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Abstract. We show the remarkable fact that the nonlocal property of the discrete N -
dimensional fractional Laplacian acting in the second variable of the lattice N × ZN can
be exchanged with an equivalent memory corresponding to a power of a one-dimensional
operator that acts only on the first variable of the complete lattice Z × ZN . This property
allows to reduce the number of calculations and leads to more complete analytical solutions
of mathematical models on lattices. The connection is established by showing that a first
order equation in the first variable, and of fractional order α > 0 in the second, has the
same solution as another of order 1/α in the first variable and integer order in the second.
As a result, we provide for the first time the fundamental solution for the N -dimensional
heat equation discrete in time and space.

1. Introduction

In recent years, much attention has been paid to the discrete fractional Laplacian operator
as the natural counterpart of the continuous one [1, 6, 7, 8, 27, 19, 28, 29]. One of the most
natural definitions in the N -dimensional case can be found in [19, Section 6] where it is
defined as

(1) (−∆d,N)αf(n) =
1

Γ(−α)

∫ ∞
0

(et∆d,Nf(n)− f(n))
dt

t1+α
, n = (n1, ..., nN) ∈ ZN ,

whenever 0 < α < 1 and f ∈ `∞(ZN). Here et∆d,N is the semidiscrete heat semigroup
generated by the N -dimensional discrete Laplacian ∆d,N defined as

∆d,Nf(n) =
N∑
j=1

(f(n+ ej)− 2f(n) + f(n− ej)) ,
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where ej denotes the unit vector in the positive direction of the j-th coordinate. It is known
[19, Section 6] that the semidiscrete heat semigroup is represented by

et∆d,Nϕ(n) =
∑
k∈ZN

Tt(n− k)ϕ(k), t ≥ 0, n ∈ ZN ,

where the kernel is given by

Tt(n) =
N∏
j=1

e−2tInj(2t), t ≥ 0, n ∈ ZN ,

and In denotes the modified Bessel function.
The 1-dimensional case has been extensively studied in recent articles by Ciaurri et. al.

[6, 8, 19]. The operator (−∆d,1)α can be used to describe the non-local motion of a particle
(electron) in a one-dimensional chain with atoms located at all integer lattice points in Z, see
[25]. Tarasov [31] provides a formulation of fractional calculus for N -dimensional lattices.
See also [32] for the exact discretization of the fractional Laplacian for N -dimensional spaces.

On the other side, when we consider anomalous diffusion processes, several classes of
fractional in time operators have been proposed in the literature, the most popular being
the Riemann-Liouville or Caputo type. In the discrete context, there are several approaches
that might be appropriate from either an applied or analytic perspective [11, 18, 22].

One of the most important facts why this type of fractional operators (in space and time)
are relevant in the current literature, is due to their ability to capture memory effects in the
mathematical modeling, which are absent in the integer case. This type of phenomenology
has been shown widely. However, the existence of a probable relationship between memory
in time and memory in space for fractional operators, as well as a plausible explanation for
this kind of interaction, has been an open problem for some time.

Probably the first insight about this kind of relationship was given in 2002 by Kulish
and Lage in [17], where, in the context of fluid mechanics, they establish the existence of a
relationship between the operators ∆ (the Laplacian) and D1/2 (half order Riemann-Lioville)
proving that a PDE of first order in time and second order in space has the same solution
as a PDE of half order in time and first order in space. One of the main advantages of this
conversion is the fact it can significantly reduce the number of computations as well as lead
to more comprehensive analytical solutions [14, Section 6.1.2.4], [17, Section 4].

This problem was later considered in [15, Theorem 1.1], where the authors proved a
link between integer powers of operators acting in space, An, and the fractional powers,
D1/n, of the Riemann-Liouville operator acting in time, under the condition that A is the
generator of a C0-semigroup (in case n = 2) as well as generalized families of operators
related to the abstract Cauchy problem of fractional order (in case n 6= 2). This result
explains previous studies by Baeumer, Meerschaert and Nane [5] among others. See also [4]
for further developments in this research line in the context of stochastic processes.

The connection between the discrete fractional Laplacian (−∆d)
α, and the continuous in

time fractional order operator of Liouville type (left side) LD
1/α, was made in [7]. This result

has subsequently been useful for discussions on generalized diffusion of graphs by Estrada et.
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al. in [9], and by Padgett et. al. in [25, Section 2.3] in the context of anomalous diffusion in
one-dimensional disordered systems. This result closes the problem in the case of operators
acting on a semi-lattice.

However, the connection between the discrete fractional Laplacian with some discrete time
fractional order operators, that is, operators acting on a complete lattice, remains open.

In this paper, we solve this problem, by showing a relationship between the discrete
fractional Laplacian and the following discrete in time fractional order operator defined in
[20, formula (28)] by Ortigueira et.al., in the context of signal analysis:

(2) Dβ
∇f(n) :=

n∑
j=−∞

Γ(−β + n− j)
Γ(−β)(n− j)!

f(j), n ∈ Z,

which is initially defined for all β > 0 except positive integer values (see (7) below for
an extension). It is worth mentioning this operator approximates the forward Liouville
derivative [20]. We also note that similar definitions have appeared in relation to fractional
partial difference-differential equations in articles by Abadias et.al. [2, 3].

Our main results in this article can be summarized as follows: We first show that (1) is
equivalent to convolving f with a distinguished kernel. In particular, this allows us to extend
the definition given in (1) for all α > 0 and to conclude that there is a connection between the
fractional Laplacian as defined in (1) and the Riesz derivative (see [24, Section 5.2]). Then,
we find by the first time the fundamental solution for the following N -dimensional heat
equation discrete in time, and equipped with a discrete fractional N -dimensional Laplacian

(3)

 v(m+ 1,n)− v(m,n) = −(−∆d,N)αv(m+ 1,n), n ∈ ZN , m ∈ N,

v(0,n) = φ(n)

for any α > 0. We note that fundamental solutions for the heat and wave equations, but only
on a semi-lattice, have been already shown by other authors. See e.g. [10, 16] and references
therein.

Our main result shows that in case α = 1
p
, p ∈ N, the solution of (3) coincides with the

solution of the following equation, equipped with the fractional order operator defined in (2)
acting in discrete time (m ∈ N), and the N -dimensional Laplacian acting in discrete space
(n ∈ ZN)

(4)


Dp
∇v(m,n) = (−1)p+1∆d,Nv(m,n), n ∈ ZN , m ∈ N,

v(0,n) = φ(n)

v(−j,n) = (Id+ (−∆d,N)1/p)jφ(n), j ∈ N.

This fact reveals the significant property that the spatial memory of the N -dimensional
fractional Laplacian −(−∆d,N)1/p can be exchanged with the (one-dimensional) temporal
integer derivative Dp

∇, being the spatial memory converted into temporal memory that is
hosted in the past, or history, of the model.
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To exemplify how this result helps to reduce the number of computations, we illustrate
the case p = 2, N = 1 where the model (3) admits a complicated structure while the model
(4) supports the simple form:

v(m,n) = v(m,n+ 1) + v(m,n− 1)− 2v(m− 1, n) + v(m− 2, n), m ∈ N, n ∈ Z,

with given initial condition v(0, n) and the only knowledge of v(−1, n) in the past. Finally,
we show that the lattice equations v(m + 1,n) − v(m,n) = (−∆d,N)αv(m + 1,n) and

D
1/α
∇ v(m,n) = ∆dv(m,n) with initial condition v(0,n) = ϕ(n), defined on the lattice

Z × ZN , have the same solution for any 0 < α ≤ 1
2+log2N

and the amount of memory that

depends on α in the discrete fractional Laplacian, appears in the initial data for negative
values of m in the second named equation. In other words, we show that the spatial memory
of the discrete fractional Laplacian for an equation defined on the half lattice N×ZN appears
in the past history of a discrete in time equation on the entire lattice Z× ZN .

2. Preliminaries

In what follows we denote N = {0, 1, 2, 3, . . .}. The discrete time Fourier transform for a
sequence φ is defined by

(5) FZN (φ)(θ) ≡ φ̂(θ) :=
∑
j∈ZN

eij·θφ(j), θ = (θ1, θ2, . . . , θN) ∈ [−π, π]N .

The inverse discrete time Fourier transform is stated as follows:

(6) φ̌(n) :=
1

(2π)N

∫
[−π,π]N

φ(θ)e−in·θdθ, n ∈ ZN .

In what follows δi(j) denotes the Kronecker delta. Given β ∈ R, we consider the sequence:

(7) kβ(n) =


Γ(β + n)

Γ(β)Γ(n+ 1)
n ∈ N, β ∈ R \ {−1,−2, ..},

(δ0 − δ1)∗(−β)(n) n ∈ N, β ∈ {−1,−2, ...},
where Γ is the Euler gamma function and p∗n = p ∗ p ∗ . . . ∗ p︸ ︷︷ ︸

n-times

where ∗ denotes the convolution

of sequences given by (u ∗ v)(n) =
n∑
j=0

u(n − j)v(j). In [18], it was proven the generating

function of the sequence (kβ(j))∞j=0:

(8)
∞∑
j=0

kβ(j)zj =
1

(1− z)β
, β ∈ R, |z| < 1

and some other properties concerning the sequence kβ.
It should be noted that defining kβ instead of using binomial coefficients or using the

Pochhammer symbol has several advantages, as it has been demonstrated in recent articles,
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see e.g. [11] and its references. Observe that the (negative) integer case of β, i.e. the second
part of (7), is motivated by the formula (8) and the property δi ∗ δj = δi+j.

Remark 2.1. Concerning convergence of the series (8), we note that if −β is neither a
natural number nor zero, the series converges absolutely for |z| < 1 and diverges for |z| > 1.
For z = −1, the series converges for β < 1 and diverges for β ≥ 1. For z = 1, it converges
absolutely for β < 0 and diverges for β > 0. If −β = n is a natural number, the series (8)
is reduced to a finite sum (binomial formula), see [12, Formula 1.110].

We recall that the forward Euler operator of a given sequence f is defined by

D1
∆f(n) := f(n+ 1)− f(n), n ∈ N.

The following definition can be found in [20, formula (27) with h = 1].

Definition 2.2. Given β ∈ R+, the fractional difference of order β of a given bounded
sequence f is defined by

(9) Dβ
∇f(n) :=

n∑
j=−∞

k−β(n− j)f(j) =
∞∑
j=0

k−β(j)f(n− j), n ∈ Z.

Observe that the series converges because k−β has order O(1/nβ+1), see [11, Proposition
3.1]. As an illustrative example, we note that formula (9) when β = 2 reads as follows:

D2
∇f(n) =

n∑
j=−∞

k−2(n− j)f(j) =
n∑

j=−∞

(δ0 − δ1)∗2(n− j)f(j)(10)

=
n∑

j=−∞

(δ0 − 2δ1 + δ2)(n− j)f(j) = f(n)− 2f(n− 1) + f(n− 2), n ∈ Z.

Remark 2.3. In [20] it is shown that the fractional operator Dα
∇f(n) approximates the

forward Liouville derivative of order α > 0 given by Dα
t f(t) = ∂m

∂tm

∫ t
−∞ gn−α(t−s)f(s) where

m = bαc+ 1, t ∈ R and, for every t > 0, gβ(t) := tβ

Γ(β)
.

3. Main results

We begin with the following result, that generalizes [7, Theorem 2] to the N -dimensional
case.

Theorem 3.1. For all 0 < α < 1 and f ∈ `∞(ZN) the following holds:

(−∆d,N)αf(n) =
∑
j∈ZN

Kα(n− j)f(j), n ∈ ZN ,

where

(11) Kα(n) :=
1

(2π)N

∫
−[π,π]N

(
N∑
j=0

4 sin2(θj/2)

)α

e−in·θdθ, n ∈ ZN , α > 0.
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Proof. By [19, Lemma 6.5] we have

FZN ((−∆d,N)αf)(θ) =

(
N∑
j=1

4 sin2(θj/2)

)α

FZN (f)(θ).

On the other hand, we have

(12) FZN (Kα)(θ) =

(
N∑
j=1

4 sin2(θj/2)

)α

,

and the claim follows from the convolution and uniqueness properties of the Fourier trans-
form. �

Since the formula for Kα holds for any α > 0, we could extend the definition of the
fractional Laplacian to the case α ≥ 1 by means of the right-hand side of the above theorem.
As a further consequence, the following property of associativity holds:

(13) (−∆d,N)α(−∆d,N)β = (−∆d,N)α+β whenever α + β > −1.

For the 1-dimensional case, see [7, 19] and the references therein.
In light of the above result, it is worth comparing the definition of fractional Laplacian

given here with the two-sided fractional derivatives introduced by Ortigueira [24]. According
to [24, Definition 2.1] a two-sided Grünwald-Letnikov type fractional derivative of a real
function f is defined by

(14) Dβ
θ f(x) = lim

h→0

1

hβ

∑
n∈Z

(−1)nΓ(β + 1)

Γ(β+θ
2
− n+ 1)Γ(β−θ

2
+ n+ 1)

f(x− nh),

where β > −1 is the derivative order and θ ∈ R is an asymmetry parameter. Define:

(15) Kβ
θ (n) =

(−1)nΓ(β + 1)

Γ(β+θ
2
− n+ 1)Γ(β−θ

2
+ n+ 1)

, n ∈ Z.

Choosing θ = 0 and β = 2α we obtain

(16) K2α
0 (n) =

(−1)nΓ(2α + 1)

Γ(α− n+ 1)Γ(α + n+ 1)
, n ∈ Z,

which matches (11) in the 1-dimensional case (see [7, Remark 1]). The above observation
shows that there is an interesting connection between the fractional Laplacian as defined in
(1) and the Riesz derivative (see [24, Section 5.2]).

The first result of this article is the following theorem.

Theorem 3.2. For any α > 0, and φ ∈ `∞(ZN), the N-dimensional heat equation with
discrete time and discrete space

(17)

 D1
∆v(m,n) = −(−∆d,N)αv(m+ 1,n), n ∈ ZN , m ∈ N,

v(0,n) = φ(n)
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admits as unique solution the formula

(18) v(m,n) =
∑
j∈ZN

Gα
m(n− j)φ(j) n ∈ ZN , m ∈ Z,

where

(19) Gα
m(n) :=

1

(2π)N

∫
[−π,π]N

e−in·θ(1 + (
N∑
j=1

4 sin2(θj/2))α)−mdθ.

Proof. Let check that v(m,n) =
∑
j∈ZN G

α
m(n − j)φ(j) is a solution of (17). Indeed, let

denote aθ :=
∑N

j=1(4 sin2(θj/2)), then for every n ∈ ZN and m ∈ N we have:

D1
∆G

α
m(n) =

1

(2π)N

∫
[−π,π]N

e−in·θ[(1 + aαθ )−(m+1) − (1 + aαθ )−m]dθ(20)

=
−1

(2π)N

∫
[−π,π]N

e−in·θaαθ (1 + aαθ )−(m+1)dθ.

As a result,

D1
∆v(m,n) =

∑
j∈ZN

D1
∆G

α
m(n− j)φ(j)

(21)

= −
∑
j∈ZN

1

(2π)N

∫
[−π,π]N

e−i(n−j)·θaαθ (1 + aαθ )−(m+1)φ(j)dθ n ∈ ZN , m ∈ N.

On the other hand, from Theorem 3.1 and Fubini’s theorem, we get for each n ∈ ZN and
m ∈ N that:

(−∆d,N)αGα
m(n) =

1

(2π)N

∫
[−π,π]N

∑
j∈ZN

Kα(j)e−i(n−j)·θ

 (1 + aαθ )−mdθ(22)

=
1

(2π)N

∫
[−π,π]N

e−in·θaαθ (1 + aαθ )−mdθ,

where we used the identity (12) in the last equality. Consequently, we get

(−∆d,N)αv(m+ 1,n) =
∑
j∈ZN

(−∆d,N)αGα
m+1(n− j)φ(j)(23)

=
∑
j∈ZN

1

(2π)N

∫
[−π,π]N

ei(n−j)·θaαθ (1 + aαθ )−(m+1)φ(j)dθ,
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where n ∈ ZN ,m ∈ N. It is not difficult to see using (5) and (6) that

v(0,n) =
∑
j∈ZN

Gα
0 (n− j)φ(j) =

∑
j∈ZN

1

(2π)N

∫
[−π,π]N

e−i(n−j)·θφ(j)dθ(24)

=
1

(2π)N

∫
[−π,π]N

e−in·θ

∑
j∈ZN

eij·θφ(j)

 dθ

=
1

(2π)N

∫
[−π,π]N

e−in·θφ̂(θ)dθ = φ(n), n ∈ ZN .

Combining this last equation with (21) and (23) we conclude that v is a solution of problem
(17). �

Remark 3.3. We note that in the 1-dimensional and non-fractional case (N = 1, α = 1),
the heat equation takes the form

v(m+ 1, n)− v(m,n) = v(m+ 1, n+ 1)− 2v(m+ 1, n) + v(m+ 1, n− 1)

which is slightly different from the more usual form v(m + 1, n) − v(m,n) = v(m,n +
1) − 2v(m,n) + v(m,n − 1). The solution is already known in case of continuous time
and discrete space variable (see e.g. [30, Section 5.2]). In contrast, the representation
given here for discrete space and discrete time is new. It is worth noting that the rep-
resentation (18) reveals some qualitative behavior of the solution. For example, the as-
ymptotic behavior lim

m→∞
v(m,n) = 0 can be deduced from the corresponding of the sequence

(1 + (
∑N

j=1 4 sin2(θj/2))α)−m as m→∞.

Our next result shows that the N -dimensional discrete fractional Laplacian operator
(−∆d,N)α is related with the “α-root” of the forward difference operator D1

∆, namely, the

operator D
1/α
∇ . We provide two results of this type. In the first one we consider the heat

equation previously analyzed where we find a positive answer in case α = 1
p
, p ∈ N.

Theorem 3.4. Given φ ∈ `∞(ZN), for each α = 1
p
, p ∈ N the expression given by (18)

solves the problems

(25)

 D1
∆v(m,n) = −(−∆d,N)1/pv(m+ 1,n), n ∈ ZN , m ∈ N,

v(0,n) = φ(n)

and

(26)


Dp
∇v(m,n) = (−1)p+1∆d,Nv(m,n), n ∈ ZN , m ∈ N,

v(0,n) = φ(n)

v(−j,n) = (Id+ (−∆d,N)1/p)jφ(n), j ∈ N.
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Proof. Let α = 1
p
. Observe the fact that expression given by (18) solves problem (25) is

already proven in Theorem 3.2. It only remains to show that it also solves problem (26).

Indeed, let aθ :=
∑N

j=1(4 sin2(θj/2)), then we have for every n ∈ ZN and m ∈ N:

∆d,Nv(m,n) =
∑
j∈ZN

∆d,NG
α
m(n− j)φ(j)(27)

=
∑
j∈ZN

1

(2π)N

∫
[−π,π]N

∆d,Ne
−i(n−j)·θ(1 + aαθ )−mφ(j)dθ

=
∑
j∈ZN

1

(2π)N

∫
[−π,π]N

N∑
k=1

(e−i(n−j+ek)·θ − 2e−i(n−j)·θ + e−i(n−j−ek)·θ)×

× (1 + aαθ )−mφ(j)dθ

=
∑
j∈ZN

1

(2π)N

∫
[−π,π]N

e−i(n−j)·θ
N∑
k=1

(e−iθk − 2 + eiθk)(1 + aαθ )−mφ(j)dθ

=
∑
j∈ZN

1

(2π)N

∫
[−π,π]N

e−i(n−j)·θ
N∑
k=1

(2 cos θk − 2)(1 + aαθ )−mφ(j)dθ

=
∑
j∈ZN

1

(2π)N

∫
[−π,π]N

e−i(n−j)·θ
N∑
k=1

(−4 sin2(θk/2))(1 + aαθ )−mφ(j)dθ

=
∑
j∈ZN

1

(2π)N

∫
[−π,π]N

e−i(n−j)·θ(−aθ)(1 + aαθ )−mφ(j)dθ.

Also, we have:

D
1/α
∇ v(m,n) =

∑
j∈ZN

D
1/α
∇ Gα

m(n− j)φ(j)

(28)

=
∑
j∈ZN

1

(2π)N

∫
[−π,π]N

e−i(n−j)·θD
1/α
∇ (1 + aαθ )−mφ(j)dθ n ∈ ZN , m ∈ N.

Define qθ := 1 + aαθ . Considering Definition 2.2 we have for every m ∈ N:

D
1/α
∇ q−mθ =

∞∑
j=0

k−1/α(j)q
−(m−j)
θ = q−mθ

∞∑
j=0

k−1/α(j)qjθ.(29)
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Since α = 1
p

we obtain by Remark 2.1

Dp
∇q
−m
θ = q−mθ

p∑
j=0

(−1)j
(
p

j

)
qjθ = q−mθ (1− qθ)p = (1 + aαθ )−m(−1)p(aαθ )p = (1 + aαθ )−m(−1)paθ.

(30)

Using equality (30) in (28) we arrive to:

(31)

Dp
∇v(m,n) = (−1)p

∑
j∈ZN

1

(2π)N

∫
[−π,π]N

e−i(n−j)·θaθ(1 + aαθ )−mφ(j)dθ n ∈ ZN , m ∈ N.

Comparing (31) with (27) we arrive to the first equation in (26).
It only remains to show that v satisfies the initial conditions given in the third equation

of (26). Indeed, let first compute:

Gα
−m(n) =

1

(2π)N

∫
[−π,π]N

e−in·θ(1 + (
N∑
k=1

4 sin2(θk/2))α)mdθ

=
m∑
s=0

(
m

s

)
1

(2π)N

∫
[−π,π]N

e−in·θ(
N∑
k=1

4 sin2(θk/2))αsdθ =
m∑
s=0

(
m

s

)
Kαs(n).

As a result, we obtain

v(−m,n) =
∑
j∈ZN

Gα
−m(n− j)φ(j) =

m∑
s=0

(
m

s

) ∑
j∈ZN

Kαs(n− j)φ(j)

=
m∑
s=0

(
m

s

)
[(−∆d,N)α]sφ(n) = (Id+ (−∆d,N)α)mφ(n) n ∈ ZN , m ∈ N,(32)

where in the next-to-last equality we have employed property (13).
�

Remark 3.5. When p = 1 problems (25) and (26) coincide. Indeed, from (7)

D1
∇v(m,n) =

∞∑
j=0

(δ0 − δ1)(m− j)v(j,n) = v(m,n)− v(m− 1,n)

and then equation

D1
∇v(m,n) = −∆dv(m,n), n ∈ ZN , m ∈ N

reduces to

D1
∆v(m,n) = −∆dv(m+ 1,n), n ∈ ZN , m ∈ N.
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Example 1. In case p = 2 and N = 1 and using [16, Example 2.1] we have that equation
(25) equals to

(33) v(m+ 1, n)− v(m,n) =
4

π

∑
k∈Z

v(m+ 1, n− k)

(2k − 1)(2k + 1)
, n ∈ Z, m ∈ N,

with prescribed initial condition v(0, n), whereas equation (26) reads

(34) D2
∇v(m,n) = −[v(m,n+ 1)− 2v(m,n) + v(m,n− 1)], m ∈ N, n ∈ Z.

Using (10), we obtain that (34) is equivalent to

(35) v(m,n) = v(m,n+ 1) + v(m,n− 1)− 2v(m− 1, n) + v(m− 2, n), m ∈ N, n ∈ Z,

with given initial conditions v(0, n) and v(−1, n). Note the presence of history (or memory) in
the model (35) represented by the second initial condition v(−1, n). In constrast, the history
is represented by the fractional power α = 1/2 (or right-hand term) in the model (33). By
Theorem 3.4 we conclude that the equations (33) and (35) have the same solution. Of course,
the last equation is computationally simpler than (33). This observation ratifies the claims
about the advantages of the connections presented in this article, such as previously stated
in references [14] and [17].

In our second result we consider a diffusion-like equation.

Theorem 3.6. Given φ ∈ `∞(ZN) the expression given by:

v(m,n) =
∑
j∈ZN

Hα
m(n− j)φ(j) n ∈ ZN , m ∈ Z,

where Hα
m(n) :=

1

(2π)N

∫
[−π,π]N

e−in·θ(1− (
N∑
j=1

4 sin2(θj/2))α)−mdθ solves the problem

(36)

 D1
∆v(m,n) = (−∆d,N)αv(m+ 1,n), n ∈ ZN , m ∈ N,

v(0,n) = φ(n)

for any α > 0 and also the problem

(37)


D

1/α
∇ v(m,n) = −∆d,Nv(m,n), n ∈ ZN , m ∈ N,

v(0,n) = φ(n)

v(−j,n) = (Id− (−∆d,N)α)jφ(n), j ∈ N.

whenever 0 < α ≤ 1
2+log2N

.

Proof. Recall that aθ :=
∑N

j=1(4 sin2(θj/2)). Replacing (1 + aαθ ) by (1− aαθ ) in formulas (20),

(21), (22) and (23) it is easy to see that v(m,n) =
∑
j∈ZN H

α
m(n − j)φ(j) is a solution of
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(36). Let now see that v also solves problem (37). Indeed, following the proof of Theorem
3.4 we have for every n ∈ ZN and m ∈ N:

∆d,Nv(m,n) =
∑
j∈ZN

1

(2π)N

∫
[−π,π]N

e−i(n−j)·θ(−aθ)(1− aαθ )−mφ(j)dθ.(38)

Also, we have:

D
1/α
∇ v(m,n) =

∑
j∈ZN

1

(2π)N

∫
[−π,π]N

e−i(n−j)·θD
1/α
∇ (1− aαθ )−mφ(j)dθ n ∈ ZN , m ∈ N.

(39)

Let qθ := 1 − aαθ . We claim that |qθ| < 1 whenever qθ 6= ±1 (which imply aαθ 6= 0). Indeed,
the hypothesis implies the inequality 22α+α log2N ≤ 2, or, equivalently 22N ≤ 21/α. Hence
N − 21/α−1 ≤ −N. Since −N ≤

∑N
j=0 cos(θj) ≤ N we obtain the inequality 0 ≤ N −∑N

j=1 cos(θj) ≤ 21/α−1. Therefore 0 ≤
∑N

j=1(1 − cos(θj)) ≤ 21/α−1. Then, using the identity

1− cos θ = 2 sin2(θ/2), we obtain 0 ≤
∑N

j=0 4 sin2(θj/2)) ≤ 21/α. This shows that 0 ≤ aαθ ≤ 2

and, consequently, |qθ| = |aαθ − 1| < 1 whenever qθ 6= ±1. This proves the claim.
Considering Definition 2.2 we have for every m ∈ N:

D
1/α
∇ q−mθ =

∞∑
j=0

k−1/α(j)q
−(m−j)
θ = q−mθ

∞∑
j=0

k−1/α(j)qjθ = q−mθ (1− qθ)1/α = (1− aαθ )−maθ,

(40)

where in the last equality we have used the generating formula given by (8). Note that the
cases qθ = ±1 follow from Remark 2.1. Using equality (40) in (39) we arrive to:

(41) D
1/α
∇ v(m,n) =

∑
j∈ZN

1

(2π)N

∫
[−π,π]N

e−i(n−j)·θaθ(1− aαθ )−mφ(j)dθ n ∈ ZN , m ∈ N.

It only remains to show that v satisfies the initial conditions given in the third equation of
(37). Indeed, we proceed as in the last part of the proof of Theorem 3.4 obtaining this time

Hα
−m(n) =

1

(2π)N

∫
[−π,π]N

e−in·θ(1− (
N∑
k=1

4 sin2(θk/2))α)mdθ =
m∑
s=0

(
m

s

)
(−1)sKαs(n).

Therefore

v(−m,n) =
∑
j∈ZN

Hα
−m(n− j)φ(j) = (Id− (−∆d,N)α)mφ(n) n ∈ ZN , m ∈ N,(42)

where we have employed property (13). Combining (38) and (41) we have proven that v also
solves problem (37) and then problems (36) and (37) have the same solution. �

Remark 3.7. It should be noted that one of the advantages of our analysis on complete lat-
tices for fractional order operators, compared to continuous analysis, is that it allows to make
the language of distribution theory, which is always present in the continuous variable case,
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more transparent through simpler computations, replacing the Dirac’s delta by the Kronecker
delta. This type of approach serves as a microstructural basis for the analysis of continuous
fractional models and to describe the non-local properties of different types of media at the
nanoscale and microscale [31, 32].

References

[1] L. Abadias, J. Gonzalez-Camus, P. J. Miana, J. C. Pozo. Large time behaviour for the heat equation on
Z, moments and decay rates. J. Math. Anal. Appl. 500 (2021), 125137.

[2] L. Abadias, C. Lizama. Almost automorphic mild solutions to fractional partial difference-differential
equations. Applicable Analysis, 95(6) (2016), 1347–1369.
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