (55) has a
mild solution.

Now, we show the uniqueness. Assume that v is a mild solution of (55) on [0, T] with
the initial value v0 ∈ S . Then

||u(t)− v(t)||X ≤ || − Tα(t)A−1 f (0, u0) + Tα(t)A−1 f (0, v0)||X

+
∫ t

0
||Tα(t− s)[Fα(s, u(s))− Fα(s, v(s))]||Xds

≤ M||A−1 f (0, u0)− A−1 f (0, v0)||X

+ M||Nα||B(X)L
∫ t

0
||u(s)− v(s)||Xds.

which implies, by Gronwall’s inequality, that

||u(t)− v(t)||X ≤ M||A−1 f (0, u0)− A−1 f (0, v0)||XeM||Nα ||B(X)LT ,

and therefore

||u− v||∞ ≤ M||A−1 f (0, u0)− A−1 f (0, v0)||XeM||Nα ||B(X)LT

which yield the uniqueness of u (with v0 = u0).

Remark 16. Theorem 3 does not assume that A is the generator of a C0-semigroup in contrast to
the case of the first order abstract Cauchy problem ([17], Theorem 6.1.2).
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Remark 17. Note that if α → 1 in Theorem 3, then we obtain that the Lipschitz condition with
respect to f and ft simplifies to a Lipschitz condition with respect to f only. On the other hand, by
identity (5) and Remark 3, and assuming that A is densely defined, we obtain by Theorem 3 that,
when α→ 1, A is the infinitesimal generator of a C0-semigroup. It shows that Theorem 3 extends
the case α = 1 proved in ([17], Theorem 6.1.2) to the case 0 < α < 1.

Example 2. We consider the following semilinear problem: CFDα
t u(t, x) = uxx(t, x)− e−βt sin(u(t, x)), 0 ≤ t ≤ T;

u(0, x) = 0.
(60)

where β > 0, x ∈ [0, 1] and 0 < α < 1.
Let us consider X and (A, D(A)) as in Example 1. Then, it is clear that {0, 1

1−α} ⊂ ρ(A). We
define f (t, u) = −e−βt sin(u) in [0, T]× X, where sin(u)(x) := sin(u(x)), x ∈ [0, 1]. Further,
we observe that

0 ∈ S = {u ∈ C2([0, 1]) : u′′(x) = − sin(u(x)), u(0) = u(1) = 0 }.

Moreover, by the mean value theorem, we obtain ‖ f (t, u) − f (t, v)‖ ≤ ‖u − v‖ as well as
‖ ft(t, u)− ft(t, v)‖ ≤ β‖u− v‖ for any u, v ∈ X. Therefore,

(1− α)‖ ft(t, u)− ft(t, v)‖+ α‖ f (t, u)− f (t, v)‖ ≤ L||u− v||,

with Lipschitz constant L = (1− α)β + α. By Theorem 3 we conclude that (60) has a unique mild
solution in C([0, T]; X).

6. Conclusions

In this article we study the abstract Cauchy problem with the fractional derivative
of order α ∈ (0, 1) of Caputo-Fabrizio and compare its performance from a mathematical
point of view. As advantage, and in contrast to the finite dimensional case, i.e., A being a
matrix, we observe that being A an unbounded closed linear operator (e.g. a differential
operator like the Laplacian), the abstract Cauchy problem with operator A turns out to
be equivalent to a first order abstract Cauchy problem with a family of bounded operators
Bα—that behave like a Yosida’s approximation of A—and that makes unnecessary any
previous assumptions about A, to solve it, such as a generator of a C0-semigroup or cosine
family of operators, for example. As disadvantage, the non-singular character of the kernel
that defines the Caputo-Fabrizio derivative, forces an initial condition (somewhat artificial)
that involves the operator A itself, condition that can be overcome if we assume certain
conditions of invertibility of the operator A that hold for certain classes of differential
operators, for example, the Dirichlet Laplacian operator on a smooth bounded domain.
We leave similar studies for other classes of fractional derivatives with non-singular (or
regular) kernels as an open problem.
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