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Abstract
We show that if A is a closed linear operator defined in a Banach space X and there
exist t0 ≥ 0 andM > 0 such that {(im)α}|m|>t0 ⊂ ρ(A), the resolvent set of A, and

∥
∥(im)α(A + (im)α I)–1

∥
∥ ≤ M for all |m| > t0,m ∈ Z,

then, for each 1
p < α ≤ 2

p and 1 < p < 2, the abstract Cauchy problem with periodic
boundary conditions

{

GLDα
t u(t) + Au(t) = f (t), t ∈ (0, 2π );

u(0) = u(2π ),

where GLDα denotes the Grünwald–Letnikov derivative, admits a normal 2π -periodic
solution for each f ∈ Lp2π (R,X) that satisfies appropriate conditions. In particular, this
happens if A is a sectorial operator with spectral angle φA ∈ (0,απ /2) and
∫ 2π
0 f (t)dt ∈ Ran(A).

MSC: 35R11; 35B10; 43A50
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1 Introduction
Existence of periodic solutions for differential equations of fractional order is a very desir-
able property for analyzing cyclic (e.g. biological) processes, see [28]. In recent years many
papers have appeared on this topic [1, 2, 17, 23], and there are different methods that allow
periodic solutions, the Fourier transform being the most common. On the other hand, it
is well known that we cannot expect the existence of periodic solutions in time-invariant
systems with each definition of fractional order derivative, see e.g. [24, 26, 27].

Regarding the fractional abstract Cauchy problem

⎧

⎨

⎩

GLDα
t u(t) + Au(t) = f (t), t ∈ (0, 2π );

u(0) = u(2π ),
(1)
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where A is a closed linear operator defined in a Banach space X and GLDα denotes the
Grünwald–Letnikov derivative, the authors in [3, 22] used a method based on operator-
valued Fourier multipliers to obtain existence of periodic solutions, in several senses. With
this method they obtained solutions belonging to the periodic Lebesgue space Lp

2π (R, X),
where X is a Banach space. More precisely, assuming that 1 < α ≤ 2 and X satisfy a geomet-
rical hypothesis, in [22, Theorem 3.15] the authors showed that for all f ∈ Lp

2π (R, X) there
exists unique u ∈ Hα,p

2π (R, X) ∩ Lp
2π (R, D(A)) satisfying (1) if and only if {(im)α}m∈Z ⊆ ρ(A)

and the set {(im)α(A + (im)αI)–1}m∈Z is Rademacher bounded (or R-bounded). See also [3,
Theorem 3.3] for the analogous result in the case 0 < α ≤ 1 and [5–7, 18] for extensions of
this result to more general models.

However, this method has disadvantages in concrete applications because they require
checking the R-boundedness condition on the operator-valued symbol. An additional
problem of the characterization cited above is the implicit requirement that 0 ∈ ρ(A),
which restricts the applicability of the result. For instance, the case where A is the Lapla-
cian operator defined on unbounded domains cannot be considered by the above charac-
terization.

To avoid these difficulties, some authors [4] proposed the sum method [8] that was first
introduced by Da Prato and Grisvard in the context of sectorial operators. The main idea
is to transform the problem into the closedness of the sum of two closed operators related
to (1). However, although the R-boundedness condition is unnecessary with this method,
it only allows to establish the existence of periodic solutions in some proper subspaces of
Lp

2π (R, X), see [4, Theorem 1].
In this article we take a different approach. Starting from the observation that periodic

solutions of systems are usually represented by a series formed by a set of functions, the
present work introduces a novel concept of solution that implies the formal representa-
tion of the solution by means of normally convergent series. This new concept is general
enough to admit periodic forcing terms in the space Lp

2π (R, X) without assuming any geo-
metrical conditions in X or R-boundedness of the operator-valued symbol. It allows also
to avoid assuming a fortiori that 0 ∈ ρ(A). We note that Haraux [16, Chapter B, I] gave a
similar approach in the case that X is a Hilbert space, which has been the main motivation
in this work.

Using this approach, we can capture the minimum requirements that are needed in a
system of 2π-periodic solutions of (1) in the sense that any solution of (1) can be repre-
sented by a normally convergent series formed by functions of the following set:

{

umeimt}

|m|≤t0
∪ {(

A + (im)αI
)–1̂fmeimt}

|m|>t0
,

where we assume {(im)α}|m|>t0 ⊆ ρ(A) and f̂m = ((A + (im)αI)–1)um for |m| ≤ t0, where f̂m

are the Fourier coefficients of f . It is notable that the exact value of t0 can be determined
explicitly in some important examples. For example, assuming that A = B + C, where C is a
bounded operator, we consider two situations of interest. First, when X is a Hilbert space
and B is selfadjoint, then we have t0 = 21/α‖C‖1/α

| sin(απ/2)|1/α . Second, when X is a Banach space and
B is sectorial with spectral angle 0 < φ < απ/2, then we have t0 = 21/α‖C‖1/α . We will show
the validity of these criteria for all pairs (p,α) belonging to the sector

{

p ∈ (1, 2] :
1
p

< α ≤ 2
p

}

.
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This article is organized as follows: Sect. 2 is devoted to recalling some preliminaries, in-
cluding the definition and the main properties of the Grünwald–Letnikov derivative. The
notions of sectoriality of a closed linear operator and normally convergent series close this
short section. Section 3 introduces the notion of normal periodic solution and contains our
main result (Theorem 3.2). After that, two important consequences are shown. The first
takes the additive perturbation of the operator A in (1) as the sum of a selfadjoint operator
defined in a Hilbert space and a bounded linear operator. The second takes the additive
perturbation again but now in the scenario of a Banach space. In this case, we assume that
A can be represented as a sum of a sectorial operator with an angle depending on the frac-
tional parameter α and a bounded linear operator. In both cases, we can guarantee the
existence of normal 2π-periodic solutions.

2 Preliminaries
In this section we recall some preliminary results and definitions that will be used through-
out the paper.

Let X be a complex Banach space. Given 1 ≤ p < ∞, we consider the Banach space
Lp

2π (R, X) of X-valued, 2π-periodic measurable functions f on R such that

‖f ‖p :=
(

1
2π

∫ 2π

0

∥
∥f (t)

∥
∥

p dt
)1/p

< ∞.

For a function f ∈ L1
2π (R, X), we denote by f̂k , k ∈ Z, the kth Fourier coefficient of f :

f̂k =
1

2π

∫ 2π

0
e–iktf (t) dt, k ∈ Z.

Let X, Y be Banach spaces. We denote by B(X, Y ) the space of all bounded linear operators
from X to Y . When X = Y , we write simply B(X). For a linear operator A on X, we denote
the domain by D(A) and its resolvent set by ρ(A), and for λ ∈ ρ(A), we write R(λ, A) =
(λI – A)–1. By [D(A)] we denote the domain of A equipped with the graph norm.

We recall the well-known definition of the Grünwald–Letnikov fractional derivative and
some of its properties presented in [12, 20, 21, 25], see [25, Sect. 2.3, p. 6]. Let α > 0. Given
f ∈ Lp

2π (R, X), 1 ≤ p < ∞, the Riemann difference

(

�α
h u

)

(t) =
∞

∑

j=0

k–α(j)u(t – jh), (2)

where k–α(n) = �(–α+n)
�(–α)�(–α+n) , n ∈N0, satisfy

∞
∑

j=0

k–α(j)zj = (1 – z)α , |z| < 1, (3)

exists almost everywhere and

∥
∥�α

h u
∥
∥

p ≤ ‖u‖p

∞
∑

j=0

∣
∣k–α(j)

∣
∣ < ∞ (4)
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since k–α(n) = 1
n1+α�(α) (1 + O( 1

n )). For a detailed study of the sequence kβ and its properties,
we refer the reader to the recent article [13].

The following definition was proposed in [22, Definition 2.1].

Definition 2.1 Let X be a complex Banach space, α > 0, and 1 ≤ p < ∞. If for f ∈ Lp
2π (R, X)

there exists g ∈ Lp
2π (R, X) such that limh→0+

�α
h f

hα = g in the Lp-norm, then g is called the
αth Grünwald–Letnikov derivative of f . We use the notation g = GLDαf .

Remark 2.2 It should be noted that in [26] it was shown that the fractional-order deriva-
tive, based on the Grünwald–Letnikov definition, of a periodic function with a specific
period cannot be a periodic function with the same period. However, the definition of
the Grünwald–Letnikov fractional derivative considered in [26, Formula (1)] differs from
ours, which is taken from the book by Samko, Kilbas, and Marichev [20, Sect. 20, p. 371]
and which, in turn, coincides with the Marchaud derivative [20, Theorem 20.2]. See also
[19] for an approach in the context of periodic distributions.

The next result shows some examples and properties. For a proof, see e.g. [12, Proposi-
tions 9, 11, and 12] and [22, Proposition 2.3].

Proposition 2.3 Let f ∈ Lp
2π (R, X), 1 ≤ p < ∞. For any z ∈ C, Re(z) ≥ 0, α,β > 0, and

x, t ∈ R, we have
(i) GLDα

t ezt = zαezt ;
(ii) GLDα

t sin(xt) = xα sin(xt + α π
2 ) and GLDα

t cos(xt) = xα cos(xt + α π
2 );

(iii) If GLDαf ∈ Lp
2π (R, X), then GLDβ f ∈ Lp

2π (R, X) for all 0 < β < α;
(iv) GLDα

GLDβ f = GLDα+β f whenever one of the two sides is well defined.

We recall the definition of normal convergence for a series of functions [14, Definition 3,
p. 222 ], [10, 6.19, p. 64] and its relationship with uniform convergence [14, Theorem 1,
p. 222], [10, Theorem 6.1.10, p. 64].

Definition 2.4 Given a set I and bounded functions un : I → X, the series
∑

n∈Z un(t)
is called normally convergent on I if the series

∑

n∈Z ‖un‖∞ :=
∑

n∈Z supt∈I ‖un(t)‖ con-
verges.

Remark 2.5 Every normal convergent series is uniformly convergent.

Let 
φ ⊂ C be the open sector 
φ = {λ ∈ C \ {0} : | argλ| < φ}. Finally, we recall the
following definition.

Definition 2.6 ([9]) Given a closed linear operator A in X, we say that A is sectorial if A
satisfies the following conditions (i) D(A) = X, R(A) = X, (–∞, 0) ⊂ ρ(A); (ii) ‖t(t + A)–1‖ ≤
M for all t > 0 and some M > 0. The operator A is called R-sectorial if the set {t(t + A)–1}t>0

is R-bounded.

If A is sectorial, then 
φ ⊂ ρ(–A) for some φ > 0 and sup| argλ|<φ ‖λ(λ + A)–1‖ < ∞. We
denote the spectral angle of a sectorial operator A by

φA = inf
{

φ : 
π–φ ⊂ ρ(–A), sup
λ∈
π–φ

∥
∥λ(λ + A)–1∥∥ < ∞

}

.
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3 Main results
Let X be a complex Banach space and A : D(A) ⊂ X → X be a closed linear operator on X.
Given α > 0 and f ∈ Lp

2π (R, X), we are concerned with the problem of existence of periodic
solutions of the equation

⎧

⎨

⎩

GLDα
t u(t) + Au(t) = f (t), t ∈ (0, 2π ),

u(0) = u(2π ).
(5)

Let x ∈ X be fixed. Define fm(t) := eimtx, m ∈ Z. It is clear that fm ∈ Lp
2π (R, X) for any p > 1.

Suppose that x ∈ Ran(A + (in)αI) for some α > 0 and some n ∈ Z fixed. Here

(in)α := |n|αe
1
2 sgn(n)iπα .

Then defining un(t) := eintun where un ∈ D(A) is such that x = (A + (in)αI)un, and in view
of Proposition 2.3 (part (i)), we obtain

GLDα
t un(t) + Aun(t) = (in)αeintun + eintAun = eint((in)αI + A

)

un = fn(t).

In other words, un(t) is a strict (or strong) 2π-periodic solution of (5).
Motivated by the previous example and the concept of a normal convergent series, we

present the following definition.

Definition 3.1 We say that a sequence of functions um : R → X, m ∈ � ⊆ Z is a normal
2π -periodic solution of (5) if um is 2π-periodic, um(t) ∈ D(A) for all t ∈R and satisfies (5)
for each m ∈ � and the series

∑

n∈Z 1�(n)un(t) is normally convergent.

In the above definition, we have 1�(n) ≡ 1 if n ∈ � and 0 in the other case. Our main
result is the following theorem.

Theorem 3.2 Suppose that there exist t0 ≥ 0 and M > 0 such that {(im)α}|m|>t0 ⊂ ρ(A) and

∥
∥(im)α

(

A + (im)αI
)–1∥

∥ ≤ M for all |m| > t0, m ∈ Z. (6)

If f ∈ Lp
2π (R, X), where 1 < p ≤ 2, and there exists um ∈ D(A) such that f̂m = (A + (im)αI)um

for each |m| ≤ t0, then the sequence of partial sums

uN (t) :=
∑

|m|≤t0

umeimt +
∑

t0<|m|≤N

(

A + (im)αI
)–1̂fmeimt , N > t0,

is a normal 2π -periodic solution of (5) for all 1
p < α ≤ 2

p .

Proof Let N > t0 be fixed, and define

fN (t) :=
N

∑

m=–N

f̂meimt
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and

vt0 (t) :=
∑

|m|≤t0

umeimt .

Note that by Proposition 2.3 we have

GLDα
t
(

eimtum
)

+ A
(

eimtum
)

= (im)αeimtum + eimtAum

= eimt((im)αI + A
)

um = eimt̂fm.

We conclude that vt0 is a 2π-periodic solution of (5). On the other hand, the identity

A
(

A + (im)αI
)–1 + (im)α

(

A + (im)αI
)–1 = I

shows that

GLDα
t
[(

A + (im)αI
)–1̂fmeimt] + A

[(

A + (im)αI
)–1̂fmeimt]

= (im)α
(

A + (im)αI
)–1̂fmeimt + A

(

A + (im)αI
)–1̂fmeimt

=
[

(im)α
(

A + (im)αI
)–1 + A

(

A + (im)αI
)–1]f̂meimt

= f̂meimt . (7)

Therefore, we can conclude that GLDα
t uN (t) + AuN (t) = fN (t) i.e. uN is a 2π-periodic solu-

tion of (5).
Now, we study the convergence normal of the series. As a consequence of (6), we have,

for |m| > t0,

∥
∥
(

A + (im)αI
)–1̂fmeimt∥∥∞ = sup

t∈T
{∥∥(

A + (im)αI
)–1̂fmeimt∥∥ ≤ M‖̂fm‖

|m|α . (8)

On the other hand, by a theorem of Hardy and Littlewood (see e.g. [11]) we know that
there exists a constant C > 0 such that

(
∑

m∈Z
|m|p–2‖̂fm‖p

)1/p

≤ C‖f ‖p

for each 1 < p ≤ 2. Hence, by Hölder’s inequality, we obtain for any 1 ≤ q < ∞ with 1
p + 1

q = 1

∑

|m|>t0

M‖̂fm‖
|m|α ≤ M

∑

m∈Z\{0}

|m|(p–2)/p‖̂fm‖
|m|α+(p–2)/p

≤ MC
(

∑

m∈Z\{0}
|m|p–2‖̂fm‖p

)1/p( ∑

m∈Z\{0}

1
|m|q(α+(p–2)/p)

)1/q

.

Since 1 < αp ≤ 2, we obtain q(α + (p – 2)/p) > 1, and the result follows. �

For instance, in case p = 2 the restriction is: 1
2 < α ≤ 1. A complete picture is given in

Fig. 1.
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Figure 1 1
p < α ≤ 2

p with 1 < p ≤ 2

An immediate consequence of Theorem 3.2 is the following.

Corollary 3.3 Let A ∈ B(X) and 1 < p ≤ 2. If f ∈ Lp
2π (R, X) satisfies that f̂m ∈ Ran(A +

(im)αI) for |m| ≤ ‖A‖1/α , where 1
p < α ≤ 2

p , then the conclusions of Theorem 3.2 hold.

Proof Since A is bounded, we have that λ ∈ ρ(A) for all |λ| > ‖A‖ and

(λ + A)–1 =
∞

∑

k=0

Ak

λk+1 .

Choosing t0 := ‖A‖ 1
α and λ = (it)α , we obtain for each |t| > t0 that {(it)α}|t|>t0 ⊂ ρ(A) and

‖((it)α + A)–1‖ = ‖(λ + A)–1‖ ≤ e
|λ| = M

|t|α for each |t| > t0, where M := e. �

In the case of unbounded operators on Hilbert spaces, we have the following result that
generalizes and improves [16, Chapter B, Lecture 20, Corollary 10, p. 157].

Theorem 3.4 Let B a selfadjoint operator with domain D(B) defined on a Hilbert space H
and C ∈ B(H). Assume that B commutes with C, and let A = B + C. Let 1 < p ≤ 2. If f ∈
Lp

2π (R, H) satisfies that f̂m ∈ Ran(A + (im)αI) for |m| ≤ 21/α‖C‖1/α

| sin(απ/2)|1/α , m ∈ Z, where 1
p < α ≤ 2

p ,
then the conclusions of Theorem 3.2 hold.

Proof Let s ∈ R such that |s| > s0 := 21/α‖C‖1/α

| sin(απ/2)|1/α . Since B is selfadjoint, we have σ (B) ⊂ R

and

∥
∥(B + λI)–1∥∥ ≤ 1

| Im(λ)|

for all λ ∈ C \R (see e.g. [15, Proposition C.4.2, p. 321]). In particular, choosing λ = (is)α ,
we obtain that {(is)α}|s|>s0 ⊂ ρ(B) and

∥
∥
(

B + (is)αI
)–1∥

∥ ≤ 1
| Im((is)α)| =

1
| sin( πα

2 )‖s|α .
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This yields

∥
∥C

(

B + (is)αI
)–1∥

∥ ≤ ‖C‖
| sin( πα

2 )‖s|α <
1
2

.

It implies that (I + C(B + (is)αI)–1)–1 exists and

∥
∥
(

I + C
(

B + (is)αI
)–1)–1∥

∥ ≤ 1
1 – ‖C(B + (is)αI)–1‖ ≤ 1

1 – ‖C‖
| sin( πα

2 )‖s|α
≤ 2.

Since B commutes with C, we have the identity A + (is)αI = (B + (is)αI)(C(B + (is)αI)–1 + I).
It shows that {(is)α}|s|>s0 ⊂ ρ(A) and

(

B + (is)αI
)–1(C

(

B + (is)αI
)–1 + I

)–1 =
(

C +
(

B + (is)αI
))–1 =

(

A + (is)αI
)–1, (9)

holds. Therefore

∥
∥
(

A + (is)αI
)–1∥

∥ ≤ ∥
∥
(

B + (is)αI
)–1∥

∥
∥
∥
(

C
(

B + (is)αI
)–1 + I

)–1∥
∥ ≤ 2

| sin( πα
2 )‖s|α

for each |s| > s0. �

In case C ≡ 0 we obtain the following result that has own interest.

Corollary 3.5 Let A be a selfadjoint operator with domain D(A) defined on a Hilbert
space H . Let 1 < p ≤ 2. If f ∈ Lp

2π (R, H) satisfies that
∫ 2π

0 f (t) dt ∈ Ran(A), then the con-
clusions of Theorem 3.2 hold for all 1

p < α ≤ 2
p .

The case of Banach spaces is considered in the next result.

Theorem 3.6 Let A = B + C, where B is sectorial with spectral angle φB ∈ (0,απ/2), where
1
p < α ≤ 2

p , 1 < p ≤ 2, and let C ∈ B(X) be such that C commutes with B. If f ∈ Lp
2π (R, X)

satisfies that f̂m ∈ Ran(A + (imω)αI) for |m| ≤ 21/α‖C‖1/α , m ∈ Z, then the conclusions of
Theorem 3.2 hold.

Proof Let s ∈ R be such that |s| > s0 := 21/α‖C‖1/α . Since B is sectorial, 
φ ⊂ ρ(–B) for
some φ > 0 and there exists M > 0 such that

∥
∥(λ + B)–1∥∥ ≤ M

|λ| , λ ∈ 
φ .

Since 1
2 < α < 2, if λ = (is)α := |s|αe 1

2 sgn(s)π iα , then λ ∈ 
φ and

∥
∥
(

(is)αI + B
)–1∥

∥ ≤ M
|s|α for all 0 
= s ∈R.

Hence,

∥
∥C

(

B + (is)αI
)–1∥

∥ ≤ M‖C‖
|s|α <

M
2

. (10)
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On the other hand, since B and C commute, we obtain that {(is)α}|s|>s0 ⊂ ρ(A) and identity
(9) as in the proof of Theorem 3.4. Therefore

∥
∥
(

A + (is)αI
)–1∥

∥ ≤ ∥
∥
(

B + (is)αI
)–1∥

∥
∥
∥
(

C
(

B + (is)αI
)–1 + I

)–1∥
∥

≤ M
|s|α

∥
∥
(

C
(

B + (is)αI
)–1 + I

)–1∥
∥ (11)

for each |s| > s0.
We consider the following two cases:
(i) If 0 < M ≤ 1, then ‖C(B + (is)αI)–1‖ < 1

2 , |s| > s0.
(ii) If M > 1, then, dividing by M in (10), we obtain

(1/M)
∥
∥C

(

B + (is)αI
)–1∥

∥ <
1
2

, |s| > s0.

If we define for δ ∈ {1, M} the norm ‖ · ‖δ := (1/δ)‖ · ‖, we have

∥
∥C

(

B + (is)αI
)–1∥

∥
δ

<
1
2

, |s| > s0. (12)

Therefore, for all 0 
= s ∈R, ‖C‖ < |s|, there exists (I + C(B + (is)αI)–1)–1 and

∥
∥
(

I + C
(

B + (is)αI
)–1)–1∥

∥
δ
≤ 1

1 – ‖C(B + (is)αI)–1‖δ

≤ 2.

Hence

∥
∥
(

I + C
(

B + (is)αI
)–1)–1∥

∥ ≤ 2M.

Inserting the above inequality in (11), we obtain

∥
∥
(

A + (is)αI
)–1∥

∥ ≤ 2M2

|s|α , |s| > s0. �

Again, the special case C ≡ 0 gives the next corollary.

Corollary 3.7 Let A be a sectorial operator with spectral angle φA ∈ (0,απ/2) where 1
p <

α ≤ 2
p , 1 < p ≤ 2. Assume that f ∈ Lp

2π (R, X) satisfies that
∫ 2π

0 f (t) dt ∈ Ran(A), then the
conclusions of Theorem 3.2 hold.

Acknowledgements
C. Lizama thanks DICYT (USACH) for financial support.

Funding
J. Bravo is partially supported by ANID-PFCHA/Doctorado Nacional/2019-21190764. C. Lizama is partially supported by
ANID-FONDECYT/1180041.

Availability of data and materials
Not applicable

Competing interests
The authors declare that they have no competing interests.



Bravo and Lizama Boundary Value Problems         (2021) 2021:53 Page 10 of 10

Authors’ contributions
The authors declare that they have equally contributed to the preparation of the paper. All authors read and approved
the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 6 December 2020 Accepted: 14 May 2021

References
1. Atanackovic, T.M., Stankovic, S.: Dynamics of a viscoelastic rod of fractional derivative type. Z. Angew. Math. Mech.

82(6), 377–386 (2002)
2. Belmekki, M., Nieto, J.J., Rodriguez-López, R.: Existence of periodic solution for a nonlinear fractional differential

equation. Boundary Value Problems 2009, 324561 (2009)
3. Bu, S.: Well-posedness of equations with fractional derivative. Acta Math. Sin. Engl. Ser. 26(7), 1223–1232 (2010)
4. Bu, S.: Well-posedness of equations with fractional derivative via the method of sum. Acta Math. Sin. Engl. Ser. 28(1),

37–44 (2012)
5. Bu, S., Cai, G.: Well-posedness of degenerate differential equations with fractional derivative in vector-valued

functional spaces. Math. Nachr. 290(5–6), 726–737 (2017)
6. Bu, S., Cai, G.: Well-posedness of fractional degenerate differential equations in Banach spaces. Fract. Calc. Appl. Anal.

22(2), 379–395 (2019)
7. Bu, S., Cai, G.: Periodic solutions of fractional degenerate differential equations with delay in Banach spaces. Isr. J.

Math. 232, 695–717 (2019)
8. Da Prato, G., Grisvard, P.: Sommes d’opérateurs linéaires et équations différentielles opérationnelles. J. Math. Pures

Appl. 54, 305–387 (1975)
9. Denk, R., Hieber, M., Pruss, J.: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem.

Am. Math. Soc. 166, Article ID 788 (2003)
10. Dixmier, J.: General Topology. Undergraduate Texts in Mathematics. Springer, New York (1984)
11. Dyachenko, M., Nursultanov, E., Kankenova, A.: On summability of Fourier coefficients of functions from Lebesgue

space. J. Math. Anal. Appl. 419(2), 959–971 (2014)
12. Garrappa, R., Kaslik, E., Popolizio, M.: Evaluation of fractional integrals and derivatives of elementary functions:

overview and tutorial. Mathematics 7, 407 (2019)
13. Goodrich, C., Lizama, C.: A transference principle for nonlocal operators using a convolutional approach: fractional

monotonicity and convexity. Isr. J. Math. 236, 533–589 (2020)
14. Gourdon, X.: Les maths en tete: Analyse, 2nd edn. Ellipses (2008)
15. Haase, M.: The functional calculus for sectorial operators. In: The Functional Calculus for Sectorial Operators. Operator

Theory: Advances and Applications, vol. 169. Birkhäuser, Basel (2006)
16. Haraux, A.: Nonlinear Evolution Equations - Global Behavior of Solutions. Lecture Notes in Mathematics, vol. 841.

Springer, Heidelberg (1981)
17. Hayat, T., Nadeem, S., Asghar, S.: Periodic unidirectional flows of a viscoelastic fluid with the fractional Maxwell model.

Appl. Math. Comput. 151(1), 153–161 (2004)
18. Keyantuo, V., Lizama, C.: A characterization of periodic solutions for time-fractional differential equations in UMD

spaces and applications. Math. Nachr. 284(4), 494–506 (2011)
19. Khan, K.N., Lamb, W., McBride, A.C.: Fractional calculus of periodic distributions. Fract. Calc. Appl. Anal. 14(2), 260–283

(2011)
20. Kilbas, A., Samko, S., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach,

New York (1993)
21. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
22. Lizama, C., Poblete, V.: Periodic solutions of fractional differential equations with delay. J. Evol. Equ. 11, 57–70 (2011)
23. Nadeem, S.: General periodic flows of fractional Oldroyd-B fluid for an edge. Physics Letters, Section A: General,

Atomic and Solid State Physics 368(3–4), 181–187 (2007)
24. Ortigueira, M.D., Machado, J.T., Trujillo, J.J.: Fractional derivatives and periodic functions. Int. J. Dyn. Control 5(1), 72–78

(2017)
25. Rogosin, S., Dubatovskaya, M.: Letnikov vs. Marchaud: a survey on two prominent constructions of fractional

derivatives. Mathematics 6 (2018)
26. Tavazoei, M.S.: A note on fractional-order derivatives of periodic functions. Automatica 46(5), 945–948 (2010)
27. Tavazoei, M.S., Haeri, M.: A proof for nonexistence of periodic solutions in time invariant fractional order systems.

Automatica 45(8), 1886–1890 (2009)
28. Winfree, A.T.: The Geometry of Biological Time. Springer, Berlin (1980)


	Normal periodic solutions for the fractional abstract Cauchy problem
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


