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Abstract

We obtain necessary and sufficient conditions for the strongly Lp well-posedness of three abstract evo-
lution equations, arising from fractional Moore-Gibson-Thompson type equations which have recently 
appeared in the literature. We use Fourier multiplier techniques to derive new characterizations in terms of 
the R-boundedness of the operator-valued symbol associated to each abstract model, when endowed with 
the time-fractional Liouville-Grünwald derivative. As a consequence of our characterization, we give new 
insights into the differences between the models based on the structure of the respective operator-valued 
symbols and show novel applications by including several classes of operators other than the Laplacian.
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1. Introduction

Let A be a closed linear operator defined on a complex Banach space X. In this article, we 
are concerned with time-fractional abstract linear models that admit the form

(1 + ταDα
t )(u′′(t) − c2Au(t)) − δD

2−β
t Au(t) = f (t), t ∈ [0,2π], (1.1)

where τ, δ > 0 and Dα
t denotes the αth Liouville-Grünwald derivative [16,29, Definition 2.1]

(also called Weyl derivative [22, Section 6.2], [10,34]). The above model in case A = �, the 
Laplacian operator, and considering Caputo-Djrbashian fractional derivative has been recently 
introduced by Kaltenbacher and Nikolic [25]. It arises from using fractional temperature laws 
proposed by Compte and Metzler instead of the standard heat flux law within the governing 
equations to the classical Moore-Gibson-Thompson (MGT) equation. Due to their interest in ap-
plied fields such as viscoelasticity theory [20], where they have gained increasing importance, 
in [1,2,23], the authors have proposed similar approaches for constructing a fractional order 
version of the MGT equation. They used diverse time-fractional order operators to create frac-
tional Moore-Gibson-Thompson (fMGT) equations. For instance, in the reference [1] the authors 
used the fractional Atangana-Baleanu operator, whereas in the reference [2] the more standard 
Riemann-Liouville definition of fractional derivative is used. On the other hand, in [2] the authors 
considered the Caputo-Djrbashian definition of fractional operator. Using the same definition, in 
[25, Section 7] the authors introduce the following cases: Type I: α ∈ (0, 1] and β = α; Type 
II: α ∈ (0, 1] and β = 2 − α; and Type III: α = 1 and β ∈ (0, 1] and they name them as fMGT 
equations. In the same work, it was shown the well-posedness for these linear time-fractional 
models in the Hilbert space X = L2(�).

We point out that a recent and extensive analysis has been done on the singular limit of the 
integer model (1.1) when α = β = 1 and the relaxation parameter τ vanishes. See [5,9] and ref-
erences therein. In the new and interesting articles of Meliani [35] and Katenbacher and Nikolic 
[26,37], the authors consider abstract memory kernel convolution terms instead of fractional 
derivatives, analyzing the singular limit and generalizing [25].

Well-posedness in vector-valued Lebesgue-Bochner spaces for the abstract model (1.1) in case 
τ = 0 has been provided in [29]. In case τ �= 0, α = 1, β = 1, the well-posedness of equation 
(1.1) named as the abstract Moore-Gibson-Thompson (aMGT) equation, has been studied by 
Poblete and Pozo in [38] in Lebesgue-Bochner spaces and, more generally, by Cai and Bu [18]
in the scales of vector-valued Besov and Triebel-Lizorkin spaces. However, the analysis of well-
posedness for the fractional abstract MGT equation (afMGT) introduced in this article is still 
an open problem in most vector-valued spaces of interest. See also [7,11,12,14,15] for more 
research on this topic.

In this article we provide for the first time a complete characterization of strong well-
posedness for (1.1) on the scale of vector-valued Lebesgue spaces Lp(0, 2π; X), showing new 
and interesting relationships and differences between equations of Type I, II and III within the 
framework of the abstract model (1.1). We consider equation (1.1) when endowed with time-
fractional Liouville-Grünwald derivatives. This definition arises to preserve periodicity and is 
used e.g., in physics for the study of fractional fields at a positive temperature where fractional 
oscillators are replaced by fractional thermal oscillators [33, Section 3], and in approximation 
theory of periodic functions by trigonometric polynomials [32,39]. Several properties of the 
Liouville-Grunwald derivative are given in [17, Section 3].
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It should be noted that our results are general enough not to require additional assumptions 
on the operator A, such as being the generator of a semigroup or cosine family of operators. 
Our methods are based on the use of Fourier multipliers theorems with operator-valued symbols 
obtained by Arendt and Bu [8], R-bounded operators, UMD spaces, and an original technique 
introduced in the recent reference [19].

1.1. Main results

Next, we provide an overview of our main findings. We consider the complex variable func-
tions

dj (z) = ταzα+2 + z2

c2 + c2ταzα + δz2−β
with z = ik, k ∈Z, (1.2)

where j ∈ {I, II, III }. We show that for a fixed j , and under the assumption that X is a UMD

space (e.g. X = Lq(�), 1 < q < ∞), a necessary and sufficient condition to have for every 
f ∈ Lp(0, 2π; X), 1 < p < ∞, a unique function u that satisfies equation (1.1) and belongs to 
the respective maximal regularity space, is that {dj (ik)}k∈Z ⊆ ρ(A), the resolvent set of A, and 
the set

{dj (ik)(dj (ik) − A)−1}k∈Z,

is R-bounded. See Theorems 3.15, 4.21 and 4.24 below. As a consequence, important a priori 
estimates for the solutions can be established. We also observe that Theorem 3.15 extends [38, 
Corollary 3.12] from the (aMGT) to the (afMGT) equation.

We show in all cases that Im(d
j
k ) �= 0 for all k �= 0, but that the real part may vary as follows:

Type II: Re(dII
k ) < 0 for all k �= 0 and Im(dII

k )/Re(dII
k ) has order 1/|k|α (|k| → ∞);

Type I: Re(dI
k ) < 0 for all k �= 0 if the condition

1/2 < α ≤ 1 and cos(απ/2) + τα cos(απ) < 0, (1.3)

holds. Moreover Im(dI
k )/Re(dI

k ) → ± tan(απ) as k → ±∞;
Type III: Re(dIII

k ) < 0 for all k �= 0 if the condition

0 < β ≤ 1 and cos

(
βπ

2

)
− τ sin

(
βπ

2

)
< 0 (1.4)

is imposed. Moreover, Im(dIII
k )/Re(dIII

k ) → ∓ cot(βπ/2) as k → ±∞.
This implies several interesting consequences. First of all, Type II is the prototypical model 

for the fMGT equation in case A = � since dII
k follows the same dynamical behavior as the case 

α = 1 for the MGT equation. Our abstract results confirm the same behavior for this fractional 
model on an arbitrary Hilbert space for 0 < α ≤ 1, see Theorem 5.26 below. We observe that 
this result is in agreement with [25, Proposition 7.1] in the sense that well-posedness is allowed 
without any restriction (except, of course, δ > 0). As an important advantage, our abstract result 
allows considering any selfadjoint operator A in this model, such as the negative bilaplacian 
operator A = −�2 in an appropriate domain.
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According to (1.3), the Type I model has two restrictions to have a similar behavior to the Type 
II model. The first analytical restriction is on the fractional order α ∈ (1/2, 1] which, surprisingly, 
is in line with the physical interpretation of model I, namely, for 0 < α ≤ 1/2 the temperature 
which is represented by the solution u(t) of the model, could be negative, see [25, Section 2]. 
On the other hand, the second restriction gives new insights into the dependence between the 
parameter τ , that accounts for relaxation, and the fractional order α. According to this depen-
dence, and taking into account that τ must be small in several, though not all, practical situations 
(for a discussion and examples, see [9, p.150]) we conclude from (1.3) that in such situations 
α must be close to the MGT case α = 1. Note that obeying the behavior of Im(dI

k )/Re(dI
k ) as 

k → ±∞ in the model I, sectorial operators are admitted in contrast to model II. Hence, the same 
behavior as for the MGT case is valid for several sectorial operators A defined on a UMD space, 
see Corollary 5.32 below. In particular, our results for the Type I model are valid in Lebesgue 
spaces Lq(�) where � ⊂ RN is a bounded and smooth domain. As a concrete example, we 
prove new results on strongly Lp well-posedness for the fMGT equation when A = � is defined 
on a cylindrical domain. See Theorem 5.33.

Finally and taking into account now (1.4), we observe that, in contrast with model II, there is 
no analytical restriction on the values of β ∈ (0, 1] for model III, but a constraint on the values 
of τ is needed. Again this dependence shows that in practical situations of interest, the fractional 
order β must be close to β = 1. In addition, as in the case of model II, sectorial operators could 
also be admitted. We finish this article with Theorem 5.36 showing that operators like A = � but 
also A = −(−�)1/2 and A = −�2 are eventually admissible for this model.

2. Preliminaries

Let X and Y be complex Banach spaces. We denote by B(X, Y) the space of all bounded 
linear operators from X to Y . If X = Y then B(X, Y) will be denoted as B(X). We denote as 
Lp(0, 2π; X), 1 ≤ p ≤ ∞ the space of all 2π -periodic Bochner measurable X-valued functions 
f such that f restricted to [0, 2π] is p-integrable (essentially bounded if p = ∞).

In what follows, we use the notation

(ik)α :=
{ |k|αei sgn(k)απ/2 if k �= 0

0 if k = 0.

Moreover, we define ak := 1/(ik)α for k �= 0 and a0 = 1.
The Fourier coefficients of f ∈ Lp(0, 2π; X)(1 ≤ p < ∞) will be denoted by

f̂ (k) = 1

2π

2π∫
0

e−k(t)f (t)dt, k ∈Z,

where ek(t) := eikt , t ∈ [0, 2π].
Let α > 0. We define the αth Liouville-Grünwald fractional derivative operator Dα in 

Lp(0, 2π; X) by

Dαu :=
∑

(ik)αû(k)ek, u ∈ Hα,p(0,2π;X), (2.1)

k∈Z
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where we denote by Hα,p(0, 2π; X) the vector-valued fractional Sobolev space

Hα,p(0,2π;X) := {u ∈ Lp(0,2π;X) : ∃v ∈ Lp(0,2π;X) : v̂(k) = (ik)αû(k) for all k ∈Z}.

In case α = 0 we denote H 0,p(0, 2π; X) = Lp(0, 2π; X).
The expression given in (2.1) is also known as the αth Weyl derivative [34]. The present for-

mulation can be found e.g. in the references [10,13]. This derivative usually appears in problems 
that involve periodicity, see for example, Section 9 in [16] in which the authors investigated a 
fractional diffusion-type equation, or [29] where periodic solutions for time-fractional differen-
tial equations are analyzed.

Remark 2.1. Let p > 1 be given. It is shown in [10, p. 203-204] that for each n ∈ N ∪ {0}
if n + 1

p
< α ≤ n + 1 + 1

p
and u ∈ Hα,p(0, 2π; X) then u is n-times continuously differ-

entiable and u(k)(0) = u(k)(2π) for all 0 ≤ k ≤ n. In particular, if u ∈ H 3,p(0, 2π; X) then 
u(0) = u(2π), u′(0) = u′(2π) and u′′(0) = u′′(2π).

The vector-valued Sobolev space Hα,p(0, 2π; X) is equipped with the norm

‖u‖Hα,p := ‖u‖Lp + ‖Dαu‖Lp

so that it becomes a Banach space. If α = 1 we denote D1 = D. By [16, Theorem 4.1] we have 
the following characterization

Hα,p(0,2π;X) = {u ∈ Lp(0,2π;X) : Dαu ∈ Lp(0,2π;X)}.

For further use we state the following result.

Proposition 2.2. Let α, β > 0. Then

Hα+β,p(0,2π;X) = {u ∈ Hβ,p(0,2π;X) : Dβu ∈ Hα,p(0,2π;X)}.

Proof. Let u ∈ Hα+β,p(0, 2π; X). Then u ∈ Lp(0, 2π; X) and Dα+βu ∈ Lp(0, 2π; X). By 
[29, Proposition 2.3 (ii)] we have that Dβu exists and Dα+βu = Dα(Dβu). This means that 
Dα(Dβu) ∈ Lp(0, 2π; X). Since β < α + β , part (i) of the same Proposition gives Dβu ∈
Lp(0, 2π; X). Hence u ∈ Hβ,p(0, 2π; X) and Dβu ∈ Hα,p(0, 2π; X).

Conversely, assume that u ∈ Hβ,p(0, 2π; X) and Dβu ∈ Hα,p(0, 2π; X). Then [29, Propo-
sition 2.3 (ii)] guarantees that Dα+βu exists and Dα+βu = Dα(Dβu). This implies u ∈
Hα+β,p(0, 2π; X). �
Remark 2.3. [10] As a consequence of Proposition 2.2, if 0 < ξ1 ≤ ξ2, then

Hξ2,p(0,2π;X) ⊂ Hξ1,p(0,2π;X).

We recall the notion of operator-valued Fourier multiplier [8,10,30].
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Definition 2.4. Let X and Y be Banach spaces. For 1 ≤ p ≤ ∞, α ≥ 0 we say that a sequence 
{Mk}k∈Z ⊂ B(X, Y) is an (Lp, Hα,p)-multiplier, if for each f ∈ Lp(0, 2π; X) there exists u ∈
Hα,p(0, 2π; Y) such that

û(k) = Mkf̂ (k) for all k ∈Z.

In particular, in the border case α = 0 the definition coincides with the one contained in [8, 
Proposition 1.1]. The next important lemma can be found in [29, Lemma 2.6].

Lemma 2.5. Let 1 ≤ p < ∞, α ≥ 0 and (Mk)k∈Z ⊂ B(X). The following assertions are equiva-
lent

(i) (Mk)k∈Z is an (Lp, Hα,p)-multiplier;
(ii) ((ik)αMk)k∈Z is an (Lp, Lp)- multiplier.

We recall from [30] the following definition.

Definition 2.6. A sequence {ck}k∈Z ⊂ C \ {0} is called 1-regular if it is bounded as well as the 
set { k(ck+1−ck)

ck
}k∈Z.

The next lemma is a direct consequence of [31, Corollary 3.10 and Remark 2.2].

Lemma 2.7. Let X be a UMD space. Let {Mk}k∈Z be an (Lp, Lp)-multiplier and {bk}k∈Z a 
bounded sequence satisfying

sup
k∈Z

|bk| + sup
k∈Z

|k(bk+1 − bk)| < ∞. (2.2)

Then {bkMk}k∈Z is an (Lp, Lp)-multiplier.

We now recall the notion of an R-bounded set of operators. For a summary about the main 
properties about R-bounded sets we refer to [21].

Definition 2.8. Let X and Y be Banach spaces. A set T ⊂ B(X, Y) is called R-bounded if there 
is a constant c ≥ 0 such that

‖(T1x1, ..., Tnxn)‖R ≤ c‖(x1, ..., xn)‖R, (2.3)

for all T1, ..., Tn ∈ T , x1, ..., xn ∈ X, n ∈N where

‖(x1, ..., xn)‖R := 1

2n

∑
εj ∈{−1,1}n

∥∥∥ n∑
j=1

εj xj

∥∥∥.

Let �ψ ⊂ C be the open sector

�ψ = {z ∈C \ {0} : | arg z| < ψ}.
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Definition 2.9. [29] A closed densely defined operator A is said to be sectorial of angle θ if it 
satisfies the following conditions

(i) σ(A) ⊆ C \ �θ ;
(ii) The set {z(z − A)−1 : z ∈ �θ } is bounded in B(X).
The operator A is called R-sectorial of angle θ if the set {z(z−A)−1 : z ∈ �θ } is R-bounded.

3. A characterization of well-posedness for the afMGT equation of Type II

Let τ, c, δ > 0 and 0 < α ≤ 1 be given. In this section we study well-posedness in Lebesgue 
spaces Lp(0, 2π; X) for the Type II afMGT given by:

ταDαu′′(t) + u′′(t) − c2Au(t) − (ταc2 + δ)DαAu(t) = f (t), t ∈ [0,2π], (3.1)

where A is a closed linear operator defined on a Banach space X.
Next, we introduce the definition of a strong Lp-solution of the fractional evolution equation 

(3.1) and the associated concept of well-posedness.

Definition 3.10. Let 1 ≤ p < ∞ and 0 < α ≤ 1. A function u is called a strong Lp-solution of 
(3.1) if

u ∈ Hα+2,p(0,2π;X) ∩ Hα,p(0,2π;D(A)) =: MR(α,X),

and equation (3.1) holds for almost all t ∈ [0, 2π].

Remark 3.11. It is not difficult to see that

MR(α,X) = {u ∈ Hα,p(0,2π;X) ∩ Lp(0,2π;D(A)) : Dαu ∈ Lp(0,2π;D(A)),

u ∈ Hα+2,p(0,2π;X), u ∈ H 2,p(0,2π;X)}. (3.2)

The space MR(1, X) was considered by Bu in [10] and it is called the maximal regularity space.

Note that MR(α, X) is a Banach space under the norm

‖u‖MR := ‖Au‖Lp(0,2π;X) + ‖DαAu‖Lp(0,2π;X) + ‖u′′‖Lp(0,2π;X) + ‖Dαu′′‖Lp(0,2π;X).

Remark 3.12. Note that if u ∈ Hα+2,p(0, 2π; X) then by Remark 2.3 we have that u ∈
H 2,p(0, 2π;X) and hence, by Remark 2.1, we have u(0) = u(2π), u′(0) = u′(2π). On the other 
hand, by Proposition 2.2 we have Dα+1u ∈ H 1,p(0, 2π; X), and by [41, Chapiter XII, (9.1)], 
we get that Dα+1u(0) = Dα+1u(2π). Therefore, Definition 3.10 implicitly implies that the 
equation (3.1) possesses the initial conditions u(0) = u(2π), u′(0) = u′(2π) and Dα+1u(0) =
Dα+1u(2π). Note that in the case of α = 1 these initial conditions coincide with those consid-
ered in the reference [38].

Definition 3.13. Let 1 ≤ p < ∞. We say that the problem (3.1) is strongly Lp well-posed if for 
every f ∈ Lp(0, 2π; X) there exists a unique strong Lp-solution of (3.1).
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Note that if the problem (3.1) is strongly Lp well-posed then M : MR(α, X) → Lp(0, 2π; X)

such that u → uf , where uf is the unique strong Lp-solution of (3.1), is a closed mapping. 
Then, by the closed graph theorem, we deduce that there exists a constant C > 0 independent of 
f ∈ Lp(0, 2π; X) such that the estimate

‖Au‖Lp(0,2π;X) + ‖DαAu‖Lp(0,2π;X) + ‖u′′‖Lp(0,2π;X) + ‖Dαu′′‖Lp(0,2π;X) ≤ C‖f ‖Lp(0,2π;X)

holds.
The following result characterizes Lp well-posedness for the problem (3.1) in terms of certain 

operator-valued Fourier multipliers symbols. In what follows, we will denote

γα := ταc2 + δ.

Theorem 3.14. Let X be a UMD space, τ, c, δ > 0 and let A : D(A) ⊂ X → X be a closed linear 
operator. The following assertions are equivalent for p ∈ [1, ∞):

(a) The problem (3.1) is strongly Lp well-posed;
(b) S(ik) := (τα(ik)α+2 + (ik)2 − (c2 + γα(ik)α)A)−1 exists in B(X) for all k ∈ Z and the 

sequence

{(ik)α+2S(ik)}k∈Z

is an (Lp, Lp)-multiplier.

Proof. First, we show that (a) implies (b). Let k ∈ Z and y ∈ X. We define f (t) = eikt y. Then 
f ∈ Lp(0, 2π; X), f̂ (k) = y and f̂ (j) = 0 for j �= k. Since the problem (3.1) is well-posed there 
exists a unique u ∈ Hα+2,p(0, 2π; X) ∩ Hα,p(0, 2π; D(A)) such that

ταDαu′′(t) + u′′(t) − c2Au(t) − γαDαAu(t) = f (t) a.a. t ∈ [0,2π]. (3.3)

Observe that u ∈ H 2,p(0, 2π; X) by Remark 3.11 and hence u(0) = u(2π) and u′(0) = u′(2π)

(see the second part of Remark 2.1). We also have û′′(k) = (ik)2û(k). Multiplying equation (3.3)
by e−k(t), k ∈ Z and integrating from 0 to 2π in both sides of the equation, we get using the 
definition of Dα and [8, Lemma 3.1] that ̂u(k) ∈ D(A) and

(τα(ik)α+2 + (ik)2 − (c2 + γα(ik)α)A)̂u(k) = f̂ (k) = y, k ∈Z.

It follows that the operators (τα(ik)α+2 + (ik)2 − (c2 + γα(ik)α)A are surjective for all k ∈ Z.
Let x ∈ D(A). If we assume that [τα(ik)α+2 + (ik)2 − (c2 + γα(ik)α)A]x = 0 for all k ∈ Z, 

then u(t) := eikt x, k ∈Z, defines a periodic solution of equation (3.1) with f ≡ 0. Indeed,

ταDαu′′(t) + u′′(t) − c2Au(t) − γα(ik)αDαAu(t)

= (ik)2ταDαeiktx + (ik)2eikt x − c2Aeiktx − γα(ik)αDαAeiktx

= eikt [τα(ik)α+2 + (ik)2 − (c2 + γα(ik)α)A]x = 0,

proving the claim. From the uniqueness of the strong solution, we conclude that x = 0.
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Next, we show that the sequence {(ik)α+2S(ik)}k∈Z is an (Lp, Lp)-multiplier. Indeed, let 
f ∈ Lp(0, 2π; X) be given. By hypothesis, we have that û(k) ∈ D(A) for all k ∈ Z and there 
exists a unique u ∈ Hα+2,p(0, 2π; X) ∩ Hα,p(0, 2π; D(A)) such that

(τα(ik)α+2 + (ik)2 − (c2 + γα(ik)α)A)̂u(k) = f̂ (k), k ∈Z.

Let v := Dαu′′. Then v ∈ Lp(0, 2π; X). Since S(ik) exists, we have

v̂(k) = (ik)α+2û(k) = (ik)α+2S(ik)f̂ (k), k ∈ Z.

Consequently, we deduce that {(ik)α+2S(ik)}k∈Z is an (Lp, Lp)-multiplier, proving (b).
Next, we prove that (b) implies (a). Let f ∈ Lp(0, 2π; X) be fixed. By hypothesis, there 

exists v ∈ Lp(0, 2π; X) such that

v̂(k) = (ik)α+2S(ik)f̂ (k), k ∈Z. (3.4)

By Lemma 2.5 we have that {S(ik)}k∈Z is an (Lp, Hα+2,p)-multiplier and thus there exists

u ∈ Hα+2,p(0,2π;X) ⊂ Hα,p(0,2π;X) (3.5)

such that

û(k) = S(ik)f̂ (k), k ∈Z (3.6)

and from Remark 3.12 it follows that Dα+1u(0) = Dα+1u(2π). This implies that ̂u(k) ∈ D(A). 
Combining (3.4) with (3.6), we obtain

v̂(k) = (ik)α+2û(k), k ∈Z.

From here we deduce that Dα+2u = v. Proposition 2.2 gives that u′′ ∈ Hα,p(0, 2π; X) and 
Dα+2u = Dαu′′ = v.

Next, since the sequence {(ik)−α}k∈Z is 1-regular and by hypothesis {(ik)α+2S(ik)}k∈Z is 
an (Lp, Lp)-multiplier, then, the hypothesis of UMD allows to use Lemma 2.7 and hence the 
identity

(ik)2S(ik) = 1

(ik)2 (ik)α+2S(ik), k ∈Z

implies that {(ik)2S(ik)}k∈Z is an (Lp, Lp)-multiplier. It follows that there exists v1 ∈
Lp(0, 2π; X) such that

v̂1(k) = (ik)2S(ik)f̂ (k) = (ik)2û(k), k ∈ Z. (3.7)

Consequently, u ∈ H 2,p(0, 2π, X) and v1 = u′′. From the identity

I = τα(ik)α+2S(ik) + (ik)2S(ik) − (c2 + γα(ik)α)AS(ik), k ∈Z, (3.8)
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it follows that

f̂ (k) = τα(ik)α+2S(ik)f̂ (k) + (ik)2S(ik)f̂ (k) − (c2 + γα(ik)α)AS(ik)f̂ (k), k ∈ Z.

(3.9)

The above identity and the fact that {(ik)2S(ik)}k∈Z and {(ik)α+2S(ik)}k∈Z are (Lp, Lp)-
multipliers, imply that the sequence {(c2 + γα(ik)α)AS(ik)}k∈Z is also an (Lp, Lp)-multiplier.

Next, let

bk := 1

c2 + γα(ik)α
, k ∈Z.

It is clear that {bk}k∈Z is a bounded sequence. Let ξ > 0, we get from the mean value theorem 
and the definition of (ik)ξ that

|(i(k + 1))ξ − (ik)ξ | ≤ ξ |k|ξ−1, k ∈ Z. (3.10)

Then, for all k ∈ Z we have

|k(bk+1 − bk)| = γα|k((i(k + 1))α − (ik)α)|
|(c2 + γα(i(k + 1))α)(c2 + γα(ik)α)|

≤ αγα|k|α
|(c2 + γα(i(k + 1))α)(c2 + γα(ik)α)| = O(1/|k|α) as |k| → ∞.(3.11)

From (3.11) we immediately get

sup
k∈Z

|bk| + sup
k∈Z

|k(bk+1 − bk)| < ∞.

It follows from Lemma 2.7 that the sequence

{bk(c
2 + γα(ik)α)AS(ik)}k∈Z = {AS(ik)}k∈Z

is an (Lp, Lp)-multiplier. Therefore, there exists v2 ∈ Lp(0, 2π; X) such that

v̂2(k) = AS(ik)f̂ (k) = Aû(k), k ∈Z. (3.12)

Since 0 ∈ ρ(A), we define w2 := A−1v2. Then, by (3.12), we obtain

u = w2 ∈ Lp(0,2π;D(A)). (3.13)

Since {AS(ik)}k∈Z is an (Lp, Lp)-multiplier, the identity (3.9) implies that {(ik)αAS(ik)}k∈Z is 
also an (Lp, Lp)-multiplier. Therefore there exists v3 ∈ Lp(0, 2π; X) such that

v̂3(k) = (ik)αAS(ik)f̂ (k) = (ik)αAû(k), (3.14)

for all k ∈ Z. As before, define w3 := A−1v3. Then by (3.14) we obtain
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Dαu = A−1v3 = w3 ∈ Lp(0,2π;D(A)). (3.15)

Thus, inserting (3.4), (3.7) and (3.14) in (3.9) we obtain that

f̂ (k) = ταv̂(k) + v̂1(k) − c2v̂2(k) − γαv̂3(k), k ∈ Z.

Hence, (3.5), (3.13) and (3.15) together with Remark 3.11 imply that u ∈ MR(α, X) and

ταDαu′′(t) + u′′(t) − c2Au(t) − γαDαAu(t) = f (t),

for almost all t ∈ [0, 2π]. Hence u is a strong Lp-solution of (3.1).
Let us see the uniqueness. If u ∈ MR(α, X) is such that

ταDαu′′(t) + u′′(t) − c2Au(t) − γαDαAu(t) = 0,

then for the Fourier coefficients we get

(τα(ik)α+2 + (ik)α) − (c2 + γα(ik)α)A)̂u(k) = 0.

Since S(ik) exists, we deduce that û(k) = 0 for all k ∈ Z, which means that the equation (3.1)
has the null solution u ≡ 0. �

The following is the main result of this section.

Theorem 3.15. Let A be a closed linear operator defined on a UMD space X and let τ, c, δ > 0. 
The following conditions are equivalent:

(i) Equation (3.1) is strongly Lp well-posed;

(ii)

{
τα(ik)α+2 + (ik)2)

c2 + γα(ik)α

}
k∈Z

⊆ ρ(A) and the set

{
τα(ik)α+2 + (ik)2

c2 + γα(ik)α

(
τα(ik)α+2 + (ik)2

c2 + γα(ik)α
− A

)−1}
k∈Z

(3.16)

is R-bounded.

Proof. Suppose (i). By Theorem 3.14 we obtain that 
{

τα(ik)α+1 + (ik)2

c2 + γα(ik)α

}
k∈Z

⊆ ρ(A) and the 

sequence {(ik)α+2S(ik)}k∈Z is an (Lp, Lp)-multiplier. By [8, Proposition 1.11] we conclude 

that {(ik)α+2S(ik)}k∈Z is R-bounded. Since the sequence τα(ik)2+α+(ik)2

(ik)2+α is uniformly bounded, 
the identity

τα(ik)α+2 + (ik)2

2 α

(
τα(ik)α+2 + (ik)2

2 α
− A

)−1
c + γα(ik) c + γα(ik)
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= τα(ik)α+2 + (ik)2

(ik)α+2

(ik)α+2

c2 + γα(ik)α

(
τα(ik)α+2 + (ik)2

c2 + γα(ik)α
− A

)−1

shows that (3.16) is R-bounded, too.

Conversely, suppose (ii). Since (3.16) is R-bounded and the sequence (ik)2+α

τα(ik)2+α+(ik)2 is uni-
formly bounded, the identity

(ik)α+2

c2 + γα(ik)α

(
τα(ik)α+2 + (ik)2

c2 + γα(ik)α
− A

)−1

= (ik)α+2

τα(ik)α+2 + (ik)2

τα(ik)α+2 + (ik)2

c2 + γα(ik)α

(
τα(ik)α+2 + (ik)2

c2 + γα(ik)α
− A

)−1

shows that the set {Mk := (ik)α+2S(ik)}k∈Z is R-bounded. By the Marcinkiewicz operator-
valued multiplier theorem [8, Theorem 1.3], it is enough to show that the set {k(Mk+1 −Mk)}k∈Z
is R-bounded. Then, the result follows from Theorem 3.14. In order to verify this property, we 
will use [19, Theorem 3.7].

For any ξ > 0 we define rk := (ik)ξ , k ∈Z. We prove that the set {rk}k∈Z is 1-regular, that is, 
the set {k rk+1−rk

rk
}k∈Z is bounded. Indeed, by (3.10) we obtain

∣∣∣k rk+1 − rk

rk

∣∣∣ =
∣∣∣k (i(k + 1))ξ − (ik)ξ

(ik)ξ

∣∣∣ ≤ ξ |k| |k|ξ−1

|k|ξ = ξ, k ∈Z \ {0}, (3.17)

for any ξ > 0, proving the claim.
Using (3.17) with ξ = α + 2 it follows that the set {(ik)α+2}k∈Z is 1-regular. It proves the first 

condition stated in [19, Theorem 3.7].
Next, in order to prove the second statement of [19, Theorem 3.7], we must consider

Lk := (S(ik)−1 − S(i(k + 1))−1)S(ik).

Observe that from the identity [−k2(τα(ik)α + 1) − (c2 + γα(ik)α)A]S(ik) = I , we have

AS(ik) = (ik)2 (τα(ik)α + 1)

c2 + γα(ik)α
S(ik) − 1

c2 + γα(ik)α
I =: (ik)2ckS(ik) − bkI.

Since the sequences {ck}k∈Z and {(ik)αbk}k∈Z are clearly bounded, the identity

(ik)αAS(ik) = ck(ik)α+2S(ik) − (ik)αbkI = ckMk − (ik)αbkI, (3.18)

proves that the set {(ik)αAS(ik)}k∈Z is R-bounded. Finally, we must verify that the set {kLk}k∈Z
is R-bounded. In fact, for any k ∈Z \ {0} we get

kLk = k
[
− k2(τα(ik)α + 1) − (c2 + γα(ik)α)A + (k + 1)2(τα(i(k + 1))α + 1)

+ (c2 + γα(i(k + 1))α)A
]
S(ik)

=
[
ταk[(ik)α+2 − (i(k + 1))α+2] + k[(ik)2 − (i(k + 1))2]
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− γαk[(ik)α − (i(k + 1))α]A
]
S(ik)

= ταk
[(ik)α+2 − (i(k + 1))α+2]

(ik)α+2 (ik)α+2S(ik)

+ k
[(ik)2 − (i(k + 1))2]

(ik)2

1

(ik)α
(ik)α+2S(ik)

− γαk
[(ik)α − (i(k + 1))α]

(ik)α
(ik)αAS(ik)

= ταk
[(ik)α+2 − (i(k + 1))α+2]

(ik)α+2 Mk + k
[(ik)2 − (i(k + 1))2]

(ik)2

1

(ik)α
Mk

− γαk
[(ik)α − (i(k + 1))α]

(ik)α
(ik)αAS(ik). (3.19)

Inserting (3.18) in (3.19), and applying repeatedly (3.17) with ξ ∈ {α + 2, 2, α} we conclude that 
the set {kLk}k∈Z is R-bounded since it is the sum of R-bounded sets [3, Proposition 2.2.5]. Since 
all hypotheses of Theorem 3.7 in [19] are satisfied, the result follows. �
Remark 3.16. If X is a Hilbert space, R- boundedness is equivalent to uniform boundedness [3, 
Proposition 2.2.5 (d)] and then condition (ii) in Theorem 3.15 can be replaced by:

sup
k∈Z

∥∥∥∥∥−k2(τα(ik)α + 1)

c2 + γα(ik)α

(−k2(τα(ik)α + 1)

c2 + γα(ik)α
− A

)−1
∥∥∥∥∥ < ∞. (3.20)

4. Characterization of well-posedness for the afMGT equations of Type I and III

Let 0 < α ≤ 1 be given. In this section we first analyze well-posedness for the Type I afMGT 
equation given by:

ταDαu′′(t) + u′′(t) − c2Au(t) − ταc2DαAu(t) − δD1−αAu′(t) = f (t), t ∈ [0,2π], (4.1)

in the Lebesgue spaces Lp(0, 2π; X). Here, A is a closed linear operator defined on a Banach 
space X and τ, c, δ > 0.

We first introduce the correspondent notion of a strong Lp-solution for the abstract model 
(4.1).

Definition 4.17. Let 1 ≤ p < ∞ and 0 < α ≤ 1. A function u is called a strong Lp-solution of 
(4.1) if

u ∈ Hα+2,p(0,2π;X) ∩ H 2−α,p(0,2π;D(A))

and equation (4.1) holds for almost all t ∈ [0, 2π].

Remark 4.18. Since u ∈ Hα+2,p(0, 2π; X) if u is a strong Lp-solution of (4.1), then, as shown 
in Remark 3.12, we must have u(0) = u(2π), u′(0) = u′(2π) and Dα+1u(0) = Dα+1u(2π). This 
means that (4.1) is in fact a problem with prescribed initial conditions.
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Analogously to the previous section, we introduce the following definition.

Definition 4.19. Let 1 ≤ p < ∞. We say that the problem (4.1) is strongly Lp well-posed if for 
every f ∈ Lp(0, 2π; X) there exists a unique strong Lp-solution of (4.1).

The next result provides a characterization of Lp well-posedness for the problem (4.1) in 
terms of (Lp, Lp)-multipliers.

Theorem 4.20. Let X be a UMD space, τ, c, δ > 0, 0 < α ≤ 1 and let A : D(A) ⊂ X → X be a 
closed linear operator. The following assertions are equivalent for p ∈ [1, ∞):

(a) The problem (4.1) is strongly Lp well-posed;
(b) R(ik) := (τα(ik)α+2 + (ik)2 − (c2 + c2(ik)α + δ(ik)2−α)A)−1 exists in B(X) for all k ∈Z

and the set

{(ik)α+2R(ik)}k∈Z

is an (Lp, Lp)-multiplier.

Also, if (a) or (b) hold then we have the following a priori estimate for the solution:

‖Dαu′′‖Hα+2,p(0,2π;X) + ||u′′||H 2,p(0,2π;X) + ||Au||Lp(0,2π;X) + ||DαAu||Hα,p(0,2π;X)

+ ||D1−αAu′||H 2−α,p(0,2π;X) ≤ C||f ||Lp(0,2π;X).

Proof. (a) implies (b) can be proved similarly as in the first part of Theorem 3.14.
Next, we see that (b) implies (a). Let f ∈ Lp(0, 2π; X) be fixed. By hypothesis, there exists 

v ∈ Lp(0, 2π; X) such that

v̂(k) = (ik)α+2R(ik)f̂ (k), k ∈Z. (4.2)

By Lemma 2.5 we deduce that {R(ik)}k∈Z is an (Lp, Hα+2,p)-multiplier. Then, there exists 
u ∈ Hα+2,p(0, 2π; X) such that

û(k) = R(ik)f̂ (k), k ∈Z. (4.3)

This implies that û(k) ∈ D(A). Inserting (4.3) in (4.2) we get v̂(k) = (ik)α+2û(k), k ∈ Z. 
Therefore

u ∈ Hα+2,p(0,2π,X) and Dα+2u = v. (4.4)

Moreover, by Proposition 2.2 we have that

u′′ ∈ Hα,p(0,2π;X) and Dαu′′ = v. (4.5)

Next, since the sequence {(ik)−α}k∈Z is 1-regular and by hypothesis {(ik)α+2R(ik)}k∈Z is an 
(Lp, Lp)-multiplier, then Lemma 2.7 and the identity
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(ik)2R(ik) = 1

(ik)2 (ik)α+2R(ik), k ∈ Z,

imply that {(ik)2R(ik)}k∈Z is an (Lp, Lp)-multiplier. It follows that there exists v1 ∈ Lp(0,2π;
X) such that

v̂1(k) = (ik)2R(ik)f̂ (k) = (ik)2û(k), k ∈ Z. (4.6)

Hence

u ∈ H 2,p(0,π;X) and v1 = u′′. (4.7)

From the identity

I = τα(ik)α+2R(ik) + (ik)2R(ik) − (c2 + c2τα(ik)α + δ(ik)2−α)AR(ik), k ∈ Z,

we get

f̂ (k) = τα(ik)α+2R(ik)f̂ (k) + (ik)2R(ik)f̂ (k) − (c2

+ c2τα(ik)α + δ(ik)2−α)AR(ik)f̂ (k). (4.8)

Since {(ik)α+2R(ik)}k∈Z and {(ik)2R(ik)}k∈Z are (Lp, Lp)-multipliers, together with (4.8), im-
ply that {(c2 + c2τα(ik)α + δ(ik)1−α(ik))AR(ik)}k∈Z is an (Lp, Lp)-multiplier.

Next, let

ck := (ik)α

c2 + c2τα(ik)α + δ(ik)2−α
, k ∈Z.

It is clear that the sequence {ck}k∈Z is bounded. Also using (3.10) with ξ = α and ξ = 2 − α we 
obtain that for all k ∈Z

|k(ck+1 − ck)| ≤ c2|k||(i(k + 1))α − (ik)α|
|qk| + δ|k||(ik)2−α((i(k + 1))α − (ik)α))|

|qk|

+ δ|k||(ik)α(i(k + 1))2−α − (ik)2−α)|
|qk| = O(|k|α) + O(k2) + O(k2)

O(|k|4−2α)
,

(4.9)

as |k| → ∞, because |qk| := |(c2 + c2τα(i(k + 1))α + δ(i(k + 1))2−α)(c2 + c2τα(ik)α +
δ(ik)2−α| = O(k4−2α) as |k| → ∞. We conclude that

sup
k∈Z

|ck| + sup
k∈Z

|k(ck+1 − ck)| < ∞.

It follows from Lemma 2.7 that the sequence

{ck(c
2 + c2τα(ik)α + δ(ik)1−α(ik))AR(ik)}k∈Z = {(ik)αAR(ik)}k∈Z (4.10)
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is an (Lp, Lp)-multiplier. Therefore there exists v3 ∈ Lp(0, 2π; X) such that

v̂3(k) = (ik)αAR(ik)f̂ (k) = (ik)αAû(k), k ∈ Z, (4.11)

where we have used (4.3). Define w3 := A−1v3. Since ·A−1 exists as a bounded operator, we 
have that w3 ∈ Lp(0, 2π, D(A)) and Aŵ3(k) = v̂3(k) = (ik)αAû(k). We conclude that ŵ3(k) =
(ik)αû(k), and therefore,

u ∈ Hα,p(0,2π,X), Dαu = w3 ∈ D(A) and ADαu = Aw3 = v3. (4.12)

On the other hand, the identity

AR(ik) = 1

(ik)α
(ik)αAR(ik), k ∈Z,

and (4.10) show that the sequence {AR(ik)}k∈Z is an (Lp, Lp)-multiplier, too. This means that 
there exists v4 ∈ Lp(0, 2π; X) such that

v̂4(k) = AR(ik)f̂ (k) = Aû(k), k ∈Z. (4.13)

Since 0 ∈ ρ(A), we define w4 := A−1v4. Then by (4.13), we have

u = w2 ∈ Lp(0,2π;D(A)), v4 = Au = Aw4. (4.14)

Since the sequences {AR(ik)}k∈Z, {(ik)αAR(ik)}k∈Z, {(ik)α+2R(ik)}k∈Z and
{(ik)2R(ik)}k∈Z are (Lp, Lp)-multipliers, and as a consequence of the identity (4.8), we ob-
tain that the sequence {(ik)2−αAR(ik)}k∈Z is also an (Lp, Lp)-multiplier. Therefore there exists 
v5 ∈ Lp(0, 2π; X) such that for all k ∈Z

v̂5(k) = (ik)2−αAR(ik)f̂ (k) = (ik)2−αAû(k). (4.15)

Since 0 ∈ ρ(A), we define w5 := A−1v5 which implies that w5 ∈ Lp(0, 2π, D(A)) and 
Aŵ5(k) = v̂5(k) = (ik)2−αAû(k), that is, A−1v̂5(k) = (ik)2−αû(k). Consequently,

u ∈ H 2−α,p(0,2π;D(A)), and v5 = D2−αAu. (4.16)

From Proposition 2.2 we get that

u′ ∈ H 1−α,p(0,2π;X) and v5 = D1−αAu′. (4.17)

Thus, inserting (4.2), (4.6), (4.13), (4.11) and (4.15) in (4.8) we obtain that

f̂ (k) = ταv̂(k) + v̂1(k) − c2v̂4(k) − c2ταv̂3(k) − δv̂5(k), k ∈ Z.

Now, using (4.5), (4.7), (4.14), (4.12) and (4.17) we get

ταDαu′′(t) + u′′(t) − c2Au(t) − c2ταDαAu(t) − δD1−αAu′(t) = f (t) (4.18)
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for almost all t ∈ [0, 2π]. From (4.18) together with (4.4) and (4.16) we conclude that u is 
a strong Lp-solution of (4.1). The uniqueness can be proven analogously as in the proof of 
Theorem 3.14. The conclusion follows. �

The next result deals with a characterization of Lp well-posedness for the equation (4.1) in 
terms of the R-boundedness of the correspondent operator-valued symbol.

Theorem 4.21. Let X be a UMD space and τ, c, α > 0. The following conditions are equivalent

(i) Equation (4.1) is strongly Lp well-posed;

(ii)

{
τα(ik)α+2 + (ik)2

c2 + δ(ik)2−α + ταc2(ik)α

}
k∈Z

⊆ ρ(A) and the set

{
τα(ik)α+2 + (ik)2

c2 + δ(ik)2−α + ταc2(ik)α

(
τα(ik)α+2 + (ik)2

c2 + δ(ik)2−α + ταc2(ik)α
− A

)−1}
k∈Z

(4.19)

is R-bounded.

Proof. First we observe that since (ik)2+α

τα(ik)α+2+(ik)2 = O(1) as |k| → ∞, then R-boundedness of 

(4.19) is equivalent to R-boundedness of the set {(ik)α+2R(ik)}k∈Z. Therefore, the fact that (i)
implies (ii) follows immediately from Theorem 4.20 and [8, Proposition 1.11]. We now assume 
that (ii) holds and let Mk := (ik)α+2R(ik) with

R(ik) = (τα(ik)α+2 + (ik)2 − (c2 + δ(ik)2−α + ταc2(ik)α)A)−1.

Following the same argument as in the proof of Theorem 3.15 it is sufficient to show that the set 
{k(Mk+1 − Mk)}k∈Z is R-bounded.

As it was shown in (3.17) the sequence {(ik)α+2}k∈Z is 1-regular. We define

Lk := (R(ik)−1 − R(i(k + 1))−1)R(ik).

From the identity [τα(ik)α+2 − k2 − (c2 + δ(ik)2−α + ταc2(ik)α)A]R(ik) = I , we obtain

AR(ik) = τα(ik)α+2 + (ik)2

c2 + δ(ik)2−α + ταc2(ik)α
R(ik) − 1

c2 + δ(ik)2−α + ταc2(ik)α
I.

Then we get

(ik)αAR(ik) = τα(ik)α + 1

c2 + δ(ik)2−α + ταc2(ik)α
Mk − (ik)α

c2 + δ(ik)2−α + ταc2(ik)α
I, (4.20)

and we clearly have that {(ik)αAR(ik)}k∈Z is R-bounded. On the other hand,

(ik)2−αAR(ik) = τα(ik)2 + (ik)2−α

[c2 + δ(ik)2−α + ταc2(ik)α](ik)α
Mk − (ik)2−α

c2 + δ(ik)2−α + ταc2(ik)α
I

(4.21)
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which shows the R-boundedness of {(ik)2−αAR(ik)}k∈Z. Finally, we verify that the set 
{kLk}k∈Z is R-bounded. Indeed, for any k ∈ Z we get

kLk = k
[
τα(ik)α+2 + (ik)2 − (c2 + δ(ik)2−α

+ ταc2(ik)α)A − τα(i(k + 1))α+2 − (i(k + 1))2

+ (c2 + δ(i(k + 1))2−α + ταc2(i(k + 1))α)A
]
R(ik)

=
[
ταk[(ik)α+2 − (i(k + 1))α+2] + k[(ik)2 − (i(k + 1))2]

− δk[(ik)2−α − (i(k + 1))2−α]A − ταc2k[(ik)α − (i(k + 1))α]A
]
R(ik)

= ταk
[(ik)α+2 − (i(k + 1))α+2]

(ik)α+2 (ik)α+2R(ik)

+ k
[(ik)2 − (i(k + 1))2]

(ik)2

1

(ik)α
(ik)α+2R(ik)

− k[(ik)2−α − (i(k + 1))2−α]
(ik)2−α

δ(ik)2−αAR(ik)

− k[(ik)α − (i(k + 1))α]
(ik)α

ταc2(ik)αAR(ik)

= ταk
[(ik)α+2 − (i(k + 1))α+2]

(ik)α+2 Mk + k
[(ik)2 − (i(k + 1))2]

(ik)2

1

(ik)α
Mk

− k[(ik)2−α − (i(k + 1))2−α]
(ik)2−α

δ(ik)2−αAR(ik) (4.22)

− k[(ik)α − (i(k + 1))α]
(ik)α

ταc2(ik)αAR(ik).

Inserting (4.20) and (4.21) in (4.22), and applying repeatedly (3.17) for ξ ∈ {2 −α, α+2, 2, α} we 
conclude that the set {kLk}k∈Z is R-bounded since it is sum of R-bounded sets. The conclusion 
holds from Theorem 3.7 in [19]. �

Secondly, we analyze the correspondent results about well-posedness for the Type III afMGT 
equation given by:

τu′′′(t) + u′′(t) − c2Au(t) − τc2Au′(t) − δD1−βAu′(t) = f (t), t ∈ [0,2π], (4.23)

in periodic Lebesgue spaces Lp(0, 2π; X).
We first introduce the definition of strongly Lp well-posedness as follows.

Definition 4.22. Let 1 ≤ p < ∞ and 0 < β ≤ 1 be fixed. We say that the problem (4.23)
is strongly Lp well-posed if for every f ∈ Lp(0, 2π; X) there exists a unique function u ∈
H 3,p(0, 2π; X) ∩ H 2−β,p(0, 2π; D(A)) that satisfies equation (4.23) for almost all t ∈ [0, 2π].
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Remark 4.23. If u is a strong Lp-solution of (4.23), then u ∈ H 3,p(0, 2π; X) and therefore, 
from Remark 2.1, we have that the equation (4.23) must satisfy the initial conditions u(0) =
u(2π), u′(0) = u′(2π) and u′′(0) = u′′(2π).

The following theorem is the main result for (4.23). The proof is omitted since it follows 
similarly to the one of Theorem 4.20 without significant differences.

Theorem 4.24. Let X be a UMD space, τ, c, δ > 0 and let A be a closed linear operator. The 
following assertions are equivalent for p ∈ [1, ∞):

(a) The problem (4.23) is strongly Lp well-posed;

(b)

{
τ(ik)3 + (ik)2

c2 + τc2ik + δ(ik)2−β

}
k∈Z

⊆ ρ(A) and the set

{
τ(ik)3 + (ik)2

c2 + τc2ik + δ(ik)2−β

(
τ(ik)3 + (ik)2

c2 + τc2ik + δ(ik)2−β
− A

)−1}
k∈Z

(4.24)

is R-bounded.

Also, if (a) or (b) hold then we have the following estimate:

‖u′′′‖H 3,p(0,2π;X) + ||u′′||H 2,p(0,2π;X) + ||Au||Lp(0,2π;X) + ||Au′||H 1,p(0,2π;X)

+ ||D1−βAu′||H 2−β,p(0,2π;X) ≤ C||f ||Lp(0,2π;X).

Remark 4.25. Although the method used in this article has been limited to periodic functions, 
other cases can be treated similarly. In fact, for functions defined on the positive real axis the 
Laplace transform can be used. In the case of functions defined on the whole real axis, the 
Fourier transform could be used. However, in such cases, characterizations of well-posedness 
as set out in this paper, might be more difficult to prove, because we need additional tools or 
stronger conditions on the abstract operator A. For example, in the case of the positive real axis, 
a similar theoretical approach is originally due to L. Weis [40] and requires A to be the generator 
of an analytic semigroup. In the case of the whole real axis, an approach similar to the one in this 
article could be performed on vector-valued Hölder spaces using a result due to Arendt, Batty 
and Bu [6]. In such a case, R-boundedness is no longer necessary, but uniqueness turns out to be 
a difficult problem, and tools like the Carleman transform need to be implemented. Our results 
are independent of these approaches, and particularly for spaces of 2π -periodic functions much 
simpler, because it uses the finite Fourier transform method in its simplest and most general form 
and a general result on operator-valued Fourier multipliers due to Arendt and Bu [6]. Also, no 
additional conditions on the operator A are needed.

5. Examples and consequences

In this section, we analyze and present some important consequences of our main abstract 
results which allows us to conclude some differences in the structure of each of the exposed 
models.
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Fig. 1. α = 1, τ = 0.5, c = 0.5, δ = 0.5.

In order to transfer to some extent the hyperbolic nature of the MGT equation to its frac-
tional abstract version, it is necessary to study the location of the real and imaginary parts of the 
sequences dj (ik), k ∈ Z, j ∈ {I, II, II } in the complex plane.

5.1. Type II

Let τ, δ, c > 0 and 0 < α ≤ 1. According to Theorem 3.15 the model (3.1) is structurally 
characterized by the sequence

dk := −|k|2(τα(ik)α + 1)

c2 + (δ + ταc2)(ik)α
, k ∈ Z.

We recall that γα := δ + ταc2.
A computation shows that

Re(dk) =
−|k|2

(
τα|k|2α + c2

γα
+ |k|α(τα c2

γα
+ 1) cos(απ/2)

)
γα

((
c2

γα
+ |k|α cos(απ/2)

)2 + |k|2α sin2(α sgn(k)π/2)

) (5.1)

and

Im(dk) = δ|k|2+α sin(α sgn(k)π/2)(
c2

γα
+ |k|α cos(απ/2)

)2 + |k|2α sin2(α sgn(k)π/2)

. (5.2)

It is clear that Re(dk) < 0 and Im(dk) �= 0 for each k �= 0. Therefore, arg(dk) < π for all 
k �= 0. From (5.1) and (5.2) we get

Im(dk)

Re(dk)
= −δ|k|α sin(α sgn(k)π/2)

τα|k|2α + c2

γα
+ |k|α(τα c2

γα
+ 1) cos(απ/2)

= O(1/kα) as |k| → ∞. (5.3)

For α = 1 the above conclusions are exactly the same. See Fig. 1 that shows the generic location 
of the points dk (over the continuous line drawn). Note that (5.3) implies that we cannot expect 
to admit a sectorial operator of a fixed angle θ < π in our Type II model. As a consequence, this 
case could be considered as prototypical.

With the above considerations in mind, we prove the following result:
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Theorem 5.26. Let A be a selfadjoint operator defined on a Hilbert space H with 0 ∈ ρ(A). 
Then equation (3.1) is strongly Lp well-posed.

Proof. Since A is selfadjoint and 0 ∈ ρ(A) we have σ(A) ⊆ R \ {0}. Since Im(dk) �= 0 for 
all k �= 0, we have dk ∈ ρ(A) for all k ∈ Z. From [28, Chapter 5, Section 3.5], we have that 
‖(dk − A)−1‖ = 1

dist (dk,σ (A))
, k ∈ Z \ {0}. Since dist (dk, σ(A)) has order |k|2 and the same 

happens with |dk|, we have sup
k

(
|dk|

dist (dk, σ (A))
) < ∞. Therefore, we can conclude that

sup
k∈Z

∥∥∥dk (dk − A)−1
∥∥∥ < ∞.

As a consequence of Theorem 3.15 and Remark 3.16, we conclude that equation (3.1) is Lp

well-posed. �
We note that the above theorem applies in case A = � the Laplacian or A = �2 the bilaplacian 

operator in L2(�) with Dirichlet boundary conditions where � ⊂RN is a bounded domain with 
smooth boundary.

Remark 5.27. Concerning the problem of singular limit for the type II model, i.e. when τ → 0, 
we observe that, formally, the limit should be the time-fractional model u′′ − c2Au − δDα

t Au =
f .

5.2. Type I

Let τ, δ, c > 0 and 0 < α ≤ 1. In this case, the relevant structural sequence is defined by:

dk = τα(ik)α+2 + (ik)2

c2 + c2τα(ik)α + δ(ik)2−α
.

A computation shows that

Re(dk) = [τα|k|α+2 cos(απ/2) + |k|2][(δ|k|2−α − ταc2|k|α) cos(απ/2) − c2)]
pk

− τα|k|α+2(δ|k|2−α + ταc2|k|α) sin2( sgn(k)απ/2)

pk

(5.4)

and

Im(dk) = [τα|k|α+2 sin( sgn(k)απ/2)][(δ|k|2−α − ταc2|k|α) cos(απ/2) − c2]
pk

+ [τα|k|α+2 cos(απ/2) + |k|2][(δ|k|2−α + ταc2) sin( sgn(k)απ/2)]
pk

(5.5)

where pk := [(δ|k|2−α −ταc2|k|α) cos(απ/2) −c2]2 +(δ|k|2−α +ταc2|k|α)2 sin( sgn(k)απ/2)2.
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After some computations, we obtain for each k ∈Z,

pkIm(dk) = sgn(k)
[
τα[δ|k|4 sin(απ) − c2|k|α+2 sin(απ/2)] + δ|k|4−α sin(απ/2)+

+ ταc2|k|2 sin(απ/2)
]

and hence Im(dk) �= 0 for each k ∈ Z \ {0}.
The above property allows to argue as in Theorem 5.26 and obtain the following result in the 

Hilbert space setting.

Theorem 5.28. Let A be a selfadjoint operator defined on a Hilbert space H with 0 ∈ ρ(A). 
Then equation (4.1) is strongly Lp well-posed.

Proof. Since Im(dk) �= 0 for all k �= 0, we have dk ∈ ρ(A) for all k ∈ Z. Since dist (dk, σ(A))

has order |k|2α we can conclude that

sup
k∈Z

∥∥∥dk (dk − A)−1
∥∥∥ = M < ∞.

As a consequence of Theorem 4.21, equation (4.1) is Lp well-posed. �
A computation, taking into account that Im(dk) = −Im(d−k), so that it is enough to calculate 

for k ∈ N , shows that

Im(dk)

Re(dk)
→ tan(απ) as k → +∞, (5.6)

which coincides with (5.3) only in case α = 1 for the range 0 < α ≤ 1. Otherwise, the behavior 
is clearly different. Indeed, sectorial operators of a fixed angle θ < π can be included in our 
results depending on the values of the given parameters. This fact makes a difference with those 
operators that fit into the Type II model. See also the figures below.

After some calculus it can be observed that,

pkRe(dk) =δ
[|k|4−α cos(απ/2) + τα|k|4 cos(απ)

]
− 2ταc2|k|α+2 cos(απ/2) − τ 2αc2|k|2α+2 − |k|2c2

whence we deduce that Re(dk) < 0 for k �= 0 if the condition

1/2 < α ≤ 1 and �(α) := cos(απ/2) + τα cos(απ) < 0, (5.7)

holds.
A picture of the typical structure of the sequence {dk}k∈Z is illustrated in the following figures 

where the points dk are located over the continuous line drawn.
Figs. 2 and 3 show that the condition (5.7) is sufficient but not necessary to have Re(dk) < 0

for k �= 0.
In Fig. 4, we show that the condition (5.7) may fail to have Re(dk) < 0 for k �= 0.
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Fig. 2. α = 0.9, τ = 2, c = 1, δ = 3 and �(α) = −1,6183 < 0.

Fig. 3. α = 0.6, τ = 2, c = 1, δ = 3 and �(α) = 0.119403 > 0.

Remark 5.29. We observe that the first condition in (5.7), i.e. α > 1/2, is consistent with the 
physical behavior of this type of model, as suggested in [25, Section 2].
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Fig. 4. α = 0.51, τ = 2, c = 1, δ = 3 and �(α) = 0.707 > 0.

Note that the second condition in (5.7), or directly from the formula for the real part of the se-
quence {dk}, gives us information about a surprising and interesting dependence of the parameter 
τ and the fractional order α. Namely, if τ → 0 then α → 1.

It should be observed that the property that τ could be near to 0 is justified because, in practice, 
the parameter τ represents a positive constant accounting for relaxation, and it has been shown in 
a number of experiments that this parameter is small in several mediums as shown in [9, p.150]
and references therein. In particular, the singular limit of the type I model assuming condition 
(5.7) should be the equation utt − c2Au − δAu′ = f .

For our next result we need some preliminaries.
Let consider the space of functions: H∞(�ψ) = {g : �ψ → C holomorphic and bounded}

which is endowed with the norm

||g||ψ∞ = sup
| arg z|<ψ

|g(z)|.

Le A be a sectorial operator that admits a bounded H∞− calculus [21], i.e. A ∈ H∞(X). If, 
moreover, the set {h(A) : h ∈ H∞(�ψ), ||h||ψ∞ ≤ 1} is R-bounded for some ψ > 0 then we say A
admits an R-bounded H∞-calculus and that A belongs to the class RH∞(X). The correspondent 
angle will be noted as ψR∞

T .
The following proposition provides sufficient conditions to ensure when {hz(A)}z∈� is R-

bounded.
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Proposition 5.30. [21] Let A ∈RH∞(X) be given and assume that the set {hz}z∈� ⊂ H∞(�ψ)

is uniformly bounded for some ψ > ψ
R∞
T , where � is an arbitrary index set. Then the set 

{hz(A)}z∈� is R-bounded.

Define

θ∗ := sup
k∈Z

arg(dk),

where θ∗ could depend on the values of α, τ, c, δ. From the above analysis and figures provided, 
it is clear that there exist τ, c, δ > 0 such that θ∗ < π for some values of α.

Theorem 5.31. Let τ, c, δ > 0 and 0 < α ≤ 1 be given and assume that the condition θ∗ <

π holds. Let A be a closed linear operator defined on a UMD-space X. Suppose that −A ∈
RH∞(X) with angle θR∞−A ∈ (0, π − θ∗) and 0 ∈ ρ(A). Then equation (4.1) is strongly Lp well-
posed for any 1 < p < ∞.

Proof. From Theorem 4.21 it suffices to show that the set{
dk (dk − A)−1

}
k∈Z (5.8)

is R-bounded. Due to the fact that 0 < θ
R∞−A < π − θ∗ there exists s > θ

R∞−A such that s < π − θ∗. 
For each z ∈ �s and k ∈Z, k �= 0, define

hk(z) := dk(dk + z)−1.

Since δ > 0, we note that z
dk

belongs to the sector �s+θ∗ where s + θ∗ < π and then the distance 
from the sector �s+θ∗ to −1 is always positive. As a result, there exists M > 0 independent of 
k ∈Z \ {0} and z ∈ �τ that satisfies the following:

|hk(z)| =
∣∣∣ 1

1 + z
dk

∣∣∣ ≤ M.

Since −A ∈RH∞(X), then we can conclude from Proposition 5.30 that the set {hk(−A)}k∈Z\{0}
is R-bounded. Moreover, due to the fact that A is invertible, the operators H(k) := (dk − A)−1

exist for all k ∈ Z. As a consequence, H(k) belongs to B(X) for all k ∈ Z and the sequence 
{dk(dk − A)−1}k∈Z is R-bounded. �

As a consequence of the fact that any sectorial operator defined on a UMD space that admits 
a bounded H∞-calculus of angle β also admits a RH∞ calculus of the same angle β on the 
correspondent space (see [27] and [29]) we get the following corollary.

Corollary 5.32. Let 1 < p < ∞. Let X be a UMD-space and −A a sectorial operator that 
admits a bounded H∞ calculus with angle θ∞

A ∈ (0, π − θ∗) and 0 ∈ ρ(A). Then the equation 
(4.1) is strongly Lp well-posed.
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As a concrete example, we consider the time-fractional Moore-Gibson-Thompson equation 
(4.1) of Type I on a cylindrical domain � = U × V ⊂ Rn+d where U = Rn+, n ∈ N and V ⊂
Rd, d ∈ N0 is bounded, open and connected. Let A = � be a cylindrical decomposition of the 
Dirichlet Laplacian operator on Lq(�) with respect to the two cross-sections i.e. � = �1 +
�2 where �i acts on the correspondent component of �. Following [36] we introduce Lq -
realizations �q,i = �i as follows:

D(�q,1) := {u ∈ W 2,q(Rn+,Lq(V )) : DU = 0};
D(�q,2) := W 2,q (V ) ∩ W

1,q
0 (V ),

with Dirichlet boundary conditions DU . We consider the Laplacian �q in Lq(�) to be

D(�q) := D(�q,1) ∩ D(�q,2)

�qu := �q,1u + �q,1u = �u, u ∈ D(�q).

Let V be a C2-standard domain ([36, Definition 3.1]). From [36, Theorem 4.2] we get −�q ∈
RH∞(Lq(�)) and 0 ∈ ρ(�q). Moreover, by [36, Proposition 5.1 (i)] we have θR∞−�q

< π
2 . Since 

X = Lq(�), 1 < q < ∞ is a UMD-space, as a consequence of Theorem 5.31 with A = �q we 
obtain the next theorem.

Theorem 5.33. Let 1 < p, q < ∞. Suppose that θ∗ < θ
R∞−�q

. Then, for any given f ∈ Lp(0,2π;
Lq(�)) there exists a unique u ∈ Hα+2,p(0,2π;X) ∩H 2−α,p(0, 2π; D(�q)) such that equation 
(4.1) with A = �q holds for almost all t ∈ [0, 2π]. Moreover, the estimate

‖Dαu′′‖Hα+2,p(0,2π;Lq(�)) + ||u′′||H 2,p(0,2π;Lq(�)) + ||�qu||Lp(0,2π;Lq(�))

+ ||D1−α�qu′||H 2−α,p(0,2π;Lq(�)) + ‖Dα
t �qu‖Hα,p(0,2π;Lq(�))

≤ C||f ||Lp(0,2π;Lq(�)),

holds.

5.3. Type III

Let τ, δ, c > 0 and 0 < β ≤ 1. In this case, the sequence defined by

dk = τ(ik)3 + (ik)2

c2 + c2τ ik + δ(ik)2−β

gives structural information of the model (4.23).
A computation shows that

Re(dk) = −k2
1 + τ 2k2 + δc−2

[
|k|3−βτ sin(

βπ
2 ) − |k|2−β cos(βπ

2 )
]

qk

, (5.9)

and
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Im(dk) = k3 δc−2τ |k|2−β cos(βπ
2 ) + δc−2|k|1−β sin(

βπ
2 )

qk

,

where qk = c2(1 + δc−2|k|2−β cos(βπ
2 ))2 + c2(τk + δc−2|k|2−β sin2( sgn(k)

βπ
2 )), for all k ∈ Z.

We note that Im(dk) �= 0 for k �= 0 and hence, analogously as in Theorem 5.28, we can prove 
the following result.

Theorem 5.34. Let A be a selfadjoint operator defined on a Hilbert space H with 0 ∈ ρ(A). 
Then equation (4.23) is strongly Lp well-posed.

For the proof, it is enough to observe that |dk| = O(|k|1+β) as |k| → ∞ and hence the set{
dk (dk − A)−1

}
k∈Z

is uniformly bounded.
Imposing that |k|3−βτ sin(

βπ
2 ) − |k|2−β cos(βπ

2 ) ≥ 0 for all k ∈Z in (5.9), it is not difficult to 
see that Re(dk) ≤ 0 if

�(β) = cos

(
βπ

2

)
− τ sin

(
βπ

2

)
< 0, 0 < β ≤ 1. (5.10)

Remark 5.35. Since cot
(

βπ
2

)
→ ∞ as β → 0 and cot

(
βπ
2

)
→ 0 as β → 1, and in view that τ

admits small values, we conclude that under condition (5.10), β should be near to 1, presenting 
a similar behavior as the Type I model. However, in contrast, no restriction on the values of β is 
necessary. If we consider the singular limit of the type III model assuming condition (5.10) then 
the limit is utt − c2Au − δAu′ = f which coincides with the singular limit of the type I model. 
Compare it with Remark 5.29.

From the example presented in Fig. 5, it is clear that there exist τ, c, δ > 0 and 0 < β ≤ 1 such 
that θ∗ < π . More precisely, and taking into account that Im(dk) = −Im(d−k), k ∈ Z, we obtain

Im(dk)

Re(dk)
→ −cos(βπ/2)

sin(βπ/2)
= − cot(βπ/2) as k → +∞. (5.11)

Note that if β = 1 the above condition naturally coincides with (5.3). As for Type I, sectorial 
operators could be admitted in the abstract model, in contrast with the Type II model.

Let

θ∗ := sup
k∈Z

arg(dk).

θ∗ could depend on the values of β, τ, c, δ. We obtain the following result.

Theorem 5.36. Let 1 < p < ∞, δ, c, τ > 0 and 0 < β ≤ 1 be given. Let X be a UMD-space and 
let A be an R-sectorial operator on X of angle θ < θ∗ < π with 0 ∈ ρ(A). Then the equation 
(4.23) is strongly Lp well-posed.
366



E. Alvarez, C. Lizama and M. Murillo-Arcila Journal of Differential Equations 376 (2023) 340–369
Fig. 5. β = 0.7, τ = 1, c = 100, δ = 20 and �(β) = −0.437016 < 0.

Proof. By hypothesis dk ∈ �θ∗ for all k ∈ Z. Therefore, the definition of R-sectoriality implies 
that {dk}k∈Z ⊆ ρ(A) and that the sequence {dk(dk − A)−1}k∈Z is R-bounded. The conclusion 
holds from Theorem 4.24. �

We finish this article with the following example.

Example 5.37. Let us consider the Lq -realization of �q in X = Lq(�) of �, where 1 < q < ∞. 
It has been proved in [24, Appendix] that �q is an R-sectorial operator in X for any angle 
θ ∈ (0, π). Assuming that 0 ∈ ρ(�q) (for instance if � ⊂ RN is a bounded domain with smooth 
boundary) then all the hypotheses of Theorem 5.36 are satisfied. Also, for the proof of Proposi-
tion 2.2 in [4] we note that the operator −(−�q)

1/2 is R-sectorial in X with angle θ ∈ (0, π/2). 
Moreover, by [4, Proof of Proposition 2.3], the same happens for the operator −�2

q , with equal 
angle.
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