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Abstract

In this article we provide new insights into the well-posedness and maximal regularity of systems of 
abstract evolution equations, in the framework of periodic Lebesgue spaces of vector-valued functions. Our 
abstract model is flexible enough as to admit time-fractional derivatives in the sense of Liouville-Grünwald. 
We characterize the maximal regularity property solely in terms of R-boundedness of a block operator-
valued symbol, and provide corresponding estimates. In addition, we show practical criteria that imply the 
R-boundedness part of the characterization. We apply these criteria to show that the Keller-Segel system, 
as well as a reactor model system, have Lq − Lp maximal regularity.
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1. Introduction

It is very rare that a real life phenomenon can be modeled by a single partial differential equa-
tion. Usually, a system of coupled partial differential equations is needed to produce a complete 
model. Systems of equations are common in the theory of heat and mass transfer of reacting 
media, the theory of chemical reactors, the theory of combustion, mathematical biology, and 
biophysics. A typical example is the Keller-Segel system given by

∂tu = ∇ · (d1∇u) − ∇ · (χu∇v) (1.1)

∂tv = d2�v + au − bv. (1.2)

Equation (1.1) represents the cell density variation over time, and equation (1.2) represents the 
chemical attractant concentration variation over time.

In (1.1), d1 is the diffusion coefficient of cell, χ is the chemotactic sensitivity, and the function 
f regulates the cell die/divide, which controls the gross cell number in observations. In equation 
(1.2), d2 represents the diffusion coefficient of chemical attractant, a regulates the production 
rate of chemical attractant, and b regulates the degradation rate of chemical attractant.

A very important mathematical question that needs to be solved for a good understanding 
of the behavior of systems of equations is the knowledge of the well-posedness and regularity 
property of such systems in various function spaces. For example, for the simplified Keller-Segel 
system of parabolic-elliptic type, also called Jäger-Luckhaus system or Nagai model [36], the 
maximal regularity property appears well studied by Ogawa and Shimizu [36] and Takeuchi [43]
obtaining maximal regularity in the Besov and the Lorentz spaces, respectively.

Let X be a Banach space and T the one dimensional torus. In this article, we are concerned 
with the property of well-posedness and maximal regularity in vector-valued periodic Lebesgue 
spaces Lp(T ; X) for general abstract systems that can be modeled in the form

∂α
t u = Au + Bv + f, (1.3)

∂
β
t v = Cu + Dv + g, (1.4)

where 0 < α, β < 2, ∂α
t and ∂β

t are the fractional derivatives in the sense of Liouville-Grünwald, 
A, B , C and D are closed linear operators and f, g ∈ Lp(T ; X) are given functions. Note that 
if d1 in (1.1) is assumed to be constant, then the Keller-Segel system (1.1)-(1.2) is a particular 
case of (1.3)-(1.4) with α = β = 1, A = d1�, B ≡ 0, f (u, v) = −∇ · (χu∇v), C = aI , D =
d2� − bI and g ≡ 0.

We note that systems of partial differential equations with time-fractional derivatives have 
appeared in recent years as a way to study the influence of memory effects on the dynamics of 
models. Fractional time derivatives for systems are discussed, for example, in references [1] and 
[24] for the Keller-Segel and reactor models, respectively, which we will consider in the last 
section of this article.

As far as the authors know, the problem of well posedness and maximal regularity, in the 
vector-valued Lebesgue space of periodic functions, directly for linear systems in the general 
form (1.3)-(1.4) has not been previously studied in the literature and remains open. We are only 
aware of the recent preprint [2] by Agresti and Hussein, whose interesting research on the prop-
erties of sectoriality and the boundedness of the H∞-calculus for block operator-valued matrices 
of the form
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A :=
(

A B

C D

)
,

leads naturally with maximal regularity on the vector-valued Lebesgue space Lp(R+; X). How-
ever, in addition to the different vector-valued Lebesgue spaces considered by Agresti and 
Hussein, we observe that the results of [2] can only include the case 0 < α = β < 2, as for 
fractional evolution equations maximal Lp-regularity can be proven by using R-sectoriality with 
an appropriate angle condition, see either [45] or [40, Theorem 4.5.15]. In fact, finding a method 
to deal with the non-local case, i.e. 0 < α, β < 2 is one of the main problems we will overcome 
in this article.

Maximal regularity in Lebesgue spaces has been a very important issue in the last thirty years 
and there are numerous works dealing with the subject, see e.g. [3], [18], [19], [22], [25], and its 
references. However, criteria for maximal regularity of evolution equations involving a matrix A
of unbounded operators are an exception.

One of the main difficulties is that most of the time, maximal regularity implies that A must 
be the generator of an analytic semigroup [19], which could be very hard to verify for matrices 
of unbounded operators [39, Section 13.6]. However, things change drastically in the case of the 
Lebesgue space of vector-valued periodic functions, Lp(T ; X), where only closedness of A is 
necessary [5, Theorem 2.3]. In this article, we will take advantage of this last fact.

Previous research of maximal regularity for the first order abstract Cauchy problem on 
Lp(T ; X), where X is a UMD space, appear first studied by Arendt and Bu [5]. These authors 
develop a technique based on operator-valued multipliers theorems that were later extended to 
the context of Hölder vector-valued spaces [6] by Arendt, Batty and Bu. After that, extensions to 
the case of vector-valued Lebesgue spaces on the d-dimensional torus (0, 2π)d where considered 
by Bu and Kim [10], to the scale of periodic vector-valued Besov spaces by Arendt and Bu [7], 
to the scale of periodic vector-valued Triebel spaces by Bu and Kim [11] and to vector-valued 
Hardy spaces by Bu and Le Merdy [12].

First studies on well posedness and maximal regularity on periodic Lebesgue spaces for 
more general abstract evolution equations than the abstract Cauchy problem, and using the tech-
nique of operator-valued theorems, or Fourier multipliers, appeared in studies of Keyantuo and 
Lizama [28–31], Poblete [37,38], Bu and Fang [13]. Lately, maximal regularity for abstract evo-
lution equations with a fractional time-derivative have been studied by Bu [9] and Bu and Cai 
[14].

Note that the Laplacian operator with Dirichlet or Neumann boundary often appears in ap-
plications. An interesting analysis of maximal regularity for the Laplacian with mixed boundary 
conditions in domains carrying a cylindrical structure that includes periodic initial conditions 
was carry out by Nau [34], Nau and Saal [35] and Denk and Nau [20].

In this article, we succeed not only solving the maximal regularity problem for the system 
(1.3)-(1.4) but also to characterize such property uniquely in terms of the R-boundedness of 
the set {Diagα,β(ik) 

(
Diagα,β(ik) −A

)−1}k∈Z. See Theorem 3.10 below. Here, we introduce the 
matrix

Diagα,β(ik) :=
(

(ik)α 0
0 (ik)β

)
, k ∈Z. (1.5)

We also show criteria that ensure the R-boundedness assuming that the same property holds for 
the sets {(ik)αR((ik)α, A)}k∈Z and {(ik)βR((ik)β, D)}k∈Z as well as the condition:
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Rp({BR((ik)β,D)CR((ik)α,A)}k∈Z) < γ < 1, (1.6)

where Rp denotes the R-bound of the set. See Theorem 4.1. We show a second criterion if, 
instead of R-boundedness, we assume that X is a UMD space, and that −A, −D ∈ RH∞(X)

with an appropriate angle depending on the values of α, β , plus the condition (1.6). See The-
orem 4.2. With these criteria in hand, and denoting Hδ,q(T ; Lp(
)) = {u ∈ Lq(T ; Lp(
)) :
∂δ
t u ∈ Lq(T ; Lp(
))}, 0 < δ < 2, 1 < q, p < ∞, we prove the following Lq − Lp maximal 

regularity result for the non-local linear Keller-Segel system (1.3)-(1.4) with Dirichlet boundary 
conditions.

Theorem 1.1. Let 1 < p, q < ∞, 0 < α ≤ β < 2 and 
 ⊂ RN a bounded C2 domain. Then, 
for all f ∈ Lq(T ; Lp(
)) there exist unique functions u ∈ Lq(T ; W 2,p(
) ∩ W

1,p
0 (
)) ∩

Hα,q(T ; Lp(
)) and v ∈ Lq(T ; W 2,p(
) ∩ W
1,p
0 (
)) ∩ Hβ,q(T ; Lp(
)) satisfying the time-

fractional system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂α
t u(x, t) = d1�pu(x, t) + f (x, t), for (x, t) ∈ 
 × (0,2π);

∂
β
t v(x, t) = au(x, t) + d2�pv(x, t) − bv(x, t), for (x, t) ∈ 
 × (0,2π);

u(x, t) = v(x, t) = 0, for (x, t) ∈ ∂
 × (0,2π);

u(x,0) = u(x,2π), v(x,0) = v(x,2π), x ∈ 
.

(1.7)

Moreover the following estimate

⎛⎜⎝ 2π∫
0

⎛⎝∫



|∂α
t u(x, t)|pdx

⎞⎠q/p

+
⎛⎝∫




|∂β
t v(x, t)|pdx

⎞⎠q/p

dt

⎞⎟⎠
1/q

+
⎛⎜⎝ 2π∫

0

⎛⎝∫



|d1�pu(x, t)|pdx

⎞⎠q/p

+
⎛⎝∫




|au(x, t) + d2�pv(x, t) − bv(x, t)|pdx

⎞⎠q/p

dt

⎞⎟⎠
1/q

≤ C

⎛⎜⎝ 2π∫
0

⎛⎝∫



|f (x, t)|pdx

⎞⎠q/p

dt

⎞⎟⎠
1/q

(1.8)

holds.

We note that our result also includes the local case α = β = 1 which, as far as we know, 
have not been studied previously. For the proof, see subsection 5.1. We finish this article with an 
application to a system that considers a reactor model, see subsection 5.2 and a fractional in time 
Beris-Edwards type model, see subsection 5.3.
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2. Preliminaries

Let X and Y be complex Banach spaces. B(X, Y) will denote the space of bounded operators 
from X to Y ; and B(X) those from X to X. The resolvent of a linear operator A with domain 
D(A) will be denoted by ρ(A) and for λ ∈ ρ(A), we write R(λ, A) = (λ − A)−1.

Let us denote by T the group defined as the quotient R/2πZ (the one dimensional torus). 
There exists an obvious identification between functions on T and 2π -periodic functions on R. 
We consider the interval [0, 2π) as a model for T .

The space of vector-valued functions defined on [0, 2π] will be identified frequently to their 
periodic extensions to R. In consequence, we consider the space Lp(T ; X), 1 ≤ p ≤ ∞ of all 
2π -periodic Bochner measurable X-valued functions f such that the restriction of f to [0, 2π] is 
p-integrable (essentially bounded if p = ∞). Given f ∈ Lp(T ; X), (1 ≤ p < ∞), the Riemann 
difference

�α
t f (x) =

∞∑
j=0

(−1)j
(

α

j

)
f (x − tj )

exists almost everywhere and

‖�α
t f ‖Lp(T ;X) ≤

∞∑
j=0

∣∣∣∣(α

j

)∣∣∣∣ ‖f ‖Lp(T ;X) = O(1)

since 
(
α
j

)= O(j−α−1) as j → ∞.
Let us recall the definition of Liouville-Grünwald fractional derivative [16, Definition 2.1].

Definition 2.1. Let X be a complex Banach space, α > 0 and 1 ≤ p < ∞. If for f ∈ Lp(T ; X)

there exists g ∈ Lp(T ; X) such that

‖t−α�α
t f − g‖Lp(T ;X) → 0, t → 0+,

then g is called the αth-Liouville-Grünwald derivative of f in the mean of order p. In this case, 
we write g = ∂α

t f .

The Liouville-Grünwald fractional derivative was defined by Butzer and Westphal in the refer-
ence [16]. Several properties are given in [16, Sections 4 and 5] as well as their connection with 
the classical Weyl derivative [16, Section 6]. Also, the connection of the Liouville-Grünwald 
fractional derivative with the fractional powers (−A)γ of the operator Af = −f ′ and the C0-
semigroup of translations T (t)f (x) = f (x − t), appear in [17, Section 2.3, p. 28]. Note that here 

the fractional powers are defined by (−A)γ f = lim
t→0

[I − T (t)]γ f

tγ
, see [17, Formula (2.20) p. 

21].
Next, we recall that the Fourier transform of f ∈ Lp(T ; X) for (1 ≤ p < ∞) is given by

f̂ (k) = 1

2π

2π∫
0

e−iktf (t) dt, k ∈Z.
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We introduce the following definition.

Definition 2.2. Let 1 ≤ p < ∞. We say that a sequence {Mk}k∈Z ⊂ B(X1 × X2, Y1 × Y2) is an 
(Lp, Lp)-multiplier, if for each F ∈ Lp(T ; X1 × X2) there exists U ∈ Lp(T ; Y1 × Y2) such that

Û (k) = MkF̂ (k) for all k ∈Z. (2.1)

The following Lemma follows from the definition. We omit the easy proof.

Lemma 2.3. We have that

M(ik) =
(

M11(ik) M12(ik)

M21(ik) M22(ik)

)
, k ∈ Z

is an (Lp, Lp)-multiplier if and only if {M11(ik)}k∈Z ⊂ B(X1, Y1), {M12(ik)}k∈Z ⊂ B(X2, Y1), 
{M21(ik)}k∈Z ⊂ B(X1, Y2) and {M22(ik)}k∈Z ⊂ B(X2, Y2) are (Lp, Lp)-multipliers.

Let (ik)γ = |k|γ e
γ iπ

2 sgn k . We shall denote by Hγ,p(T ; X) the vector-valued function space{
u ∈ Lp(T ;X) : there exists v ∈ Lp(T ;X) such that v̂(k) = (ik)γ û(k) for all k ∈Z

}
.

Note that Hγ,p(T ; X) becomes a Banach space with the sum norm

‖u‖Hγ,p := ‖u‖Lp + ‖∂γ
t u‖Lp .

For further properties, see [9]. Given α, β ≥ 0, let us define:

Diagα,β(ik) :=
(

(ik)α 0
0 (ik)β

)
, k ∈ Z, (2.2)

and

Hα,β,p(T ;X1 × X2) := {
U ∈ Lp(T ;X1 × X2) : there exists V ∈ Lp(T ;X1 × X2)

V̂ (k) = Diagα,β(ik) Û (k) for all k ∈Z
}
.

It can be proved that

Hα,β,p(T ;X1 × X2) = Hα,p(T ;X1) × Hβ,p(T ;X2).

Let us introduce the following definition of operator-valued Fourier multipliers.

Definition 2.4. Let 1 ≤ p < ∞. We say that a sequence {Mk}k∈Z ⊂ B(X1 × X2) is an 
(Lp, Hα,β,p)-multiplier, if for each F ∈ Lp(T ; X1 × X2) there exists U ∈ Hα,β,p(T ; X1 × X2)

such that

Û (k) = MkF̂ (k) for all k ∈Z. (2.3)
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Using analogous arguments to [32, Lemma 2.6], we obtain the following result.

Lemma 2.5. Let 1 ≤ p < ∞, α, β ≥ 0 and {Mk}k∈Z ⊂ B(X1 × X2). The following assertions 
are equivalent:

(i) {Mk}k∈Z is an (Lp, Hα,β,p)-multiplier;
(ii)

{
Diagα,β(ik)Mk

}
k∈Z is an (Lp, Lp)-multiplier.

Proof. Assume that {Mk}k∈Z is an (Lp, Hα,β,p)-multiplier and let F ∈ Lp(T ; X1 ×X2). Then 
there exists U ∈ Hα,β,p(T ; X1 × X2) such that

Û (k) = MkF̂ (k) for all k ∈Z.

By definition of Hα,β,p(T ; X1 × X2), there exists V ∈ Lp(T ; X1 × X2) such that

V̂ (k) = Diagα,β(ik) Û (k) for all k ∈Z.

Combining these two identities, we get

V̂ (k) = Diagα,β(ik) Û (k) = (
Diagα,β(ik)Mk

)
F̂ (k) for all k ∈Z.

Hence 
{
Diagα,β(ik)Mk

}
k∈Z is an (Lp, Lp)-multiplier.

Conversely, assume that 
{
Diagα,β(ik)Mk

}
k∈Z is an (Lp, Lp)-multiplier and let F ∈

Lp(T ; X1 × X2). Then there exists V ∈ Lp(T ; X1 × X2) such that

V̂ (k) = Diagα,β(ik)Mk F̂ (k) for all k ∈Z.

Let Û(k) := Diag−α,−β(ik)V̂ (k). Then U ∈ Hα,β,p(T ; X1 × X2) and

Û (k) = MkF̂ (k) for all k ∈Z.

It follows that {Mk}k∈Z is an (Lp, Hα,β,p)-multiplier. �
Let us recall the concept of R-boundedness.

Definition 2.6. Let X and Y be Banach spaces. A family of operators T ⊂ B(X, Y) is called R-
bounded, if there is a constant C > 0 and 1 ≤ p < ∞ such that for each N ∈ N , Tj ∈ T , xj ∈ X

and for all independent, symmetric, {−1, 1}-valued random variables rj on a probability space 
(
, M, μ), the inequality∥∥∥∥∥∥

N∑
j=1

rjTj xj

∥∥∥∥∥∥
Lp(
,Y )

≤ C

∥∥∥∥∥∥
N∑

j=1

rj xj

∥∥∥∥∥∥
Lp(
,X)

holds. The smallest such C is called R-bound of T and it will be denoted by Rp(T ).
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Some useful properties of R-bounded families are the following (see [19]).

(a) If T ⊂ B(X, Y) is R-bounded, then it is uniformly bounded, with

sup{‖T ‖ : T ∈ T } ≤ Rp(T ). (2.4)

(b) The definition of R-boundedness is independent of p ∈ [1, ∞).
(c) If X and Y are Hilbert spaces, T ⊂ B(X, Y) is R-bounded if and only if T is uniformly 

bounded.
(d) Let X and Y be Banach spaces and T , S ⊂ B(X, Y) be R-bounded. Then

T + S = {T + S : T ∈ T , S ∈ S}

is R-bounded, and Rp(T + S) ≤ Rp(T ) + Rp(S).
(e) Let X, Y and Z be Banach spaces and T ⊂ B(X, Y) and S ⊂ B(Y, Z) be R-bounded. Then 

the set ST = {ST : S ∈ S, T ∈ T } is R-bounded, and

Rp(ST ) ≤ Rp(S)Rp(T ). (2.5)

Remark 2.7. It is well-known that every singleton {T } in B(X, Y) is R-bounded and Rp(T ) =
‖T ‖. Then, if S ⊂ B(X, Y) is R-bounded, we obtain from part (e) of Definition 2.6 that

T S = {T S : S ∈ S}

is R-bounded and Rp(T S) ≤ ‖T ‖Rp(S).

We remind that the norm of

Q =
(

Q11 Q12
Q21 Q22

)
is given, equivalently, by

‖Q‖ := max{‖Qij‖ : 1 ≤ i, j ≤ 2} or ‖Q‖ :=
2∑

i,j=1

‖Qij‖.

Denote Q(k) =
(

Q11(k) Q12(k)

Q21(k) Q22(k)

)
, k ∈ Z. We need the following result. The proof follows 

by an adequate use of the definition and therefore we omit it.

Theorem 2.8. The set {Q(k)}k∈Z is R-bounded if and only if {Qij (k)}k∈Z is R-bounded for 
1 ≤ i, j ≤ 2.
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Next, we remember the concept of UMD spaces. For f ∈ L2(R, X) and 0 < ε < R, let

(Hε,Rf )(t) := 1

π

∫
ε≤|t−s|≤R

f (s)

t − s
ds = (ψεR ∗ f )(t), t ∈R,

where

ψεR(t) :=
{

1
πt

, if ε ≤ |t | ≤ R,

0, otherwise.

Since ψεR ∈ L1(R, X), it can be verified that Hε,R ∈ B(L2(R, X), L2(R, X)) (see for example 
[8, Proposition 1.3.2]).

The Banach space X is said to be a UMD space if

Hf := lim
ε↓0

R→∞
Hε,Rf

exists in L2(R, X) for each f ∈ L2(R, X).
The following result can be found in [26, Proposition 4.2.17 (4)]. The proof uses only the 

definition.

Proposition 2.9. Assume that X1 and X2 are UMD spaces. Then X1 × X2 is a UMD space.

The next theorem was proved by Arendt and Bu in the reference [5, Theorem 1.3].

Theorem 2.10. Let X and Y be UMD spaces and {Mk}k∈Z ⊂ B(X, Y). If the sets {k(Mk+1 −
Mk)}k∈Z and {Mk}k∈Z are R-bounded, then {Mk}k∈Z is an (Lp, Lp)-multiplier for 1 < p < ∞.

We also need to recall some preliminaries on sectorial operators. Let �φ ⊂ C denote the open 
sector �φ = {λ ∈ C \ {0} : | argλ| < φ}. We define the following spaces of functions as follows: 
H(�φ) = {f : �φ →C holomorphic}, and

H∞(�φ) = {f : �φ →C holomorphic and bounded}

which is endowed with the norm ||f ||φ∞ = sup| argλ|<φ |f (λ)|. We further define the subspace 
H0(�φ) of H(�φ) as follows

H0(�φ) =
⋃

α,β<0

{f ∈H(�φ) : ||f ||φα,β < ∞},

with ||f ||φα,β = sup|λ|≤1 |λαf (λ)| + sup|λ|≥1 |λ−βf (λ)|.

Definition 2.11. Given a closed linear operator A in X, we say that A is sectorial if the following 
conditions hold:

(i) D(A) = X, R(A) = X, (−∞, 0) ⊂ ρ(A);
(ii) ||t (t + A)−1|| ≤ M for all t > 0 and some M > 0.
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A is called R-sectorial if the set {t (t + A)−1}t>0 is R-bounded.

If A is sectorial then �φ ⊂ ρ(−A) for some φ > 0 and

sup
| argλ|<φ

||λ(λ + A)−1|| < ∞.

We denote the spectral angle of a sectorial operator A by

φA = inf{φ : �π−φ ⊂ ρ(−A), sup
λ∈�π−φ

||λ(λ + A)−1|| < ∞}.

Definition 2.12. Given a sectorial operator A, we say that it admits a bounded H∞–calculus if 
there exist φ > φA and a constant Kφ > 0 such that

||f (A)|| ≤ Kφ ||f ||φ∞ for all f ∈H0(�φ). (2.6)

The class of sectorial operators A which admit a bounded H∞–calculus is denoted by 
H∞(X). Moreover, the H∞-angle is defined by φ∞

A = inf{φ > φA : (2.6) holds }. When A ∈
H∞(X) we say that A admits an R-bounded H∞–calculus if the set

{h(A) : h ∈ H∞(�θ ), ||h||θ∞ ≤ 1}

is R-bounded for some θ > 0. We denote the class of such operators by RH∞(X). The corre-
sponding angle is defined in an obvious way and denoted by θR∞

A .

Remark 2.13. If A is a sectorial operator on a Hilbert space, Lebesgue spaces Lp(
), 1 < p <

∞, Sobolev spaces Ws,p(
), 1 < p < ∞, s ∈ R or Besov spaces Bs
p,q(
), 1 < p, q < ∞, s ∈

R and A admits a bounded H∞–calculus of angle β , then A admits a RH∞–calculus on the 
same angle β on each of the above described spaces (see Kalton and Weis [27]). More generally, 
this property is true whenever X is a UMD space with the so called property (α) (see [27]).

There exist well known examples for general classes of closed linear operators with a bounded 
H∞ calculus such as: normal sectorial operators in a Hilbert space; m-accretive operators in a 
Hilbert space; generators of bounded C0-groups on Lp-spaces and negative generators of positive 
contraction semigroups on Lp-spaces.

Remark 2.14. Let 1 < q < ∞ and denote by � the Laplacian operator in Rn. By [19, Theorem 
7.2] we obtain that the Lq(Rn) realization �q of the Laplacian operator admits an R-bounded 
H∞–calculus for each 0 < θ

R∞
A < π . Moreover, by [19, Corollary 7.3] the same is true for −�D , 

the negative Dirichlet Laplacian in Rn+1+ .

We also remind the following result [19, Proposition 4.10], that will be needed for our char-
acterization, which shows under suitable conditions of uniform boundedness the R-boundedness 
of certain sets of operators.
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Proposition 2.15. Let A ∈ RH∞(X) and suppose that {hλ}λ∈� ⊂ H∞(�θ ) is uniformly 
bounded for some θ > θ

R∞
A , where � is an arbitrary index set. Then the set {hλ(A)}λ∈� is 

R-bounded.

3. A characterization of maximal regularity

3.1. Block operator matrices

Along the first part of this section we consider the case of diagonally dominant block operator 

matrices, that is, the case where the operator A =
(

A B

C D

)
can be seen as a relatively bounded 

perturbation of its diagonal part with D(A) = D(A) × D(D) though with possibly large relative 
bound. In other words, let X1 and X2 be Banach spaces and suppose that

(i) the operator A : D(A) ⊂ X1 → X1 has non-empty resolvent set ρ(A) in X1,
(ii) the operator D : D(D) ⊂ X2 → X2 has non-empty resolvent set ρ(D) in X2,

(iii) C : D(C) ⊂ X1 → X2 is relatively A-bounded and B : D(B) ⊂ X2 → X1 is relatively D-
bounded, i.e., D(A) ⊂ D(C), D(D) ⊂ D(B) and there exist cA, cD, L ≥ 0 such that

‖Cx‖X2 ≤ cA‖Ax‖X1 + L‖x‖X1, for all x ∈ D(A),

‖Bx‖X1 ≤ cD‖Dx‖X2 + L‖x‖X2, for all x ∈ D(D),

(iv) the operator A =
(

A B

C D

)
with domain D(A) × D(D) is closed in X1 × X2.

For such operators the properties of sectoriality, R-sectoriality and the boundedness of the 
H∞-calculus are admissible. Most of this material is contained in the recent article [2]. For 
further use, we note the following:

Remark 3.1. As a consequence of (iii) we have that BR(μ, D) ∈ B(X2, X1) for μ ∈ ρ(D) and 
CR(λ, A) ∈ B(X1, X2) for λ ∈ ρ(A).

Remark 3.2. If A and D are closed operators and (iii) holds with c := max{cA, cD} < 1, then 
(iv) follows from [44, Theorem 2.2.7 (i)].

Assuming (i)-(iv), let λ ∈ ρ(A) and μ ∈ ρ(D) be given and consider the operators

�X1(λ,μ) = λ − A − BR(μ,D)C (3.1)

and

�X2(λ,μ) = μ − D − CR(λ,A)B (3.2)

with domains D(A) in X1 and D(D) in X2, respectively. Then, we obtain the next result which 
is a consequence of [33, Theorem 2.4].
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Theorem 3.3. Consider an operator matrix A =
(

A B

C D

)
for which (i)-(iv) holds. For λ ∈

ρ(A) and μ ∈ ρ(D) the following assertions are equivalent:

(a) M =
(

λ − A −B

−C μ − D

)−1

exists,

(b) �−1
X1

(λ, μ) exists,

(c) �−1
X2

(λ, μ) exists.

Moreover, for λ ∈ ρ(A), μ ∈ ρ(D) and (a), we have

M =
(

�−1
X1

(λ,μ) �−1
X1

(λ,μ)BR(μ,D)

R(μ,D)C�−1
X1

(λ,μ) R(μ,D)
(
I + C�−1

X1
(λ,μ)BR(μ,D)

) ) (3.3)

or the analogous expression using �−1
X2

(λ, μ):

M =
(

R(λ,A)
(
I + B�−1

X2
(λ,μ)CR(λ,A)

)
R(λ,A)B�−1

X2

�−1
X2

(λ,μ)CR(λ,A) �−1
X2

(λ,μ)

)
. (3.4)

Proof. For λ ∈ ρ(A) and μ ∈ ρ(D) the matrix M can be written as(
λ − A −B

−C μ − D

)
=
(

I −BR(μ,D)

−CR(λ,A) I

)(
λ − A 0
0 μ − D

)
=: Bλ,μ ◦ Aλ,μ.

Note that Aλ,μ is a bijection from D(A) ×D(D) to X1 ×X2 while Bλ,μ is bounded in X1 ×X2. 
Therefore M is invertible if and only if Bλ,μ is invertible. Since Bλ,μ has invertible diagonal en-
tries, the assertions follow from [33, Lemma 2.1] and the fact that �1 := I −BR(μ, D)CR(λ, A)

is invertible if and only if �X1(λ, μ) is invertible. Moreover, �−1
X1

= R(λ, A)�−1
1 . The matrix 

representation of M is a consequence of [33, Equation (2.1)] observing that

A −1
λ,μ ◦ B−1

λ,μ =
(

R(λ,A) 0
0 R(μ,D)

)(
�−1

1 �−1
1 BR(μ,D)

CR(λ,A)�−1
1

(
I + CR(λ,A)�−1

1 BR(μ,D)
) )

=
(

�−1
X1

(λ,μ) �−1
X1

(λ,μ)BR(μ,D)

R(μ,D)C�−1
X1

(λ,μ) R(μ,D)
(
I + C�−1

X1
(λ,μ)BR(μ,D)

) ) . �

Remark 3.4. Note that condition (b) is equivalent to �1 = I −BR(μ, D)CR(λ, A) be invertible 
and condition (c) is equivalent to �2 = I −CR(λ, A)BR(μ, D) be invertible. Moreover, �−1

X1
=

R(λ, A)�−1
1 and �−1

X2
= R(μ, D)�−1

2 . In such case,

M =
(

R(λ,A)�−1
1 R(λ,A)�−1

1 BR(μ,D)

R(μ,D)CR(λ,A)�−1
1 R(μ,D)

(
I + CR(λ,A)�−1

1 BR(μ,D)
) )

, (3.5)

or the analogous expression using �−1 = R(μ, D)�−1:
X2
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M =
(

R(λ,A)
(
I + BR(μ,D)�−1

2 CR(λ,A)
)

R(λ,A)BR(μ,D)�−1
2

R(μ,D)�−1
2 CR(λ,A) R(μ,D)�−1

2

)
. (3.6)

Remark 3.5. From the representations of M, we have the following relations

(a) �−1
1 = I + BR(μ, D)�−1

2 CR(λ, A);
(b) �−1

1 BR(μ, D) = BR(μ, D)�−1
2 ;

(c) �−1
2 CR(λ, A) = CR(λ, A)�−1

1 ;
(d) �−1

2 = I + CR(λ, A)�−1
1 BR(μ, D).

In what follows, we particularize the situation presented above by assuming the following 
condition.

Assumption (B). Let X1 and X2 be Banach spaces, 0 < α, β < 2 and assume that

(B1) (ik)α ∈ ρ(A) for all k ∈ Z, where A : D(A) ⊂ X1 → X1,
(B2) (ik)β ∈ ρ(D) for all k ∈Z, where D : D(D) ⊂ X2 → X2,
(B3) The assumptions (iii) and (iv) hold.

3.2. A characterization

Let us consider functions u : [0, 2π) → X1 and v : [0, 2π) → X2. We deal with systems of 
the form ⎧⎨⎩

∂α
t u(t) = Au(t) + Bv(t) + f (t), a.e. 0 ≤ t ≤ 2π,

∂
β
t v(t) = Cu(t) + Dv(t) + g(t), a.e. 0 ≤ t ≤ 2π

(3.7)

where 0 < α, β < 2, ∂α
t and ∂β

t are the fractional derivatives in the sense of Liouville-Grünwald, 
A, B , C and D are suitable closed linear operators (bounded or unbounded) and f ∈ Lp(T ; X1), 
g ∈ Lp(T ; X2) are given functions.

We introduce the following operator notation:

∂
α,β
t :=

(
∂α
t 0

0 ∂
β
t

)
. (3.8)

This means that

∂
α,β
t

(
u

v

)
=
(

∂α
t 0

0 ∂
β
t

)(
u

v

)
=
(

∂α
t u

∂
β
t v

)
.

Moreover, its Fourier transform is given by

̂

∂
α,β
t

(
u

v

)
(k) =

(̂
∂α
t u

∂
β
t v

)
(k) =

(
(ik)αû(k)

(ik)β v̂(k)

)
, k ∈Z,
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whenever it exists.
Then, we can write (3.7) in the form

∂
α,β
t

(
u

v

)
(t) =

(
A B

C D

)(
u

v

)
(t) +

(
f

g

)
(t), a.e. t ∈ [0,2π]. (3.9)

Let us introduce the following notion of strong solution and well-posedness to (3.9) (or, equiv-
alently, strong solution of (3.7)).

Definition 3.6. Let 1 ≤ p < ∞. The function U =
(

u

v

)
∈ X1 × X2 is called a strong Lp-

solution of (3.9) if U ∈ Lp(T ; D(A) × D(D)) ∩ Hα,β,p(T ; X1 × X2) and equation (3.9) holds 
for almost all t ∈ [0, 2π).

Definition 3.7. Let 1 ≤ p < ∞. We say that the problem (3.9) is strongly Lp-well posed (or 

has maximal regularity) if for every F =
(

f

g

)
∈ Lp(T ; X1 × X2) there exists a unique strong 

solution U of (3.9).

If we take formally Fourier transform in both sides of (3.9), we obtain

((
(ik)α 0
0 (ik)β

)
−
(

A B

C D

))(̂
u

v

)
(k) =

(̂
f

g

)
(k), k ∈ Z. (3.10)

Let

A :=
(

A B

C D

)
, U :=

(
u

v

)
and F :=

(
f

g

)
. (3.11)

Then we can rewrite (3.10) as(
Diagα,β(ik) −A

)
Û (k) = F̂ (k), k ∈Z. (3.12)

Under Assumption (B), we have that Theorem 3.3 and Remark 3.4 hold. Now, putting � ≡
�(ik) := I − BR((ik)β, D)CR((ik)α, A) and using Theorem 3.3 we have that

M ≡ M(ik) := (
Diagα,β(ik) −A

)−1 =
((

(ik)α 0
0 (ik)β

)
−
(

A B

C D

))−1

=
(

(ik)α − A −B

−C (ik)β − D

)−1

, (3.13)

exists if and only if �(ik) is invertible. Moreover, taking into account (3.5) we obtain

M(ik)

=
(

R((ik)α,A)�−1 R((ik)α,A)�−1BR((ik)β,D)

R((ik)β,D)CR((ik)α,A)�−1 R((ik)β,D)
(
I + CR((ik)α,A)�−1BR((ik)β,D)

) )
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=:
(

M11(ik) M12(ik)

M21(ik) M22(ik)

)
, k ∈ Z. (3.14)

Thus, we have that system (3.10) has the solution

(
û(k)

v̂(k)

)
= M(ik)

(
f̂ (k)

ĝ(k)

)
, k ∈ Z,

if and only if �(ik) = I − BR((ik)β, D)CR((ik)α, A) is invertible.
With the above preliminaries, we are ready to prove the following result which establishes the 

equivalence between Lp-well-posedness and the notion of (Lp, Lp)-multiplier.

Theorem 3.8. Let 1 ≤ p < ∞, and suppose that A is closed. The following assertions are equiv-
alent.

(a) The problem (3.9) is strongly Lp-well posed.
(b) M(ik) = (

Diagα,β(ik) −A
)−1

exists in B(X1 × X2) for each k ∈Z and the sequence

{Diagα,β(ik)M(ik)}k∈Z

is an (Lp, Lp)-multiplier.

Proof. (a) =⇒ (b). Let k ∈Z and y =
(

y1
y2

)
∈ X1 ×X2. We will use the notation (2.2). Define

F(t) :=
(

f (t)

g(t)

)
:=
(

eikt y1

eikt y2

)
.

Note that F̂ (k) = y and F̂ (j) = 0 for j �= k. Since the problem (3.9) is strongly Lp-well posed, 
then there exists a unique U ∈ Lp(T ; D(A) × D(D)) ∩ Hα,β,p(T ; X1 × X2) such that equation 
(3.9) holds for almost all t ∈ [0, 2π). Taking Fourier transform on both sides of (3.9) and using 
that the operator A is closed, we get that Û(k) ∈ D(A) = D(A) × D(D) and

(
Diagα,β(ik) −A

)
Û (k) = F̂ (k) = y, k ∈Z.

It follows that the operator 
(
Diagα,β(ik) −A

)
is surjective.

Let us see that 
(
Diagα,β(ik) −A

)
is injective. Let x =

(
x1
x2

)
∈ D(A). If

(
Diagα,β(ik) −A

)
x = 0,

then U(t) :=
(

eikt x1

eikt x

)
defines a periodic solution of equation (3.9) with F = 0. Indeed,
2
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∂
α,β
t U(t) = ∂

α,β
t

(
eikt x1

eikt x2

)
=
(

∂α
t eikt x1

∂
β
t eikt x2

)
=
(

(ik)αeikt x1

(ik)βeikt x2

)
=
(

(ik)α 0
0 (ik)β

)(
eikt x1

eikt x2

)
= eikt

(
(ik)α 0
0 (ik)β

)(
x1
x2

)
= eiktDiagα,β(ik)x

= eiktAx = A(eikt x)

= AU(t).

It follows from the uniqueness of solution that x = 0. Since A is closed, we conclude that M(ik)

exists in B(X1 × X2).
Now, we see that {Diagα,β(ik)M(ik)}k∈Z is an (Lp, Lp)-multiplier. Let F ∈ Lp(T ; X1 ×

X2). By hypothesis, there exists a unique U ∈ Lp(T ; D(A)) ∩ Hα,β,p(T ; X1 × X2) such that 
U(t) ∈ D(A) and equation (3.9) is valid. Taking Fourier transform, we deduce that Û(k) ∈ D(A)

and

(
Diagα,β(ik) −A

)
Û (k) = F̂ (k), k ∈Z.

Therefore,

Diagα,β(ik)Û (k) = Diagα,β(ik)
(
Diagα,β(ik) −A

)−1
F̂ (k), k ∈ Z.

Since U ∈ Hα,β,p(T ; X1 × X2) there exists V ∈ Lp(T ; X1 × X2) such that

V̂ (k) = Diagα,β(ik)Û (k).

Hence

V̂ (k) = Diagα,β(ik)M(ik)F̂ (k), k ∈Z.

It follows that {Diagα,β(ik)M(ik)}k∈Z is an (Lp, Lp)-multiplier.
(b) =⇒ (a). Let F ∈ Lp(T ; X1 × X2). Since {Diagα,β(ik)M(ik)}k∈Z is an (Lp, Lp)-

multiplier, there exists V ∈ Lp(T ; X1 × X2) such that

V̂ (k) = Diagα,β(ik)M(ik) F̂ (k), k ∈ Z. (3.15)

Lemma 2.5 implies that {M(ik)}k∈Z is an (Lp, Hα,β,p)-multiplier. From here we deduce that 
there exists U ∈ Hα,β,p(T ; X1 × X2) such that

Û (k) = M(ik)F̂ (k). (3.16)

In particular, by definition of M(ik), we have that Û(k) ∈ D(A) and Diagα,β(ik)Û (k) = V̂ (k). 

It follows that ∂α,β
t U = V .
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From the identity

I = (
Diagα,β(ik) −A

)
M(ik) = Diagα,β(ik)M(ik) −AM(ik), k ∈ Z, (3.17)

we get that {AM(ik)}k∈Z is an (Lp, Lp)-multiplier. Then there exists Z ∈ Lp(T ; X1 × X2)

such that

Ẑ(k) = AM(ik)F̂ (k) = AÛ(k). (3.18)

Now, by the closedness of A we get that U ∈ Lp(T ; D(A)) and AU = Z. Using (3.16) and 
(3.17), we obtain

AÛ (k) = AM(ik)F̂ (k) = (Diagα,β(ik)M(ik) − I )F̂ (k)

= Diagα,β(ik)M(ik)F̂ (k) − F̂ (k) = Diagα,β(ik)Û (k) − F̂ (k).

From here we deduce that U is a strong Lp-solution of (3.9). Let us prove the uniqueness. Let 
U1 and U2 strongly Lp-solutions of (3.9). By the linearity of ∂γ

t , we have that W := U1 −
U2 is a strong Lp-solution of ∂α,β

t W = AW . Taking Fourier transform, we get (Diagα,β(ik) −
A)Ŵ (k) = 0. Since M(ik) = (Diagα,β(ik) −A)−1 exists in B(X1 ×X2), we have that Ŵ(k) = 0
for all k ∈ Z. It follows that W = 0. Hence U1 = U2. �

Our next result establishes the equivalence between (Lp, Lp)-multiplier and R-boundedness.

Theorem 3.9. Let X1 and X2 be UMD spaces. The following assertions are equivalent:

(a) M(ik) exists in B(X1 × X2) for each k ∈ Z and the sequence {Diagα,β(ik)M(ik)}k∈Z is 
an (Lp, Lp)-multiplier for 1 < p < ∞.

(b) M(ik) exists in B(X1 × X2) for each k ∈ Z and the sequence {Diagα,β(ik)M(ik)}k∈Z is 
R-bounded.

Proof. (a) =⇒ (b) Follows from [5, Proposition 1.11].
(b) =⇒ (a) Since X1 and X2 are UMD spaces, by Proposition 2.9 we get that X1 × X2 is a 

UMD space.
Next, let us define

d
−γ

k := 1

(ik)γ
, 0 < γ < 1 and Dk :=

(
d−α
k 0

0 d
−β
k

)
, k �= 0.

We see that {k(d
−γ

k+1 − d
−γ

k }k∈Z\{−1,0} is uniformly bounded. Indeed,

sup
k∈Z\{−1,0}

|k(d
−γ

k+1 − d
−γ

k )| = sup
k∈Z\{−1,0}

|kγ − (k + 1)γ |
|k|γ−1|k + 1|γ .

By the Mean Value Theorem, for each k ∈Z there exists k < ck < k + 1 such that
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|kγ − (k + 1)γ | = γ |ck|γ−1 < |ck|γ−1.

Hence

sup
k∈Z\{−1,0}

|k(d
−γ

k+1 − d
−γ

k )| < sup
k∈Z\{−1,0}

1

|ck|1−γ |k|γ−1|k + 1|γ < 1.

This fact together with the property (c) in Definition 2.6 means that {k(d
−γ

k+1 − d
−γ

k )}k∈Z\{−1,0}
is R-bounded. This in turn implies that {k(Dk+1 − Dk)}k∈Z\{−1,0} is R-bounded because

sup
k∈Z\{−1,0}

‖k(Dk+1 − Dk)‖ = sup
k∈Z\{−1,0}

{
max{|k(d−α

k+1 − d−α
k )|, |k(d

−β
k+1 − d

−β
k )|}

}

= max

{
sup

k∈Z\{−1,0}
|k(d−α

k+1 − d−α
k )|, sup

k∈Z\{−1,0}
|k(d

−β
k+1 − d

−β
k )|

}
< 1.

Next, let Hk := DkM(ik). Then

Hk = (I − DkA)−1, k �= 0.

Now, note that

k(Hk+1 − Hk) = k[(I − Dk+1A)−1 − (I − DkA)−1]
= kM(i(k + 1))[(I − DkA) − (I − Dk+1A)]M(ik)

= kM(i(k + 1))[(Dk+1 − Dk)A]M(ik).

Since AM(ik) = I − DkM(ik), we have that

k(Hk+1 − Hk) = M(i(k + 1))k(Dk+1 − Dk)M(ik)

−M(i(k + 1))k(Dk+1 − Dk)Diagα,β(ik)M(ik).

By hypothesis, {Diagα,β(ik)M(ik)}k∈Z is R-bounded. Furthermore, since the sets {M(ik)}k∈Z
and {M(i(k + 1))}k∈Z are bounded and by the discussion above {k(Dk+1 − Dk)}k∈Z is R-
bounded, it follows that {k(Hk+1 − Hk)}k∈Z is R-bounded. The conclusion follows from Theo-
rem 2.10 (Marcinkiewicz multiplier theorem, see [5, Theorem 1.3]). �

Using the previous results, we obtain the following equivalence between Lp-well-posedness 
and R-boundedness that configures the main result of this section.

Theorem 3.10. Let X1 and X2 be UMD spaces, 1 < p < ∞, 0 < α, β < 2. Assume that A and 
C are closed linear operators defined on X1, B and D are closed linear operators defined on X2

and the operator matrix A =
(

A B

C D

)
with domain D(A) × D(D) is closed in X1 × X2. The 

following assertions are equivalent:
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(a) For every f ∈ Lp(T ; X1), g ∈ Lp(T ; X2) there exist u ∈ Lp(T ; D(A)) ∩Hα,p(T ; X1) and 
v ∈ Lp(T ; D(D)) ∩ Hβ,p(T ; X2) such that{

∂α
t u(t) = Au(t) + Bv(t) + f (t), a.e. 0 ≤ t ≤ 2π,

∂
β
t v(t) = Cu(t) + Dv(t) + g(t), a.e. 0 ≤ t ≤ 2π

(3.19)

hold.
(b) M(ik) := (

Diagα,β(ik) −A
)−1

exists in B(X1 × X2) for each k ∈ Z and the sequence 
{Diagα,β(ik)M(ik)}k∈Z is R-bounded.

Moreover, under the equivalent conditions above, there exists a constant C > 0 such that the 
following estimate

⎛⎝ 2π∫
0

‖∂α
t u(t)‖p

X1
+ ‖∂β

t v(t)‖p
X2

dt

⎞⎠1/p

+
⎛⎝ 2π∫

0

‖Au(t) + Bv(t)‖p
X1

+ ‖Cu(t) + Dv(t)‖p
X2

dt

⎞⎠1/p

≤ C

⎛⎝ 2π∫
0

‖f (t)‖p
X1

+ ‖g(t)‖p
X2

dt

⎞⎠1/p

(3.20)

holds.

Recall that in the context of a Hilbert space, R-boundedness is equivalent to uniform bound-
edness.

Under the assumption (B) we known that A is closed and, by (3.13), that M(ik) exists for 
each k ∈ Z if and only if �(ik) = I − BR((ik)β, D)CR((ik)α, A) : X1 → X1 is invertible for 
all k ∈ Z.

In view of Theorem 3.10, the following questions arise:

(i) Under what conditions the operators �(ik) = I −BR((ik)β, D)CR((ik)α, A) are invertible 
for all k ∈Z?,

(ii) Under what conditions the set {Diagα,β(ik)M(ik)}k∈Z is R-bounded?

The answer to these questions will be the object of the next section.

4. Sufficient conditions for Lp well-posedness

We remind that M(ik) := (
Diagα,β(ik) −A

)−1 exists in B(X1 × X2) for each k ∈ Z if and 

only if �−1(ik) := (
I − BR((ik)β,D)CR((ik)α,A)

)−1
exists in B(X1) for each k ∈ Z, and in 

such case the representation (3.14) for M(ik) holds.
In what follows we will require that the off diagonal of the operator A has a small coupling. 

We observe that an analogous condition was assumed in the recent article [2, Proposition 4.8].
The following results answer the questions posed at the end of the previous section.

Theorem 4.1. Suppose that Assumption (B) holds. Assume the following:
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(i) The sets {(ik)αR((ik)α, A)}k∈Z and {(ik)βR((ik)β, D)}k∈Z are R-bounded;
(ii) Rp({BR((ik)β, D)CR((ik)α, A)}k∈Z) < γ < 1.

Then

(a) �−1(ik) exists in B(X1) for each k ∈ Z.
(b) The set {�−1(ik)}k∈Z is R-bounded.
(c) {Diagα,β(ik)M(ik)}k∈Z is R-bounded.

Proof. We first observe that by assumption (B) (see also Remark 3.1) we get CR((ik)α, A) ∈
B(X1, X2) and BR((ik)α, D) ∈ B(X2, X1) for all k ∈Z. In particular, 0 ∈ ρ(A) ∩ρ(D), CA−1 ∈
B(X1, X2) and BD−1 ∈ B(X2, X1). This in turn implies that BR((ik)β, D)CR((ik)α, A) ∈
B(X1) for all k ∈Z. Hence, the identity

CR((ik)α,A) = CA−1AR((ik)α,A) = CA−1[(ik)αR((ik)α,A) − I ]
= CA−1(ik)αR((ik)α,A) − CA−1,

the hypothesis (i) and Remark 2.7 show that the set {CR((ik)α, A)}k∈Z is R-bounded too. Anal-
ogously, the hypothesis (i) shows that the set {BR((ik)α, D)}k∈Z is R-bounded. Consequently 
the set {BR((ik)β, D)CR((ik)α, A)}k∈Z is R-bounded and therefore (ii) is well defined.

Let us prove (a). By hypothesis (ii) and using (2.4) we obtain

‖BR((ik)β,D)CR((ik)α,A)‖ ≤ γ < 1, ∀k ∈Z. (4.1)

It follows that �−1(ik) = (
I − BR((ik)β,D)CR((ik)α,A)

)−1
exists and

�−1(ik) =
∞∑

n=0

(
BR((ik)β,D)CR((ik)α,A)

)n
(4.2)

converges in B(X1). This proves the first item.
Next, we show (b). From (4.1) and (4.2), we obtain

∥∥∥�−1(ik)

∥∥∥≤
∞∑

n=0

∥∥BR((ik)β,D)CR((ik)α,A)
∥∥n

<

∞∑
n=0

γ n = 1

1 − γ
.

Since the set {BR((ik)β, D)CR((ik)α, A)}k∈Z is R-bounded, we can use repeatedly (2.5) and 
obtain

Rp

((
BR((ik)β,D)CR((ik)α,A)

)n)≤ γ n.

Since R-boundedness preserves convergence in B(X1), we get

Rp(�−1(ik)) ≤
∞∑

n=0

Rp

((
BR((ik)β,D)CR((ik)α,A)

)n)≤ 1

1 − γ
.
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This shows that the set {�−1(ik)}k∈Z is R-bounded.
Next, let us show (c). By hypothesis (i) the sets {(ik)αR((ik)α,A)}k∈Z and 

{
(ik)βR((ik)β,

D)
}
k∈Z are R-bounded as well as the sets {CR((ik)α,A)}k∈Z and 

{
BR((ik)β,D)

}
k∈Z. Using 

that and part (b) we obtain that the sets

{Q11(k)}k∈Z := {(ik)αR((ik)α,A)�−1(ik)}k∈Z,

{Q12(k)}k∈Z := {(ik)αR((ik)α,A)�−1(ik)BR((ik)β ,D)}k∈Z,

{Q21(k)}k∈Z := {(ik)βR((ik)β,D)CR((ik)α,A)�−1(ik)}k∈Z,

{Q22(k)}k∈Z = {(ik)βR((ik)β,D)
(
I + CR((ik)α,A)�−1(ik)BR((ik)β,D)

)
}k∈Z

are R-bounded since each of them are products and sums of R-bounded sets. Finally, the 
claim follows from the matrix representation of {Diagα,β(ik)M(ik)}k∈Z using (3.14), and The-
orem 2.8. This finishes the proof. �
Theorem 4.2. Let X1 and X2 be UMD spaces, 1 < p < ∞ and assume that (B) holds. Suppose 
that −A ∈ RH∞(X1) and −D ∈ RH∞(X2) with either angle θR∞

D ∈ (θ
R∞
A , π(1 − β/2)) if 

0 < α ≤ β < 2 or θR∞
A ∈ (θ

R∞
D , π(1 − α/2)) if 0 < β ≤ α < 2. If

Rp({BR((ik)β,D)CR((ik)α,A)}k∈Z) < γ < 1, (4.3)

then M(ik) exists in B(X1 × X2) for each k ∈ Z and the set {Diagα,β(ik)M(ik)}k∈Z is R-
bounded.

Proof. Without loss of generality, suppose that 0 < α ≤ β < 2. Since 0 < θ
R∞
A < θ

R∞
D < π(1 −

β/2) there exists θ > 0 such that θR∞
D < θ < π(1 − β/2). For each z ∈ �θ and δ ∈ {α, β} we 

define

Sδ(ik, z) := (ik)δ((ik)δ + z)−1 =
(

1 + z

(ik)δ

)−1

, k ∈Z, k �= 0.

Note that the fraction 
z

(ik)δ
belongs to the sector �θ+δπ/2 where θ + δπ/2 ≤ θ + βπ/2 < π . 

Hence, for any value of δ, the distance from �θ+δπ/2 to −1 is always positive. Then, there exists 
a constant C0 > 0 independent of k and z ∈ �θ such that |Sδ(ik, z)| < C0. Since by hypothesis 
−A ∈RH∞(X1), and −D ∈RH∞(X2) and by assumption (B) we have 0 ∈ ρ(A) ∩ρ(D) it fol-
lows from Proposition 2.15 that the sets {(ik)α((ik)α −A)−1}k∈Z and {(ik)β((ik)β −D)−1}k∈Z
are R-bounded. The conclusion follows from Theorem 4.1. �

We can apply the previous theorems, to state the following main result for this section.

Theorem 4.3. Let X1 and X2 be UMD spaces and assume the hypotheses of Theorem 4.1 (resp. 
Theorem 4.2). Then, for all f ∈ Lp(T ; X1) and g ∈ Lp(T ; X2) there exist unique functions 
u ∈ Lp(T ; D(A)) ∩ Hα,p(T ; X1) and v ∈ Lp(T ; D(D)) ∩ Hβ,p(T ; X2) such that{

∂α
t u(t) = Au(t) + Bv(t) + f (t), a.e. 0 ≤ t ≤ 2π,

∂
β
v(t) = Cu(t) + Dv(t) + g(t), a.e. 0 ≤ t ≤ 2π.

(4.4)

t
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Proof. By assumption (B), the operator-valued matrix A is closed. By Theorem 4.1 (resp. Theo-
rem 4.2) we have that M(ik) exists in B(X1 ×X2) and {Diagα,β(ik)M(ik)}k∈Z is R-bounded. 
Theorem 3.9 implies that {M(ik)}k∈Z is an (Lp, Lp)-multiplier. Then, from Theorem 3.8 we 
get that the problem (3.9) is strongly Lp-well posed. The conclusion follows from Defini-
tion 3.6. �
5. Applications

5.1. Keller-Segel model

Keller-Segel equations arise in the mathematical modeling of chemotaxis, see e.g. [15,23] for 
surveys and further literature. We consider the classical minimal Keller-Segel system given by

∂tu = ∇ · (d1∇u) − ∇ · (χu∇v) + f (5.1)

∂tv = d2�v + au − bv. (5.2)

Assuming that f does not depend on either u or v, the linearized part of the Keller-Segel 
system reads {

∂tu = d1�u + f

∂tv = d2�v + au − bv
(5.3)

which admits the form of the system (4.4) with α = β = 1, A = d1�, B ≡ 0, C = aI and D =
d2� − bI .

Next, we consider the time-fractional Keller-Segel system in a Lipschitz domain 
 ⊂Rn, n ∈
N ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂α
t u(x, t) = d1�pu(x, t) + f (x, t), for (x, t) ∈ 
 × (0,2π);

∂
β
t v(x, t) = au(x, t) + d2�pv(x, t) − bv(x, t), for (x, t) ∈ 
 × (0,2π);

u(x, t) = v(x, t) = 0, for (x, t) ∈ ∂
 × (0,2π);

u(x,0) = u(x,2π), v(x,0) = v(x,2π), x ∈ 
,

(5.4)

where �p denotes the Dirichlet Laplacian operator on Lp(
), 1 < p < ∞, with domain 
D(�p) = W 2,p(
) ∩ W

1,p

0 (
).
We prove Theorem 1.1 as follows:

Proof. We apply Theorem 4.3 with A = d1�p , B ≡ 0, C = aI and D = d2�p − bI . Now, we 
check the hypothesis of Theorem 4.1.

It is well-known that Lp(
) is a UMD space.
We observe that applying [34, Proposition 5.1 (a)-(i)] we have that −�p ∈ RH∞(Lp(
))

and by [34, Theorem 4.2] that 0 ∈ ρ(�p). Moreover, since 
 is a bounded C2 domain, then 
θ
R∞ = 0, see [34, Remark 4.7].
−�p
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We now verify assumption (B). Since the spectrum of the Dirichlet Laplacian �p is inde-
pendent of p (see [4]), we have σ(�p) ⊂ (−∞, 0). This fact, together with the condition α < 2
implies that {(ik)α}k∈Z ⊂ ρ(�p) for all k ∈ Z, proving (B1).

Analogously, since b/d2 > 0 and β < 2 we obtain that (ik)β ∈ ρ(d2�p − bI) for all k ∈ Z. 
This proves (B2).

Since 0 ∈ ρ(�p) and C = aI we have CA−1 ∈ B(Lp(
)). And, since B ≡ 0, we obtain (iii).
The closedness of A follows easily by definition, from the fact that B ≡ 0 and �p is closed. 

This proves (iv) and consequently (B3) holds. This finishes the proof of Assumption (B).
We now check part (i) of Theorem 4.1.
First, note that the thanks to −�p ∈ RH∞(Lq(
)) the proof of Theorem 4.2 shows that the 

set {(ik)α((ik)α + �p)−1}k∈Z is R-bounded.
In order to prove that the set {(ik)β((ik)β − (d2�p −bI))−1}k∈Z is R-bounded we use Propo-

sition 2.15 as follows. Fix θ > 0 such that 0 < θ < π − βπ/2 and define

F(k, z) := (ik)β((ik)β + b + d2z)
−1 = (ik)β

(ik)β + b

(
1 + d2z

(ik)β + b

)−1

, k ∈ Z, z ∈ �θ . (5.5)

Since b > 0 and β < 2 the number (ik)β + b has angle less than βπ
2 . Therefore, the fraction 

d2z

(ik)β + b
belongs to the sector �θ+βπ/2 where θ + βπ/2 < π . Hence, for any value of β , the 

distance from �θ+βπ/2 to −1 is always positive. It implies that there exists a constant M > 0
independent of k and z ∈ �θ such that |F(k, z)| ≤ M . Since −�p ∈ RH∞(Lq(
)) it follows 
from Proposition 2.15 that the set {F(k, −�p)}k∈Z is R-bounded, proving the claim.

Finally, again since B ≡ 0, it immediately follows that part (ii) of Theorem 4.1 holds (take 
γ = 1/2 for example). This finishes the proof of the theorem. �
Remark 5.4. We note that the fractional derivatives for the Keller-Segel system have been pre-
viously studied by other authors. For example, Salem [42] studied the Keller-Segel system of 
parabolic-elliptic type and Escudero [23] for (5.1)-(5.2) with the fractional Laplacian, while 
Acevedo, Cuevas and Henriquez [1] studied the existence and asymptotic behavior of the time-
fractional model with the Caputo fractional derivative in the case d1 = 1 and 0 < α = β < 1.

5.2. Reactor model

We consider the following system{
∂tu = d�u + bu − cuv + f

∂tv = au − hv + g.
(5.6)

This model is a reactor model that has been proposed by Rumble and Kastenberg [41], [24, 
Section 4.3]. In (5.6), u represents the neutron flux and v the fuel temperature. The constants 
are as follows: d represents the average diffusion coefficient, b = ν�f − �a where ν is the 
average number of neutrons per fission, �f is the fission cross section and �a is the absorption
cross section; c is the fuel feedback coefficient, a = ε�f where ε is the fission to heat energy 
conversion factor, and h is the average cool enthalpy. The functions f and g represent nonlinear 
terms, in general.
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The linear part of (5.6) is {
∂tu = d�u + bu + f

∂tv = au − hv + g
(5.7)

which admits the form of the system (4.4) with α = β = 1, A = d� + bI , B ≡ 0, C = aI and 
D = −hI .

Assuming the condition ν�f < �a we arrive at the following result:

Theorem 5.5. Let 1 < p, q < ∞, 0 < α ≤ β < 2 and 
 ⊂ RN a bounded C2 domain. Suppose 
b < 0. Then, for all f, g ∈ Lq(T ; Lp(
)) there exist unique functions u ∈ Lq(T ; W 2,p(
) ∩
W

1,p

0 (
)) ∩ Hα,q(T ; Lp(
)) and v ∈ Hβ,q(T ; Lp(
)) satisfying the time-fractional system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂α
t u(x, t) = d�pu(x, t) + bu(x, t) + f (x, t), for (x, t) ∈ 
 × (0,2π);

∂
β
t v(x, t) = au(x, t) − hv(x, t) + g(x, t), for (x, t) ∈ 
 × (0,2π);

u(x, t) = v(x, t) = 0, for (x, t) ∈ ∂
 × (0,2π);

u(x,0) = u(x,2π), v(x,0) = v(x,2π), x ∈ 
.

(5.8)

Moreover the following estimate⎛⎜⎝ 2π∫
0

⎛⎝∫



|∂α
t u(x, t)|pdx

⎞⎠q/p

+
⎛⎝∫




|∂β
t v(x, t)|pdx

⎞⎠q/p

dt

⎞⎟⎠
1/q

+
⎛⎜⎝ 2π∫

0

⎛⎝∫



|d�pu(x, t) + bu(x, t)|pdx

⎞⎠q/p

+
⎛⎝∫




|au(x, t) − hv(x, t)|pdx

⎞⎠q/p

dt

⎞⎟⎠
1/q

≤ C

⎛⎜⎝ 2π∫
0

⎛⎝∫



|f (x, t)|pdx

⎞⎠q/p

+
⎛⎝∫




|g(x, t)|pdx

⎞⎠q/p

dt

⎞⎟⎠
1/q

(5.9)

holds.

Proof. The proof is very similar to the proof of Theorem 1.1, taking into account that b < 0
in the analog of (5.6) for the operator d�p + bI , to obtain that the set {(ik)β((ik)β − (d�p +
bI))−1}k∈Z is R-bounded. �
Remark 5.6. The time-fractional reactor model has been previously studied and physically jus-
tified by Gal and Warma [24, Section 4.3]. These authors also consider fractional powers of the 
Laplacian, namely (−�)s, s ∈ (0, 1). We note that we can also include this situation in our pre-
vious results, with a slight modification in the proof that consists of replacing the variable z in 
(5.5) by the power zs . We leave the details to the interested reader.
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5.3. Fractional Beris-Edwards type model for liquid crystals

Let us consider the following fractional in time Beris-Edwards type model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂α
t u(x, t) = �w

p u(x, t) + ε div�s
pv(x, t) + f (x, t), for (x, t) ∈Rn × (0,2π);

∂
β
t v(x, t) = −ρ∇u(x, t) + �s

pv(x, t) + g(x, t), for (x, t) ∈ Rn × (0,2π);

u(x, t) = v(x, t) = 0, for (x, t) ∈Rn × (0,2π);

u(x,0) = u(x,2π), v(x,0) = v(x,2π), x ∈ Rn,

(5.10)

where 0 < α, β < 2, 0 < ρ < 1, ε > 0, �w
p = −� denotes the realization of the Laplace opera-

tor on W−1,p(Rn) and �s
p = −� denotes the realization of the Laplace operator on Lp(Rn), 1 <

p < ∞, with domains D(�w
p ) = W 1,p(Rn) and D(�s

p) = W 2,p(Rn; Rn), respectively. In case 
α = β = 1, the corresponding operator-valued matrix defined on W−1,p(Rn) ×Lp(Rn) was con-
sidered in [2, Section 8.6]. It has a similar structure to the studied in [2, Section 8.5] which arises 
in the analysis of Beris-Edwards model for liquid crystals.

In what follows, we will verify the hypotheses of Theorem 4.2. Let X1 := W−1,p(Rn) and 
X2 := Lp(Rn). It is well-known that X1 and X2 are UMD spaces.

Let us verify assumption (B). Since the spectrum of �w
p and �s

p are independent of p (see 
[4]), we have σ(�w

p ), σ(�s
p) ⊂ (−∞, 0). This fact, together with the condition 0 < α, β < 2

implies that {(ik)α}k∈Z ⊂ ρ(�w
p ) and {(ik)β}k∈Z ⊂ ρ(�s

p) for all k ∈Z, proving (B1) and (B2).
We next prove the first part of (B3), i.e. that ρ∇u is relatively �w

p -bounded and ε div�s
pv

is relatively �s
p-bounded. Indeed, since (1 − �)s/2 : Wβ+s,p(Rn) → Wβ,p(Rn) is an iso-

morphism (see the proof of Proposition 8.16 in [2]) for all s, β ∈ R, in particular, we have 
1 − � : W 1,p(Rn) → W−1,p(Rn) is an isomorphism and

‖(1 − �)u‖W−1,p(Rn) = ‖u‖W 1,p(Rn)

for all u ∈ W 1,p(Rn). Therefore

‖∇u‖Lp(Rn) ≤ ‖u‖W 1,p(Rn) = ‖(1 − �)u‖W 1,p(Rn) ≤ ‖u‖W−1,p(Rn) + ‖�u‖W−1,p(Rn).

Hence, for ρ > 0 we have

‖ρ∇u‖Lp(Rn) ≤ ρ‖�w
p u‖W−1,p(Rn) + ρ‖u‖W−1,p(Rn), for all u ∈ W 1,p(Rn). (5.11)

Next,

‖div(�s
pu)‖W−1,p(Rn) = ‖F−1[(1 + |ξ |2)−1/2

̂div(�s
pu)(ξ)](·)‖Lp(Rn)

= ‖F−1[iξ · (1 + |ξ |2)−1/2�̂s
pu(ξ)](·)‖Lp(Rn).

Since M(ξ) := iξ · (1 + |ξ |2)−1/2 ∈ L1
loc(R

n; B(Rn)) verifies that the sets {M(ξ)}ξ∈Rn\{0} and 
{|ξ |M ′(ξ)}ξ∈Rn\{0} are uniformly bounded, it follows from [19, Theorem 3.25] (Mikhlin Fourier 
multiplier theorem) that there exists a constant C > 0 such that
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‖div(�s
pu)‖W−1,p(Rn) = ‖F−1[M(ξ)�̂s

pu(ξ)](·)‖Lp(Rn) ≤ C‖�s
pu‖Lp(Rn),

for all u ∈ W 2,p(Rn; Rn). Hence there exists δ1 := 1/C such that for all 0 < ε < δ1 we have

‖ε div(�s
pu)‖W−1,p(Rn) ≤ εC‖�s

pu‖Lp(Rn) + ρ‖u‖Lp(Rn), for allu ∈ W 2,p(Rn;Rn). (5.12)

This proves the first part of (B3) with L = ρ, cA = ρ and cD = εC. For the second part, note 
that by hypothesis c := max{ρ, εC} < 1 and the operators �w

p and �s
p are closed in X1 and X2

respectively. Therefore, it follows from Remark 3.2 that

A =
⎛⎝ �w

p ε div�s
p

−ρ∇ �s
p

⎞⎠
is closed in X1 × X2. This proves assumption (B).

Now, from [19, Theorem 4.11] we have that �s
p ∈ RH∞(Lp(Rn)). Analogously, by [21, 

Proposition 2.9] we get �w
p ∈ RH∞(W−1,p(Rn)). Also, 0 ∈ ρ(�w

p ) ∩ ρ(�s
p), θR∞

�w
p

= 0 and 

θ
R∞
�s

p
= 0.

Finally, we check condition (4.3) of Theorem 4.2 as follows: Let Rp(T ) be the R-bound of 
the R-bounded set

T := {BR((ik)β,D)CR((ik)α,A)}k∈Z

where A = �w
p , B = div�s

p , C = ∇ and D = �s
p . Then, there exist δ2 := 1

Rp(T )
> 0 such that 

for 0 < ε < δ2

Rp(εBR((ik)β,D)ρCR((ik)α,A)) = ερRp(T ) < εRp(T ) < 1.

Therefore, there exists δ := min{δ1, δ2} such that for all 0 < ε < δ all the hypotheses of Theo-
rem 4.2 are satisfied. Hence, from Theorem 4.3, we conclude the following:

Theorem 5.7. Let 1 < p, q < ∞, 0 < α ≤ β < 2 and 0 < ρ < 1. There is δ > 0 such that for 
each ε ∈ (0, δ) and for all f ∈ Lq(T ; W−1,p(Rn)) and g ∈ Lq(T ; Lp(Rn)) there exist unique 
functions u ∈ Lq(T ; W 1,p(Rn)) ∩ Hα,q(T ; W−1,p(Rn)) and v ∈ Lp(T ; W 2,p(Rn; Rn)) ∩
Hβ,p(T ; Lp(Rn)) satisfying the time-fractional system (5.10).
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