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We investigate the singular limit of a third-order abstract equation in time, in 
relation to the complete second-order Cauchy problem on Banach spaces, where 
the principal operator is the generator of a strongly continuous cosine family. 
Assuming that an initial datum is ill prepared, the initial layer problem is 
studied. We show convergence, which is uniform on compact sets that stay away 
from zero, as long as initial data are sufficiently smooth. Our method employs 
suitable results from the theory of general resolvent families of operators. The 
abstract formulation of the third-order in time equation is inspired by the Moore-
Gibson-Thompson equation, which is the linearization of a model that currently 
finds applications in the propagation of ultrasound waves, displacement of certain 
viscoelastic materials, flexible structural systems that possess internal damping and 
the theory of thermoelasticity.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

1.1. State of the art and objectives

In recent times a good deal of attention has been devoted to studies of the singular limit for vanishing 
relaxation time of the Jordan-Moore-Gibson-Thompson equation, a third order in time wave equation de-
scribing the nonlinear propagation of sound that avoids the infinite signal speed paradox of classical second 
order in time strongly damped models of nonlinear acoustics, such as the Westervelt and Kuznetsov equa-
tion [33,34]. The singular relaxation limit for the linearized version of the Jordan-Moore-Gibson-Thompson 
equation (JMGT), called the Moore-Gibson-Thompson (MGT) equation
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
τψτ

ttt + ψτ
tt − c2Δψτ − bΔψτ

t = 0, t ≥ 0;
ψτ (0) = u0;
ψτ
t (0) = u1;

ψτ
tt(0) = u2,

(1.1)

where ψτ denotes the acoustic velocity potential, τ is a positive constant accounting for relaxation (the 
relaxation time), c is the speed of the sound, b = δ+ τc2, δ is the diffusivity of sound, has been studied very 
recently by Bongarti, Charoenphon and Lasiecka [5,11].

The MGT equation has received a lot of attention in recent years. Several papers have appeared in the 
literature on this topic. Well posedness and exponential decay rates were studied in the seminal articles 
[36,37] by Kaltenbacher and co-authors. See also [15]. In the important reference [49] an abstract semigroup 
approach was carried out that studies structural decomposition, spectral analysis and exponential stability. 
Regularity and asymptotic behavior were analyzed in the papers [1,15,25,26], whereas chaotic behavior in 
[13]. The singular thermal relaxation limit for (1.1) (linear and nonlinear) is first studied by Bongarti, 
Charoenphon, Kaltenbacher, Lasieka and Nikolić in references [5,6,11,33,34], stability and controllability 
in references [7,8] and [48]. Nonexistence of global solutions is analyzed in [12]. Some generalizations of 
the (1.1) model are studied in [14] and [40] where delay and memory terms are incorporated, along with 
applications to inverse problems [42]. A numerical analysis based on the finite element method and the 
backward Euler scheme were developed in the reference [4]. See also [9,17,18] for related works. Recently, 
the study of certain non-local variants of the model (1.1) has been the subject of research [35,47]. The 
monograph [32] provides a useful background on the subject of the MGT equation.

The JMGT equation was originally introduced in connection with fluid mechanics [57] as a model for the 
acoustic velocity potential in thermally relaxing fluids. In addition, the same equation arises as a model for 
the displacement in certain viscoelastic materials (see [19,52] and references therein), as a model for flexible 
structural systems possessing internal damping [7,8], and as a model for the temperature displacement in a 
type of heat conduction with a relaxation parameter [55].

We observe that the so-called singular relaxation limit for the MGT equation studied recently in the 
references [5,6,11] belongs to the framework of the more general theory of singular perturbation problems 
[3,51,58]. We should recall that by the term singular perturbation of a given Partial Differential Equation 
(PDE) we refer to cases when its nature formally changes. For instance, one of the higher derivatives may 
formally disappear, or the order of the equation formally drops when a certain parameter is set to zero, 
hence the order of the PDE becomes lower, or its space dimensionality, or its type changes.

In this way, the singular perturbation problem for the MGT equation is that of showing that the solution 
ψτ of (1.1) converges, as τ → 0, to the solution ψ of the linearized Kuznetsov equation

⎧⎪⎨⎪⎩
ψtt − c2Δψ − δΔψt = 0, t ≥ 0;
ψτ (0) = u0;
ψτ
t (0) = u1,

(1.2)

where convergence can be understood in various senses. This problem arises naturally when one tries to 
quantify the sensitivity of the relaxation parameter τ on a variety of materials. In fact, it has been proved 
that a number of experiments found this parameter to be small in several mediums, although not all (see 
[5, p. 150] and references therein).

The main objective of this article is to investigate the singular perturbation problem for an abstract 
version of the equation (1.1) in the context of Banach spaces. This allows us to generalize this problem for 
a broader class of operators than the Laplacian, and somewhat improve the results in [5], by including the 
case of non-constants initial conditions. We also consider in our analysis the study of the presence of initial 
layers. To our knowledge, the present work is the first to explore such qualitative behavior.
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More precisely, let A : D(A) ⊂ X → X be a closed and densely defined linear operator on a com-
plex Banach space X. We ask ourselves under what conditions the solution uε(t) of the abstract singular 
perturbation problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩

εu′′′
ε (t) + u′′

ε (t) − βAuε(t) − bεAu′
ε(t) = 0, t ≥ 0, ε > 0;

uε(0) = u0(ε);
u′
ε(0) = u1(ε);

u′′
ε (0) = u2(ε),

(1.3)

where bε = δ + εβ, converges to the solution of the problem⎧⎪⎨⎪⎩
u′′

0(t) − δAu′
0(t) − βAu0(t) = 0, t ≥ 0;

u0(0) = u0;
u′

0(0) = u1,

(1.4)

as ε → 0, incorporating the presence of an initial layer by assuming that u0(ε) → u0 and u1(ε) → v ∈ X in 
place of u1(ε) → u1. This could also be interpreted, to some extent, as an ill-prepared initial datum.

When an initial datum is ill-prepared, the so-called initial layer is created at t = 0. The initial layer can 
be understood physically as an impulsively started motion at t = 0 near the boundary [27, Section 2.3.3]. 
This interesting phenomenon has been discussed in several papers [28,59]. For instance, the study of the 
singular perturbation problem with initial layer for the heat equation appears in [27, Section 2.3.3]. Notably, 
Fattorini [23, Theorem 3.2] was among the first to give an operator theoretic approach to the initial layer 
problem for the second order linear Cauchy problem. Note that even when convergence near t = 0 cannot be 
expected, convergence can be attained through addition of correctors (solutions of a different approximating 
equation) [23, Section 7]. In such abstract setting, typically A is the generator of a C0-semigroup or strongly 
continuous cosine family in a Banach space.

In the case of complete second order abstract Cauchy problems, this question is referred as the abstract 
singular perturbation problem, and has been studied long time ago. The abstract singular perturbation 
problem was first considered in 1963 by Kisynski [38] in the case where A is a self adjoint, positive definite 
operator on a Hilbert space. Later, in 1970, Sova [56] studied the problem under the assumptions that A
is the generator of a strongly continuous cosine function. The most precise results are those by Kisynski 
[39] who applied the theory of monotonic functions and gave explicit solutions. See also [41], [21], [45]
and [24] for other developments. The treatment of the non homogeneous equation is due to Fattorini [22, 
Chapter VI]; see also the references therein. Lately, the singular perturbation for abstract non-densely 
defined Cauchy problems has been studied by Ducrot et al. [20]. An excellent monograph on the subject on 
singular perturbation is provided by Verhulst [58].

In the setting of Hilbert spaces, and using reduction of order, the authors in [5] studied convergence of the 
semigroup T τ (t) governing (1.1) to the semigroup T (t) associated with (1.2) when τ → 0+. They considered 
the Dirichlet Laplacian, i.e. A = −Δ with D(A) := H1

0 (Ω) ∩ H2(Ω), where Ω is a bounded domain in 
Rn (n = 2, 3) and have shown that (in a formal sense) for initial data in H0 := D(A1/2) ×D(A1/2) ×L2(Ω)
there is a strong convergence for the projection of the semigroups T τ(t) defined over the phase space H0 to 
the semigroup T (t) defined over the phase space H0

0 := D(A1/2) ×D(A1/2), and that the rate of convergence 
is τ [5, Theorem 2.4]. Moreover, uniform asymptotic stability properties and asymptotic behavior of the 
spectrum were also analyzed.

Since the Laplacian, with appropriate boundary conditions, is the generator of a strongly continuous 
cosine family on X = L2(Ω) (see e.g. [2, Example 7.2.1]) the study of [5] suggests that we should require 
A to be the infinitesimal generator of a cosine family if we want to work in the general context of Banach 
spaces. We note that the fractional powers A = −(−Δ)ν , 0 < ν ≤ 1 are also generators of cosine families in 
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a Hilbert space [31, Theorem 2], as well as the negative bi-Laplacian operator A = −Δ2 (see [2, Example 
3.14.15] and [29]).

1.2. Methodology and results

Using a generalization of the Trotter-Kato Theorem [44] valid for generalized resolvent families of opera-
tors, and under the assumption that A is the generator of a cosine family, we are able to solve the singular 
perturbation problem with initial layer for the MGT equation (1.3) as follows:

Theorem 1.1. Suppose that A is the generator of a strongly continuous cosine family on a Banach space X. 
Let u0(ε), u1(ε), u0 ∈ D(A2), u2(ε), u1 ∈ D(A) be such that, for some v ∈ X,

(a) ‖u0(ε) − u0‖[D(A)] → 0 as ε → 0+;
(b) ‖u1(ε) − v‖ → 0 as ε → 0+;
(c) ‖εu2(ε) − (u1 − v)‖ → 0 as ε → 0+;
(d) the sets {A2u0(ε)}ε>0 and {Au1(ε)}ε>0 are bounded,

and let uε(t) be the solution of (1.3). Finally, let t(ε) > 0 be such that t(ε)/ε → ∞ (ε → 0). Then

uε(t) → u0(t),

uniformly on compacts of t ≥ t(ε) (see Definition 3.8 below), where u0(t) is the solution of (1.4).

Remark 1.2. We note that even though

τψτ
ttt + ψτ

tt + c2Δ2ψτ + bΔ2ψτ
t = 0, t ≥ 0 (1.5)

has the same structure as the actual MGT equation, it does not have necessarily the same nature - from a 
PDE viewpoint - as the MGT equation. Indeed, while the MGT equation is a hyperbolic PDE, as clarified 
in [10], the equation (1.5) is not, owing to the changed principal part of the differential operator.

In the particular case of u0(ε) = u0, u1(ε) = u1 and u2(ε) = u2 and choosing v = u1 we have that all the 
conditions in Theorem 1.1 are automatically satisfied. In contrast with previous work [5], we do not require 
that u0(ε), u1(ε) and u2(ε) be constant, and A could be other than the Dirichlet Laplacian. Convergence 
can only be assured outside of an initial layer at t = 0.

Our study is not focused in the special case of Hilbert spaces and questions of optimal regularity of initial 
data, because we are mainly interested in non-constant initial conditions and the study of initial layers as 
it has been considered from the beginning of the singular perturbation theory in abstract spaces. In fact, in 
this paper, we follow the line of work of Sova [56], Fattorini [22], Engel [21], among others.

The main tool normally used to study the MGT equation (1.1) is to reduce it to a first order problem 
defined in a suitable space (phase space). Unfortunately, we cannot use this method to deal with the MGT 
equation (1.3) when we are in a Banach space setting since, for a closed operator A, the matrix of unbounded 
operators is in general not a closed operator on the product space. Therefore, one of the main novelties of 
this work is that we incorporate a new strategy based on a direct representation of the solution in terms of 
general resolvent families of operators to show convergence, see Theorem 3.2 below. However, this strategy 
may require more regularity in the initial data than when working in the case of Hilbert space and the 
Laplacian operator, since the optimal regularity of the initial data depends on the representation of the 
solution of (1.3) by the family of resolvent operators chosen and by their regularity.
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More precisely, after representing the solution of (1.3), for each ε > 0, by families of operators, we can 
prove that such family of operators is uniformly stable with respect to the parameter ε and then, using a 
generalized version of the Trotter-Kato Theorem, we show that the convergence of the solution of (1.3) to 
the solution of (1.4) can be guaranteed, under suitable hypotheses.

We notice that the main tasks to be accomplished, in order to employ the generalized version of the 
Trotter-Kato Theorem are to prove two conditions:

(i) To show an uniform boundedness property with respect to the parameter ε of the resolvent families 
Rε(t) associated with the MGT equation (1.3) under appropriate convergence requirements on the initial 
conditions.

(ii) To guarantee the convergence of certain resolvents operators associated to Rε(t) (formally, the corre-
sponding Laplace transforms).

In order to overcome these difficulties, we notice that the resolvent family Rε(t) satisfies:

k̂ε(λ)
âε(λ)

(
1

âε(λ) −A

)−1

x =
∞∫
0

e−λtRε(t)xdt, x ∈ X,

for all λ sufficiently large and each ε ≥ 0, where

aε(t) := δ(1 − e−
t
ε ) + βt kε(t) := t− ε(1 − e−

t
ε ), t ≥ 0,

and

a0(t) := δ + βt k0(t) := t, t ≥ 0.

Then, the first condition on uniform boundedness with respect to ε will be guaranteed essentially due to 
the following properties:

0 ≤ aε(t) ≤ a0(t) and 0 ≤ kε(t) ≤ k0(t), t ≥ 0.

Then, a new and original subordination argument, exploiting the fact that aε(t) is nonnegative, nonde-
creasing and concave, shows the existence of uniformly bounded family Rε(t). The second condition can be 
proved thanks to the Weierstrass formula, which asserts that if A is the generator of a cosine family, then 
A is also the generator of an analytic semigroup.

We observe that aε(t) → a0(t) as ε → 0 for all t > 0, except in case t = 0. The same happens with k′ε(t)
which converges to k′0(t) except for t = 0. The presence of these singularities is revealed by the convergence 
of the solution uε(t) to u0(t) uniformly on compacts of t ≥ t(ε) as long as t(ε)/ε → ∞ (ε → 0).

1.3. Overview

This paper is organized as follows: Section 2 is devoted to construct the (aε, kε)-regularized resolvent 
family associated with (1.3) and the (a0, k0)-regularized resolvent family governing (1.4). In section 3, we 
prove the uniform convergence of resolvents Rε(t) on compacts subsets of R+ under the assumption that 
A is the generator of a strongly continuous cosine family. We also prove the convergence of the derivatives 
R′

ε(t) to R′
0(t) as ε → 0 for t > 0; see Theorem 3.9. Section 4 is mainly devoted to the proof of Theorem 1.1. 

Finally, we mention some well-known results on (a, k)-regularized resolvent families in an Appendix.
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2. Preliminaries

In this section we construct appropriate (aε, kε)-regularized resolvent families governing (1.3) as well as 
(a0, k0)-regularized resolvent families associated with the formal limit (1.4).

For each ε > 0 be fixed, we will consider the following functions (see [16, Section 2]):

aε(t) := βkε(t) + bε
ε

t∫
0

e−s/εds = δ(1 − e−
t
ε ) + βt, t ≥ 0, (2.1)

where bε := δ + εβ and

kε(t) := 1
ε

t∫
0

(t− s)e−s/εds = t− ε(1 − e−
t
ε ), t ≥ 0, (2.2)

and

a0(t) := δ + βt k0(t) := t, t ≥ 0.

In such case, and for each ε ≥ 0, we denote by {Rε(t)}t≥0 the (aε, kε)-regularized resolvent family generated 
by A, if it exists (see the Appendix). For further use, we note that

a′ε(t) = β + δ

ε
e−t/ε, k′ε(t) = 1 − e−t/ε t ≥ 0, (2.3)

and

a′0(t) = β, k′0(t) = 1, t ≥ 0,

as well as

âε(λ) = β + bελ

λ2(ελ + 1) , k̂ε(λ) = 1
λ2(ελ + 1) , (2.4)

and

â0(λ) = β + δλ

λ2 , k̂0(λ) = 1
λ2 , (2.5)

for all λ sufficiently large.
For the explanation of the meaning of regularized resolvent in the following result, which is a direct 

consequence of Proposition 5.3, see the Appendix section.

Proposition 2.1. Let A be a closed linear operator defined on a Banach space X. Suppose that for each ε ≥ 0
given, A is the generator of an (aε, kε)-regularized resolvent family {Rε(t)}t≥0 on X. Then the following 
assertions hold true:

1. Rε(t) is strongly continuous and Rε(0) = 0.
2. For each ε > 0

Rε(t)x = [t− ε(1 − e−
t
ε )]x + A

t∫
[β(t− s) + δ(1 − e−

t−s
ε )]Rε(s)xds, x ∈ X, t ≥ 0 (2.6)
0
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and, for ε = 0

R0(t)x = tx + A

t∫
0

[δ + β(t− s)]R0(s)xds, x ∈ X, t ≥ 0.

3. For all x ∈ D(A2) and ε ≥ 0 we have Rε(·)x ∈ C2(R+; X). Moreover,

R′
ε(t)x = (1 − e−

t
ε )x +

t∫
0

[
δ

ε
e−

t−s
ε + β

]
Rε(s)Axds, x ∈ D(A), t ≥ 0,

in case ε > 0 and

R′
0(t)x = x + δAR0(t)x + β

t∫
0

R0(s)Axds, x ∈ D(A), t ≥ 0,

in case ε = 0. Finally, we have

R′′
ε (t)x = 1

ε
e−

t
εx +

t∫
0

[
δ

ε
e−

t−s
ε + β

]
R′

ε(s)Axds, x ∈ D(A2), t ≥ 0,

in case ε > 0, and R′′
0 (t)x = δR′

0(t)Ax + βR0(t)Ax, x ∈ D(A2), t ≥ 0 in case ε = 0.

3. Stability and convergence of resolvent families

We start with the analysis of the strongly damped second order problem⎧⎪⎨⎪⎩
u′′

0(t) − δAu′
0(t) − βAu0(t) = 0, t ≥ 0,

u0(0) = u0,

u′
0(0) = u1.

(3.1)

Assume that A is the generator of a strongly continuous semigroup on X. Then, according to a result of 
Neubrander [50, Corollary 13] there is an exponentially bounded, strongly continuous and differentiable 
family {R0(t)}t≥0 ⊂ B(X) and ω0 ∈ R such that { λ2

δλ+β }Re(λ)>ω0 ⊂ ρ(A), the resolvent set of A, that 
satisfies

1
δλ + β

(
λ2

δλ + β
−A

)−1

x =
∞∫
0

e−λtR0(t)xdt,

for all x ∈ X and every λ ∈ C with Re(λ) > ω0. Moreover, by [50, Corollary 18] we have that

u0(t) = R′
0(t)u0 + R0(t)(u1 − δAu0), t ≥ 0, (3.2)

is the unique strong solution of (3.1), i.e. u0 belongs to C1(R+; [D(A)]) ∩ C2(R+, X) and satisfies (3.1), 
whenever u0, u1 ∈ D(A).

Taking into account (2.5) we note that

1
(

λ2
−A

)−1

x = k̂0(λ)
(

1 −A

)−1

x, x ∈ X.

δλ + β δλ + β â0(λ) â0(λ)
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It means, by Definition 5.2 (Appendix), that A is the generator of an (a0, k0)-regularized family {R0(t)}t≥0. 
Observe that the family depends only on the parameters δ and β. Also we observe that for u0, u1 ∈ D(A), 
the inhomogenous equation ⎧⎪⎨⎪⎩

u′′
0(t) − δAu′

0(t) − βAu0(t) = f(t), t ≥ 0,
u0(0) = u0,

u′
0(0) = u1

(3.3)

has a unique solution u0 in C2(R+; X) given by

u0(t) = R′
0(t)u0 + R0(t)(u1 − δAu0) +

t∫
0

R0(t− s)f(s)ds, t ≥ 0, (3.4)

whenever f(·) is continuously differentiable or f : [0, ∞) → D(A) and Af(·) is integrable, see [50, Corollary 
18]. This formula will be useful later.

We now analyze the problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
εu′′′

ε (t) + u′′
ε (t) − bεAu′

ε(t) − βAuε(t) = 0, t ≥ 0, ε > 0,
uε(0) = u0(ε),
u′
ε(0) = u1(ε),

u′′
ε (0) = u2(ε),

(3.5)

where bε = δ + εβ.

Definition 3.1. Let ε > 0 be fixed. By a strong solution of the problem (3.5) we mean a function uε ∈
C1(R+; [D(A)]) ∩ C3(R+; X) that verifies (3.5).

Recall the definitions of aε and kε given in (2.1) and (2.2), respectively. The following result was proved 
in [16, Proposition 3.1].

Theorem 3.2. Let A be a closed linear operator defined on a Banach space X and ε > 0 be given. Assume that 
A is the generator of (aε, kε)-regularized resolvent families {Rε(t)}t≥0. If u0(ε) ∈ D(A3) and u1(ε), u2(ε) ∈
D(A2), then the unique strong solution of the problem (3.5) is given by

uε(t) = εR′′
ε (t)u0(ε) + R′

ε(t)[u0(ε) + εu1(ε)] + Rε(t)[u1(ε) − bεAu0(ε) + εu2(ε)], (3.6)

for all t ≥ 0, where bε := δ + εβ.

Remark 3.3. Formally, comparing the representations (3.2) with (3.6) it is apparent that, in general, there 
could be a gap near t = 0. This gap might be hidden when ε → 0 for t > 0, but note that at t = 0
the initial value u0 in (3.2) originates - as ε → 0 - from the term εR′′

ε (t)u0(ε) rather than from the term 
R′

ε(t)[u0(ε) + εu1(ε)] in (3.6). Therefore, in general Banach spaces, we can expect a singular behavior at 
t = 0 instead of the regular behavior proved in the case of Hilbert spaces.

In order to show that uε given in (3.6) converges as ε → 0 to u0 given in (3.2) using the extension of 
the Trotter-Kato theorem given by Theorem 5.4 stated in the Appendix, we need to prove the stability 
condition (5.1). This is the objective of the following results.

We start recalling the following definition due to Prüss [54, Definition 4.4, p.94].
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Definition 3.4. A function a : (0, ∞) → R is called a creep function if a(t) is nonnegative, nondecreasing 
and concave.

A creep function a(t) has the standard form

a(t) = a0 + a∞t +
t∫

0

a1(s)ds, t > 0, (3.7)

where a0 = a(0+) ≥ 0, a∞ = limt→∞
a(t)
t ≥ 0, and a1(t) := a′(t) − a∞ is nonnegative, nonincreasing and 

limt→∞ a1(t) = 0.

Lemma 3.5. Let ε > 0 be given. Then aε(t) is a creep function, a∞ = β and aε1(t) := a′ε(t) − β is log-convex.

Proof. Note from (2.1) and (2.2) that aε(t) ≥ 0 and kε(t) ≥ 0 since ε, β, δ > 0. Moreover, by definition, 
aε(0) = 0 and kε(0) = 0. Now, from (2.3) we obtain that aε is non-decreasing. On the other hand, the 
identity a′′ε (t) = − δ

ε2 e
− t

ε < 0, implies that aε is concave. It shows that aε(t) is a creep function. Next, 
observe that limt→∞

aε(t)
t = β. Then, equation (3.7) and (2.3) implies that aε1(t) := a′ε(t) − β = δ

ε e
− t

ε . Let 
fε(t) := ln(aε1(t)). Then an easy calculation shows that f ′′

ε (t) = 0 and hence aε1 is log-convex, proving the 
Lemma. �

We recall that an infinitely differentiable function f : (0, ∞) → R is called completely monotone (CM) if

(−1)nf (n)(λ) ≥ 0,

for all λ > 0 and for all n = 0, 1, 2, ....

Lemma 3.6. For each ε > 0, t > 0 the function

hε(λ, t) = k̂ε(λ)
âε(λ)e

− 1√
âε(λ) t, λ > 0,

is completely monotone in λ.

Proof. Let ε > 0 be fixed. Note that

hε(λ, t) = k̂ε(λ)
âε(λ)e

− 1√
âε(λ) t = λ2k̂ε(λ) 1

λ
√

âε(λ)
1

λ
√

âε(λ)
e
− 1√

âε(λ) t =: 1
λ
√
âε(λ)

gε(λ, t),

where in view of (2.4) we have

gε(λ, t) = 1
(ελ + 1)λ

√
âε(λ)

e
− 1√

âε(λ) t, λ > 0.

Since, by Lemma 3.5 we have that aε(t) is a creep function with aε1(t) log-convex, we obtain by [54, Lemma 
4.2] that the function

ψ(λ) := 1√ ,

âε(λ)
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is positive with ψ′(λ) CM (i.e. a Bernstein function, see [54, Definition 4.3, p.91]). By [54, Proposition 4.5, 
p.96] we have that the function

ψt(λ) := e
− 1√

âε(λ) t, λ > 0, t > 0

is CM, too. We claim that the function φ(λ) := 1
(ελ+1)λ

√
âε(λ) , λ > 0, is completely monotone. In fact, 

the function φ can be written as φ(λ) = φ1(λ)φ2(λ), where φ1(λ) = 1
ελ+1 and φ2(λ) = 1

λ
√
âε(λ) . We can 

directly check that φ1 is CM because ε > 0. Let us prove that φ2 is CM. Indeed, since aε1(t) = a′ε(t) −β and 
aε(0) = 0, then from âε1(λ) = â′ε(λ) − β

λ we obtain λâε1(λ) = λ(λâε(λ) − aε(0)) − β = λ2âε(λ) − β, and using 

that ̂̇aε1(λ) = λâε1(λ) − aε1(0) = λâε1(λ) − δ
ε we have

λ2âε(λ) = β + λâε1(λ) = bε
ε

+ ̂̇aε1(λ) = bε
ε

(
1 − (− ε

bε
̂̇aε1(λ))

)
,

since bε := δ + εβ. This implies that

1
λ
√

âε(λ)
= ε

√
ε

√
bε

√
1 −

(
− ε

bε
̂̇aε1(λ)

) .

Note that φ2 is a composition between C1√
1−x

which can be directly proved that is CM and ϕ(λ) = − ε
bε

̂̇aε1(λ). 

But, ȧε1(t) = a′′ε (t) < 0 for all t > 0, then − ε
bε

̂̇aε1(λ) is CM. Hence φ2(λ) = 1
λ
√
âε(λ) is CM and therefore φ, 

as the product of completely monotone functions, too. So the claim is proved. The conclusion follows from 
the fact that hε(λ, t) = φ2(λ)gε(λ, t) = φ2(λ)φ(λ)ψt(λ) and, once again, the property that the product of 
completely monotone functions is completely monotone. This proves the Lemma. �

We are in position to prove the following important result, which is the key in order to apply Theorem 5.4
in Appendix.

Theorem 3.7. Let ε > 0 be given. Let A be the generator of a strongly continuous cosine family {C(t)}t≥0
on a Banach space X. Then A generates an (aε, kε)-regularized family {Rε(t)}t≥0 satisfying

‖Rε(t)‖ ≤ Meωt, t ≥ 0,

for some constant M > 0 and ω ∈ R independent of ε > 0. Moreover, for each J := [a, b] ⊂ R+, 0 ≤ a ≤ b, 
and x ∈ X, we have

lim
ε→0

sup
t∈J

‖Rε(t)x−R0(t)x‖ = 0.

Proof. Since A generates a cosine family, it is exponentially bounded [2, Lemma 3.14.3]. It follows that A
generates a sine family {S(t)}t≥0, such that [23, II.5 (5.2)]

‖S(t)‖ ≤ M

ω1
sinh(ω1t), t ≥ 0, (3.8)

for some constants M > 0 and ω1 > 0. Note that S(t)x :=
∫ t

0 C(s)xds, x ∈ X [2, Section 3.14]. Then, for 
all μ > ω1 and all x ∈ X we have
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(μ2 −A)−1x =
∞∫
0

e−μtS(t)xdt.

Since âε(λ) → 0 as λ → ∞, we have that 1
âε(λ) > ω1 for all λ large enough. Then 1

âε(λ) ∈ ρ(A) and

Hε(λ)x = k̂ε(λ)
âε(λ)

∞∫
0

e
− 1√

âε(λ) tS(t)xdt =
∞∫
0

hε(λ, t)S(t)xdt

for all x ∈ X and λ large enough, say λ > ω1. Here hε(λ, t) was defined in Lemma 3.6.
By Lemma 3.6 we have that hε(λ, t) is completely monotone for each fixed ε > 0. Let Ln

λ := (−1)n
n!

dn

dλn . 
Then

Ln
λHε(λ)x =

∞∫
0

Ln
λhε(λ, t)S(t)xdt.

Since hε(λ, t) is completely monotone, we obtain from (3.8)

‖Ln
λHε(λ)‖ ≤ M

ω1

∞∫
0

sinh (ω1t)Ln
λhε(λ, t)dt = M

ω1
Ln
λ

∞∫
0

sinh (ω1t)hε(λ, t)dt

= MLn
λ

⎡⎣ k̂ε(λ)
âε(λ)

∞∫
0

sinh (ω1t)
ω1

e
− 1√

âε(λ) tdt

⎤⎦
= MLn

λ

[
k̂ε(λ)
âε(λ)

(
1

âε(λ) − ω2
1

)−1
]

= MLn
λ r̂ε(λ,−ω2

1),

where rε(t, −ω2
1) is the solution of

rε(t,−ω2
1) = kε(t) + ω2

1

t∫
0

rε(τ − t,−ω2
1)aε(τ)dτ. (3.9)

Note that because sinh(ω1t) ≥ 0 and hε(λ, t) is completely monotone, Berstein’s theorem [54, Section 4.1]
implies that rε(t, −ω2

1) is nonnegative. We claim that there exist constants C0 > 0 and ω2 ∈ R which are 
not depending on ε such that

rε(t,−ω2
1) ≤ C0e

ω2t, t ≥ 0. (3.10)

Indeed, since 0 ≤ 1 − e−
t
ε ≤ 1, from (2.1) and (2.2) we have that

0 ≤ aε(t) ≤ a0(t) and 0 ≤ kε(t) ≤ k0(t)

for all t ≥ 0 and for all ε > 0. It follows that

rε(t,−ω2
1) = kε(t) + ω2

1(rε ∗ aε)(t) ≤ k0(t) + ω2
1(rε ∗ a0)(t).

Therefore there exists a continuous and nonnegative function αε(t) (:= k0(t) + ω2
1(rε ∗ a0)(t) − rε(t, −ω2

1)) 
such that
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rε(t,−ω2
1) = k0(t) − αε(t) + ω2

1(rε ∗ a0)(t), t ≥ 0. (3.11)

By variation of constants formula for linear convolution integral equations [30, Chapter 2] we get that

rε(t,−ω2
1) = kε(t) − αε(t) − (s ∗ (kε − αε))(t), t ≥ 0, (3.12)

where s(t) is the nonnegative solution of

s(t) = ω2
1a0(t) + ω2

1(a0 ∗ s)(t), t ≥ 0.

The function s(t) can be explicitly written as

s(t) =
∞∑
j=1

(ω2
1)j(a0)∗j(t), t ≥ 0,

where (a0)∗j means convolution j-times. Since a0(t) = γ + βt is exponentially bounded, then s(t) is expo-
nentially bounded (independent of ε) too. Then, by (3.12)

rε(t,−ω2
1) ≤ t− (s(t) ∗ t), t ≥ 0.

Hence there exist C0 > 0 and ω2 ∈ R such that (3.10) holds. Since rε is nonnegative

Ln
λ r̂ε(λ,−ω2

1) ≤ C0

∞∫
0

Lλ
ne

−(λ−ω2)tdt ≤ C0(λ− ω2)−n−1.

This implies that

‖Lλ
nHε(λ)‖ ≤ C(λ− ω2)−n−1.

In view of Theorem 5.5 in the Appendix, the operator A generates an (aε, kε)-regularized family {Rε(t)}t≥0
satisfying

‖Rε(t)‖ ≤ Meωt, t ≥ 0,

for some constants M > 0 and ω ∈ R independent of ε > 0. This proves the first part of the Theorem.
For the second part, note that âε(λ) → â0(λ) and k̂ε(λ) → k̂0(λ) as ε → 0. Since A generates a strongly 

continuous cosine family then A is the generator of a strongly continuous semigroup (in fact, analytic of 
angle π/2 and given by Weierstrass formula, see e.g. [2, Theorem 3.14.17]). Therefore, by the comments at 
the beginning of this section, we have that A is also the generator of a (a0, k0)-regularized family {R0(t)}t≥0.

On the other hand, a computation using the resolvent identity

R(λ,A) −R(μ,B) = (μ− λ)R(λ,A)R(μ,A), λ, μ ∈ ρ(A),

shows that

Hε(μ) −H0(μ) = 1
â0(μ) (k̂ε(μ)â0(μ) − k̂0(μ)âε(μ)) 1

âε(μ)

(
1

âε(μ) −A

)−1

+

= k0(μ)
â0(μ)

[
(aε(μ) − â0(μ)) 1

âε(μ)

(
1

âε(μ) −A

)−1 1
â0(μ)

(
1

â0(μ) −A

)−1
]
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holds. Since A generates an analytic semigroup, there exists a constant M > 0 such that ‖λ(λ −A)−1‖ ≤ M . 
Therefore, from the above identity, we obtain

‖k̂ε(μ)(I − âε(μ)A)−1 − k̂0(μ)(I − â0(μ)A)−1‖ ≤ | 1
â0(μ) (k̂ε(μ)â0(μ) − k̂0(μ)âε(μ))|M

+ |k0(μ)
â0(μ) (aε(μ) − â0(μ))|M,

where the right hand side converges to 0 as ε → 0. By Theorem 5.4, we get the second conclusion. �
The following definition was introduced by Fattorini [22, p.175] (see also [23]).

Definition 3.8. Let t(ε) > 0 for each ε > 0. We say that a family of vector valued functions gε : R+ → X

converges to g : R+ → X uniformly on compacts of t ≥ t(ε) if for each a > 0:

lim
ε→0

sup
t(ε)≤t≤a

‖gε(t) − g(t)‖ = 0.

We next prove the following result revealing that the convergence of the first derivative of the resolvent 
families i.e. {R′

ε(t)}t≥0, possesses a singular behavior, as ε → 0, when t = 0.

Theorem 3.9. Let ε ≥ 0 be given. Under the hypothesis of Theorem 3.7 we have

(a) If y ∈ D(A), then there exist M1 > 0 and ω1 > 0 such that

‖R′
ε(t)y‖ ≤ M1e

ω1t‖y‖[D(A)], t ≥ 0,

where ‖ · ‖[D(A)] denotes the graph norm of A.
(b) For each w ∈ D(A2) we have that R′

ε(t)w converges to R′
0(t)w uniformly on compacts of t ≥ t(ε), as 

long as

t(ε)/ε → ∞ (ε → 0). (3.13)

Proof. Recall that

a′ε(t) = β + δ

ε
e−

t
ε , k′ε(t) = 1 − e−

t
ε ,

and

a′0(t) = β, k′0(t) = 1.

Let us prove part (a). We start with the case ε = 0. Since y ∈ D(A) and a0(0) = δ, we have that

R′
0(t)y = k′0(t)y + δR0(t)Ay + (a′0 ∗R0)(t)Ay, t ≥ 0. (3.14)

Since {R0(t)}t≥0 is exponentially bounded, there exist M0 > 0 and ω0 > 0 such that ‖R0(t)x‖ ≤ M0e
ω0t‖x‖

for all t ≥ 0 and for all x ∈ X. Then, (3.14) implies that
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‖R′
0(t)y‖ ≤ ‖y‖ + δ‖R0(t)Ay‖ + β

t∫
0

‖R0(s)Ay‖ds

≤ ‖y‖ + δM0e
ω0t‖Ay‖ + βM0

t∫
0

eω0s‖Ay‖ds ≤ M0e
ω0t‖y‖[D(A)], t ≥ 0.

Next, we continue with the case ε > 0. Since y ∈ D(A),

Rε(t)y = kε(t)y + (aε ∗Rε)(t)Ay, t ≥ 0,

and aε(0) = 0, we have that

R′
ε(t)y = k′ε(t)y + (a′ε ∗Rε)(t)Ay, t ≥ 0. (3.15)

By the uniform exponential boundedness of Rε(t) and the fact that |k′ε(t)| ≤ 1, we deduce from (3.15) the 
following uniform estimate

‖R′
ε(t)y‖ ≤ |k′ε(t)|‖y‖ +

t∫
0

|a′ε(t− s)|‖Rε(s)Ay‖ds

≤ ‖y‖ +
t∫

0

(
β + δ

ε
e−(t−s)/ε

)
Meωs‖Ay‖ds

≤ ‖y‖ + βMeωt‖Ay‖ + Mδ

ε
e−t/ε

t∫
0

es/εeωs‖Ay‖ds

≤ ‖y‖ + βMeωt‖Ay‖ + Mδ

ε
e−t/ε ε

ωε + 1e
t(1/ε+ω)‖Ay‖

≤ ‖y‖ + βMeωt‖Ay‖ + Mδ
1

ωε + 1e
ωt‖Ay‖

≤ Meωt‖y‖[D(A)], t ≥ 0,

where M and ω > 0 are independent of ε > 0. Taking M1 := max{M0, M} and ω1 := max{ω0, ω}, the 
conclusion follows.

Let us show part (b). Let w ∈ D(A2) be given. Integration by parts gives

δ

t∫
0

1
ε
e−s/εRε(t− s)Awds = δRε(t)Aw + δ

t∫
0

e−s/εR′
ε(t− s)Awds. (3.16)

Since a′0(t) = β and a′ε(s) = β + δ
ε e

− s
ε , from (3.15) and (3.14) we get

‖R′
ε(t)w −R′

0(t)w‖ = ‖k′ε(t)w − k′0(t)w +
t∫

0

a′ε(s)Rε(t− s)Awds

− δR0(t)Aw −
t∫
a′0(s)R0(t− s)Awds‖
0
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= ‖k′ε(t)w − k′0(t)w + β

t∫
0

[Rε(s)Aw −R0(s)Aw]ds

− δR0(t)Aw + δ

t∫
0

e−s/ε

ε
Rε(t− s)Awds‖

≤ |k′ε(t) − k′0(t)|‖w‖ + β

t∫
0

‖Rε(s)Aw −R0(s)Aw‖ds

+ δ‖Rε(t)Aw −R0(t)Aw‖ + δ

t∫
0

e−s/ε‖R′
ε(t− s)Aw‖ds

=: Ī1(t, ε) + Ī2(t, ε) + Ī3(t, ε) + Ī4(t, ε),

where we have used (3.16) in the last inequality. Let t(ε) > 0 for each ε > 0 and define Jε := [t(ε), b] ⊂ R+, 
where b > 0. Recalling that k′ε(t) = 1 − e−

t
ε and k′0(t) = 1, we obtain

lim
ε→0

sup
t∈Jε

Ī1(t, ε) = lim
ε→0

sup
t∈Jε

|k′ε(t) − k′0(t)| = lim
ε→0

sup
t∈Jε

e−t/ε ≤ lim
ε→0

e−t(ε)/ε = 0, (3.17)

as long as t(ε)/ε → ∞. Moreover, we obtain

Ī2(t, ε) = β

t∫
0

‖Rε(s)Aw −R0(s)Aw‖ds ≤ βt sup
τ∈Jε

‖Rε(τ)Aw −R0(τ)Aw‖.

Therefore, using Theorem 3.7 we obtain

lim
ε→0

sup
t∈Jε

Ī2(t, ε) ≤ lim
ε→0

sup
τ∈[0,b]

‖Rε(τ)Aw −R0(τ)Aw‖βb = 0.

Analogously, Theorem 3.7 proves that limε→0 supt∈Jε
Ī3(t, ε) = 0. Finally, using part (a) note that

Ī4(t, ε) = δ

t∫
0

e−s/ε‖R′
ε(t− s)Aw‖ds ≤ Mδeωt‖Aw‖D(A)

t∫
0

e−s/εds

= Mδeωt‖w‖D(A2)ε(1 − e−t/ε).

Therefore

lim
ε→0

sup
t∈Jε

Ī4(t, ε) ≤ lim
ε→0

Mδeωb‖w‖D(A2)ε‖Aw‖ = 0.

Hence, we have proved that limε→0+ supt∈Jε
‖R′

ε(t)w −R′
0(t)w‖ = 0 as long as t(ε)/ε → ∞. �

Remark 3.10. The notion of uniform convergence on compacts of t ≥ t(ε) as long as t(ε)ε → ∞ (ε → 0) is 
taken from Fattorini [23].

We will need the following result in order to prove our main result.
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Lemma 3.11. Let ε > 0 be given. Under the hypothesis of Theorem 3.7 we have: There exist constants M > 0
and ω > 0 independent of ε > 0 such that

‖tR′′
ε (t)w‖ ≤ Meωt‖w‖[D(A2)] for all t ≥ 0, w ∈ D(A2)

where ‖ · ‖[D(A2)] denotes the graph norm of D(A2).

Proof. Since w ∈ D(A2) and Rε(0) = 0, we obtain from (3.15) that

R′′
ε (t)w = k′′ε (t)w + (a′ε ∗R′

ε)(t)Aw, t > 0.

By Theorem 3.9 we have that R′
ε(t) is exponentially bounded for all t ≥ 0. Note that k′′(t) = 1

ε e
−t/ε and 

hence |tk′′ε (t)| ≤ 1. It follows that

‖tR′′
ε (t)w‖ ≤ |tk′′ε (t)|‖w‖ +

t∫
0

|a′ε(t− s)|‖R′
ε(s)Aw‖ds

≤ ‖w‖ +
t∫

0

(
β + δ

ε
e−(t−s)/ε

)
Meωs‖Aw‖ds

≤ ‖w‖ + βMeωt‖Aw‖ + Mδ

ε
e−t/ε

t∫
0

es/εeωs‖Aw‖ds

≤ ‖w‖ + βMeωt‖Aw‖ + Mδ
1

ωε + 1e
ωt‖Aw‖ ≤ Meωt‖w‖[D(A)], t ≥ 0. �

4. Proof of Theorem 1.1

Let ε > 0 be given. With respect to the estimates in Theorem 3.7, Theorem 3.9 and Lemma 3.11, we will 
use in what follows the same symbols K > 0 and ω > 0 to denote several distinct positive constants (which 
are independent of ε). In this way, the estimates can now be read as follows

(E1) ‖R0(t)x‖ ≤ Keωt‖x‖ for all t ≥ 0 and for all x ∈ X.
(E2) ‖Rε(t)x‖ ≤ Keωt‖x‖ for all t ≥ 0 and for all x ∈ X.
(E3) ‖R′

0(t)y‖ ≤ Keωt‖y‖[D(A)] for all t ≥ 0 and for all y ∈ D(A).
(E4) ‖R′

ε(t)y‖ ≤ Keωt‖y‖[D(A)] for all t ≥ 0 and for all y ∈ D(A).
(E5) ‖tR′′

ε (t)w‖ ≤ Keωt‖w‖[D(A2)] for all t ≥ 0 and for all w ∈ D(A2).

Proof. Since A generates a strongly continuous cosine family, Theorem 3.7, Theorem 3.9 and Lemma 3.11
hold. So we can use relations (E1)-(E5). Furthermore, hypotheses (a)-(d) imply that there exists constants 
M1 > 0 and M2 > 0 independent of ε > 0 such that

(E6) ‖u0(ε)‖[D(A2)] ≤ M1.
(E7) ‖u1(ε)‖[D(A)] ≤ M2.

Now, by the representation of uε(t) (see Theorem 3.2) and u0(t) (see Theorem 3.2), we obtain

‖uε(t) − u0(t)‖ ≤ ε‖R′′
ε (t)u0(ε)‖ + ‖(R′

ε(t) −R′
0(t))(u0(ε) + εu1(ε))‖
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+ ‖R′
0(t)(u0(ε) − u0 + εu1(ε))‖

+ ‖(Rε(t) −R0(t))[u1(ε) − bεAu0(ε) + εu2(ε)]‖
+ ‖R0(t)[u1(ε) − u1 + bεAu0(ε) − δAu0 + εu2(ε)]‖
=: I1(t, ε) + ... + I5(t, ε).

Let Jε := [t(ε), b] ⊂ R+ with b > 0 and where t(ε) > 0 is such that t(ε)/ε → ∞ as ε → 0. Let us prove that 
limε→0+ supt∈Jε

Im(t, ε) = 0 for each m = 1, ..., 5. Since u0(ε) ∈ D(A2), (E5) and (E6) imply that

lim
ε→0+

sup
t∈Jε

I1(t, ε) = lim
ε→0+

sup
t∈Jε

ε

t
‖tR′′

ε (t)u0(ε)‖

≤ lim
ε→0+

sup
t∈Jε

{ε

t
Keωt‖u0(ε)‖[D(A2)]

}
≤ KM1e

ωb lim
ε→0+

ε

t(ε) = 0. (4.1)

Next, since u0(ε), u1(ε), u0 ∈ D(A2), we deduce from (E3) and (E4) that

I2(t, ε) ≤ ‖(R′
ε(t) −R′

0(t))(u0(ε) − u0)‖ + ‖(R′
ε(t) −R′

0(t))u0‖ + ε‖(R′
ε(t) −R′

0(t))u1(ε)‖
≤ 2Keωt‖u0(ε) − u0‖[D(A)] + ‖(R′

ε(t) −R′
0(t))u0‖ + 2εKeωt‖u1(ε)‖[D(A)].

Therefore, by (E7), Theorem 3.9 part (b) and hypothesis (a)

lim
ε→0+

sup
t∈Jε

I2(t, ε) ≤ 2K lim
ε→0+

sup
t∈Jε

eωt‖u0(ε) − u0‖[D(A)] + lim
ε→0+

sup
t∈Jε

‖(R′
ε(t) −R′

0(t))u0‖

+ 2K lim
ε→0+

sup
t∈Jε

εeω0t‖u1(ε)‖[D(A)]

≤ 2Keωb lim
ε→0+

‖u0(ε) − u0‖[D(A)] + lim
ε→0+

sup
t∈Jε

‖(R′
ε(t) −R′

0(t))u0‖

+ 2KM2 e
ωb lim

ε→0+
ε = 0.

For I3(t, ε), observe that since u0(ε), u0 and u1(ε) belong to D(A), then (E3), (E7) and hypothesis (a) give

lim
ε→0+

sup
t∈Jε

I3(t, ε) = lim
ε→0+

sup
t∈Jε

{‖R′
0(t)(u0(ε) − u0)‖ + ε‖R′

0(t)u1(ε)‖}

≤ lim
ε→0+

sup
t∈Jε

{
Keωt(‖u0(ε) − u0‖[D(A)] + ε‖u1(ε)‖[D(A)])

}
≤ Keωb lim

ε→0+
‖u0(ε) − u0‖[D(A)] + KM2e

ωb lim
ε→0+

ε

= 0.

We continue with I4(t, ε). By (E1) and (E2), we obtain

I4(t, ε) ≤ ‖(Rε(t) −R0(t))(u1(ε) − v)‖ + bε‖(Rε(t) −R0(t))Au0‖
+ bε‖(Rε(t) −R0(t))(Au0(ε) −Au0)‖ + ‖(Rε(t) −R0(t))(εu2(ε) − (u1 − v)‖
+ ‖(Rε(t) −R0(t))u1‖
≤ 2Keωt‖u1(ε) − v‖ + bε‖(Rε(t) −R0(t))Au0‖ + 2bεKeωt‖Au0(ε) −Au0‖
+ 2Keωt‖εu2(ε) − (u1 − v)‖ + ‖(Rε(t) −R0(t))u1‖.
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It follows from Theorem 3.7 and hypotheses (a), (b) and (c) that

lim
ε→0+

sup
t∈Jε

I4(t, ε) ≤ lim
ε→0+

sup
t∈Jε

2Keωt‖u1(ε) − v‖ + lim
ε→0+

sup
t∈Jε

bε‖(Rε(t) −R0(t))Au0‖

+ lim
ε→0+

sup
t∈Jε

2bεKeωt‖Au0(ε) −Au0‖ + lim
ε→0+

sup
t∈Jε

2Keωt‖εu2(ε) − (u1 − v)‖

+ lim
ε→0+

sup
t∈Jε

‖(Rε(t) −R0(t))u1‖ = 0,

where we have used that bε → δ as ε → 0+.
Finally, let us see I5(t, ε). Theorem 3.7 implies that

lim
ε→0+

sup
t∈Jε

I5(t, ε) = lim
ε→0+

sup
t∈Jε

{‖R0(t)[u1(ε) − u1 + bεAu0(ε) − δAu0 + εu2(ε)]‖}

≤ lim
ε→0+

sup
t∈Jε

Keωt{‖u1(ε) − v‖ + |bε − δ|‖Au0‖

+ bε‖Au0(ε) −Au0‖ + ‖εu2(ε) − (u1 − v)‖}
≤ Keωb{ lim

ε→0+
‖u1(ε) − v‖ + lim

ε→0+
|bε − δ|‖Au0‖

+ lim
ε→0+

bε‖Au0(ε) −Au0‖ + lim
ε→0+

‖εu2(ε) − (u1 − v)‖} = 0,

where we have used (a), (b), (c) and the fact that bε → δ as ε → 0+.
Therefore, for each ε > 0 the solution uε(t) of (1.1) converges to the unique solution u0(t) of (1.2) as 

ε → 0 uniformly on compacts of t ≥ t(ε). �
Remark 4.1. Uniform convergence in t ≥ 0 cannot be expected since in general u1(ε) does not converge to 
u1, as ε → 0. This means that there is a initial layer near zero where uε is not a good approximation to u0.

5. Appendix: (a, k)-regularized resolvent families and approximation

The Laplace transform of a function f ∈ L1(R+, X) is defined by

L(f)(λ) := f̂(λ) := lim
T→∞

T∫
0

e−λtf(t)dt, Re(λ) > ω,

when the limit exists. In particular if f is such that 
∫ t

0 f(s)ds is exponentially bounded, i.e., there exist 
M > 0 and ω ∈ R such that ‖ 

∫ t

0 f(s)ds‖ ≤ Meωt for all t ≥ 0, then f̂(λ) =
∫∞
0 e−λtf(t)dt exists for 

Re(λ) > ω, and the integral is absolutely convergent. This remains true if we make the stronger assumption 
that f is exponentially bounded (see [2, Chapter I]).

We recall from [43] the following definition.

Definition 5.2. Let A be a closed linear operator with domain D(A) defined on a Banach space X and 
a ∈ L1

loc(R+), k ∈ C(R+) such that â(λ) and k̂(λ) exist. The operator A is called the generator of an 
(a, k)-regularized resolvent family if there exist ω ∈ R and a strongly continuous function R : R+ → B(X)
such that { 1

â(λ) : Re(λ) > ω} ⊂ ρ(A), the resolvent set of A, and

H(λ)x := k̂(λ)
â(λ)

(
1

â(λ) −A

)−1

x =
∞∫
e−λtR(t)xdt, Re(λ) > ω, x ∈ X.
0
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In such case we say that {R(t)}t≥0 is the resolvent family generated by A.

We recall that the concept of (a, k)-regularized resolvent family generalizes - and therefore includes -
the concepts of strongly continuous semigroup, integrated semigroup, strongly continuous cosine family, 
integrated cosine family, resolvent operator associated to fractional order problems and resolvent operator 
associated to Volterra equations, among others [43]. Several properties and applications can be found in 
[46,53] and references therein.

From [43, Proposition 3.1 and Lemma 2.2] we obtain directly the following properties.

Proposition 5.3. Let A be a closed linear operator defined on a Banach space X and a ∈ L1
loc(R+), k ∈

C(R+). Suppose that A is the generator of an (a, k)-regularized resolvent family {R(t)}t≥0 on X. Then the 
following assertions hold true:

1. For each x ∈ X we have t → R(t)x is continuous in R+ and R(0) = k(0).
2. For all x ∈ D(A) and t ≥ 0 we have R(t)x ∈ D(A) and AR(t)x = R(t)Ax.
3. For each x ∈ X and t ≥ 0 we have 

∫ t

0 a(t − s)R(s)xds ∈ D(A) and

R(t)x = k(t)x + A

t∫
0

a(t− s)R(s)xds.

4. For all x ∈ D(A) we have

R(t)x = k(t)x +
t∫

0

a(t− s)R(s)Axds.

The following result is taken from [44, Theorem 2.5].

Theorem 5.4. Let {aε}ε≥0, {kε}ε≥0 ⊂ C1(R+) be Laplace transformable functions and assume that there 
exists ω0 ≥ 0 such that âε(μ) �= 0 for all μ > ω0, and 

∫∞
0 e−ω0s|a′ε(s)|ds < ∞. Suppose that A is densely 

defined and, for all ε ≥ 0, the generator of (aε, kε)-regularized families {Rε(t)}t≥0 satisfying the following 
stability property: there exist constants M, ω ≥ 0, independent of ε ≥ 0, such that

sup
ε≥0

‖Rε(t)‖ ≤ Meωt, t ∈ R+. (5.1)

Assume âε(λ) → â0(λ) and k̂ε(λ) → k̂0(λ) as ε → 0. Then the following statements are equivalent:

(i) limε→0 k̂ε(μ)(I − âε(μ)A)−1x = k̂0(μ)(I − â0(μ)A)−1x for all μ > ω, and for all x ∈ X.
(ii) limε→0 Rε(t)x = R0(t)x for all x ∈ X and for all t ≥ 0. Moreover, the convergence is uniform in t on 

every compact subset of R+.

Recall that a one-parameter family {C(t)}t∈R of bounded and linear operators on X is called a strongly 
continuous cosine family if C(0) = I, 2C(t)C(s) = C(t + s) + C(t − s) and limt→0 C(t)x = x for all x ∈ X. 
Notice that a strongly continuous cosine family is an (a, k)-regularized resolvent family in the special case 
k(t) ≡ 1 and a(t) = t. For further literature on cosine families we refer to the monographs of Fattorini [22]
and Arendt-Batty-Hieber-Neubrander [2] and the references therein.

The following characterization of generators of (aε, kε)-regularized resolvent families follows directly from 
[54] or [43, Theorem 3.4].
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Theorem 5.5. Let A be a closed linear densely defined operator in a Banach space X. Then the following 
assertions are equivalent.

(i) The operator A is the generator of an (aε, kε)-regularized resolvent family {Rε(t)}t≥0 satisfying 
||Rε(t)|| ≤ Mεe

ωεt for all t ≥ 0 and for some constants Mε > 0 and ωε ∈ R.
(ii) There exist constants ωε ∈ R and Mε > 0 such that

(P1) 1
âε(λ) ∈ ρ(A) for all λ with Re(λ) > ωε and

(P2) Hε(λ) := k̂ε(λ)
âε(λ)

(
1

âε(λ) −A
)−1

satisfies the estimates

||H(n)
ε (λ)|| ≤ Mεn!

(λ− ωε)n+1 , λ > ωε, n = 0, 1, 2... .
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