
ISRAEL JOURNAL OF MATHEMATICS TBD (2022), 1–71

DOI: 10.1007/s11856-022-2353-z

POISSON EQUATION AND DISCRETE ONE-SIDED
HILBERT TRANSFORM FOR (C, α)-BOUNDED

OPERATORS

BY

Luciano Abadias and José E. Galé
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ABSTRACT

We characterize the solutions of the Poisson equation and the domain of

its associated one-sided Hilbert transform for (C, α)-bounded operators,

α > 0. This extends known results for power bounded operators to the

setting of Cesàro bounded operators of fractional order, thus generalizing

the results substantially. In passing, we obtain a generalization of the

mean ergodic theorem in our framework. Examples are given to illustrate

the theory.
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1. Introduction

Let X be a complex Banach space and let B(X) denote the Banach algebra of

bounded linear operators on X . Let T ∈ B(X). Then T is said to be power-

bounded if sup{‖T n‖ : n ∈ N} <∞. Put

M1
T (n) := (n+ 1)−1

n∑
j=0

T jx.

The operator T is called Cesàro-mean bounded if

sup{‖M1
T (n)‖ : n ∈ N} <∞,

and mean-ergodic if there exists

P1x := lim
n→∞M1

T (n)x

for all x ∈ X (in norm). In this case P1 is in fact a bounded projection onto

the closed subspace Ker(I − T ) of X . Clearly, mean-ergodicity implies mean-

boundedness.

Mean ergodic theorems form an important, classical, area of study since the

beginning of the operator theory; see [17, p. 657 and subseq.]. There are different

versions of that type of theorems. The following result is well known. Let T be

a power-bounded operator on X . Then, for a given x ∈ X , there exists P1x if

and only if x belongs to the (topological) direct sum Ker(I − T )⊕ Ran(I − T )

in X ; see [33, Th. 1.3]. Thus T is mean-ergodic if and only if

X = Ker(I − T )⊕ Ran(I − T ),

which happens, for instance, when X is reflexive [33, Th. 1.2]. The study

of ergodic theorems for power-bounded operators is related, in particular, to

probability theory via ergodic Markov chains and the associated transition

operators P ; e.g., it is possible to obtain central limit theorems for elements

from Ran(I− P).

With this kind of applications in mind and also looking at ergodicity in itself,

it is of importance to characterize elements x ∈ X for which M1
T (n)x converges

to P1x as n → ∞ at a specific rate, e.g., with a polynomial rate. It turns

out that the above question is closely related with a suitable description of

elements y in range spaces (I − T )sX , 0 < s ≤ 1, which takes us to the study

of the so-called fractional Poisson equation

(1.1) (I − T )sx = y, x, y ∈ X.



Vol. TBD, 2022 POISSON EQUATION AND HILBERT TRANSFORM 3

As a matter of fact, given y ∈ X , the equation (1.1) for a power-bounded and

mean ergodic operator T has a solution x if and only if the series
∞∑
n=1

1

n1−sT
ny

converges in the norm of X , whence

lim
N→∞

Ns−1

∥∥∥∥
N∑
n=1

T ny

∥∥∥∥ = 0.

Moreover, x is obtained as a series representation x =
∑∞
n=0 cn(s)T

ny where

cn(s) ∼ ns−1 as n→ ∞.

For the above facts and other pertinent remarks, we refer to the introductions

of [16, 28] and [24].

In [16], it is observed that ((I − T )s)Re s>0 is a (holomorphic) semigroup

in B(X), and a C0-semigroup if we further assume that (I−T )X is dense in X .

Let log(I − T ) denote the infinitesimal generator of this semigroup. A natural

question is whether or not − log(I − T ) coincides with the one-sided ergodic

Hilbert transform HT for T , given by

HTx :=
∞∑
n=1

T n

n
x,

whenever x ∈ X is such that the series converges in X . Also in [16], it was

shown that HT ⊆ log(I − T ) as (generally) unbounded operators on X . The

equalityHT = − log(I−T ) has been established in full generality in [12] and [28]

independently and with different proofs (see also [9, 13, 14] for particular T ).

While the arguments used in [12] are specific for series concerned with that one

definingHT , the approach carried out in [28] relies on the usage of the functional

calculus. Looking at power operators (I − T )s, it is clear that the analysis

of Ran(I − T )s is equivalent to the study of the domain Dom(I − T )−s of the

inverse operator (I−T )−s, s > 0, where one is assuming that I−T is injective.

Also, the study of the plausible equality HT = − log(I − T ) entails the study

of Dom log(I −T ). Following the idea proposed in [28] one can use a functional

calculus for suitable analytic functions f, involving log(1− z) and (1− z)−s, so
that the elements of Dom f(T ) can be identified with x ∈ X giving rise to norm

(or weakly) convergent series
∑∞
n=1 anT

nx, where an, n ∈ N0 := N ∪ {0}, are
the Taylor coefficients of f.
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Initially, the basic domain of that calculus is the sequence space �1, or its

alternative version as (holomorphic) Wiener algebra A1
+(D) on the unit disc D.

Then the domain is extended to so-called regularizable functions f, with respect

to A1
+(D) ≡ �1, in the way introduced in [27]; see [28, Def. 2.4]. But this

class of f appears to be too large for obtaining reasonable characterisations of

domains Dom f(T ). A sufficient condition on f is provided in [28] by introduc-

ing the notion of admissibility, so that Dom f(T ) can be identified if f is both

regularizable and admissible on D. By a theorem due to Th. Kaluza in 1928

(see [32]), remarkable examples of admissible functions are those whose Taylor

coefficients form logarithmically convex sequences; see [28, Prop. 4.4] (which

gives a new proof of Kaluza’s theorem). Within this framework, the domains

of (I − T )−s, s > 0, and log(I − T ) are characterized in [28, Th. 6.1, Th. 6.2].

The aim of this paper is to give a new impetus to that topic by noticing

that the Poisson equation (1.1) can be also thought in the setting of fractional

difference equations. This new point of view appears to be fruitful and leads

to a number of new results. Some authors have realized that the semigroup

(I − T )s is a useful tool for modeling differential equations of fractional order,

and it is well known that discretization techniques are useful in problems on

differential equations; see [10, 35] and references therein. As a sample, let T

be the backward shift operator on �2(N0). Then I − T = D, where D is the

first order finite difference given by Da(n) := a(n) − a(n + 1), n ≥ 0, for

every sequence (a(n)) ∈ �2(N0). Thus D2 is the discretization of the one-

dimensional Laplace operator. The discrete Poisson problem D2su = f arises in

the Markov chains theory, so that the corresponding operator T is the transition

matrix. The solution u can be expressed as the asymptotic variance, which is

an important parameter in central limit theorems ([8, 23, 30, 42]). On the

other hand, maximum and comparison principles for fractional differences Ds,

as well as the issue of uniqueness in corresponding Dirichlet problems, have

been recently established in connection with the problem Dsu = f in [4]; a

probabilistic interpretation of equation Dsu = 0 is also given in [4, Remark 2.5].

In the preceding discussion the operators T were assumed to be power

bounded. However, there are other important and natural classes of opera-

tors with weaker assumptions on growth of their powers for which the problems

discussed above are of interest. This is the case of the (C,α)-bounded operators

defined below, in Section 2. The connection of these operators and ergodicity

dates back to the fourties of last century; see [11] and [29]. In the latter, E. Hille
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studies (C,α)-convergence in terms of Abel convergence (that is, via the resol-

vent operator). As an application, the well known mean ergodic von Neumann’s

theorem for unitary groups on Hilbert spaces is extended to (C,α)-convergence

for every α > 0 [29, p. 255]. Also, the (C,α)-ergodicity on L1(0, 1) of fractional

(Riemann–Liouville) integrals is elucidated in [29, Th. 11]. In particular, if V is

the Volterra operator then TV := I − V , as operator on L1(0, 1), is not power-

bounded, and it is (C,α)-ergodic if and only if α > 1/2 [29, Th. 11]. As a matter

of fact, growth properties and ergodicity of (C,α) means of operators have been

extensively studied over the years (see [3, 15, 19, 20, 34, 38, 40, 41, 43] and ref-

erences therein). Very recently, in connection with operator inequalities and

models, it has been shown that the shift operator on weighted Bergman spaces

is (C,α)-ergodic, for α > 0 depending on the weight. See [2] and Section 9

below.

Summarizing the above, there is a well established literature on (C,α)-boun-

ded operators and ergodicity, which explores quite a number of properties and

their interplays. However, neither the Poisson equation (I − T )sx = y nor the

relation between the one-sided Hilbert transform and the logarithm operator

log(I − T ) have been studied for (C,α)-bounded operators T with α > 0 so

far. Here, we extend results of [16, 12, 28] to the setting of (C,α)-bounded

operators. To do this, we follow the methodology introduced in [28] and use

recent tools associated with fractional differences [4, 36]. The paper is organized

accordingly.

After this introduction, Section 2 is devoted to preliminaries on (C,α)-boun-

ded operators and fractional differences, which are defined in terms of Cesàro

numbers. It is to be noticed that the Weyl difference operator Wα and its

partner Dα, α > 0, defined on sequence spaces, coincide sometimes but not

always. This fact is one of the subtle difficulties to circumvent in the article.

The section contains examples of further application.

The decomposition X = Ker(I − T )⊕Ran(I − T ) plays a key role in ergodic

theorems, and is also relevant in the treatment of the (fractional) Poisson equa-

tion and the one-sided (discrete) Hilbert transform. Thus the decomposition

X = Ker(I − T )⊕ Ran(I − T ) in the setting of (C,α)-bounded operators T is

discussed in Section 3. In Theorem 3.3, it is shown that for such an operator T

the above splitting of X occurs if and only if T is (C, β)-ergodic for every β > α.

This result is a fairly general extension of the mean ergodic theorem for power-

bounded operators.
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In order to set our discussion within the framework built in [28], we need

to replace the �1-calculus with another one which characterizes (C,α)-bounded

operators. The domain of this calculus is the convolution subalgebra τα(N0) of

�1 formed by sequences f = (f(n)) in �1 such that the series

‖f‖1,(α) :=
∞∑
n=0

|[Wαf ](n)|kα+1(n)

is finite (see [5]); this is the meaning of [Wαf ](n) above.

Let Aα(D) denote the range of the Gelfand transform of τα(N0), which is

to say the space of holomorphic functions on D whose Taylor coefficients are

in τα(N0). Hence, Aα(D) is a Banach algebra isomorphic to τα(N0), for the

pointwise multiplication and the norm obtained from ‖ · ‖1,(α) by transference

(note that the algebra A1
+(D) of [28] is A0(D) here). Section 4 contains basic

properties of the τα(N0)-calculus (or A
α(D)-calculus, equivalently), its relation

with fractional difference operators and the compatibility of this calculus with

that one for sectorial operators via the transformation z → (1 − z). Then we

call α-regularizable function any function which is regularizable with respect to

the algebra Aα(D) in the sense defined in [27]; see Definition 4.3 below. We

show in particular that the functions (1 − z)−s, 0 < s < 1, and log(1 − z) are

α-regularizable. Finally, the identity Ran(I − T )s = Ran(I − T ) is proved for

(C,α)-bounded operators T . A generalization of admissibility, called here α-

admissibility, is implemented in Section 5. Its relation with fractional differences

is analyzed, as well as the possibility to construct certain approximate identi-

ties, for specific elements in Aα(D), out of so-called α-admissible functions, see

Definition 5.5 for the concept of α-admissibility.

Having laid the technical groundwork of our paper, a large number of ex-

amples of α-admissible functions, including −z−1 log(1 − z) and (1 − z)−s,
0 < s < 1, are given at the end of Section 5. The above concrete examples

in particular could have been presented in the setting of a generalized version

of Kaluza’s theorem for log-convex sequences of higher order in terms of Dα

and Wα. However, we do not go on this way here, due to the length and very

technical character of the proof of such a generalization. Instead, we follow

the indication of an anonymous referee who suggested considering Hausdorff

moment sequences. That quoted generalized version, as well as its relationship

with other extensions of Kaluza’s theorem like those relevant results of [31], will

be the subject of a forthcoming paper.
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Using the functional calculi approach described above, we give in Section 7 a

characterization of x ∈ Dom f(T ) by convergence of the series

∞∑
n=0

[Dαf ](n)[Δ−αT ](n)x,

where

[Δ−αT ](n) :=
n∑
j=0

kα(n− j)T j

and (kα(n)) is the sequence of Cesàro numbers generated by (1 − z)−α; see

Section 2. Moreover, we prove that f(T ) is given by

f(T )x =
∞∑
n=0

[Dαf ](n)[Δ−αT ](n)x, x ∈ Dom f(T );

see Theorem 7.3. In particular, in Section 8 it is shown that x ∈ Dom(I −T )−s

if and only if
∞∑
n=1

ns−α−1[Δ−αT ](n)x

converges for 0<s< 1 (Theorem 8.1). As a consequence, one obtains conver-

gence rates (to 0) ofMβ
T (n), for β>α, in Corollary 8.2, which generalize previous

results about power-bounded operators. Also, we prove that x∈Dom log(I−T )
if and only if the series

∞∑
n=1

n−(1+α)[Δ−αT ](n)x

converges. In this case, we obtain the formula

log(I − T )x = (ψ(α+ 1)− ψ(1))x−
∞∑
n=1

B(α+ 1, n)[Δ−αT ](n)x,

where ψ(x) := d
dx ln(Γ(x)) is the digamma function, Γ is the Gamma function

and B is the Beta function (Theorem 8.7). This latter result suggests a possi-

bility to define the one-sided α-ergodic Hilbert transform for a (C,α)-bounded

operator T by

H
(α)
T := (ψ(1)− ψ(α+ 1)) +

∞∑
n=1

B(α + 1, n)[Δ−αT ](n)

(for α = 0 it equals the usual one-sided Hilbert transform HT ). This issue is

elaborated in Section 8.
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Furthermore, in the case where 0 < s < 1 and 0 < α < 1 − s, the arguments

concerning coefficients [Wαf ](n) and [Dαf ](n) in Section 5 can be refined in

order to handle Taylor coefficients. This is done in Section 6; see Theorem 6.2

and Theorem 6.4.

Thus we obtain, for 0 < s < 1 and 0 < α < 1 − s (Theorem 8.4), the

interesting characterisation

x ∈ Dom(I − T )−s ⇐⇒
∞∑
n=1

ns−1T nx converges

and the representation

(I − T )−sx =

∞∑
n=0

ks(n)T
nx,

where (ks(n)) are the Taylor coefficients of (1− z)−s.
Similarly, for 0 < α < 1, in Theorem 8.10 we show that

x ∈ Dom log(I − T ) ⇐⇒
∞∑
n=1

n−1T nx converges

and that log(I − T ) = −HT , that is,

log(I − T ) = −
∞∑
n=1

1

n
T n.

Theorem 8.4 extends [16, Th. 2.11] and [28, Th. 6.1], and Theorem 8.10 extends

[12, Prop. 3.3] and [28, Th. 6.2], where the case α = 0 was treated. In Corollary

8.5, convergence rates of Mβ
T (n) are given for 0 < α < 1 − s ≤ β ≤ 1, which in

particular provides the well known estimate

M1
T (n)x = o(n−s) as n→ ∞;

see [16] and [28] for the case of power-bounded operators.

In Section 9 we give two examples to illustrate and apply the preceding results.

These examples are about the Volterra operator on Lp spaces, and about the

shift operator on Bergman spaces.
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2. Preliminaries

2.1. Cesàro numbers. For α ∈ C, let (kα(n)) denote the sequence of Taylor

coefficients of the generating function (1− z)−α, that is,

(2.2)

∞∑
n=0

kα(n)z
n =

1

(1− z)α
, |z| < 1.

The elements of sequences (kα(n)) are called Cesàro numbers, and are given

by kα(0) = 1 and

(2.3) kα(n) :=

(
n+ α− 1

α− 1

)
=
α(α + 1) · · · (α+ n− 1)

n!
, n ∈ N;

see [44, Vol. I, p. 77], where kα(n) is denoted byAα−1
n . For α∈C\{0,−1,−2, . . .}

one has

kα(n) =
Γ(n+ α)

Γ(α)Γ(n+ 1)
.

Sequences (kα(n)) play an important role in summability theory [44]. Recently

they found nontrivial applications in the theory of fractional difference equa-

tions; see [26, 35, 36]. Next, we give several properties of such sequences that

will be used throughout the present paper.

From (2.2), one gets immediately the identity

(2.4)
∞∑
n=0

kα(n) = 0, for α < 0,

which will be used several times in the paper to simplify calculations.

Assume α ∈ R. As a function of n, kα(n) is increasing for α > 1, decreasing

for 0 < α < 1, and k1(n) = 1 for all n ∈ N0 ([44, Th. III.1.17]). Furthermore,

0 ≤ kα(n) ≤ kβ(n) for β ≥ α > 0 and n ∈ N0. For m ∈ N0,

(2.5) k−m(n) =

⎧⎨
⎩
(−1)n

(
m
n

)
, 0 ≤ n ≤ m;

0, n ≥ m+ 1,

and, if m < α < m+ 1,

(2.6) signk−α(n) =

⎧⎨
⎩
(−1)n, 0 ≤ n ≤ m;

(−1)m+1, n ≥ m+ 1.
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As regards the asymptotic behavior of the sequence (kα(n)) we have

(2.7) kα(n) =
nα−1

Γ(α)

(
1 +O

( 1

n

))
, as n→ ∞,

for every α ∈ R\{0,−1,−2, . . .}; see [44, Vol. I, p. 77 (1.18)] or [21, Eq. (1)].

It follows from (2.2) that the sequence (kα(n)) satisfies the group prop-

erty, kα ∗ kβ = kα+β for α, β ∈ C, where the notation “ ∗ ” stands for the con-

volution of sequences on N0. Recall that for a = (a(n)) ⊂ C and b = (b(n)) ⊂ C

the convolution is defined by

(a ∗ b)(n) =
n∑
j=0

a(n− j)b(j), n ≥ 0.

Note that k0 is the Dirac mass δ0 on N0 and so it is the unit for the convolution.

The following lemma is to be applied in the next subsection.

Lemma 2.1: For every α > 0 there exists Mα > 0 such that

(|k−α| ∗ kα)(q) ≤Mαkα(q).

Proof. Take the integer part [α] of α and q > [α]. If 0 < α < 1 then, by (2.6),

(|k−α| ∗ kα)(q) =
q∑
p=0

|k−α(p)|kα(q − p)

= 2kα(q)−
q∑
p=0

k−α(p)kα(q − p) = 2kα(q)− k0(q) = 2kα(q)

and, if α ≥ 1,

(|k−α| ∗ kα)(q)

=

[α]∑
p=0

(−1)pk−α(p)kα(q − p) +

q∑
p=[α]+1

(−1)[α]+1k−α(p)kα(q − p)

=

[α]∑
p=0

((−1)p + (−1)[α])k−α(p)kα(q − p) + (−1)[α]+1

q∑
p=0

k−α(p)kα(q − p)

≤ 2

[α]∑
p=0

|k−α(p)|kα(q − p) + (−1)[α]+1k0(q) ≤Mαkα(q),

for some positive constant Mα.
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2.2. Fractional diffferences involving Cesàro numbers. For a se-

quence f = (f(n)), define

[Wf ](n) := f(n)− f(n+ 1), n ∈ N0,

and subsequently, W 1 :=W , Wm+1 :=WmW for m ∈ N. Then one has

[Wmf ](n) =

m∑
j=0

(−1)j
(
m

j

)
f(n+ j), n ∈ N0, m ∈ N.

Differences Wm are extended to the fractional case in [5, Def. 2.2] as follows.

Definition 2.2: Let f = (f(n))n≥0 and α > 0 be given. The Weyl sum W−αf
of order α of f is defined by

(2.8) [W−αf ](n) :=
∞∑
j=n

kα(j − n)f(j), n ∈ N0,

whenever the series converges. The Weyl difference Wαf of order α of f is

defined by

[Wαf ](n) = [Wm[W−(m−α)f ]](n), n ∈ N0,

for m = [α] + 1, with [α] the integer part of α, whenever the corresponding

series converges.

The fractional difference Wα admits another very useful description on spe-

cific spaces of sequences. Let (f(n)) be an arbitrary sequence. Then note that,

for m ∈ N,

[Wmf ](n) =

m∑
j=0

(−1)j
(
m

j

)
f(j + n) =

∞∑
j=n

k−m(j − n)f(j),

so for any α > 0 we define the operator Dα by

(2.9) [Dαf ](n) :=

∞∑
j=n

k−α(j − n)f(j), n ∈ N0,

whenever the series converges; see [4]. The operators Wα and Dα are different,

in general. However, they coincide on �1-spaces with appropriate weights, as

the proposition below shows.
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Let �1(ω) denote the space of absolutely summable sequences on N0 with

respect to a weight ω : N0 → C, endowed with its usual norm ‖ · ‖|ω|. In

the folllowing proposition we gather several properties of W−α, Wα and Dα

on �1(ω)-spaces for ω = kμ, μ ∈ R. Notice that for α > 0 and m := [α] + 1

one has m ≤ 2α if and only if α ≥ 1/2, so that �1(kα) ↪→ �1(km−α) if α ≥ 1/2,

and �1(km−α) ↪→ �1(kα) if 0 < α < 1/2.

Proposition 2.3: Let α > 0 and m := [α] + 1. Then:

(i) The Weyl sum W−α defines a bounded linear operator

W−α : �1(kα) → �1(k−α).

As a consequence, Wα is well defined on �1(km−α).
(ii) For every β > 0, the Weyl sum W−α defines a bounded linear operator

W−α : �1(kα+β) → �1(kβ).

(iii) The operator Dα is well defined on the space �1(k−α). Moreover,

its restriction Dα |�1(kα) satisfies Dα |�1(kα) (�1(kα)) ⊂ �1(kα) and

Dα |�1(kα) : �
1(kα) → �1(kα) is bounded.

(iv) Operators Wα and Dα coincide on �1(km−α).
(v) For f ∈ �1(kα), we have Dα(W−αf) = f and W−α(Dαf) = f .

Proof. (i) It is clear from (2.8) that W−α is well defined on �1(kα) for every

α > 0. Further, for f ∈ �1(kα) and n ∈ N0 one has

∞∑
n=0

|k−α(n)||(W−αf)(n)| ≤
∞∑
n=0

∞∑
j=n

|k−α(n)| kα(j − n)|f(j)|

=

∞∑
j=0

(|k−α| ∗ kα)(j) |f(j)| ≤Mα‖f‖kα ,

for some constant Mα > 0, by Lemma 2.1. Hence, W−α : �1(kα) → �1(k−α)
is well defined and bounded. Now, the consequence of the statement follows

readily since Wα =WmW−(m−α).
(ii) For α > 0, β > 0, one can show the inclusion W−α(�1(kα+β)) ⊂ �1(kβ),

together with the corresponding boundedness of the operator

W−α : �1(kα+β) → �1(kβ),

by mimicking the above argument in part (i), with kβ instead |k−α|, and ap-

plying that kβ ∗ kα = kβ+α.
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(iii) According to (2.9), [Dαg](n) is well defined for g ∈ �1(k−α) and n ∈ N0.

If now f belongs to �1(kα) we have

∞∑
n=0

kα(n)|[Dαf ](n)| =
∞∑
j=0

j∑
n=0

kα(n)|k−α(j − n)||f(j)|

=
∞∑
j=0

(kα ∗ |k−α|)(j)|f(j)| ≤Mα‖f‖kα ,

for some constant Mα > 0, by Lemma 2.1. This proves (iii).

(iv) First note that k−m(q) = 0, for q > m, and therefore there exists a

constant Mα > 0 such that

sup
q∈N0

(|k−m(q)||k−(m−α)(q)|−1) < Mα.

Hence, for f ∈ �1(km−α) and n ∈ N0,

∞∑
j=n

|k−m(j−n)|
∞∑
l=j

km−α(l − j)|f(l)|

=

∞∑
p=0

(

p∑
q=0

|k−m(q)|km−α(p− q))|f(p+ n)|

≤Mα

∞∑
p=0

( p∑
q=0

|k−(m−α)(q)||km−α(p− q)

)
|f(p+ n)|

=Mα

∞∑
p=0

(|k−(m−α)| ∗ km−α)(p)|f(p+ n)|

≤M ′
α

∞∑
p=0

km−α(p)|f(p+ n)| <∞,

for some constantM ′
α, where we have applied Lemma 2.1 in the last inequality.

Thus we can exchange series in Wm(W−(m−α) to obtain

[Wm(W−(m−α))f ](n) =
∞∑
p=0

(k−m ∗ km−α)(p)f(p+ n)

=

∞∑
p=0

k−α(p)f(p+ n) = [Dα(f)](n),

as we wanted to show.



14 L. ABADIAS, J. E. GALÉ AND C. LIZAMA Isr. J. Math.

(v) Let f ∈ �1(kα) and n ∈ N0. Similarly to previous calculations,

∞∑
q=n

|k−α(q − n)|
∞∑
p=q

kα(p− q)|f(p)| =
∞∑
p=0

(|k−α| ∗ kα)(p)|f(p+ n)| <∞

and therefore

[Dα(W−αf)](n) =
∞∑
p=0

(k−α ∗ kα)(p)f(p+ n) =

∞∑
p=0

k0(p)f(p+ n) = f(n).

Finally, to prove the equality [W−α(Dαf)](n) = f(n) it is enough to exchange

the places of |k−α| (and of k−α) and kα in the above argument.

Let now α > 0 and define

τα(N0) := W−α(�1(kα+1)).

By Proposition 2.3 (v), W−α is injective on �1(kα) and so the linear operator

W−α |�1(kα+1) : �
1(kα+1) → τα(N0) is bijective. By part (ii) of the proposition

one has τα(N0) ⊂ �1. Also,

�1(kα+1) ⊂ �1(km−α), �1 ⊆ �1(km−α)

since α + 1 ≥ 1 ≥ m − α. Then it follows readily by parts (iv) and (v)

that Wα = Dα on τα(N0) and that the mappings W−α : �1(kα+1) → τα(N0),

Wα : τα(N0) → �1(kα+1) are inverse one of the other. We endow the

space τα(N0) with the norm given by the finite series

‖f‖1,(α) :=
∞∑
n=0

|[Wαf ](n)|kα+1(n),

obtained by transference of the norm ‖‖�1(kα+1) in �1(kα+1) through W−α

(for α = 0, the notation ‖f‖1,(0) corresponds to the usual norm ‖f‖1 in �1),

and so the space τα(N0) can be described as the space of sequences f = (f(n))

in �1 such that ‖f‖1,(α) <∞. We also have

(2.10) τβ(N0) ↪→ τα(N0) ↪→ �1, for β > α > 0,

since kβ(n) > kα(n) ≥ 1 for all n ∈ N ∪ {0} if β > α > 0.

Note that W−α takes the space c00 of eventually null sequences onto itself,

whence one gets that c00 is dense in τ
α(N0). The space τ

α(N0) will be considered

in Section 4 in connection with the functional calculus. It will be used frequently

in the remainder of the paper.
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Example 2.4: The following fractional differences will be applied in the sequel.

(i) For μ ∈ C\{0} define pμ(n) := μ−(n+1), n ∈ N0. It is proven in [5,

Ex. 2.5] that functions pμ are eigenfunctions (considered in a purely

algebraic sense) of the operator Wα for α ∈ R and |μ| > 1, namely,

Wαpμ =
(μ− 1

μ

)α
pμ, |μ| > 1.

(ii) Let s ∈ R and m ∈ N0. Then

[Dmks](n) = [Wmks](n) = (−1)mks−m(n+m), n ∈ N0;

see [6, Ex. 3.4]. Also, if α > 0 and s ∈ (0, 1), then by [6, Lemma 1.1]

one gets

(2.11) [Dαks](n) =
B(1− s+ α, s+ n)

Γ(s)Γ(1 − s)
=

sin(πs)

π
B(1−s+α, s+n), n ∈ N0,

where B is the Beta function. Therefore, by [21, Eq. (1)],

(2.12) [Dαks](n) =
Γ(1 − s+ α)

Γ(s)Γ(1 − s)
ns−α−1

(
1 +O

( 1

n

))
, as n→ ∞.

From the above, one obtains that (kβ(n)) ∈ τα(N0) if β ∈ C with

Reβ < 0 or β = 0, for all α ≥ 0.

(iii) Let m ∈ N0 and let L be the sequence defined by L(n) = 1
n+1 for

n ∈ N0. Then, for α > 0, by [6, Lemma 1.1] we have

(2.13) DαL(n) =
Γ(α+ 1)n!

Γ(n+ α+ 2)
, n ∈ N0,

and by [21, Eq. (1)],

(2.14) DαL(n) =
Γ(α+ 1)

nα+1
(1 +O(

1

n
)), as n→ ∞.

2.3. Cèsaro Operators. We now introduce (C,α)-bounded operators and er-

godicity in terms of Cesàro numbers. Let X be a Banach space. For T in B(X),

let T denote the discrete semigroup associated with T , given by T (n) := T n

for n ∈ N0, with T
0 the identity operator on X . Take α ≥ 0 and set, for x ∈ X

and n ∈ N0,

[Δ−αT ](n)x := (kα ∗ T )(n) =

n∑
j=0

kα(n− j)T jx,

Mα
T (n)x :=

1

kα+1(n)
[Δ−αT ](n)x.
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The operators [Δ−αT ](n) and Mα
T (n) in B(X) are called the n-th Cesàro sum

and Cesàro mean of T of order α, respectively. The operator T is called Cesàro

bounded of order α, or simply (C,α)-bounded, if it satisfies supn ‖Mα
T (n)‖ <∞.

Thus (C, 0)-boundedness is the same as power-boundedness, that is,

sup
n

‖T n‖ <∞.

For α = 1 the operator T is called Cesàro mean bounded (or Cesàro bounded).

Notice that, for arbitrary α > 0, the (C,α)-boundedness of an operator T

implies ‖T n‖ = O(nα) as n → ∞. If T is (C,α)-bounded then it is (C, β)-

bounded for every β > α but the converse does not hold true in general; e.g., [20,

Section 4.7] , [40, Remark 2.3] and [3, Section 2]. Moreover, a bounded linear

operator T is said to be (C,α)-ergodic if there exists Pαx := limn→∞Mα
T (n)x

for all x ∈ X , in the norm of X (in this case Pα is in fact a bounded projection

onto the closed subspace Ker(I−T ) of X). For α = 1, T is called mean ergodic.

Clearly, (C,α)-ergodicity implies (C,α)-boundedness.

There is a number of papers addressing ergodicity of (C,α)-bounded opera-

tors, which look for extending to fractional order the main results and features

of the operator ergodic theory. We focus here on the particular line of research

explained in the introduction, Section 1, which seems to have not been con-

sidered before. Nonetheless, we start with establishing several ergodic results

on (C,α)-bounded operators in the next section, being quite instructive for the

subsequent considerations.

3. (C,α)-mean ergodic results

A version of the mean ergodic theorem says that a power-bounded operator T is

Cesàro mean ergodic if and only if X splits as X = Ker(I−T )⊕Ran(I−T ) [33,
Th. 1.3]. Our aim here is to give an extension of that result for (C,α)-bounded

operators for every α > 0.

Lemma 3.1: Let T be a (C,α)-bounded operator on a Banach space X, and

β > α. Put Xβ := {x ∈ X : there exists Pβx := limn→∞Mβ
T (n)x in X}.

Then Pβ is a projection onto Ker(I − T ) along Ran(I − T ), that is,

RanPβ = Ker(I − T ) and KerPβ = Ran(I − T ),

so that

Xβ = Ker(I − T )⊕ Ran(I − T ).
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Proof. First, note that TΔ−βT (n) = [Δ−βT ](n+1)−kβ(n+1)I, which implies

TMβ
T (n) =

β + n+ 1

n+ 1
Mβ
T (n+ 1)− β

n+ 1
I.

For a given x ∈ Xβ , letting n→ ∞ one obtains that there exists

PβTx = TPβx = Pβx

since Xβ is a closed subspace of X . Hence,

PβM
β
T (n)x =Mβ

T (n)Pβx =
1

kβ+1(n)

n∑
j=0

kβ(n− j)T jPβx

=
1

kβ+1(n)
(kβ ∗ k1)(n)(Pβx) = Pβx,

which implies that P 2
βx = Pβx. Therefore, Pβ is a (linear) bounded projection

on Xβ.

Now, for x ∈ Xβ, (I − T )Pβx = 0 so RanPβ ⊆ Ker(I − T ). Conversely,

if Tx = x then Mβ
T (n)x = x for all n, and therefore there exists Pβx = x in Xβ.

In short, RanPβ = Ker(I − T ).

To see that KerPβ = Ran(I − T ), note that by Example 2.4 (ii) with m = 1

one gets

(I−T )[Δ−βT ](n)

=(I − T )(kβ−α ∗ kα ∗ T )(n)

=

n∑
j=0

kβ−α(n− j)[Δ−αT ](j)−
n∑
j=0

kβ−α(n− j)([Δ−αT ](j + 1)− kα(j + 1)I)

=kβ−α(n) +
n∑
j=0

kβ−α(n− j)kα(j + 1)−
n+1∑
j=1

kβ−α−1(n+ 1− j)[Δ−αT ](j)

=kβ−α(n) + kβ(n+ 1)− kβ−α(n+ 1) + kβ−α−1(n+ 1)

−
n+1∑
j=0

kβ−α−1(n+ 1− j)[Δ−αT ](j)

=kβ(n+ 1)−
n+1∑
j=0

kβ−α−1(n+ 1− j)[Δ−αT ](j).
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If β ≥ α+ 1, then one has

‖(I − T )[Δ−βT ](n)‖
kβ+1(n)

≤kβ(n+ 1)

kβ+1(n)
+

1

kβ+1(n)

∥∥∥∥
n+1∑
j=0

kβ−α−1(n+1−j)[Δ−αT ](j)

∥∥∥∥

≤kβ(n+ 1)

kβ+1(n)
+

Mα

kβ+1(n)

n+1∑
j=0

kβ−α−1(n+ 1− j)kα+1(j)

=(1 +Mα)
kβ(n+ 1)

kβ+1(n)
=
β(1 +Mα)

n+ 1
→ 0, as n→ ∞,

where Mα > 0, since T is (C,α)-bounded.

If β − α ∈ (0, 1), by (2.6) we have

1

kβ+1(n)

∥∥∥∥
n+1∑
j=0

kβ−α−1(n+ 1− j)[Δ−αT ](j)

∥∥∥∥

≤ 1

kβ+1(n)

n+1∑
j=0

|kβ−α−1(n+ 1− j)|kα+1(j)

=
1

kβ+1(n)

(
−
n+1∑
j=0

kβ−α−1(n+ 1− j)kα+1(j) + 2kα+1(n+ 1)

)

=
1

kβ+1(n)
(−kβ(n+ 1) + 2kα+1(n+ 1))

= O(nα−β) → 0, n→ ∞.

So, we conclude that Mβ
T (n)(I − T ) → 0 strongly as n → ∞ for any β > α.

It follows that Ran(I − T ) ⊆ Xβ , or in other words Pβ(I − T ) = 0. That is,

Ran(I −T ) ⊆ KerPβ and then Ran(I −T ) ⊆ KerPβ . Conversely, given x in Xβ

such that Pβx = 0 we have

x = lim
n→∞

1

kβ+1(n)

n∑
j=0

kβ(n−j)(x−T jx)= lim
n→∞(I−T )

( n∑
j=1

kβ(n− j)

kβ+1(n)

j−1∑
l=0

T lx

)
,

that is, KerPβ ⊆ Ran(I − T ) and the proof is complete.

Remark 3.2: In accordance with Lemma 3.1, for a given (C,α)-bounded opera-

tor T and β > α, the direct sum Ker(I−T )⊕Ran(I−T ) is the largest subspace
of X on which there exists limn→∞Mβ

T (n).

The following result is our version of the mean ergodic theorem for (C,α)-

bounded operators.
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Theorem 3.3: Let T be a (C,α)-bounded operator, and β > α. Then T is

(C, β)-ergodic if and only if X = Ker(I − T )⊕ Ran(I − T ).

Proof. It is a direct consequence of Lemma 3.1.

The following immediate corollary shows the significance of the above theo-

rem.

Corollary 3.4: Let T be a bounded operator on a Banach space X .

(i) If T is (C,α)-ergodic on X for some α > 0 then

X = Ker(I − T )⊕ Ran(I − T ).

(ii) Let β > 0 and assume T is power-bounded. Then T is (C, β)-ergodic if

and only if X = Ker(I − T )⊕ Ran(I − T ).

(iii) Let T be a (C,α)-bounded operator with 0 < α < 1. Then T is Cesàro

mean ergodic if and only if X = Ker(I − T )⊕ Ran(I − T ).

When β = 1, Corollary 3.4 (ii) is the well known mean ergodic theorem cited

in the beginning of this section.

Next, we extend [40, Theorem 5.1]. The proof runs parallel to the case of

arbitrary β ≥ 1 though it needs [1, Th. 4.3] in our case.

Theorem 3.5: Let β ≥ 1 and T ∈ B(X) such that σ(T ) ⊂ D ∪ {1}.
Then T is a (C, β)-ergodic operator if and only if T is (C, β)-bounded and

X = Ker(I − T )⊕ Ran(I − T ).

Proof. Let T be a (C, β)-bounded operator on X = Ker(I − T ) ⊕ Ran(I − T )

with σ(T ) ⊂ D∪ {1}. By assumption, every x ∈ X can be written as x = y+ z

with y ∈ Ran(I − T ) and Tz = z. Then it is enough to show that Mβ
T (n)y → 0

as n→ ∞ to prove the theorem.

Take y = a− Ta, a ∈ X . Then

Mβ
T (n)(a− Ta) =

β

n+ 1
(I −Mβ−1

T (n+ 1))a→ 0, as n→ ∞

since σ(T ) ⊂ D ∪ {1} and therefore ‖Mβ−1
T (n + 1)‖ = o(n), as n → ∞; see [1,

Th. 4.3]. By density, one obtains

lim
n→∞Mβ

T (n)y = 0

for all y ∈ Ran(I − T ). The opposite implication is clear.
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Remark 3.6: It can be shown directly from definitions that if T is a (C,α)-

ergodic operator then T is (C, β)-ergodic for every β > α. (This result is

usually proved as a consequence of mean ergodic results involving the resolvent

function of the operator; see [19, Cor. 3.1] for example.) In this case, the

projection operators Pα and Pβ are the same.

4. Functional calculus for Cesàro bounded operators

The Banach space τα(N0) defined in Subsection 2.2 is actually a Banach algebra,

for the convolution product, in the sense that there exists a (not necessarily

equal to one) constant Mα such that

‖f ∗ g‖1,(α) ≤Mα‖f‖1,(α)‖g‖1,(α)

for f, g ∈ τα(N0); see [5, Th. 2.11]. The algebras τ
α(N0), α > 0, were introduced

in [22] for α ∈ N. Their extensions to α > 0 have been defined in [5] and [1,

Section 2], though with a slightly different presentation.

For f = (f(n)) ∈ τα(N0), let f be the holomorphic function on the unit disc D

(and continuous on D) given by f(z) :=
∑∞
n=0 f(n)z

n. Define

Aα(D) := {f : f ∈ τα(N0)},

endowed with pointwise multiplication and the norm ‖f‖Aα(D) := ‖f‖1,(α).
Thus Aα(D) and τα(N0) are Banach algebras isometrically isomorphic and the

correspondence f ∈ τα(N0) → f ∈ Aα(D) is the Gelfand transform of τα(N0).

It can be given in terms of (scalar) Cesàro sums Δ−αZ and Weyl differences,

as we see next:

For α ≥ 0 and Z = (zn)n∈N0 set

[Δ−αZ](n) :=

n∑
j=0

kα(n− j)zj, z ∈ D, n ∈ N0.

Clearly,

|[Δ−αZ](n)| ≤
n∑
j=0

kα(n− j)|z|j ≤
n∑
j=0

kα(n− j) = kα+1(n)

uniformly on D. Regarding estimates on compact subsets Q of D, we have

(4.1) |[Δ−αZ](n)| ≤
n∑
j=0

kα(n−j)|z|j ≤ kα(n)
1− |z|n+1

1− |z| ≤MQkα(n), z∈Q,
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if α ≥ 1 since kα is increasing in this case, and

(4.2) |[Δ−αZ](n)| ≤
n∑
j=0

kα(n− j)|z|j ≤ kα(0)
1− |z|n+1

1− |z| ≤MQ

when 0 < α < 1, since kα is decreasing now. Here MQ is a constant depending

on Q.

Now, let f(z) =
∑∞

n=0 f(n)z
n be a holomorphic function in Aα(D). Using

Fubini’s theorem (for series) in the standard way, it is readily seen that

(4.3) f(z) =
∞∑
n=0

[Wαf ](n)[Δ−αZ](n), z ∈ D,

where the series converges absolutely in D. Thus in particular

f(1) =

∞∑
n=0

[Wαf ](n)kα+1(n).

The uniqueness of coefficients [Wαf ](n) in (4.3) is a consequence of the fol-

lowing result.

Lemma 4.1: For α > 0 and n ∈ N0 set ωα(n) := kα(n) if α ≥ 1, and ωα(n) := 1

when 0 < α < 1. Let g = (g(n)) be a sequence such that

∞∑
n=0

|g(n)|ωα(n) <∞.

Assume that
∞∑
n=0

g(n)[Δ−αZ](n) = 0, z ∈ D.

Then g(n) = 0 for all n ∈ N0.

Proof. Set Mα,g :=
∑∞

n=0 ωα(n)|g(n)|. For z ∈ D, we have

∞∑
n=0

|g(n)|
n∑
j=0

kα(n− j)|z|j =
∞∑
j=0

∞∑
n=j

kα(n− j)|g(n)||z|j ≤ Mα,g

1− |z| <∞,

whence

0 =

∞∑
n=0

g(n)[Δ−αZ](n) =

∞∑
j=0

zj
∞∑
n=j

kα(n− j)g(n) =

∞∑
j=0

[W−αg](j)zj

for every z ∈ D, so that [W−αg](j) = 0 for all j. Now, g ∈ �1(kα) for every α > 0

by hypothesis and therefore g = 0 by Proposition 2.3, part (v).
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Remark 4.2: When α = m ∈ N, the coefficients [Wmf ](n) in (4.3), for f∈Aα(D),
can be given in integral form by

[Wmf ](n) =
1

2π

∫
|λ|=r

(λ− 1)m

λm+n+1
f(λ) dλ, 0 < r < 1, n ∈ N.

This formula is obtained by applying Wm to the Cauchy integral formula for

the Taylor coefficients

f(n) = f(n)(0)/n!

of f.

It is maybe in order to notice that, for α = m ∈ N, Lemma 4.1 can be

extended to any sequence g such that 0 =
∑∞

n=0 g(n)Δ
−mZ(n), z ∈ D; that is,

if the series is zero, without any other condition on g, then g must be the null

sequence. To see this, first note that

[Δ−mZ](n) :=

m∑
j=0

km(n− j)zj

=
1

(z − 1)m

(
zm+n +

m−1∑
j=1

Pm,j(n)z
m−j + (−1)mkm(n)

)

for all z ∈ D, where Pm,j are polynomials of degreem−1 at most. This equality

can be obtained by induction in m, on account of the identity

[Δ−pZ](n) =

n∑
j=0

[Δ−(p−1)Z](j); p, n ∈ N.

Evaluating at z = 0 one gets 0 =
∑∞

n=0 g(n)km+1(n) and therefore

0 =

∞∑
n=0

g(n)

(
zm+n +

m−2∑
j=1

Pm,j(n)z
m−j + Pm,m−1(n)z

)

for all z ∈ D. Dividing by z �= 0 and then evaluating the resulting polynomial

at z = 0 once again, one obtains 0 =
∑∞
n=0 g(n)Pm,m−1(n). By repetition

of the argument we eventually arrive at
∑∞

n=0 g(n)z
n = 0 (z ∈ D), whence

obviously g(n) = 0.

We next introduce the functional calculus which is needed to accomplish our

aims.
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Let α > 0. A linear bounded operator T ∈ B(X) is (C,α)-bounded if and only

if there exists a Banach algebra bounded homomorphism Θα : τα(N0) → B(X),

which furthermore is given by

Θα(f)x =

∞∑
n=0

[Wαf ](n)[Δ−αT ](n)x, x ∈ X, f ∈ τα(N0);

see [5, Th. 3.5 and Cor. 3.7]. Then we define the functional calculus

f ∈ Aα(D) → f(T ) ∈ B(X)

by

f(T ) := Θα(f),

for f(z) =
∑∞

n=0 f(n)z
n. If

Kα(T ) := sup
n∈N0

‖Mα
T (n)‖,

we have

(4.4) ‖f(T )‖ ≤ Kα(T )‖f‖Aα(D).

The calculus f → f(T ) just introduced will be called here the primary func-

tional calculus on Aα(D), or primary Aα(D)-calculus, for short. One can ex-

tend such a calculus by means of the regularization process considered in [28]

for α = 0; see [27] for a general background.

Definition 4.3: Let α > 0 and let T be a (C,α)-bounded operator. We say that a

function f holomorphic in D is α-regularizable if there is an element e ∈ Aα(D)

such that ef ∈ Aα(D) and e(T ) is an injective operator. In such a case, put

f(T ) := e(T )−1(ef)(T ).

The so-defined f(T ) does not depend on the α-regularizer e (see [27, Lemma

1.2.1]) and it is a closed operator, generally unbounded.

We now consider sectorial operators. For θ ∈ (0, π) let Sθ denote the sector

of angle 2θ in the complex plane, which is symmetric with respect to the half-

line (0,∞). An operator A ∈ B(X) is said to be sectorial of angle θ if the

spectrum σ(A) is contained in Sθ and, for every ω ∈ (θ, π) and a constant Kω,

‖λ(λ−A)−1‖ ≤ Kω, λ ∈ C \ Sω.
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It is well known that sectorial operators enjoy a remarkable functional calcu-

lus, see [27, Chapter 2]. Namely, for ω ∈ (θ, π) let E0(Sω) denote the space of

holomorphic functions h on Sω such that |h(z)| ≤ K|z|s for all z ∈ Sω ∩ D for

some constants K, s > 0. Take γ the oriented counterclockwise path parame-

terized as

γ := {re−iϕ : r ∈ [0, r0]} ∪ {r0eiψ : ψ ∈ (−ϕ, ϕ)} ∪ {reiϕ : r ∈ [0, r0]},

with r0 greater than the spectral radius ρ(A) of A and θ < ϕ < ω.

Then the Bochner integral, so-called Dunford–Riesz formula,

(4.5) h(A) =
1

2πi

∫
γ

h(λ)(λ −A)−1 dλ,

is well defined for every h ∈ E0(Sω), does not depend on the choice of ϕ and

the mapping h → h(A) defines a functional calculus on E0(Sω), independent
of ω ∈ (θ, π) (see [27, p. 46]) which we call here the primary E0-calculus for

sectorial operators. A function h holomorphic in Sω is regularizable within this

calculus if there is an element b ∈ E0(Sω) such that bh ∈ E0(Sω) and b(T ) is an

injective operator. If so, we put

h(T ) := b(T )−1(bh)(T ).

The formula is independent of the regularizer b and defines a (generally un-

bounded) closed operator on X .

Next, we connect (C,α)-bounded operators with sectorial operators follow-

ing [28]. Details for arbitrary α > 0 are included for the sake of completeness.

Lemma 4.4: Let α > 0 and let T be a (C,α)-bounded operator. Then the

operator A := I − T satisfies

‖(λ−A)−1‖ ≤ Kα(T )
|λ|α

(|λ− 1| − 1)α+1
≤ Kα(T )

|λ|α
|Reλ|α+1

, Reλ < 0.

In consequence, A is a sectorial operator of angle π/2.

Proof. We notice that the spectral radius of T is less than or equal to 1;

see [1, Lemma 1.1]. Hence, the spectrum σ(A) is contained in the closed disc

{z ∈ C : |z − 1| ≤ 1} and therefore in Sπ/2.
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Let μ be a complex number such that |μ| > 1. By [5, Th. 4.4] and Exam-

ple 2.4(i),

(μ− T )−1 =
∞∑
n=0

[Wαpμ](n)[Δ
−αT ](n) =

(μ− 1

μ

)α ∞∑
n=0

μ−n−1[Δ−αT ](n).

Then for Reλ < 0 we have

‖(λ−A)−1‖ ≤ Kα(T )
|λ|α

|λ− 1|α
∞∑
n=0

|λ− 1|−n−1kα+1(n)

= Kα(T )
|λ|α

(|λ− 1| − 1)α+1

≤ Kα(T )
|λ|α

|Reλ|α+1
,

where we have used the identity (2.2).

From the above estimate we obtain that A is sectorial, since

|λ|/|Reλ| ≤ | cos(π − ω)|−1

for every λ ∈ C \ Sω and ω ∈ (π/2, π).

The primary Aα(D)-calculus and the primary E0-calculus are compatible,

through the change of variable z → (1 − z), as the following result shows (see

[28, Prop. 3.2] for α = 0).

Proposition 4.5: Let ω ∈ (π/2, π), h ∈ E0(Sω) and f(z) := h(1− z) for z ∈ D.

Let α > 0 and let T be a (C,α)-bounded operator. Then

f ∈ Aα(D) and f(T ) = h(A).

Proof. Take γ as given in (4.5). For every λ ∈ supp(γ) \ {0} the function

p1−λ(z) := − 1

z − (1− λ)
=

∞∑
n=0

p1−λ(n)zn, z ∈ D,

lies in Aα(D) with

(4.6) ‖p1−λ‖Aα(D) =

∞∑
n=0

|[Wαp1−λ](n)|kα+1(n) ≤
|λ|α

(|λ− 1| − 1)α+1
;

see Example 2.4(i). Thus one has p1−λ(T ) = −(T − (1− λ)I)−1 = −(λ−A)−1;

see [5, Cor. 3.6] for the first equality.
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Moreover, the mapping λ ∈ supp(γ) \ {0} → p1−λ ∈ Aα(D) is continuous.

This is readily seen by estimating ‖p1−λ − p1−μ‖Aα(D) in a similar manner

to (4.6), and letting λ→ μ. Also, by (4.6),
∫
γ

‖h(λ)p1−λ‖Aα(D) |dλ| ≤ K

∫
γ

|λ|s |λ|α
(|λ − 1| − 1)α+1

|dλ| <∞,

where K, s > 0 are such that |h(λ)| ≤ K|λ|s, λ ∈ supp(γ) \ {0}. It follows that
the function λ ∈ supp(γ) → h(λ)p1−λ ∈ Aα(D) is Bochner integrable. Then, by

the Cauchy formula one gets

f(z) = h(1− z) =
−1

2πi

∫
γ

h(λ)p1−λ(z) dλ, z ∈ D,

since point evaluations are continuous on the space Aα(D) and separate elements

on Aα(D).

Finally, by (4.5) we conclude that

f(T ) =
−1

2πi

∫
γ

h(λ)p1−λ(T ) dλ =
1

2πi

∫
γ

h(λ)(λ −A)−1 dλ = h(A).

Remark 4.6: Let T be a (C,α)-bounded operator, α > 0. Let h be a regulariz-

able function for the sectorial calculus with regularizer b, so that

bh ∈
⋃

(π/2)<ω<π

E0(Sω)

and b(A) is injective. Then, for f(z) := h(1 − z) and e(z) := b(1 − z), z ∈ D,

applying the previous proposition to bh and b one gets that f is regularizable

in the Aα(D)-calculus (with regularizer e) and f(T ) = h(A). This simple obser-

vation will be used in the two following examples, which are of key importance

in the paper.

Example 4.7: (i) Let r ∈ R and set

qr(z) := (1− z)−r =
∞∑
n=0

kr(n)z
n, z ∈ D.

Let α > 0. Clearly, qr ∈ Aα(D) if r ≤ 0 and qr /∈ Aα(D) for r > 0; see (2.7). In

particular, for r < 0 one gets

(4.7) 0 = qr(1) =
∞∑
n=0

[Wαkr](n)kα+1(n).



Vol. TBD, 2022 POISSON EQUATION AND HILBERT TRANSFORM 27

Assume that T is a (C,α)-bounded operator onX such that Ker(I−T ) = {0}.
Set A := I − T . Put hr(λ) := λ−r for r ∈ R. Let s > 0 and take n ∈ N0 such

that n < s ≤ n+1. Then b(λ) = λn+1 is a regularizer for the function hs(λ) in

the sectorial calculus and therefore, by Remark 4.6, e = q−(n+1) is a regularizer

for f = qs in the Aα(D)-calculus, having moreover

(I−T )−s :=qs(T ) = (e(T ))−1qs−n−1(T ) = (b(A))−1hs−n−1(A) = hs(A) = A−s.

In other words, the unbounded closed operator (I − T )−s on X is the same if

obtained, by regularization, either from the Aα(D)-calculus or from the sectorial

calculus.

(ii) Looking again at Remark 4.6, take now

h(λ) = log(λ), b(λ) = λ;

e(z) = (1− z), f(z) = log(1− z).

Similarly to the example in (i), we have that log(1−z) is α-regularizable by 1−z
and that

log(I − T ) := (I − T )−1(ef)(T ) = A−1h(A) = log(A)

is the same (unbounded and closed) operator onX independently of using either

the sectorial calculus or the Aα(D)-calculus.

The two properties reflected in the next proposition will be used in Corol-

lary 7.2.

Proposition 4.8: Let T ∈ B(X) be a (C,α)-bounded operator with α > 0.

Then

(4.8) lim
s→1

‖(I − T )s − (I − T )‖ = 0,

and, for 0 < s < 1,

(4.9) (I − T )sX = (I − T )X.

Proof. To show the limit, it is enough to use the Dunford–Riesz formula in the

sectorial calculus applied to the function λs − λ and then letting s→ 1.

With regard to (4.9), it is clear that (I − T )X ⊆ (I − T )sX whence

(I − T )X ⊆ (I − T )sX.
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To prove the converse, note that

∞∑
n=1

[Wαk−s](n)kα+1(n)=

∞∑
n=0

[Wαk−s](n)kα+1(n)−[Wαk−s](0) = −[Wαk−s](0)

by (4.7). Furthermore, taking β = α+ 1 in the equality

(I − T )[Δ−βT ](n− 1) = kβ(n)−
n∑
j=0

kβ−α−1(n− j)[Δ−αT ](j)

given in the proof of Lemma 3.1, one gets

[Δ−(α+1)T ](n− 1)(T − I) = [Δ−αT ](n)− kα+1(n)I, n ∈ N.

Therefore, for x ∈ X and y = (I − T )sx, one has

y = Θα(q−s)x =
∞∑
n=0

[Wαk−s](n)[Δ−αT ](n)x

=

∞∑
n=1

[Wαk−s](n)[Δ−αT ](n)x+ [Wαk−s](0)x

=

∞∑
n=1

[Wαk−s](n)([Δ−αT ](n)− kα+1(n)I)x

=

∞∑
n=1

[Wαk−s](n)[Δ−(α+1)T ](n− 1)(T − I)x,

so that y ∈ (I − T )X. Then (I − T )sX ⊆ (I − T )X as we wanted to show.

Remark 4.9: For a (C,α)-bounded operator T as above it can be also shown

that (I − T )sX is closed if and only if (I − T )X is closed. We do not include

the proof of this result since it is not needed in the paper. Such a property and

Proposition 4.8 are proved for power-bounded operators (case α = 0) in [16,

Prop. 2.1].

5. Admissibility and fractional differences

Here we generalize the notion of admissible function introduced in [28] and show

how to approximate the key function q−1(z) = 1 − z in Aα(D) using (specific

for q−1) approximations of the identity. Our first result gives a representation

of analytic functions by fractional differences.
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Lemma 5.1: Let α > 0 and let f(z) =
∑∞

n=0 f(n)z
n be a holomorphic function

in D such that Dαf exists, [Dαf ](j) ≥ 0 for all j and W−α(Dαf) = f . Then

f(z) =
∞∑
j=0

[Dαf ](j)[Δ−αZ](j), z ∈ D,

where the series converges absolutely and uniformly in compact subsets of D.

Proof. Let z ∈ [0, 1). By Fubini’s Theorem one gets

∞∑
j=0

[Dαf ](j)[Δ−αZ](j) =

∞∑
l=0

zl
∞∑
j=l

kα(j − l)[Dαf ](j) = f(z).

Furthermore, it is clear that the series converges uniformly and absolutely on

compact subsets of D since the representation holds in particular for z ∈ [0, 1)

and Dαf ≥ 0.

Let f be a holomorphic function on D with positive Taylor coefficients. We

will put f(1) to denote the limit

f(1) := lim
0<z↗1

f(z)

in [0,+∞) ∪ {+∞}.

Proposition 5.2: Let α ≥ 0 and let f be a zero-free holomorphic function on

D with non-negative Taylor coefficients and f(1) �= 0. Let 1
f
be given by

1

f(z)
=

∞∑
n=0

g(n)zn, z ∈ D,

and assume that there exists Wαg, with g(0) ≥ 0, [Wαg](0) ≥ 0 and g(j) ≤ 0,

[Wαg](j) ≤ 0, for j ≥ 1.

Then (g(n)) ∈ τα(N0) and therefore 1
f extends continuously to D, f does not

have zeros in D and 1
f
∈ Aα(D). Moreover,

∥∥∥1
f

∥∥∥
Aα(D)

= 2[Wαg](0)− 1

f(1)
,

where 1/∞ := 0 if f(1) = ∞.
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Proof. Since −Wαg is nonnegative it follows that

∞∑
j=1

[Wαg](j)kα+1(j) = lim
0<z↗1

∞∑
j=1

[Wαg](j)[Δ−αZ](j)

= lim
0<z↗1

∞∑
j=1

g(j)zj

= lim
0<z↗1

1

f(z)
− [Wαg](0).

This implies that (g(n)) ∈ τα(N0) with

‖(g(n))‖1,(α) = [Wαg](0)−
∞∑
j=1

[Wαg](j)kα+1(j) = 2[Wαg](0)− 1

f(1)
.

In particular, 1/f admits a continuous extension at every z ∈ C with |z| = 1,

since Aα(D) ⊂ A0(D), where A0(D) ≡ �1. Thus f does not have zeros on D. In

other words, 1
f ∈ Aα(D) with norm

∥∥∥1
f

∥∥∥
Aα(D)

= 2[Wαg](0)− 1

f(1)
.

The formula given in Proposition 5.4 below is established in [5, Lemma 2.7]

for f and h in the Banach algebra τα(N0). Here we will need the formula for

h ∈ τα(N0) but with f not necessarily in τα(N0). Its proof is rather involved

and needs the following lemma.

Lemma 5.3: Let α > 0, q ∈ N and v ∈ N0. Then

kα(q + v) = −
q−1∑
p=0

kα(p)

v+q−p∑
j=q−p

k−α(j)kα(v + q − p− j).

Proof. We apply the induction method. First note that for v = 0 and q ∈ N,

q−1∑
p=0

kα(p)

q−p∑
j=q−p

k−α(j)kα(q − p− j) =

q−1∑
p=0

kα(p)k−α(q − p) = −kα(q).
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Now, suppose that the identity of the statement is true for v = m. Then,

for v = m+ 1,

q−1∑
p=0

kα(p)

m+1+q−p∑
j=q−p

k−α(j)kα(m+ 1 + q − p− j)

=

q−1∑
p=0

kα(p)

(
kα(m+ 1)k−α(q−p)+

m+1+q−p∑
j=q−p+1

k−α(j)kα(m+1+q−p−j)
)

=− k−α(m+ 1)kα(q) +

q−1∑
p=0

kα(p)

m+1+q−p∑
j=q−p+1

k−α(j)kα(m+ 1 + q − p− j)

=kα(q)

m+1∑
j=1

k−α(j)kα(m+ 1− j)

+

q−1∑
p=0

kα(p)

m+1+q−p∑
j=q−p+1

k−α(j)kα(m+ 1 + q − p− j)

=

q∑
p=0

kα(p)

m+1+q−p∑
j=q−p+1

k−α(j)kα(m+ 1 + q − p− j)

=− kα(m+ (q + 1)) = −kα((m+ 1) + q), q ∈ N.

Thus we have completed the induction process and this finishes the proof.

The following proposition will play a key role in the subsequent considera-

tions.

Proposition 5.4: Let α > 0 and let f, h be sequences such that

(i) f is a bounded sequence, f(j) ≥ 0, [Dαf ](j) ≥ 0 for j ∈ N0 and

W−α(Dαf) = f ;

(ii) h ∈ τα(N0) with [Dβh](0) ≥ 0 and [Dβh](j) ≤ 0 (j ≥ 1), for β = 0 and

β = α;

(iii) f ∗ h ∈ τα(N0).

Then

[Wα(f ∗ h)](v) :=
( v∑
j=0

v∑
l=v−j

−
∞∑

j=v+1

∞∑
l=v+1

)
kα(l + j − v)[Dαf ](j)[Wαh](l),

for v ∈ N0.
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Proof. Note that

|[Wα(f ∗ h)](v)| = |[Dα(f ∗ h)](v)| ≤
∞∑
j=0

|k−α(j)|
j+v∑
l=0

f(j + v − l)|h(l)| <∞

since f is bounded and k−α and h are in �1. Thus we can exchange the sum-

mation order in Wα(f ∗ h)(v) to find that

[Wα(f ∗ h)](v)

=

v∑
l=0

h(l)

∞∑
j=0

k−α(j)f(j + v − l) +

∞∑
l=v+1

h(l)

∞∑
j=l−v

k−α(j)f(j + v − l)

=(h ∗Dαf)(v) +

∞∑
l=v+1

[W−α(Wαh)](l)

∞∑
j=l−v

k−α(j)[W−α(Dαf)](j + v−l).

Furthermore,

∣∣∣∣
∞∑

l=v+1

[W−α(Wαh)](l)

∞∑
j=l−v

k−α(j)[W−α(Dαf)](j + v − l)

∣∣∣∣

≤−
∞∑

l=v+1

∞∑
p=l

kα(p−l)[Wαh](p)

∞∑
j=l−v

|k−α(j)|
∞∑

q=j+v−l
kα(q−j−v+l)[Dαf ](q)

=−
∞∑

l=v+1

h(l)
∞∑

j=l−v
|k−α(j)|f(j + v − l) <∞.

Therefore, rearranging the above series and using Lemma 5.3 one obtains

∞∑
l=v+1

h(l)
∞∑

j=l−v
k−α(j)f(j + v − l)

=

∞∑
q=0

∞∑
p=v+1

[Dαf ](q)[Wαh](p)

p∑
l=v+1

kα(p− l)

q+l−v∑
j=l−v

k−α(j)kα(q − j − v + l)

=

∞∑
q=0

∞∑
p=v+1

[Dαf ](q)[Wαh](p)

p−v−1∑
m=0

kα(m)

q+p−v−m∑
j=p−v−m

k−α(j)kα(q+p−v−j−m)

=−
∞∑
q=0

∞∑
p=v+1

[Dαf ](q)[Wαh](p)kα(p− v + q).
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On the other hand,

(h ∗Dαf)(v) =

v∑
j=0

[Dαf ](j)h(v− j) =

v∑
j=0

[Dαf ](j)

∞∑
l=v−j

kα(l+ j − v)[Wαh](l).

Altogether, the result follows.

Assumptions in the above results suggest the following definition.

Definition 5.5: Let α ≥ 0, β be either 0 or α, and f(z) =
∑∞

n=0 f(n)z
n be a

holomorphic function on D. Then f is said to be α-admissible if:

(i) The sequence (f(n)) is bounded, [Dβf ](n) ≥ 0 for n ∈ N0, and

W−β(Dβf) = f.

(ii) The function f does not have zeros inD and, if g(z) := 1
f(z) =

∑∞
n=0 g(n)z

n,

z ∈ D, then the differences W βg exist and satisfy [W βg](n) ≤ 0

for n ≥ 1 and [W βg](0) ≥ 0.

Remark 5.6: (a) If α = m ∈ N then condition W−m(Dmf) = f in (i) above

is redundant. (b) From the assumptions in the above definition and Proposi-

tion 5.2, it follows that g ∈ Aα(D).

Next, we discuss α-admissibility in relation with the algebra Aα(D).

Let f(z) =
∑∞
j=0 f(j)z

j be an α-admissible function on D with reciprocal
1

f(z) =
∑∞

j=0 g(j)z
j. The fact that f1f = 1 means that f ∗ g = k0(= δ0).

For every n ∈ N, let gn be the function

(5.1) gn(z) =
1

f(z)

n−1∑
j=0

[Dαf ](j)[Δ−αZ](j) =

∞∑
j=0

gn(j)z
j ,

and put fn := gnf. Note that gn ∈ Aα(D) since 1
f
, fn ∈ Aα(D). Note also that

gn(1) = 0 if f(1) = ∞, and that gn(1) ≤ 1 if f(1) < ∞, by Lemma 5.1. We

proceed with finding a suitable estimate of the norm of gn in Aα(D).

Theorem 5.7: Let α > 0. Let f be an α-admissible function on D and gn be

defined by (5.1). Then

‖gn‖Aα(D) ≤ 2− gn(1) for all n ≥ 1.
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Proof. By Lemma 5.1 one has f(z) =
∑∞
j=0[D

αf ](j)[Δ−αZ](j) for all z ∈ D.

This series converges absolutely and uniformly on compact subsets. Set

Fn(z) :=

∞∑
j=n

[Dαf ](j)[Δ−αZ](j).

It is readily seen that the sequence of coefficients (fn(j))j≥0 of fn = gnf is such

that

[Dαfn](j) = [Dαf ](j), if 0 ≤ j < n; [Dαfn](j) = 0, if j ≥ n.

Therefore the sequence of coefficients (ϕn(j))j≥0 of Fn satisfies

[Dαϕn](j) = 0, if 0 ≤ j < n; [Dαϕn](j) = [Dαf ](j), if j ≥ n,

since Dαϕn = Dαf−Dαfn. Thus applying Proposition 5.4 to the polynomial fn

we have

[Wαgn](v) = [Wα(fn ∗ g)](v) :=
n−1∑
j=0

v∑
l=v−j

kα(l + j − v)[Dαf ](j)[Wαg](l) ≤ 0

for every v ≥ n. Furthermore

[Wαgn](0) = [Dαf ](0)[Wαg](0)−
n−1∑
j=1

∞∑
l=1

kα(l + j)[Dαf ](j)[Wαg](l) ≥ 0.

On the other hand ϕn ∗ g = f ∗ g − fn ∗ g = δ0 − fn ∗ g ∈ τα(N0) whence

[Wαgn](v) = [Wαδ0](v)− [Wα(ϕn ∗ g)](v) = δ0(v) − [Wα(ϕn ∗ g)](v).

Now, since δ0(0) = 1 and δ0(v) = 0 for v ≥ 1, applying Proposition 5.4 to ϕn ∗g
one gets

[Wαgn](v) =

∞∑
j=n

∞∑
l=v+1

kα(l + j − v)[Dαf ](j)[Wαg](l) ≤ 0, 1 ≤ v ≤ n− 1,

and

[Wαgn](0) = 1 +

∞∑
j=n

∞∑
l=1

kα(l + j)[Dαf ](j)[Wαg](l) ≤ 1,

since the sums of both double series are nonpositive; see conditions (i) and (ii)

on Dαf , Wαg in Definition 5.5.
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All in all,

‖gn‖Aα(D) =

∞∑
j=0

|[Wαgn](j)|kα+1(j)

= [Wαgn](0)−
∞∑
j=1

[Wαgn](j)kα+1(j)

= 2[Wαgn](0)−
∞∑
j=0

[Wαgn](j)kα+1(j)

= 2[Wαgn](0)− gn(1) ≤ 2− gn(1),

as we wanted to prove.

The function q−1(z) = 1 − z in Aα(D) plays a central role in our discussion.

We say that a sequence (an)n≥1 ⊂ Aα(D) is a (1 − z)-bounded approximate

identity if

lim
n→∞(1 − z)an(z) = 1− z

in the norm ofAα(D). Theorem 5.8 shows in particular that the sequence (gn)n≥1

is a (1− z)-bounded approximate identity. If f(1) <∞ then (gn)n≥1 converges

in the norm to the identity element in the algebra Aα(D).

Theorem 5.8: Let α > 0. Let f be an α-admissible function and gn be defined

by (5.1).

(i) If f(1) <∞ then limn→∞ gn(z) = 1 in the norm in Aα(D).

(ii) If f(1) = ∞ then ‖gn‖Aα(D) ≤ 2 for every n.

(iii) If (1− z)f(z) ∈ Aα(D) and [Dαf ](j)jα → 0 as j → ∞, then

lim
n→∞(1− z)gn(z) = 1− z in Aα(D).

Proof. (i) If f(1) <∞, by Lemma 5.1 we have

f(1) = lim
0<z↗1

∞∑
j=0

[Dαf ](j)[Δ−αZ](j) =

∞∑
j=0

[Dαf ](j)kα+1(j).

Therefore

‖gn − 1‖Aα(D) =
1

f(1)

∞∑
j=n

[Dαf ](j)kα+1(j) → 0, n→ ∞.
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(ii) If f(1) = ∞, then the proof of Theorem 5.7 gives

‖gn‖Aα(D) = 2[Wαgn](0)− gn(1) = 2[Wαgn](0)−
1

f(1)

n−1∑
j=0

[Dαf ](j)kα+1(j) ≤ 2.

(iii) Note that

(1− z)gn(z) =
1

f(z)

(n−1∑
j=0

[Dαf ](j)[Δ−αZ](j)−
n−1∑
j=0

[Dαf ](j) z[Δ−αZ](j)

)

with

n−1∑
j=0

[Dαf ](j)z[Δ−αZ](j) =

n∑
j=1

[Dαf ](j − 1)

j∑
l=1

kα(j − l)zl

=

n∑
j=1

[Dαf ](j − 1)([Δ−αZ](j)− kα(j)).

Put

(5.2) (1− z)gn(z) = hn(z)− rn(z)

where

hn(z) :=
1

f(z)

(
[Dαf ](0) +

n−1∑
j=1

([Dαf ](j)− [Dαf ](j − 1))[Δ−αZ](j)

+
n∑
j=1

[Dαf ](j − 1)kα(j)

)

=
1

f(z)

(
[Dαf ](0) +

n∑
j=1

[Dαf ](j−1)kα(j)−
n−1∑
j=1

[Dα+1f ](j − 1)[Δ−αZ](j)

)

and

rn(z) :=
1

f(z)
[Dαf ](n− 1)[Δ−αZ](n).

Let us remark that both hn and rn belong to Aα(D). We claim that

(5.3) lim
n→∞ ‖hn − (1− z)‖Aα(D) = 0 and lim

n→∞ ‖rn‖Aα(D) = 0.

To see this, note that

‖hn − (1− z)‖Aα(D) ≤Mα

∥∥∥1
f

∥∥∥
Aα(D)

‖hnf− (1 − z)f‖Aα(D).
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By Lemma 5.1,

(1− z)f(z) =

∞∑
j=0

[Dαf ](j)[Δ−αZ](j)−
∞∑
j=0

[Dαf ](j) z[Δ−αZ](j)

=[Dαf ](0) +

∞∑
j=1

([Dαf ](j)− [Dαf ](j − 1))[Δ−αZ](j)

+

∞∑
j=1

[Dαf ](j − 1)kα(j)

=[Dαf ](0) +

∞∑
j=1

[Dαf ](j − 1)kα(j)−
∞∑
j=1

[Dα+1f ](j − 1)[Δ−αZ](j),

where the series in the latter line converges since
∞∑
j=1

[Dαf ](j − 1)kα(j) ≤ K

∞∑
j=0

[Dαf ](j)kα(j) = Kf(0),

for some constant K > 0. Moreover, the expansion

(1− z)f(z) = [Dαf ](0) +

∞∑
j=1

[Dαf ](j − 1)kα(j)−
∞∑
j=1

[Dα+1f ](j − 1)[Δ−αZ](j)

shows that the series gives us the representation (4.3) for (1− z)f as an element

of Aα(D) by (4.1), (4.2) and Lemma 4.1. Hence,

‖hnf− (1−z)f‖Aα(D)

=

∥∥∥∥−
∞∑

j=n+1

[Dαf ](j − 1)kα(j) +

∞∑
j=n

[Dα+1f ](j − 1)[Δ−αZ](j)

∥∥∥∥
Aα(D)

=

∞∑
j=n+1

[Dαf ](j − 1)kα(j) +

∞∑
j=n

|[Dα+1f ](j − 1)|kα+1(j),

whence ‖hn − (1 − z)‖Aα(D) → 0 as n→ ∞.

On the other hand,

‖rn‖Aα(D) ≤Mα‖1/f‖Aα(D)‖[Dαf ](n− 1)[Δ−αZ](n)‖Aα(D)

=Mα‖1/f‖Aα(D)[D
αf ](n− 1)kα+1(n) → 0, as n→ ∞,

by the assumption in part (iii). Thus the proof is over.

To end this section, we provide several examples of α-admissible functions

crucial for the sequel. These examples have been inspired by [25].
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General examples. Hausdorff moments. Let ν be a bounded positive

Borel measure on [0, 1) such that

c0 :=

∫ 1

0

(1− t)−1dν(t) <∞.

Let (cn)n≥1 be the Hausdorff moment sequence associated to ν, that is,

cn :=

∫ 1

0

tn−1dν(t), n ∈ N.

Proposition 5.9: Let a, b ≥ 0. Given ν, (cn) as before, put h(0) = a+ b+ c0,

h(1) = −b− c1 and h(n) = −cn, n ≥ 2. For z ∈ D, set

h(z) =
∞∑
n=0

h(n)zn and f(z) := (1− z)−1h(z) =
∞∑
n=0

f(n)zn.

Then (h(n))n≥0 ∈ �1 and

(∀α ≥ 0) [Dαh](0) ≥ 0, [Dαh](n) ≤ 0 (n ≥ 1).

Also,

f(n) ≥ 0, [Dαf ](n) ≥ 0 (n ≥ 0) and lim
n→∞nα[Dαf ](n) = 0 for all α > 0.

Proof. Since
∞∑
n=1

cn =

∫ 1

0

∞∑
n=1

tn−1dν(t) =

∫ 1

0

(1− t)−1dν(t) = c0 <∞

one has (h(n)) ∈ �1. Also, h(n) ≤ 0 for every n ≥ 1 by hypothesis. Now, note

that the sequence (tj−1)j≥1 is in �1 for every t ∈ (0, 1). Then we have, for n ≥ 2,

[Dαh](n) = −
∫ 1

0

∞∑
j=n

k−α(j − n)tj−1dν(t) = −
∫ 1

0

[Dαp1/t](n) t
−2dν(t)

= −
∫ 1

0

[Wαp1/t](n) t
−2dν(t)

= −
∫ 1

0

(1− t)αtn−1dν(t) ≤ 0,

where the first equality is permitted because k−α(j) has constant sign for

j ≥ [α] + 1, see (2.6); the second equality holds because Wα and Dα coincide

on �1 by Proposition 2.3 (iv); for the last equality see Example 2.4(i). Similarly,

[Dαh](1) = −b−
∫ 1

0

(1− t)αdν(t).
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To prove that [Dαh](0) ≥ 0 we proceed as follows. Notice that for ev-

ery q ∈ N one has [Dqh](0) = [Dq−1h](0)− [Dq−1h](1). From here and the fact

that h(0) ≥ 0 and [Dq−1h](1)≤0 one obtains readily the inequality [Dqh](0)≥0,

q ∈ N, by induction. Now, for any β such that α > β > 0,

[Dα−β(Dβh)](0) =

∞∑
n=0

k−α+β(n)
∞∑
j=n

k−β(j − n)h(j)

=

∞∑
j=0

(k−α+β ∗ k−β)(j)h(j) =
∞∑
j=0

k−α(j) = [Dαh](0).

Thus taking β = [α],

[Dαh](0) = [Dα−[α](D[α]h)](0)

= k−α+[α](0)[D
[α]h](0) +

∞∑
n=1

k−α+[α](n)[D
[α]h](n) ≥ 0,

since k−α+[α](0) = 1, [D[α]h](0) ≥ 0 and k−α+[α](n) ≤ 0, [D[α]h](n) ≤ 0 for

every n ≥ 1.

As regards f note that

(1− z)−1h(z) =

( ∞∑
n=0

zn
)( ∞∑

n=0

h(n)zn
)

=

∞∑
n=0

( n∑
j=0

h(j)

)
zn,

so that f(0) = a+ b+ c0 ≥ 0,

f(1) = h(0)+h(1) = a+

∫ 1

0

(1−t)−1dν(t)−
∫ 1

0

dν(t) = a+

∫ 1

0

t(1−t)−1dν(t) ≥ 0

and for n ≥ 2,

f(n) =

n∑
j=0

h(j) = a+ c0 −
n∑
j=1

cj = a+

∫ 1

0

(
1

1− t
−

n∑
j=1

tj−1

)
dν(t) ≥ a ≥ 0.

As for Dαf , we have for all n ≥ 0, j ≥ 0,

j+n∑
q=0

h(q) = a+ b+ c0 − b− c1 −
j+n∑
q=2

∫ 1

0

tq−1dν(t)

= a+

∫ 1

0

dν(t)

1− t
−
j+n∑
q=1

∫ 1

0

tq−1dν(t)

= a+

∫ 1

0

( 1

1− t
− 1− tj+n

1− t

)
dν(t) = a+

∫ 1

0

tj+n

1− t
dν(t).
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Hence, for all n ≥ 0,

[Dαf ](n) =
∞∑
j=0

k−α(j)f(j + n) =
∞∑
j=0

k−α(j)
j+n∑
q=0

h(q)

=
∞∑
j=0

k−α(j)a+
∫ 1

0

[Dαp1/t](0)
tn−1

1− t
dν(t)

=

∫ 1

0

(1− t)αtn

1− t
dν(t) > 0

where we have used that
∑∞

j=0 k−α(j) = (1− z)α |z=1= 0; see (2.4).

Finally,

max{tn(1− t)α : 0 ≤ t ≤ 1} =
( n

n+ α

)n( α

n+ α

)α

and therefore one can apply the dominated convergence theorem to the next

integral to obtain

nα[Dαf ](n) =

∫ 1

0

nαtn
(1 − t)α

1− t
dν(t) → 0, as n→ ∞.

Remark 5.10 (Complete Bernstein functions): The above proposition is a source

of examples of α-admissible functions which can be constructed from complete

Bernstein functions. An analytic function H : C \ (−∞, 0] → C is said to be a

complete Bernstein function if its restricton on the half-plane {λ ∈ C : �λ > 0}
takes the form

H(λ) = a+ bλ+

∫ ∞

0

λ(λ + s)−1 dμ(s)

where a, b ≥ 0 and μ is a positive Borel measure on (0,∞) satisfying

∫ ∞

0

(1 + s)−1dμ(s) <∞.

In [25, Proposition 3.8] it is proven that complete Bernstein functions and Haus-

dorff moments are in close connection: Let H be as before. Then, by passing in

the integral to the measure ν on (0, 1) given by dν(t) = s(1 + s)−2dμ(s), under

the map s = 1/(1+t) (which gives
∫∞
0 (1+s)−1dμ(s) =

∫∞
0 (1−t)−1dν(t) =: c0),

we have∫ ∞

0

λ

λ+s
dμ(s)=

∫ 1

0

λ

1− (1−λ)t
dν(t)

1−t =

∫ 1

0

dν(t)

1− t
−
∫ 1

0

(1− λ)dν(t)

1− (1− λ)t
, �λ > 0.



Vol. TBD, 2022 POISSON EQUATION AND HILBERT TRANSFORM 41

Putting z = 1− λ in D, one gets

H(1−z)= a+b(1−z)+c0−
∫ 1

0

z dν(t)

1− zt
= a+b(1−z)+c0−

∞∑
j=1

(∫ 1

0

tj−1dν(t)

)
zj,

that is, h(z) := H(1− z) satisfies the hypotheses of Proposition 5.9.

On the other hand, the function G defined by

G(λ) := λ−1H(λ), λ ∈ C \ (−∞, 0],

is also a complete Bernstein function, see [39, Th. 6.2]. So, applying the argu-

ment conducted for H to G, and Proposition 5.9 to

g(z) := G(1 − z) =

∞∑
n=0

g(n)zn,

we obtain g(0) ≥ 0, [Dαg](0) ≥ 0 and g(n) ≤ 0, [Dαg](n) ≤ 0 for all n ≥ 1.

Assume moreover that h(z) �= 0 for z ∈ D and let

f(z) := 1/g(z) = (1 − z)−1h(z).

Then f(n) ≥ 0 and [Dαf ](n) ≥ 0 for all n ≥ 0, and limn→∞ nα[Dαf ](n) = 0

by Proposition 5.9 again. In conclusion, f is an α-admissible function and

Theorem 5.8 is applicable to f.

There are many concrete complete Bernstein functions with no zero

in {|1− λ| < 1}; see [39, Chapter 16] for an extensive list of them. For the

aims of this paper we are mainly interested in the two following examples.

Example 5.11: For 0 < r < 1, let Hr(λ) := λr, λ ∈ C \ (−∞, 0]. Then

Hr(λ) =

∫ ∞

0

λ

λ+ t
dμr(t),

with dμr(t) =
sin(πr)
π tr−1dt, is a complete Bernstein function. So, the function

qs(z) = (1− z)−s = (1− z)−1H1−s(1− z), z ∈ D,

is an α-admissible function, for every α ≥ 0 and 0 < s < 1, to which Theorem 5.8

applies. Recall on the other hand that ([Dαks](n)) can be directly computed,

resulting in

Dαks(n) = (sin(πs)/π)B(1 − s+ α, s+ n)

for all n ∈ N0; see (2.11).
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Example 5.12: Let H be given by H(λ) = (λ − 1)−1 log(λ), λ ∈ C \ (−∞, 0].

Then

H(λ) =

∫ ∞

0

λ

λ+ t
dμ(t),

with

dμ(t) =
(t+ 1)

t log2(t) + π2
dt,

is a complete Bernstein function. Hence, the function Λ defined by

Λ(z) =
− log(1 − z)

z
=

∞∑
n=0

L(n)zn, z ∈ D,

where L(n) = 1
n+1 for all n ≥ 0, is an α-admissible function for every α ≥ 0.

Also, the function

(q−1Λ)(z) = 1−
∞∑
n=0

1

n(n+ 1)
zn, z ∈ D,

is in Aα(D). Thus Λ satisfies the conditions of Theorem 5.8. Note on the other

hand that a direct calculation gives us

DαL(n) = B(α+ 1, n+ 1), n ∈ N0.

We wish to thank the referee for pointing out references [18, 25, 31].

6. Approximating identities with Taylor coefficients

The construction of (1−z)-approximate identities in Aα(D) carried out in The-

orem 5.8 requires using partial sums formed with fractional differences. Such

approximate identities are suitable for our objectives in Section 7 and Section 8

below, concerning general domains of operatorial functions or higher degree α.

For the specific examples given at the end of Section 5 and α ∈ (0, 1) one can

obtain (1− z)-approximate identities from partial sums of Taylor expansions.
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Let f be a zero-free holomorphic function on the unit disc with

(1/f)(z) =

∞∑
j=0

g(j)zj.

Let then g0n denote the approximating function given in [28, Lemma 4.6], that

is,

g0n(z) := (1/f)(z)

n−1∑
j=0

f(j)zj, |z| ≤ 1.

Put

f0n(z) := g0n(z)f(z)

and

g0n(j) =

n−1∑
l=0

f(l)g(j − l)

for j ≥ n. By [28, Lemma 4.6] we have

(6.1) g0n(z) = 1 +

∞∑
j=n

g0n(j)z
j .

In the sequel, we deal with sequences (g0n)n≥1 as before which correspond to

the α-admissible functions f = qs and f = Λ of Example 5.11 and Example 5.12

respectively. For α in a certain range of values, Theorem 6.2 and Theorem 6.4

below prove that (g0n)n≥1 is a bounded (1 − z)-approximate identity in each

case. The first theorem requires the following result.

Lemma 6.1: Let m ∈ N ∪ {0} and v, r > 0 be such that v + r ≥ 2. Then

Γ(m+ r + 1)

Γ(m+ r + v)

m∑
j=0

Γ(j − λ)

Γ(j + 1)

Γ(r + v +m− j + λ)

Γ(r +m+ 1− j)

=
Γ(r + v + λ)

Γ(r)

m∑
j=0

Γ(j − λ)

Γ(j + 1)

Γ(j + r)

Γ(j + r + v)

for every λ ∈ C such that �λ+ 2 > 0 and λ �= −1, 0, 1, 2, . . . .

Proof. The equality of the statement is proven in [6, Th. 1.3] for v, r > 0,

m ∈ N ∪ {0} and λ ∈ (0,∞) \ N. In fact, both members of the equality are

analytic functions on the connected open set {�λ > (−2), λ �= −1, 0, 1, 2, . . .}
under the condition v + r ≥ 2. So, the lemma follows from [6, Th. 1.3] by

analytic continuation.
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Theorem 6.2: Let s ∈ (0, 1). Let f = qs and let g0n be as above, corresponding

to f = qs. Then for 0 < α < 1− s one has

(i) ‖g0n‖Aα(D) ≤M for every n, with M > 0 independent of n,

(ii) limn→∞(1− z)g0n(z) = 1− z in Aα(D).

Proof. (i) Let n ∈ N. First of all, note that

g0n(j) =
n−1∑
l=0

ks(l)k−s(j − l) < 0,

for j ≥ n. Then by (6.1) we have

[Dαg0n](0) = 1 +

∞∑
l=n

k−α(l)g0n(l) > 0;

[Dαg0n](j) =

∞∑
l=n

k−α(l − j)g0n(l) > 0 (1 ≤ j ≤ n− 1).

Also, if j ≥ n by (6.1) and the α-admissibility of qs ≡ (k−s(n)) we obtain

[Dαg0n](j) =

∞∑
l=j

k−α(l − j)

n−1∑
u=0

ks(u)k−s(l − u)

=

n−1∑
u=0

ks(u)

∞∑
l=j

k−α(l − j)k−s(l − u)

=
n−1∑
u=0

ks(u)[D
αk−s](j − u) < 0.

Secondly, by (4.3),

∞∑
j=0

Dαg0n(j)kα+1(j) = g0n(1) =
1

qs(1)

n−1∑
j=0

ks(j) = 0

since qs(1) = 0.

Finally, note that, for l ≥ n,

0 = δ0(l) =
l∑

u=0

ks(u)k−s(l − u)

and so
n−1∑
u=0

ks(u)k−s(l − u) = −
l∑

u=n

ks(u)k−s(l − u).
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Therefore,

‖g0n‖Aα(D) =

∞∑
j=0

|[Dαg0n](j)|kα+1(j)

=

n−1∑
j=0

[Dαg0n(j)]kα+1(j)−
∞∑
j=n

[Dαg0n](j)kα+1(j)

= 2

n−1∑
j=0

[Dαg0n](j)kα+1(j)

(6.1)
= 2

n−1∑
j=0

kα+1(j)

∞∑
l=n

k−α(l − j)g0n(l) + 2

= 2− 2

n−1∑
j=0

kα+1(j)

∞∑
l=n

k−α(l − j)

l∑
q=n

ks(q)k−s(l − q)

= 2− 2
n−1∑
j=0

kα+1(j)
∞∑
q=n

ks(q)[D
sk−α](q − j)

= 2 +Kα,s

∞∑
q=n

ks(q)

n−1∑
j=0

kα+1(j)
Γ(−α+ q − j)

Γ(s+ 1 + q − j)
,

with

Kα,s = − 2Γ(1 + α+ s)

Γ(1 + α)Γ(−α) > 0,

where we have used (2.11) in the last equality. Let us have a closer look at the

general term of the latter series. For q ≥ n, put

Qs,α,n(q) :=
Γ(s+ q + 1)

Γ(q + 1)

n−1∑
j=0

Γ(α+ 1 + j)

Γ(j + 1)

Γ(−α+ q − j)

Γ(s+ 1 + q − j)
,

so that

ks(q)

n−1∑
j=0

kα+1(j)
Γ(−α+ q − j)

Γ(s+ 1 + q − j)
=

Qs,α,n(q)

(q + s)Γ(s)Γ(α + 1)
.
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Putting m = n − 1, v = 1 − s, r = q − n + s + 1, λ = −α − 1, rewriting

Qs,α,n(q) accordingly, and using Lemma 6.1, one obtains, once having come

back to n, s, q, α,

Qs,α,n(q)

(q + s)Γ(s)Γ(α+ 1)
=

Γ(q − n+ 1− α)

(q + s)Γ(q − n+ s+ 1)

n−1∑
j=0

kα+1(j)ks(j + q − n+ 1).

Hence, using that

ks(r + 1) ≤ ks(r)

for 0 < s < 1 and r ≥ 0, and (2.7) one has

‖g0n‖Aα(D) = 2 +Kα,s

n−1∑
j=0

kα+1(j)

∞∑
p=0

Γ(p+ 1− α)

(p+ n+ s)Γ(p+ 1 + s)
ks(j + p+ 1)

≤ 2 +Kα,s

n−1∑
j=0

kα+1(j)ks(j + 1)

∞∑
p=0

Γ(p+ 1− α)

(p+ n+ s)Γ(p+ 1 + s)

< 2 +K ′
α,s

∞∑
p=0

∑n−1
j=0 (j + 1)α(j + 1)s−1

p+ n+ s

Γ(p+ s+ 1− α− s)

Γ(p+ s+ 1)

≤ 2 +K ′′
α,s

∞∑
p=0

nα+s

(p+ n+ s)
(p+ s)−(α+s)

= 2 +K ′′
α,sn

α+s

(
1

sα+s(s+ n)
+

∞∑
p=1

1

(p+ s+ n)(p+ s)α+s

)

≤ 2 +K ′′
α,sn

α+s

(
1

sα+s(s+ n)
+

∞∑
p=1

∫ p+s

p+s−1

du

(u+ n)uα+s

)

≤ 2 +K ′′
α,sn

α+s

(
1

sα+s(s+ n)
+

∫ ∞

0

du

(u + n)uα+s

)

= 2 +K ′′
α,sn

α+s

(
1

sα+s(s+ n)
+

Γ(1− α− s)Γ(α+ s)

nα+s

)

≤Mα,s

for some constants K ′
α,s > 0, K ′′

α,s > 0, Mα,s > 0.
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(ii) Let n ∈ N and |z| < 1. Recall the notation

gn(z) =
1

f(z)

n−1∑
l=0

[Dαf ](l) [Δ−αZ](l)

in Section 5 and put

sn(z) =
(1− z)

f(z)

n−1∑
l=0

[Δ−αZ](l)
∞∑
j=n

k−α(j − l)f(j).

Then we can write

(1− z)g0n(z) =
(1− z)

f(z)

n−1∑
j=0

f(j)(k−α ∗Δ−αZ)(j)

=
(1− z)

f(z)

n−1∑
l=0

[Δ−αZ](l)

n−1∑
j=l

k−α(j − l)f(j)

= (1 − z)gn(z)−
(1 − z)

f(z)

n−1∑
l=0

[Δ−αZ](l)

∞∑
j=n

k−α(j − l)f(j)

= (1 − z)gn(z)− sn(z),

and one has

lim
n→∞(1− z)g0n = 1− z

in Aα(D) if and only if

lim
n→∞ ‖sn‖Aα(D) = 0,

by Theorem 5.8 (iii). To show that the latter limit is zero we proceed as follows.

Since

z[Δ−αZ](l) = [Δ−αZ](l + 1)− kα(l + 1)

and

[Dk−α](j) = −k−α−1(j + 1)
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one gets

f(z)sn(z) =

n−1∑
l=0

[Δ−αZ](l)

∞∑
j=n

k−α(j − l)f(j)

−
n∑
l=1

[Δ−αZ](l)

∞∑
j=n

k−α(j − l + 1)f(j)

+

n−1∑
l=0

kα(l + 1)

∞∑
j=n

k−α(j − l)f(j)

=

( ∞∑
j=n

k−α(j)f(j) +
n∑
l=1

kα(l)

∞∑
j=n

k−α(j − l + 1)f(j)

)

−
n∑
l=1

[Δ−αZ](l)

∞∑
j=n

k−α−1(j − l + 1)f(j)

− [Δ−αZ](n)

∞∑
j=n

k−α(j − n+ 1)f(j)

=s1n(z) + s2n(z) + s3n(z),

where the meaning of s1n(z), s
2
n(z), s

3
n(z) is clear.

By (2.4) and Lemma 4.1 we have

‖s1n‖Aα(D) ≤
∣∣∣∣

∞∑
j=n

k−α(j)f(j)
∣∣∣∣+

∣∣∣∣
n∑
l=1

kα(l)

∞∑
j=n

k−α(j − l + 1)f(j)

∣∣∣∣

≤
(
−

∞∑
j=n

k−α(j)
)
f(n) +

n∑
l=1

kα(l)

(
−

∞∑
j=n

k−α(j − l + 1)

)
f(n)

=

( n−1∑
j=0

k−α(j)
)
ks(n) +

n∑
l=1

kα(l)

( n−l∑
u=0

k−α(u)
)
ks(n)

= ks(n)

[
k1−α(n− 1) +

n∑
l=1

kα(l)k1−α(n− l)

]

= ks(n)[k1−α(n− 1) + (kα ∗ k1−α)(n)− k1−α(n)]

= ks(n)[k1−α(n− 1) + (1− k1−α(n)] → 0, as n→ ∞,

since, within the above sums, f(j) > 0, kα(l) > 0 and k−α(j), k−α(j− l+1) < 0

for j ≥ n and 1 ≤ l ≤ n, and the sequence (f(j)) is decreasing.
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By a similar argument as above, using this time (2.4), (4.2), (4.3) and Lem-

ma 4.1, and that k−(α+1)(q) ≥ 0 if q ≥ 2, k−α(1) = −α, we get

‖s2n‖Aα(D) =

n−1∑
l=1

kα+1(l)

∞∑
j=n

k−(α+1)(j − l + 1)f(j)

+ kα+1(n)

∣∣∣∣
∞∑
j=n

k−(α+1)(j − n+ 1)f(j)

∣∣∣∣

≤
n−1∑
l=1

kα+1(l)

∞∑
j=n

k−(α+1)(j − l + 1)f(j)

+ kα+1(n)

[
|k−(α+1)(1)|f(n) +

∞∑
j=n+1

k−(α+1)(j − n+ 1)f(j)

]

≤f(n)
n−1∑
l=1

kα+1(l)

∞∑
j=n

k−(α+1)(j − l + 1)

+ (α+ 1)kα+1(n)f(n) + kα+1(n)

( ∞∑
j=n+1

k−(α+1)(j − n+ 1)

)
f(n)

=− f(n)
n−1∑
l=1

kα+1(l)
n−l∑
u=0

k−(α+1)(u) + (α+ 1)kα+1(n)f(n)

− kα+1(n)

( 1∑
u=0

k−(α+1)(u)

)
f(n)

=− f(n)

n−1∑
l=1

kα+1(l)(k−(α+1) ∗ k1)(n− l) + (α + 1)kα+1(n)f(n)

− kα+1(n)(k−(α+1) ∗ k1)(1)f(n)

=

(
−
n−1∑
l=1

kα+1(l)k−α(n− l) + (α + 1)kα+1(n) + αkα+1(n)

)
f(n)

=[−(kα+1 ∗ kα)(n)+kα+1(n)kα(0)+(α+1)kα+1(n) + αkα+1(n)]f(n)

=[−1 + (1 + (α+ 1) + α)kα+1(n)]f(n)

=[−1 + 2(α+ 1)kα+1(n)]f(n)

=[−1 + 2(α+ 1)kα+1(n)]ks(n) → 0, as n→ ∞,

since α+ s− 1 < 0.
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Finally,

‖s3n‖Aα(D) =kα+1(n)

∣∣∣∣
∞∑
j=n

k−α(j − n+ 1)f(j)

∣∣∣∣
=kα+1(n)|[Dαf ](n− 1)− f(n− 1)| → 0, as n→ ∞,

since f=qs satisfies Proposition 5.9 (so its last part in particular) and α+s−1<0.

All in all, we have shown that ‖fsn‖Aα(D) → 0 as n → ∞. It follows that

limn→∞ ‖sn‖Aα(D) = 0 since 1/f = q−s ∈ Aα(D).

Remark 6.3: Let 0 < s < 1. If we suppose that α ≥ 1 − s, then the sequence

of functions (g0n)n≥1 is not a bounded (1 − z)-approximate identity. Indeed,

proceeding as in the proof of Theorem 6.2 (i), we get

‖g0n‖A1−s(D) = 2−
n−1∑
j=0

2k2−s(j)
Γ(2− s)Γ(s− 1)

∞∑
v=0

ks(j + v + 1)

(v + n+ s)(v + s)
.

Since the sequence (ks(n)) is decreasing and

n−1∑
j=0

k2−s(j) = k3−s(n− 1) ≥ csn
2−s,

with cs > 0, one has by [21, Eq. (1)]

‖g0n‖A1−s(D) ≥ 2 + Cs

∞∑
v=0

Hn(v),

where

Hn(v) =
n2−s

(v + n+ s)2−s(v + s)

increases to (v + s)−1 as n → ∞. Therefore ‖g0n‖A1−s(D) is not uniformly

bounded in n and so, by (2.10), ‖g0n‖Aα(D) is not uniformly bounded in n for

every α ≥ 1− s.

The second theorem in this section gives an analog of Theorem 6.2 for the

function Λ defined (in Example 5.12) by

Λ(z) = −z−1 log(1− z), z ∈ D.

Theorem 6.4: Let f = Λ and let gLn denote the function g0n corresponding to

Λ as above. Then

(i) ‖gLn‖Aα(D)≤M for every n and 0≤α≤1, with M > 0 independent of n,

(ii) limn→∞(1− z)gLn(z) = 1− z in Aα(D) for 0 ≤ α < 1.
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Proof. (i) Let n ≥ 1. Note that, by the equality prior to (6.1),

gLn (n) = (f ∗ g)(n)− f(n)g(0) = −(n+ 1)−1.

Thus we have [DgLn ](0) = 1, [DgLn ](j) = 0 for 1 ≤ j ≤ n− 2, by (6.1), and

[DgLn ](n− 1) = −gLn (n) = −(n+ 1)−1.

Moreover, for j ≥ n we have

gLn (j) =

n−1∑
l=0

f(l)g(j − l) < 0

and the 1-admisibility of f implies

[DgLn ](j) = gLn (j)− gLn (j + 1) =

n−1∑
l=0

f(j)[Dg](j − l) < 0.

Since gLn ∈ A1(D), by (4.3) one gets

1 +

∞∑
j=n−1

[DgLn ](j)k2(j) =

∞∑
j=0

[DgLn ](j)k2(j) = gLn(1) =
1

f(1)

n−1∑
j=0

1

j + 1
= 0

and then

‖gLn‖A1(D) =
∞∑
j=0

|[DgLn ](j)|k2(j) = 1−
∞∑

j=n−1

[DgLn ](j)k2(j) = 2.

Finally, the inclusions given in (2.10) imply the result.

(ii) Write (1−z)gLn(z) = (1−z)gn(z)−sn(z) where gn and sn = 1
f
(s1n+s2n+s3n)

have the same meaning as in the proof of Theorem 6.2. Then, as in that theorem,

it is enough to prove that ‖sn‖Aα(D) → 0 as n→ ∞ to arrive at the conclusion.

To show this, note that

‖s1n‖Aα(D) ≤ −f(n)[W−1k−α](n)− f(n)

n∑
l=1

kα(l)[W
−1k−α](n− l + 1)

=
k1−α(n− 1)

n+ 1
+

1

n+ 1

n∑
l=1

kα(l)k1−α(n− l)

=
k1−α(n− 1)

n+ 1
+

1

n+ 1
(k1(n)− k1−α(n)) → 0, as n→ ∞,
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where the first equality is obtained from (2.4); also,

‖s2n‖Aα(D) ≤ −f(n)
n∑
l=1

kα+1(l)k−α(n− l)

= − 1

n+ 1
(k1(n)− kα+1(n)− k−α(n)) → 0, as n→ ∞,

and by (2.6) and (2.4) once again,

‖s3n‖Aα(D) = kα+1(n)

∞∑
j=n

(−k−α(j − n+ 1))f(j)

≤ kα+1(n)

n+ 1

(
−

∞∑
u=1

k−α(u)
)

=
kα+1(n)

n+ 1
→ 0, as n→ ∞.

Remark 6.5: Let α = 1 and write

(1 − z)gLn(z) = 1− z + gLn (n)−
∞∑

j=n+1

[DgLn ](j − 1)zj

so that

‖(1− z)gLn(z)− (1− z)‖A1(D) ≥ |gLn (n)|k2(n− 1) =
n

n+ 1
.

This implies that the sequence (gLn)n≥1 is not a (1− z)-approximate identity.

7. Domains of operator functions in terms of Taylor coefficients

In this section, we characterize the domain of operators f(T ) given by the func-

tional calculus associated with a (C,α)-bounded operator T and α-admissible

functions f. To do this, we transfer the results of Section 5 to operators. Our

results extend the results obtained in [28] from the case α = 0 to the case of

arbitrary α > 0. Part of the proofs mimic those of [28], but even in these cases

we include them for the convenience of readers.

Proposition 7.1: Let α > 0. Let f be an α-admissible function, and (gn)n≥1

be defined as in Section 6. Let T be a (C,α)-bounded operator on X with

Ker(I − T ) = {0}.
(i) If f(1) <∞ then limn→∞ gn(T ) = I in the operator norm.

(ii) If f(1) = ∞ then ‖gn(T )‖ ≤ 2Kα(T ), n ≥ 1.
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(iii) If f(1) = ∞, (1− z)f(z) ∈ Aα(D) and [Dαf ](j)jα → 0 as j → ∞, then

lim
n→∞(I − T )gn(T ) = I − T in the operator norm.

(iv) If f(1) = ∞, (1− z)f(z) ∈ Aα(D) and x ∈ X is such that

[Dαf ](j − 1)[Δ−αT ](j)f(T )−1x→ 0 as j → ∞,

then

lim
n→∞(I − T )gn(T )x = (I − T )x in norm.

Proof. Assertions (i), (ii) and (iii) are straightforward consequences of The-

orem 5.8 and the estimate (4.4) involving the functional calculus set up in

Section 4 for T . As regards part (iv), applying the functional calculus to (5.2)

we have

(7.1) (I − T )gn(T ) = hn(T )− [Dαf ](n− 1)[Δ−αT ](n)f(T )−1,

and then, applying the continuity of the calculus to the limit involving h in (5.3),

one obtains limn→∞ hn(T ) = I−T in the operator norm. Then the result follows

by the hypothesis on the second term in (7.1).

Corollary 7.2: Let α > 0 and let f be an α-admissible function such

that (1 − z)f(z) ∈ Aα(D), and let T be a (C,α)-bounded operator on X with

Ker(I − T ) = {0}. Then

lim
n→∞ gn(T )x = x, x ∈ Ran(I − T ),

if and only if

lim
n→∞[Dαf ](n− 1)[Δ−αT ](n)w = 0, w ∈ Ran(I − T ).

Proof. First we prove the “if” part. Let y ∈ X . Take s ∈ (0, 1). By Proposition

4.8 we have x = (I − T )sy ∈ (I − T )X and then we get

lim
n→∞[Dαf ](n− 1)[Δ−αT ](n)f(T )−1x = 0

from the hypothesis. Therefore it follows by Proposition 7.1 (iv) that

(7.2) lim
n→∞ gn(T )(I − T )1+sy = (I − T )1+sy in norm.
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Then the uniform boundedness of {gn(T )}n∈N given in Proposition 7.1 (i)

and (ii), together with (7.2) and (4.8), imply that

‖gn(T )(I − T )y − (I − T )y‖ ≤‖gn(T )(I − T )y − gn(T )(I − T )1+sy‖
+ ‖gn(T )(I − T )1+sy − (I − T )1+sy‖
+ ‖(I − T )1+sy − (I − T )y‖ → 0,

as n→ ∞, s→ 0+. Hence, we conclude that

lim
n→∞ gn(T )x = x, x ∈ Ran(I − T ).

Conversely, assume limn→∞ gn(T )x = x for all x ∈ Ran(I − T ). Then

lim
n→∞(I − T )gn(T ) = I − T

in the operator norm, and by (7.1) one gets

lim
n→∞[Dαf ](n− 1)[Δ−αT ](n)f(T )−1 = 0

strongly. Since f(T )(I − T ) ∈ B(X) we have Ran(I − T ) ⊂ Dom f(T ), hence

lim
n→∞Dαf(n− 1)Δ−αT (n)w = 0,

for all w ∈ Ran(I − T ).

In view of the above proposition and corollary and to simplify our formula-

tion below, we assume without loss of generality that X = Ran(I − T ). Note

that in this case if T is (C,α)-bounded then it is (C, β)-ergodic for all β > α

(Theorem 3.3).

Theorem 7.3: Let α > 0 and let f be an α-admissible function such that

(1 − z)f(z) ∈ Aα(D) and [Dαf ](j)jα → 0 as j → ∞. If T is a (C,α)-bounded

operator on X with Ran(I −T ) = X, the following assertions are equivalent for

a given x in X :

(i) x ∈ Dom f(T ).

(ii) The series
∑

j≥0[D
αf ](j)[Δ−αT ](j)x converges in norm.

(iii) The series
∑

j≥0[D
αf ](j)[Δ−αT ](j)x converges weakly.

Furthermore, if one of the equivalent conditions (i)–(iii) holds, then

f(T )x =
∑
j≥0

[Dαf ](j)[Δ−αT ](j)x.
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Proof. Since Ran(I − T ) = X we have that gn(T ) converges to the identity

operator in the strong topology, by Corollary 7.2. From the hypothesis, f is

α-regularizable by 1− z so that f(T ) is well-defined (as closed operator).

(i)⇒(ii) Let x ∈ Dom f(T). Since gn(T )f(T ) ⊂ (gnf)(T ), one gets

n−1∑
j=0

[Dαf ](j)[Δ−αT ](j)x = (gnf)(T )x = gn(T )f(T )x→ f(T )x, n→ ∞.

(ii)⇒(iii) This is obvious.

(iii)⇒(i) Assume y := limn→∞
∑n−1

j=0 [D
αf ](j)[Δ−αT ](j)x weakly, for some

x ∈ X . Let fn be as prior to Theorem 5.7. Then,

[(1− z)f](T )x = lim
n→∞(I − T )fn(T )x

= (I − T )
∑
j≥0

[Dαf ](j)[Δ−αT ](j)x = (I − T )y,

with convergence in the weak topology of X . Hence x ∈ Dom f(T) and

f(T )x = (I − T )−1[(1− z)f](T )x = y.

Remark 7.4: Note that from (5.2) we have

(I − T )fn(T ) = (fhn)(T )− [Dαf ](n− 1)[Δ−αT ](n).

In addition,

[Dαf ](n− 1)[Δ−αT ](n) = T [Dαf ](n− 1)[Δ−αT ](n− 1) + [Dαf ](n− 1)kα(n).

Then, following ideas of [28, Th. 5.6], the previous identities imply that the

assertions (i)–(iii) of Theorem 7.3 are equivalent to the Cesàro convergence

and/or the Cesàro weak convergence of∑
j≥0

[Dαf ](j)[Δ−αT ](j)x.

Also, similarly to [28, Th. 5.6], if X is a reflexive Banach space then assertions

(i)–(iii) of Theorem 7.3 are equivalent to

sup
N

∥∥∥∥
N∑
j=0

[Dαf ](j)[Δ−αT ](j)x

∥∥∥∥ <∞.

The details of all of these claims are rather straightforward and left for verifi-

cation to the reader.
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8. Fractional Poisson equation and the logarithm

As before, we assume that T is a (C,α)-bounded operator on X with (I −T )X

dense in X . Then it is readily seen by (4.8) that ((I−T )s)s≥0 is a C0-semigroup

on X , where (I − T )s is defined by the holomorphic functional calculus. The

semigroup extends to a holomorphic C0-semigroup ((I−T )s)	(s)≥0, but we will

not need this fact in the sequel. Let log(I−T ) denote the infinitesimal generator

of ((I − T )s)Re s>0. Next, we discuss the solvability of the fractional Poisson

equation for T , as well as the domain of the generator log(I − T ). To do this,

we apply the results on domains of operatorial functions of Section 7.

Fractional Poisson equation. By (abstract) fractional Poisson equation

we mean the equation (I − T )su = x where x is given and u is the unknown.

If s = 1, then (I − T )u = x is just a standard abstract Poisson equation,

according to the established terminology; see [16].

By hypothesis, I − T is injective and so

(I − T )−s := ((I − T )s)−1

is such that

Ran(I − T )s = Dom(I − T )−s.

In fact, (I − T )−s = qs(T ) where qs is α-admissible; see Example 5.11. Obvi-

ously, the equation has a solution if and only if x lies in Ran(I − T )s and the

solution u is u = (I−T )−sx. First, we characterize the property x ∈ Ran(I−T )s
through convergence of series involving Cesàro sums of T .

Theorem 8.1: Let α > 0 and let T be a (C,α)-bounded operator on X with

(I − T )X = X and let 0 < s < 1. For x ∈ X the following assertions are

equivalent:

(i) x ∈ Ran(I − T )s.

(ii) The series
∑∞

n=1
1

n1+α−s [Δ
−αT ](n)x converges in norm.

(iii) The series
∑∞

n=1
1

n1+α−s [Δ
−αT ](n)x converges weakly in X .

Furthermore, if one of the equivalent conditions (i)–(iii) holds then

(I − T )−sx =
sin(πs)Γ(1 − s+ α)

π

∞∑
n=0

Γ(s+ n)

Γ(n+ α+ 1)
[Δ−αT ](n)x.
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Proof. The equivalence between (i) and either weak or norm convergence of the

series
sin(πs)Γ(1 − s+ α)

π

∞∑
n=0

Γ(s+ n)

Γ(n+ α+ 1)
[Δ−αT ](n)x

follows by Theorem 7.3 and (2.11). To finish the proof it is then enough to

apply (2.12).

The mean ergodic theorem for power-bounded operators T says that

sup
n

‖M0
T (n)‖ <∞

jointly with
Ran(I − T ) = X

imply that M1
T (n)x converges (to 0), as n → ∞, for every x ∈ X . Further,

if x ∈ Ran(I − T )s with 0 < s < 1 then the convergence takes place with the

polynomial rate ‖M1
T (n)x‖ = o(n−s) as n → ∞, [16, 28]. It appears that a

similar result holds for (C,α)-bounded operators as the next statement shows.

Recall, Mβ
T (n) = kβ+1(n)

−1[Δ−βT ](n) for n ≥ 0, β > 0.

Corollary 8.2: Let α > 0 and let T be a (C,α)-bounded operator onX where

X = Ran(I − T ). Let β > α. Then limn→∞Mβ
T (n)x = 0 for every x ∈ X .

Moreover, if x ∈ Ran(I − T )s with 0 < s < 1 then

‖Mβ
T (n)x‖ =

⎧⎪⎪⎨
⎪⎪⎩
o(1), α < β < α+ 1− s,

o(n−s−β+α+1), α+ 1− s ≤ β < α+ 1,

o(n−s), β ≥ α+ 1.

Proof. The ergodicity of T for β > α is a direct consequence of Theorem 3.3. Re-

garding the rate of convergence for x ∈ Ran(I−T )s, the case α < β ≤ α+ 1− s

is redundant, following from the ergodicity of T . For β = α + 1, the se-

ries
∑∞

n=1 n
s−α−1[Δ−αT ](n)x is convergent in norm by Theorem 8.1. Then,

by (vector-valued) Kronecker’s Lemma [16, p. 103], we have∥∥∥∥ns−α−1
n∑
j=0

[Δ−αT ](j)x

∥∥∥∥ = ns−α−1+

∥∥∥∥ns−α−1
n∑
j=1

[Δ−αT ](j)x

∥∥∥∥ → 0, n→ ∞.

Hence

‖Mα+1
T (n)x‖ =

∥∥∥ (k1 ∗ kα ∗ T )(n)

kα+2(n)
x
∥∥∥ ∼

∥∥∥∥ 1

nα+1

n∑
j=0

[Δ−αT ](j)x

∥∥∥∥ =o(n−s),

as n→ ∞.
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Now, assume α + 1 − s < β < α + 1. Let χ[0,n] stand for the characteristic

function of the interval of integers [0, n]. Then, for some constant K > 0,

(n+ 1)β−α+s−1‖Mβ
T (n)x‖

≤ K

(n+ 1)α+1−s

∥∥∥∥
n∑
j=0

kβ−α−1(j)[Δ
−(α+1)T ](n− j)x

∥∥∥∥

≤ K
∞∑
j=0

|kβ−α−1(j)|χ[0,n](j)
‖[Δ−(α+1)T ](n− j)x‖

(n− j + 1)α+1−s → 0, as n→ ∞,

since (q + 1)−(α+1−s)‖[Δ−(α+1)T ](q)x‖ → 0 as q → ∞ (case β = α + 1)

and kα−β−1 lies in �1.

Finally, for β > α+ 1, in particular T is a (C, β − 1)-bounded operator, and

it follows by previous arguments that ‖Mβ
T (n)x‖ = o(n−s), as n → ∞, for

every x ∈ Ran(I − T )s.

Remark 8.3: Assume for a moment that s = 1 and then that x ∈ Ran(I − T ).

In the second part of the proof of Lemma 3.1, where assumptions β ≥ α + 1

and α < β < α+ 1 are explicitly and separately considered, it is shown that

Mβ
T (n)x = O(n−1) if β ≥ α+ 1 and Mβ

T (n)x = O(nα−β), if α < β < α+ 1,

as n → ∞, for every (C,α) bounded operator T (for some comments in the

case α = 0, that is, for power-bounded operators, and β = 1, see [24, Prop. 1.1]).

Corollary 8.2 is an (improved) extension of such estimates for x ∈ Ran(I −T )s,

0 < s < 1.

The fact that the rate of convergence of the series in the above theorem and

corollary are given in terms of (fractional) Cesàro sums seems to be appropriate,

on account of the general character of (C,α)-bounded operators. However, if

one restricts the range of α to values between 0 and 1− s, it is then possible to

express convergence only involving the Taylor series of (I−T )−s. The next the-
orem extends the corresponding results obtained for power-bounded operators

in [16, 28].

Theorem 8.4: Let s be such that 0 < s < 1 and let α ∈ (0, 1 − s). Let T

be a (C,α)-bounded operator on X with (I − T )X = X . Then the following

assertions are equivalent:

(i) x ∈ Ran(I − T )s.
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(ii) The series
∑∞

n=1
1

n1−sT
nx converges in norm (or weakly).

If one of the equivalent conditions (i) or (ii) holds, then

(I − T )−sx =

∞∑
n=0

ks(n)T
nx.

Proof. The argument follows similar lines to those of the previous Theorem 8.1

and Theorem 7.3, by using the bounded (1− z)-approximate identity g0n of Sec-

tion 6 instead gn. Suppose first that x belongs to Ran(I − T )s.

Then g0n(T )qs(T ) ⊂ (g0nqs)(T ) and hence we have

N−1∑
n=0

ks(n)T
nx =

(N−1∑
n=0

ks(n)T
n

)
q−s(T )qs(T )x

= g0N (T )(I − T )−sx −→ (I − T )−sx, N → ∞,

since limN→∞ g0N (T ) = I strongly on X by Theorem 6.2. Conversely, suppose

now that there exists y := limN→∞
∑N−1

n=0 ks(n)T
nx for some x ∈ X (weakly

or in norm). Then

[(1− z)qs](T )x = lim
N→∞

(I − T )qs(T )g
0
N(T )x

= lim
N→∞

(I − T )

(N−1∑
n=0

ks(n)T
nx

)
= (I − T )y,

so that x ∈ Dom(I − T )−s and (I − T )−sx = y. The equivalence between (i)

and (ii) follows now from (2.7).

Corollary 8.5: Let s be such that 0 < s < 1 and let α ∈ (0, 1− s). Assume

that T is a (C,α)-bounded operator on X with X = Ran(I − T ). Let β > α.

Then limn→∞Mβ
Tx = 0 for every x ∈ X .

Moreover, if x ∈ Ran(I − T )s then

‖Mβ
T (n)x‖ =

⎧⎨
⎩
o(1), α < β < 1− s,

o( 1
nβ+s−1 ), 1− s ≤ β ≤ 1.

Proof. The first part of the corollary is a consequence of Theorem 3.3. As for

the rates of convergence, the proof runs parallel to that of Corollary 8.2, using

Kronecker’s Lemma to first show that ‖M1
T (n)x‖ = o(n−s), as n → ∞, and

then convolution for 1− s ≤ β < 1.
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Remark 8.6: Under assumptions 0 < s < 1 and 0 < α < 1 − s consid-

ered in the above corollary, the convergence rates obtained for Mβ
T (n)x, with

x ∈ Ran(I − T )s, are better than those given in Corollary 8.2. Also, note that

Corollary 8.5 gives us

M1
T (n)x = o(n−s) as n→ ∞,

for α ∈ (0, 1 − s), which is an extension to (C,α)-bounded operators of the

corresponding result for power-bounded operators proven in [16] and [28].

The operator logarithmic function and the discrete Hilbert trans-

form. For z ∈ D, there is the decomposition

log(1− z) = −
∑
n≥1

zj

n
= h(z)− Λ(z)

with

(8.1) h(z) := 1−
∞∑
n=1

zn

n(n+ 1)
and Λ(z) :=

∞∑
n=0

zn

n+ 1
.

The function Λ, with Taylor coefficients L(n) := (n + 1)−1, has been studied

in Example 5.12, where it has been shown that it is an α-admissible function

with DαL(n)nα → 0 as n→ ∞. Also, (1 − z)Λ = h ∈ Aα(D) for all α ≥ 0.

The functional calculus of Section 4 enables us to define the closed operator

log(I − T ) := [log(I − z)](T )

by regularization. It is readily seen that log(I−T ) is the infinitesimal generator

of the holomorphic semigroup ((I − T )s)	s>0.

Theorem 8.7: Let α > 0. Let T be a (C,α)-bounded operator on X with

Ran(I − T ) = X. Given x ∈ X the following are equivalent:

(i) x ∈ Dom(log(I − T )).

(ii) The series
∑∞

n=1
1

n1+α [Δ
−αT ](n)x converges in norm (or weakly).

Furthermore, if either (i) or (ii) holds true then

log(I − T )x = (ψ(α+ 1)− ψ(1))x −
∞∑
n=1

Γ(α+ 1)Γ(n)

Γ(n+ α+ 1)
[Δ−αT ](n)x,

where ψ(x) = d
dx ln(Γ(x)) is the digamma function.
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Proof. Let h and Λ be defined by (8.1). Then we have

(1− z) log(1− z) = (1− z)h(z)− (1 − z)Λ(z) = (1 − z)h(z)− h(z)

in Aα(D) and therefore

(I − T ) log(I − T ) = (I − T )h(T )− h(T )

in B(X), from which one obtains

log(I − T ) = (I − T )−1[(I − T )h(T )]− (I − T )−1h(T ) = h(T )− Λ(T )

as closed operators on X . Moreover, h(T ) is bounded and so the domains of

log(I − T ) and Λ(T ) coincide. Hence x ∈ Dom(log(I − T )) if and only

∑
n≥0

n!

Γ(n+ α+ 2)
[Δ−αT ](n)x

converges (in norm or weakly), according to Theorem 7.3 and (2.13). To get

the equivalence between (i) and (ii) it is now enough to use (2.14).

As regards the range of log(I − T ), note that on Dom(log(I − T )) we have

log(I − T ) = h(T )− Λ(T ) = (1 − T )Λ(T )− Λ(T ) = −TΛ(T )

and so, by Theorem 7.3 and (2.13),

log(I − T )x = −
∞∑
n=0

[DαL](n)T [Δ−αT ](n)x

= −
∞∑
n=0

[DαL](n)[Δ−αT ](n+ 1)x+

∞∑
n=0

[DαL](n)kα(n+ 1)x

= −
∞∑
n=1

Γ(α+ 1)Γ(n)

Γ(n+ α+ 1)
[Δ−αT ](n)x +

∞∑
n=0

α

(n+ 1)(n+ α+ 1)
x

= −
∞∑
n=1

Γ(α+ 1)Γ(n)

Γ(n+ α+ 1)
[Δ−αT ](n)x + (ψ(α+ 1)− (ψ(α))x

for all x ∈ Dom(log(I − T )), where in the latter equality we have applied that

ψ(α + 1)− ψ(1) =

∞∑
n=0

α

(n+ 1)(n+ α+ 1)

(see [7]). We have completed the proof.
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Remark 8.8: Notice that one also has ψ(α+ 1)− ψ(1) =
∫ 1

0
1−uα

1−u du since

∞∑
n=0

α

(n+ 1)(n+ α+ 1)
=

∫ ∞

0

∞∑
n=0

(e−(n+1)t − e−(n+α+1)t)dt

=

∫ ∞

0

1− e−αt

1− e−t
e−t dt =

∫ 1

0

1− uα

1− u
du.

Remark 8.9: Suppose for a moment that the operator T is power-bounded on

the Banach space X . Then the formal expression

(8.2) HT :=

∞∑
n=1

1

n
T n

defines a closed operator on X which is called the one-sided ergodic Hilbert

transform, see [16] and [28]. In fact, HT = − log(I − T ) with

Dom(HT ) = Dom(log(I − T ))

in particular [12, 28].

Let us assume again that T is a (C,α)-bounded operator on X , as usually in

the present paper. Then the representation (8.2) of HT does not look suitable

for arbitrary α > 0 since ‖T n‖ = O(nα) as n→ ∞. Instead, one could define in

this case the one-side Cesàro-Hilbert transform of order α (or α-ergodic Hilbert

transform, for short) as the operator given by

H
(α)
T x =

∞∑
n=1

Γ(α+ 1)Γ(n)

Γ(n+ α+ 1)
Δ−αT (n)x+ cαx,

with

cα = −
∫ 1

0

(1 − uα)(1− u)−1du.

Then, in view of Theorem 8.7, we have

log(I − T )x = −H(α)
T x

for all x ∈ X such that
∞∑
n=1

1

n1+α
[Δ−αT ](n)x

converges in X . Nevertheless, we show below that if α ∈ (0, 1), then − log(I−T )
admits the representation (8.2) as in the case of power bounded operators. This

result extends [12, Prop. 3.3] and [28, Th. 6.2].
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Theorem 8.10: Let α be such that 0 < α < 1. Let T be a (C,α)-bounded

operator on X with Ran(I − T ) = X . For a given x ∈ X the following are

equivalent:

(i) x ∈ Dom(log(I − T )).

(ii) The series
∑∞

n=1
1
nT

nx converges (in norm or weakly).

If one of the equivalent conditions (i) and (ii) holds then

log(I − T )x = −
∞∑
n=1

1

n
T nx.

Proof. As in the proof of Theorem 8.7,

log(I − T ) = h(T )− Λ(T )

so that x ∈ Dom(log(I−T )) if and only if x ∈ Dom(Λ(T )). On the other hand,

one has that x ∈ Dom(Λ(T )) if and only if
∑∞

n=0
1

n+1T
nx converges, and in

this case

Λ(T )x =

∞∑
n=0

1

n+ 1
T nx.

The latter assertion can be proved by the same argument as in the proof of

Theorem 8.4, by replacing there (I−T )s with Λ(T ) now, and g0n(T ) with gLn(T )

(recall that gLn is a bounded (1−z)-approximate identity in Aα(D) for 0 < α < 1;

see Theorem 6.4). The identity

log(I − T )x = −
∞∑
n=1

1

n
T nx,

for x ∈ Dom(log(I − T )) = Dom(Λ(T )), follows then from the identity

log(I − T ) = h(T )− Λ(T )

by taking n-partial sums and letting n→ ∞.

Remark 8.11: As pointed out in Remark 6.5, (gLn)n≥1 is not an approximate

identity in Aα(D) when α = 1 and therefore a type of argument as above is

not enough to prove the analog to the equivalence established in Theorem 8.10,

in this case. Also, as regards part (ii) of that theorem, the convergence rate

of M1
T (n) to 0 is not a simple matter which requires special treatment. For

every power-bounded T , it has been elucidated in [24].
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Recall that by standard properties of holomorphic semigroups,⋃
s>0

Ran(I − T )s ⊂ Dom(log(I − T )).

Another interesting task arising in the study of operator logarithms is to deter-

mine whether one may have the equality Dom(log(I −T )) =
⋃
s>0 Ran(I −T )s

so that the domain of log(I − T ) can be described in terms of more accesible

spaces Ran(I − T )s. In [28, Th. 6.3], it was shown that the equality fails for

every power-bounded operator T with 1 /∈ σ(T ). The argument to prove this

result relies on the sectorial functional calculus (Th. 4.5) and can be mimicked

in the case of (C,α)-bounded operators. So we have the following.

Proposition 8.12: Let α > 0 and let T be a (C,α)-bounded operator on a

Banach space X such that Ran(I − T ) = X and 1 /∈ σ(T ). Then we have the

inclusion ⋃
s>0

Ran(I − T )s ⊂ Dom(log(I − T ))

and it is strict.

9. Application to concrete operators

In this section we show two examples to illustrate results of the paper.

Example 9.1: Let 1 ≤ p < ∞. With ‖T ‖op,p we denote the operator norm of

operators T in B(Lp(0, 1)). Let V be the Volterra integral operator on Lp(0, 1)

given by

V f(t) :=

∫ t

0

f(s)ds, t ∈ [0, 1], f ∈ Lp(0, 1).

Define

TV := I − V.

Estimates involving powers of the operator TV were given in [29, Th. 11]

for p = 1. Long after that, such estimates were extended to arbitrary p ∈ [1,∞).

Namely, there exist A > 0, B > 0 such that

A n|(1/4)−(1/2p)| ≤ ‖T nV ‖op,p ≤ B n|(1/4)−(1/2p)|, n ∈ N;

see [37, Th. 2.2]. Thus TV is power-bounded on Lp(0, 1) exclusively in the

Hilbertian case p = 2.



Vol. TBD, 2022 POISSON EQUATION AND HILBERT TRANSFORM 65

In fact, powers T nV , n ∈ N, and means Mα
TV

of TV can be expressed in the

integral form

Mα
TV

(n)f(t) = f(t)− 1

kα+1(n)

∫ t

0

L
(α+1)
n−1 (t− u)f(u)du,

t ∈ [0, 1], n ∈ N, f ∈ Lp(0, 1),

where α ≥ 0 and L
(α+1)
n−1 is the generalized Laguerre polynomial of degree n−1,

see [29, (5.3) and (6.14)]. In other words, we have

(9.1) Mα
TV

(n)f = (δ0 − [kα+1(n)]
−1L

(α+1)
n−1 ) � f, n ∈ N, f ∈ Lp(0, 1),

where δ0 is the Dirac mass at {0} and “�” is the convolution product in the

Banach algebra L1(0, 1). Moreover, the sequence

Φ
(α+1)
n−1 := [kα+1(n)]

−1L
(α+1)
n−1 , n ∈ N,

is a bounded approximate identity in L1(0, 1) for α > 1/2, which is to say

Φ
(α+1)
n−1 � f → f as n→ ∞,

for all f ∈ L1(0, 1), and supn ‖Φ
(α+1)
n−1 ‖L1 <∞ [29, Lemma 1 and (6.14)]. Using

these properties, it can be shown that TV is (C,α)-bounded on L1(0, 1) if and

only if TV is (C,α)-ergodic on L1(0, 1) if and only if α > 1/2 [29, Th. 11].

The next result characterizes the solutions of the fractional Volterra equation

(I − TV )
sg = V sg = f,

and the domain of log(V ).

Proposition 9.2: Let p ∈ [1,∞), let V be the Volterra operator on Lp(0, 1)

and set TV = I − V as above. Then the following properties hold

(i) (I − TV )(L
p(0, 1)) is dense in Lp(0, 1).

(ii) For every α > 1/2 the operator TV is (C,α)-ergodic on Lp(0, 1).

(iii) Let α > 1/2 and 0 < s < 1. If f ∈ Lp(0, 1), then the Volterra integral

equation

(9.2)
1

Γ(s)

∫ t

0

(t− u)s−1g(u) du = f(t), 0 ≤ t ≤ 1,

has a (unique) solution g ∈ Lp(0, 1) if and only if

∞∑
n=1

ns−1(δ0 − Λ
(α+1)
n−1 ) � f is norm-convergent.
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In this case,

g =
sin(πs)

π

Γ(1− s+ α)

Γ(α+ 1)

∞∑
n=0

Γ(s+ n)

n!
(δ0 − Λ

(α+1)
n−1 ) � f.

Also,

‖(δ0 − Λ
(α+2)
n−1 ) � f‖p = o(n−s), as n→ ∞.

If, moreover, 0 < s < 1/2 and α ∈ (1/2, 1 − s), the equation (9.2)

has a (unique) solution g ∈ Lp(0, 1) if and only if

∞∑
n=1

ns−1(δ0 − L
(1)
n−1) � f is norm-convergent,

with

g =

∞∑
n=0

ks(n)(δ0 − L
(1)
n−1) � f.

Also,

1

n

∥∥∥∥
n∑
j=1

(δ0 − Λ
(1)
j−1) � f

∥∥∥∥
p

= o(n−s), as n→ ∞.

(iv) Let α > 1/2. Then f ∈ Dom(log V ) if and only if the series

∞∑
n=1

n−1(δ0 − Λ
(α+1)
n−1 ) � f is norm-convergent.

In this case,

(logV )f = (ψ(α + 1)− ψ(1))f −
∞∑
n=1

1

n
(δ0 − Λ

(α+1)
n−1 ) � f.

If moreover α ∈ (1/2, 1), then

f ∈ Dom(log V ) ⊂ Lp(0, 1) ⇐⇒
∞∑
n=1

n−1(δ0 − L
(1)
n−1) � f is norm-convergent.

In this case, (logV )f = −
∑∞
n=1

1
n (δ0 − L

(1)
n−1) � f .

Proof. (i) This is standard.

(ii) Let Φ
(α+1)
n−1 be as prior to the proposition. Clearly, L1(0, 1) � Lp(0, 1) is

dense in Lp(0, 1). Then the uniform (in n) L1-boundedness of Φ
(α+1)
n−1 and the

fact that

‖h � g‖p ≤ ‖h‖1‖g‖p, (h ∈ L1(0, 1), g ∈ Lp(0, 1))
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readily imply that Φ
(α+1)
n−1 � f → f as n→ ∞, for all f ∈ Lp(0, 1). Hence,

Mα
TV

(n)f → 0 as n→ ∞,

for all f ∈ Lp(0, 1).

(iii) The Volterra equation is (I − TV )
sg = V sg = f and so the assertions of

this part (iii) follow from (i), (9.1), Theorem 8.1, Corollary 8.2, Theorem 8.4

and Corollary 8.5, respectively.

(iv) This is as in part (iii), this time applying Theorem 8.7 and Theorem

8.10.

Remark 9.3: It is natural to ask whether the condition α > |(1/2)− (1/p)| in
the above Proposition is sufficient (or even necessary) to get the α-ergodicity

of TV on the space Lp(0, 1), but this is not part of our aims here and so we do

not address this (involved) problem in this paper. Note also that for p = ∞
all the results in Proposition 9.2 hold true by replacing the space L∞([0, 1])

with C([0, 1]).

Regarding convergence, the norm-convergence can be replaced with weak

convergence in the statement of Proposition 9.2.

Example 9.4: Let 0 < β < 1 and let �2β(N0) denote the Hilbert space of se-

quences f such that ‖f‖22,β :=
∑∞

j=0 |f(j)|2kβ(j) <∞. Let TS be the backward

shift operator on �2β(N0) given by

(TSf)(j) = f(j + 1), f ∈ �2β(N0), j ∈ N0.

Then ‖T nS ‖2 ∼ (n + 1)1−β , so TS is not power-bounded on �2β(N0), but TS is

(C,α)-bounded for α > (1− β)/2; see [2].

We have that I−TS is the first order finite difference operatorW = D (recall

Section 2), that is,

(I − TS)f(n) = f(n)− f(n+ 1), n ∈ N0.

It is very simple to show that the space c00(N0) of eventually null sequences

satisfies

c00(N0) ⊂ (I − TS)(c00(N0)),

whence one gets the density of (I−TS)(�2β(N0)) in �
2
β(N0). As a consequence, TS

is (C,α)-ergodic for α > (1 − β)/2 by Theorem 3.3. Thus we can apply the

results of Section 8 to TS in a similar way we have done in the above example

for TV .
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Proposition 9.5: Let TS be the backward shift acting on �2β(N0), 0 < β < 1,

as above and assume α > (1− β)/2.

(i) Let 0 < s < 1. Take f ∈ �2β(N0). Then the problem in differences

(9.3) Dsu = f

has a (unique) solution u ∈ �2β(N0) if and only if

∞∑
n=1

ns−1−α
n∑
j=0

kα(n− j)f(j + ·)

is norm (or weak) convergent in �2β(N0), and in this case

u =
sin(πs)Γ(1 − s+ α)

π

∞∑
n=0

Γ(s+ n)

Γ(n+ α+ 1)

n∑
j=0

kα(n− j)f(j + ·).

Also,

∥∥∥∥
n∑
j=0

(n− j)α−1f(j + ·)
∥∥∥∥
2,β

= o(nα+1−s), as n→ ∞.

If, moreover, 0 < s < (1 + β)/2 and (1 − β)/2 < α < 1 − s,

then the equation (9.3) has a (unique) solution u ∈ �2β(N0) if and only

if
∑∞

n=1
1

n1−s f(n+ ·) is convergent in �2β(N0) and then the solution u is

given by

u =
∞∑
n=0

ks(n)f(n+ ·) =W−sf.

(ii) One has f ∈ Dom(logD) if and only if
∑∞

n=1
1

nα+1

∑n
j=0 kα(n−j)f(j+·)

is convergent in �2β(N0). In this case,

(logD)f = (ψ(α+ 1)− ψ(1))f −
∞∑
n=1

B(α+ 1, n)
n∑
j=0

kα(n− j)f(j + ·),

where ψ is the digamma function.

If, moreover, α ∈ ((1 − β)/2, 1), then f ∈ Dom(logD) ⊂ �2β(N0) if

and only if
∑∞
n=1

f(n+·)
n is convergent in �2β(N0) and then

(logD)f = −
∞∑
n=1

1

n
f(n+ ·).
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Remark 9.6: The space �2β(N0) coincides, up to equivalent norms, with the

weighted Bergman space Bν for ν = −β formed by the holomorphic functions f

on the unit disc such that

‖f‖ν,2 :=

(∫
D

(ν + 1)|f(z)|2(1 − |z|2)νdA(z)
)1/2

<∞,

where dA(z) is the normalized area measure dxdy
π on D (usually, ν takes the

form ν = μ − 2 with μ > 1). Naturally, the operator TS, transferred on Bν ,
reads

TSf(z) =
f(z)− f(0)

z
, |z| < 1,

whence one gets

T nS f(z) =
1

zn
(f(z)−

n−1∑
j=0

f(j)(0)

(n− 1)!
zn−1), |z| < 1, n ∈ N

and so

[(I − TS)f](z) =
(z − 1)f(z)− f(0)

z
, |z| < 1,

which are quite more manageable using Taylor coefficients, that is, �2β(N0).
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