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Abstract. It is well-known that Fractional Poisson processes (FPP) constitute
an important example of a Non-Markovian structure. That is, the FPP has no
Markov semigroup associated via the customary Chapman-Kolmogorov equation.
This is physically interpreted as the existence of a memory effect. Here, solving
a difference-differential equation, we construct a family of contraction semigroups
(Tα)α∈]0,1], Tα = (Tα(t))t≥0. If C([0,∞[, B(X)) denotes the Banach space of contin-
uous maps from [0,∞[ into the Banach space of endomorphisms of a Banach space X,
it holds that Tα ∈ C([0,∞[, B(X)) and α 7→ Tα is a continuous map from ]0, 1] into
C([0,∞[, B(X)). Moreover, T1 becomes the Markov semigroup of a Poisson process.

1. Introduction

Many phenomena in nature may be described mathematically by functions of a small
number of independent variables and parameters. In particular, if such a phenomenon
is given by a function of spatial position and time, its description gives rise to a wealth of
models, which often result in equations, usually containing a large variety of derivatives
with respect to these variables. Apart from the spatial variable(s), which are essential
for the problems to be considered, the time variable play a special role.

For practical purposes, the time variable is measured at discrete events. An im-
portant class of linear, discrete time systems consists of systems represented by lin-
ear constant-coefficient difference- partial differential equations. Discrete linear time-
invariant systems that satisfy difference-partial differential equations are very common;
they include data filtering, time series analysis, and digital filtering systems and algo-
rithms.

An important distinction between linear constant-coefficient differential equations as-
sociated with continuous-time systems and linear constant-coefficient difference equa-
tions associated with discrete-time systems is that for causal systems the difference
equation can be reformulated as an explicit relationship that states how successive val-
ues of the output can be computed from previously computed output values and the
input. This recursive procedure for calculating the response of a difference equation is
extremely useful in implementing causal systems.

In this paper, we study the following difference-differential equation

(1.1) λp(n+ 1, t)− λp(n, t) = − RLD
α
t p(n+ 1, t)

where 0 < α ≤ 1. With appropriate boundary and initial values, we prove the re-
markable property that the solution of (1.1) coincides with the probability distribution
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function of the fractional Poisson process. Our idea is based on the use of tools of
operator semigroup theory [1, 16].

The fractional Poisson process was introduced and studied by Repin and Saichev [19],
Jumarie [8], Laskin [10, 11], Mainardi et al. [13, 14], Uchaikin et al. [21], Beghin and
Orsingher [3, 4], and Meerschaert et.al. [15]. Fractional Poisson process is a stochastic
process that captures the long-memory effect which results in the non-exponential wait-
ing time probability distribution function empirically observed in complex classical and
quantum systems. The fractional Poisson probability distribution found physical and
mathematical applications in the field of quantum optics and combinatorial numbers
[11]. Thus, the Fractional Poisson process (FPP) is an important physical example of
a non Markovian evolution. In our case, we prove in Theorem 2.6 that the Markov
semigroup of the Poisson process can be obtained as a suitable limit of non Markov
FPP-semigroups.

2. Preliminaries and main results

Let A be a closed linear operator with domain D(A) defined on a Banach space
X. For a vector-valued sequence f : N0 → X we denote the forward Euler operator
∆f(n) := f(n+ 1)− f(n). We consider the difference-abstract Cauchy problem

(2.1)

{
∆u(n) = Au(n+ 1), n ∈ Z+

u(0) = u0 ∈ X.

Equations in the form of time-difference space-differential equations that can be mod-
eled by the linearized system (2.1) appear in several theoretical and applied branches of
mathematics. However, a systematic study in the context of abstract Cauchy problems
like (2.1) seems to be missing in the literature. We introduce the following notion of
solution (see [12]).

Definition 2.1. We say that a vector valued sequence u ∈ s(N0;X) is a solution for
(2.1) if u(n) ∈ D(An) for all n ∈ N and u(n) satisfies (2.1).

The following result follows easily from the definitions and therefore their proof is
omitted (see [12] for an extension to abstract fractional difference equations).

Lemma 2.2. Let A be the generator of a bounded C0-semigroup {T (t)}t≥0 on X. Then
the solution of ∆u(n) = Au(n + 1), n ∈ N with initial condition u0 ∈ X is given by
u(n) = (I + A)−nu0, n ∈ N.

Example 2.3. Consider a locally compact space E and E its Borel σ-algebra. Let
denote bE the Banach space of all complex bounded measurable functions endowed
with the uniform norm. Given a Markov transition kernel Q : E × E → [0, 1], define
Qf(x) =

∫
E
Q(x, dy)f(y) for all f ∈ bE , x ∈ E, and u(n, f) = Qnf , where Qn is the

nth-iterated kernel. Therefore, one has the difference equation{
∆u(n, f) = Au(n+ 1, f), n ∈ Z+

u(0, f) = f,

where A = Q − I. Consider the space Ω = EN, the process Xn(ω) = ωn ∈ E, for
all ω = (ωk)k∈N ∈ Ω, the σ-algebras Fn = σ(Xk, k ≤ n), F = σ(Xn; n ∈ N). It is
well-known in Markov Theory that given x ∈ E, there exists a unique probability Px
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on (Ω,F) such that (Xn)n∈N becomes an homogeneous Markov chain with respect to
the family (Fn)n∈N, with transition Q and initial probability δx. So that,

u(n.f)(x) = Ex (f(Xn)) =

∫
Ω

f(Xn(ω))Px(dω).

Example 2.4. Consider E = R and call C0(E) the Banach space of continuous func-
tions which vanish at infinity. Suppose that a linear operator A on C0(E) satisfies the
following properties:

(M1) D(A) is dense on C0(E)
(M2) A satisfies the positive maximum principle, that is, if whenever f ∈ D(A),

x0 ∈ E, and supx∈E f(x) = f(x0) ≥ 0, we have Af(x0) ≤ 0.
(M3) R(λ− A) is dense in C0(E).

It is proved in [5], Theorem 2.2, that all the above are necessary and sufficient
conditions for the closure of A to be the generator of a strongly continuous, positive,
contraction semigroup (Tt)t≥0 on C0(E). One says that A is conservative, whenever
fn ∈ D(A) and supn ‖fn‖∞ <∞ such that fn(x)→ 1, for all x ∈ E, then Afn(x)→ 0.
Thus, if A is conservative and satisfies (M1), (M2), (M3), its closure (denoted again
A) generates a Markov semigroup.

In that case, Chapman-Kolmogorov equations are written as

(2.2)
d

dt
Ttf = ATtf = TtAf, T0f = f, (f ∈ C0(E)),

or, in integral form

Ttf = f +

∫ t

0

ATsfds, (t ≥ 0).

Consider a discretization of the above equation in the following form. Take times
tn = nh, where h > 0 is small and n ∈ N. Call uh(n, f) = Tnhf , Ah = Ah. One can
approach equation (2.2) by

∆uh(n, f) = Ahuh(n+ 1, f).

Define the Sobolev space

W 1,1(R+, e
−t) := {f ∈ L1(R+, e

−t) / ∃ϕ ∈ L1(R+, e
−t), f(t) = c0+

∫ t

0

ϕ(s)ds, t ∈ R+}

and define an operator (Aα, D(Aα)) on W 1,1(R+, e
−t) by

Aαf(t) := Dα
t f(t), t ∈ R+,

where Dα
t denotes the Riemann-Liouville fractional derivative of order α > 0 and

D(Aα) := {f ∈ W 1,1(R+, e
−t) : (g1−α ∗ f)(0) = 0},

where we denote gβ(t) := tβ−1

Γ(β)
, β > 0 and g0 := δ0, the Dirac measure concentrated at

zero. In particular, note that D(A1) = {f ∈ W 1,1(R+, e
−t) : f(0) = 0}. We observe

that the solution of the scalar equation

Dα
t f(t) = −λf(t) + h(t)
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with initial condition (g1−α ∗ f)(0) = 0 can be computed explicitly in terms of the
generalized two-parameter Mittag-Leffler function

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α, β > 0, z ∈ C,

and is given by

(2.3) f(t) =

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)h(s)ds.

An interesting property related with the Laplace transform of the Mittag-Leffler func-
tion is the following [6, (A.27) p.267] and [17]:
(2.4)∫ ∞

0

e−λttαk+β−1E
(k)
α,β(±ωtα)dt =

k!λα−β

(λα ∓ ω)k+1
, Re(λ) > |ω|1/α, α, β > 0, k ∈ Z+.

For a general presentation of fractional calculus and applications, we refer to [9], [20]
and [17]. Our next result proves that the operators Aα are generators of C0-semigroups
on the space of integrable weighted functions and also gives an explicit representation
for the resolvent operator.

Theorem 2.5. For each 0 < α ≤ 1 the operator (Aα, D(Aα)) is the generator of a
C0-semigroup of contractions on L1(R+, e

−t). Moreover

(λI + Aα)−1h(t) =

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)h(s)ds, t ≥ 0, λ > 0

for all h ∈ L1(R+, e
−t).

Proof. Let f ∈ D(Aα) be given and suppose (λI +Aα)f = 0. Then, by (2.3), f ≡ 0. It
shows that λI + Aα is injective. Let h ∈ L1(R+, e

−t) be given and define

(2.5) gα,λ(t) := tα−1Eα,α(−λtα), λ > 0, t ≥ 0.

Observe that gα,λ(t) ≥ 0. Now, let f be defined as in (2.3), i.e. f := gα,λ ∗ h. Then f
satisfies, after a calculation using Fubini’s theorem, the following estimate

(2.6)

‖f‖L1(R+,e−t) = ‖gα,λ ∗ h‖L1(R+,e−t) =

∫ ∞
0

e−t
∣∣∣ ∫ t

0

gα,λ(t− s)h(s)ds
∣∣∣dt

≤
∫ ∞

0

∫ ∞
s

e−t
∣∣∣gα,λ(t− s)h(s)

∣∣∣dtds
=

∫ ∞
0

∫ ∞
0

e−(τ+s)
∣∣∣gα,λ(τ)h(s)

∣∣∣ dτds
=

∫ ∞
0

e−s
∫ ∞

0

e−τgα,λ(τ)dτ |h(s)|ds =
1

1 + λ
‖h‖L1(R+,e−t),

where we have used the identity

∫ ∞
0

e−ttα−1Eα,α(−λtα)dt =
1

1 + λ
, λ > 0, which

follows from (2.4). In particular, (2.6) shows that f ∈ L1(R+, e
−t). Moreover, using

the Laplace transform, is easy to see that

(g1−α ∗ gα,λ)(t) = Eα,1(−λtα).
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Since Eα,1(0) = 1, it shows that f ∈ D(Aα). A simple calculation gives (λI+Aα)f = h.
It proves that λI+Aα is surjective and therefore invertible and, in view of the estimate
(2.6), satisfies

‖(λI + Aα)−1‖ ≤ 1

1 + λ
.

It shows that ‖λ(λI +Aα)−1‖ ≤ 1, for all λ > 0. The conclusion follows by application
of the Hille-Yosida theorem (see e.g. [16, Theorem 3.1]). �

Using the Trotter-Kato theorem on approximation of C0-semigroups, we can prove
the following interesting result.

Theorem 2.6. For each 0 < α ≤ 1 the C0-semigroup Tα(t) generated by Aα on
L1(R+, e

−t) satisfies

Tα(t)f → T1(t)f as α→ 1,

for all f ∈ L1(R+, e
−t), where the convergence is uniform in t on compact subsets of

R+.

Proof. It is clear that ‖Tα(t)‖ ≤ et for all 0 < α ≤ 1 and t ≥ 0. By the preceding
theorem we have (λI +Aα)−1f = gα,λ ∗ f for all f ∈ L1(R+, e

−t), where gα,λ is defined
in (2.5). Note that by (2.4):

(2.7)

∫ ∞
0

e−ttα−1Eα,α(−λtα)dt =
1

1 + λ
=

∫ ∞
0

e−te−λtdt.

To prove that Tα(t)f → T1(t)f it suffices to show that given any sequence (αn)n∈N,
such that αn → 1 as n → ∞ it holds that Tαn(t)f → T1(t)f . Indeed, denote hn(t) =
tαn−1Eαn,αn(−λtαn) and h(t) = e−λt, and observe that all these functions are non
negative. Since hn(t)→ h(t) a.e. and (2.7) holds, Lemma 3.1 implies that

(2.8)

∫ ∞
0

e−t|tαn−1Eαn,αn(−λtαn)− e−λt|dt→ 0.

Therefore,

‖(λI + Aαn)−1f − (λI + A1)−1f‖L1 = ‖(gαn,λ − g1,λ) ∗ f‖L1

≤ ‖gαn,λ − g1,λ‖L1‖f‖L1 → 0

as αn → 1. The claim follows from [16, Theorem 4.2]. �

Remark 1. Recall that a C0-semigroup T (t) on a Banach space X is hypercyclic if there
are x ∈ X whose orbit {T (t)x; t ≥ 0} under T (t) is dense in X. The C0-semigroup
T (t) is said to be Devaney chaotic if it is hypercyclic and the set of periodic points
Per(T ) := {x ∈ X;T (t)x = x for some t > 0} is dense in X. The interested reader
is referred to the recent book [7] for more information about hypercyclicity and linear
chaos. Observe that the semigroup generated by A1 is chaotic in the sense of Devaney,
because it corresponds to the translation semigroup defined on L1(R+, ρ) where the
weight ρ(t) = e−t satisfies the criteria established in [2, Theorem 2.5].

For each α > 0 and λ ∈ C \ {0} define

fα,λ(t) := Eα,1(−λtα), t ∈ R+.

Note that fα,λ ∈ L1(R+, e
−t) for each λ > 0 and 0 < α ≤ 1. This follows from (2.4).

After this preliminaries, we can give the main result of this paper.
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Theorem 2.7. Let 0 < α ≤ 1 and λ > 0 be given. The unique solution of the differential-
difference equation {

∆u(n, t) = −1

λ
Aαu(n+ 1, t), n ∈ Z+;

u(0, t) = fα,λ(t), t > 0,

is the probability distribution function of the fractional Poisson process

(2.9) u(n, t) =
λntαn

n!
E

(n)
α,1(−λtα), n ∈ Z+, t > 0.

Proof. From the proof of the previous theorem, we note that (λI + Aα)−1g = gα,λ ∗ g
for all λ > 0, and therefore

(λI + Aα)−ng = gα,λ ∗ gα,λ ∗ ... ∗ gα,λ ∗ g =: g∗nα,λ ∗ g,

for all g ∈ L1(R+, e
−t). By Theorem 2.5, we have that the operator A := − 1

λ
Aα is the

generator of a bounded C0-semigroup. It follows from Lemma 2.2 that

u(n, t) = (I +
1

λ
Aα)−nu(0, t) = λn(λ+ Aα)−nu(0, t)

= λn(λ+ Aα)−nfα,λ = λng∗nα,λ ∗ fα,λ.

Note that ̂g∗nα,λ ∗ fα,λ(µ) = [ĝα,λ(µ)]nf̂α,λ(µ) where the hat indicates Laplace transform.

Since ĝα,λ(µ) = 1
µα+λ

and f̂α,λ(µ) = µα−1

µα+λ
. we obtain ̂g∗nα,λ ∗ fα,λ(µ) = µα−1

(µα+λ)n+1 . There-

fore formula (2.4) shows that u(n, t) = λng∗nα,λ∗fα,λ(t) = λn t
αn

n!
E

(n)
α,1(−λtα), which proves

the theorem. �

In case α = 1 we recover the well-known Poisson distribution.

Corollary 2.8. Let λ > 0 be given. The unique solution of the partial differential-
difference equation 

∆u(n, t) = −1

λ

∂

∂t
u(n+ 1, t), n ∈ Z+;

u(0, t) = e−λt t ≥ 0;
u(n, 0) = 0,

is the probability distribution of the Poisson process u(n, t) =
λntn

n!
e−λt, n ∈ Z+, t ≥ 0.

3. Concluding remarks

In this paper we systematically work with one-dimensional space-time variables. This
framework allows us to give a new interpretation of the fractional Poisson process as
a Cauchy problem discretized in time, thus concluding that the fractional Riemann-
Liouville operator is the generator of a family of C0-semigroups depending on the
fractional order, on the Lebesgue space L1(R+.e

−t). Moreover, using the Trotter-Kato
theorem, we show that this family of semigroups converges uniformly to the Markovian
semigroup associated to the Poisson process.

This paper provides a new insight into a class of non Markovian evolutions, since it is
well-known that the Fractional Poisson Process is a paradigmatic example of evolution
with large memory. It teach us that suitable discretizations in space-time variables
may lead to a representation of memory effects via C0-semigroups of non Markovian
type.
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Appendix

Lemma 3.1. Consider the probability measure µ(dt) = e−tdt on the positive real line.
Let be given a sequence (hn)n∈N of positive integrable functions such that

(H1) hn(t)→ h(t) almost everywhere as n→∞, h integrable, and
(H2)

∫∞
0
hn(t)µ(dt)→

∫∞
0
h(t)µ(dt).

Then (hn)n∈N is uniformly integrable and hn → h in L1(µ).

Proof. Take c > 0. Then hn1{hn≤c} → h1{h≤c}, a.e. by (H1) and hn1{hn≤c} ≤ c. Thus,
Lebesgue’s Dominated Convergence Theorem implies that∫ ∞

0

hn(t)1{hn≤c}(t)µ(dt)→
∫ ∞

0

h(t)1{h≤c}(t)µ(dt).

And (H2) yields ∫
{hn>c}

hn(t)µ(dt)→
∫
{h>c}

h(t)µ(dt).

So that lim supn
∫
{hn>c} hn(t)µ(dt) =

∫
{h>c} h(t)µ(dt). Given ε > 0, choose c0 > 0 to

have ∫
{h>c0}

h(t)µ(dt) < ε/2

and there exists n0 such that supn≥n0

∫
{hn>c0} hn(t)µ(dt) < ε. Since any finite family

of integrable functions is uniformly integrable, so is (h1, . . . , hn0−1), and one obtains
the same property for the whole sequence (hn)n∈N. Finally, the family (hn − h)n∈N is
uniformly integrable as well, and this sequence converges to 0 a.e. Therefore, ‖hn −
h‖1 → 0. �
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