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Abstract. We study the initial value problem

(∗)
{

C∆αu(n) = Au(n+ 1), n ∈ N0;
u(0) = u0 ∈ X.

when A is a closed linear operator with domain D(A) defined on a Banach space X. We introduce a
method based on the Poisson distribution to show existence and qualitative properties of solutions
for the problem (*), using operator-theoretical conditions on A. We show how several properties
for fractional differences, including their own definition, are connected with the continuous case by
means of sampling using the Poisson distribution. We prove necessary conditions for stability of
solutions, that are only based on the spectral properties of the operator A in case of Hilbert spaces.

1. Introduction

In the past decade, the study of existence and qualitative properties of discrete solutions for
fractional difference equations has drawn a great deal of interest. To mention a few, see [1, 2, 4, 5,
23, 25, 26, 31, 40, 44].

First studies on time differences of fractional order are due to Kutter [33]. Diaz and Osler [19]
introduced in 1974 a discrete fractional difference operator defined as an infinite series. Grey and
Zhang [27] developed a fractional calculus for the discrete nabla (backward) difference operator.
At the same time, Miller and Ross [38] defined a fractional sum via the solution of a linear differ-
ence equation. More recently, Atici and Eloe [4] introduced the Riemann-Liouville like fractional
difference by using the definition of fractional sum of Miller and Ross, and developed some of its
properties that allow to obtain solutions of certain fractional difference equations. Ferreira [21, 22]
introduced the concept of left and right fractional sum/difference and started a fractional discrete-
time theory of the calculus of variations. See also Sengül [42] for related work. Holm [29, 30] further
developed and applied the tools of discrete fractional calculus to the arena of fractional difference
equations. See also the recent paper [12] for complementary work. Concerning qualitative prop-
erties, Goodrich [24] in a series of papers studied existence of positive solutions and geometrical
properties. Applications to concrete models have been analyzed by Atici and Sengül in [7].

In spite of the significant increase of research in this area, there are still many open questions
regarding fractional difference equations. In particular, the study of fractional difference equations
with unbounded linear operators and their stability properties remains an open problem. These ab-
stract fractional models, with unbounded operators, are closely connected with numerical methods
for integro-differential equations [16, 41] and evolution equations with memory [35]. The theory of
discrete fractional equations is also a promising tool for several biological and physical applications
where the memory effect appears [7, 11]. In this paper, we propose a novel method to deal with
this problem based on the sampling of fractional differential equations by means of the Poisson
distribution. We will use it to prove the existence of a unique solution to the initial value problem

(1.1)

{
C∆αu(n) = Au(n+ 1), n ∈ N0;

u(0) = u0 ∈ X.
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where A is a closed linear operator with domain D(A) defined on a Banach space X. Here we use
a particular choice of the notion of fractional differences (in the sense of Caputo) and we assume
0 < α ≤ 1.

Mathematical understanding of the linear equation (1.1) is meant as a preliminary critical step
for the subsequent analysis of full nonlinear models. The approach followed here is purely operator-
theoretic and has as main ingredient the use of the Poisson distribution:

pn(t) = e−t
tn

n!
, n ∈ N0, t ≥ 0.

The method relies in to take advantage of the properties of this distribution when it is applied
to continuous phenomena. More precisely, given a continuous evolution u(t), t ∈ [0,∞) we can
discretize it by means of that we will call the Poisson transformation

(1.2) u(n) :=

∫ ∞
0

pn(t)u(t)dt, n ∈ N0.

In this paper, we will show that when this procedure is applied to fractional models defined on the
time scale R+, these transformations are well behaved and fit perfectly in the discrete fractional
concepts. In other words, our approach is as follows: Suppose that a solution of the fractional
Cauchy problem

Dαu(t) = Au(t), t ≥ 0, 0 < α ≤ 1,

exists. It happens, for instance, if A is the generator of a C0-semigroup or A is sectorial, see [10,
Sections 2.1 and 2.2], [32] and references therein. Then, by sampling each side of the above equation
by means of the Poisson distribution, we obtain that u(n) defined by (1.2) is a solution of

∆αu(n) = Au(n+ 1), n ∈ N,

where Dα and ∆α denote the fractional operators on R+ and N0, respectively, in the sense of
Riemann-Liouville. It is remarkable that by this mechanism we recover the concept of fractional
nabla sum and difference operator introduced by Atici and Eloe [6], which has been used recently
and independently of the method used here by other authors in order to obtain several qualitative
properties of fractional difference equations, notably concerning stability properties [13, 14]. We
take advantage of this important connection to derive several sufficient conditions for stability
in case of unbounded operators A. Among others, in this paper we prove the following practical
criteria in Hilbert spaces: Let A be the generator of a C0-semigroup on a Hilbert space H such
that {µ ∈ C : Re(µ) > 0} ⊂ ρ(A) and satisfies

sup
Re(µ)>0

‖(µ−A)−1‖ <∞,

then, the solution of the fractional difference equation of order α ∈ (0, 1)

C∆αu(n) = Au(n+ 1), n ∈ N,

exists and is stable for all initial conditions u0 ∈ H.
The outline of this paper is as follows: In Section 2, we give some preliminary background in

notation and definitions. The remarkable fact is that we use here a particular choice of the definition
introduced by Atici and Eloe in [9] for the nabla operator. This choice, that has been used by other
authors [13], [14], is proved to be the right notion in the sense that the following notable relation
holds

(1.3)

∫ ∞
0

pn+1(t)Dα
t u(t)dt = ∆αu(n), n ∈ N0,

where Dα
t denotes the Riemann-Liouville fractional derivative on R+ and u(n) is defined by (1.2).

Then, we can connect the Delta operator (i.e. the Riemann-Liouville fractional difference) in the
right hand side with the Caputo-like fractional difference by means of the identity (Theorem 2.4):

C∆αu(n) = ∆αu(n)− k1−α(n+ 1)u(0), n ∈ N0.
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In Section 3, we establish several relations between the continuous and discrete setting, including
the identity (1.3). In particular, we show that the continuous and discrete convolution as well as
the Laplace and Z-transform are related by means of the Poisson transformation (1.2).

In Section 4, we show how to apply the preceding results to solve the problem (1.1). After recall
the notion of α-resolvent family, which is an extension of the concept of C0-semigroup, we prove
that the solution of problem (1.1) can be represented by means of the Poisson transformation of
such family, whenever A is a generator (Theorem 4.4). In particular, we derive in the scalar case an
explicit representation of the solution (Theorem 4.7). From a different point of view, the obtained
representation can be considered as the discrete definition of the continuous Mittag-Leffler function.

In Section 5, we give some necessary conditions for stability of solutions in the sense that

‖u(n)‖ → 0 as n→∞.

A practical condition that we find, in general Banach spaces, is the uniform exponential stability
of a semigroup generated by A (Theorem 5.2). A more precise condition is provided in Hilbert
spaces, as mentioned before (Corollary 5.3).

2. Preliminaries

For a real number a, we denote

Na := {a, a+ 1, a+ 2, ...},

and we write N1 ≡ N. Let X be a complex Banach space. We denote by s(Na;X) the vectorial
space consisting of all vector-valued sequences f : Na → X.
The forward Euler operator ∆a : s(Na;X)→ s(Na;X) is defined by

∆af(t) := f(t+ 1)− f(t), t ∈ Na.

For m ∈ N2, we define recursively ∆m
a : s(Na;X)→ s(Na;X) by

∆m
a := ∆m−1

a ◦∆a,

and is called the m-th order forward difference operator. For instance, for any f ∈ s(N0;X), we
have

∆m
0 f(n) =

m∑
j=0

(
m

j

)
(−1)m−jf(n+ j), n ∈ N0.

In particular, we obtain

(∆1
0f)(n) = f(n+ 1)− f(n), n ∈ N0.

We also denote ∆0
a ≡ Ia, where Ia : s(Na;X)→ s(Na;X) is the identity operator, and ∆ ≡ ∆1

0.
We define

(2.1) kα(j) :=
Γ(α+ j)

Γ(α)Γ(j + 1)
, j ∈ N0.

The following definition of fractional sum was proposed by Atici and Eloe in 2009.

Definition 2.1 ([6]). Let α > 0. For any given positive real number a, the α-th fractional sum of
a function f is

∇−αa f(t) =
1

Γ(α)

t∑
s=a

(t− s+ 1)α−1f(s),

where t ∈ Na and tα :=
Γ(t+ α)

Γ(t)
.

In particular, in case a = 0 we denote

(2.2) ∆−αf(n) ≡ ∇−α0 f(n) =
n∑
k=0

Γ(n− k + α)

Γ(α)Γ(n− k + 1)
f(k) =

n∑
k=0

kα(n− k)f(k), n ∈ N0.



4 CARLOS LIZAMA

One of the reasons to choose this operator is because their flexibility to be handled by means of
Z-transform methods. Moreover, it has a better behavior for mathematical analysis when we ask,
for example, for definitions of fractional sums and differences on subspaces of s(N0;X) like e.g. lp
spaces. We notice that, recently, this approach has been followed by other authors. See [13, 14].

On the other hand, we observe that for numerical treatment of fractional differential equations
it is essential to have good approximations of the operator Dα of fractional differentiation. For
the derivation of approximations to Dα it is convenient to make use of the discrete operators of
translation: Backward and forward Euler difference operators. For applications to causal prob-
lems, backward operators are more appropriate. The Grünwald-Letnikov discretization of time-
fractional difference equations is based on the backward scheme. For instance, Meerschaert et.al
have published a series of papers in which they used the Grünwald-Letnikov difference scheme in
approximating the fractional diffusion equation, see [36, 37]. However, in concrete applications,
this scheme have some drawbacks [37]. A different numerical method was proposed by Lubich [34].
The basic idea is to combine the classical backward Euler method with a suitable quadrature rule,
see [15] and references therein. We observe that both methods requires the use of the kernel (2.1).
Indeed, whereas the Grünwald-Letnikov formula requires (2.1) for α < 0 (see [37, Formula (3)]),
the method of Lubich requires (2.1) for α > 0. For a recent discussion on the matter of convergence,
see [39, Section 3.3].

The next concept is analogous to the definition of a fractional derivative in the sense of Riemann-
Liouville, see [38] and [4]. In other words, to a given vector-valued sequence, first fractional sum-
mation and then integer difference are applied.

Definition 2.2. [12] The nabla fractional difference operator of order α > 0 is defined by

∇αaf(t) = ∆m
a (∇−(m−α)

a f)(t), t ∈ Na,

where m− 1 < α < m, m = dαe.

In this paper, we use the case a = 0 that we denote ∆α, that is the fractional difference operator
∆α : s(N0;X)→ s(N0;X) of order α > 0 (in the sense of Riemann-Liouville) is defined by

∆αf(n) := ∆m
0 ◦∆−(m−α)f(n), n ∈ N0,

where m− 1 < α < m, m := dαe.

Interchanging the order of the operators in the definition of fractional difference in the sense
of Riemann-Liouville, and in analogous way as above, we can introduce the notion of fractional
difference in the sense of Caputo as follows.

Definition 2.3. Let α > 0. The α-th fractional Caputo like difference is defined by

C∇αaf(t) = ∇−(m−α)
a (∆m

a f)(t), t ∈ Na,

where m− 1 < α < m, m = dαe.

We use the particular case a = 0 i.e., the fractional difference (in the sense of Caputo) of order
α > 0 defined by

(2.3) C∆αf(n) := ∆−(m−α)(∆m
0 f)(n), n ∈ N0,

where m− 1 < α < m, m = dαe.
Recall that the finite convolution ∗ of two sequences f(n) and g(n) is defined by

(f ∗ g)(n) :=
n∑
j=0

f(n− j)g(j), n ∈ N0.

For further use, we note the following relation between the Caputo and Riemann-Liouville frac-
tional differences of order 0 < α < 1.
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Theorem 2.4. For each 0 < α < 1 and f ∈ s(N0;X), we have

C∆αf(n) = ∆αf(n)− k1−α(n+ 1)f(0), n ∈ N0,

where k1−α is defined in (2.1).

Proof. By definition and (2.2) we have

∆−(1−α)(∆f)(n) =

n∑
j=0

k1−α(n− j)∆f(j)

=
n∑
j=0

k1−α(n− j)f(j + 1)−
n∑
j=0

k1−α(n− j)f(j)

=

n+1∑
j=1

k1−α(n+ 1− j)f(j)−
n∑
j=0

k1−α(n− j)f(j)

=
n+1∑
j=0

k1−α(n+ 1− j)f(j)−
n∑
j=0

k1−α(n− j)f(j)− k1−α(n+ 1)f(0)

= ∆(∆−(1−α)f)(n)− k1−α(n+ 1)f(0),

and we obtain the desired result. �

3. A method based on the Poisson distribution

For each n ∈ N0, we recall that the Poisson distribution is defined by

pn(t) := e−t
tn

n!
, t ≥ 0.

As expected, pn(t) ≥ 0 and ∫ ∞
0

pn(t)dt = 1, n ∈ N0.

The Poisson distribution arises in connection with Poisson processes. In this section we will realize
their application to abstract difference equations. The method itself uses an idea of discretization
of the derivative in time used in the paper [17] (see also [16] and references therein).

First, we recall some concepts. Let S : R+ → B(X) be strongly continuous, that is, for all x ∈ X
the map t → S(t)x is continuous on R+. We say that a family of bounded and linear operators
{S(t)}t≥0 is exponentially bounded if there exists real numbers M > 0 and ω ∈ R such that

‖S(t)‖ ≤Meωt, t ≥ 0.

We say that {S(t)}t≥0 is bounded if ω = 0. Note that if {S(t)}t≥0 is exponentially bounded then,
the Laplace transform

Ŝ(λ)x :=

∫ ∞
0

e−λtS(t)xdt, x ∈ X,

exists for all Re(λ) > ω.
We recall that the Z-transform of a vector-valued sequence f ∈ s(N0;X), is defined by

f̃(z) :=
∞∑
j=0

z−jf(j)

where z is a complex number. Note that convergence of the series is given for |z| > R with R
sufficiently large.

An interesting connection between the vector-valued Z-transform and the vector-valued Laplace
transform can be given by means of the Poisson distribution. This is the content of the following
result.
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Theorem 3.1. Let {S(t)}t≥0 ⊆ B(X) be bounded. Define

(3.1) S(n)x :=

∫ ∞
0

pn(t)S(t)xdt, n ∈ N0, x ∈ X.

Then
S̃(z)x = Ŝ(1− 1/z)x, x ∈ X,

for all z such that |z| > 1.

Proof. By hypothesis, there exists M > 0 such that ‖S(t)‖ ≤M for all t ≥ 0. Then, their Laplace

transform Ŝ(λ) exists for all Re(λ) > 0. Moreover, we note that

‖S(n)x‖ ≤M
∫ ∞

0
pn(t)‖x‖dt = M‖x‖, n ∈ N0,

and therefore, for all x ∈ X, the Z-transform S̃(z)x exists for all |z| > 1.

Let z be such that |z| > 1 and define λ := 1 − 1

z
. Then 1 − 1

z
belongs to the circle D(1, 1) :=

{w ∈ C : |w − 1| < 1 }. In particular, Re(1− 1
z ) > 0. Hence,

S̃(z)x =
∞∑
n=0

z−nS(n)x =
∞∑
n=0

z−n
∫ ∞

0
pn(t)S(t)xdt =

∫ ∞
0

e−t
∞∑
n=0

z−n
tn

n!
S(t)xdt

=

∫ ∞
0

e−tet/zS(t)xdt = Ŝ(1− 1/z)x

for all x ∈ X, proving the theorem. �

Remark 3.2. An analogous result holds in case that {S(t)}t≥0 is replaced by a continuous and
bounded function a : R+ → C, obtaining

ã(z) = â(1− 1/z)

for all |z| > 1, where

a(n) :=

∫ ∞
0

pn(t)a(t)dt, n ∈ N0.

Example 3.3. For α > 0 define

(3.2) gα(t) :=


tα−1

Γ(α)
t > 0

0 t ≤ 0.

Note the semigroup property:
gα+β = gα ∗ gβ, α, β > 0.

We have the following interesting property of sampling

gα(n) :=

∫ ∞
0

pn(t)gα(t)dt =

∫ ∞
0

e−t
tn+α+1

Γ(α)n!
dt =

Γ(n+ α)

Γ(α)Γ(n+ 1)
= kα(n),

for all n ∈ N0. By the preceding theorem (more precisely, Remark 3.2) we obtain

k̃α(z) =
zα

(z − 1)α

for all |z| > 1 and

kα+β(n) = (kα ∗ kβ)(n), α, β > 0.

In particular, for α, β > 0 we deduce the identities

(3.3) ∆−α(∆−βu)(n) = ∆−(α+β)u(n) = ∆−β(∆−αu)(n), ∀n ∈ N0.

Indeed,

∆−α(∆−βu) = ∆(kβ ∗ u) = kα ∗ (kβ ∗ u) = (kα ∗ kβ) ∗ u = kα+β ∗ u = ∆α+βu,
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and interchanging the role of α and β we obtain (3.3). We finally remark that, for α, β > 0, we get
the identity

∆−αkβ = kα ∗ kβ = kα+β.

The next property connecting the continuous and discrete convolution will be very useful in the
treatment of abstract difference equations.

Theorem 3.4. Let a : R+ → C be Laplace transformable such that â(1) exists, and let {S(t)}t≥0 ⊂
B(X) be strongly continuous and Laplace transformable such that Ŝ(1) exists. Then for all x ∈ X,∫ ∞

0
pn(t)(a ∗ S)(t)xdt =

n∑
k=0

a(n− k)S(k)x, n ∈ N0.

Proof. We first observe that by properties of the Laplace transform, for any Laplace transformable
function f (scalar or vector-valued) such that f̂(1) exists, we have

f(n) :=

∫ ∞
0

pn(t)f(t)dt =

∫ ∞
0

tn

n!
e−tf(t)dt =

(−1)n

n!
[f̂(λ)](n)|λ=1.

See [3, Theorem 1.5.1]. Then, using the Leibniz’s rule for the n-th derivative of a product (see [28,
formula 0.42]), we obtain∫ ∞

0
pn(t)(a ∗ S)(t)xdt =

(−1)n

n!
[(̂a ∗ S)(λ)x](n)|λ=1 =

(−1)n

n!
[â(λ)Ŝ(λ)x](n)|λ=1

=
(−1)n

n!

n∑
k=0

(
n

k

)
[â(λ)](n−k)[Ŝ(λ)x](k)|λ=1

=
(−1)n

n!

n∑
k=0

(
n

k

)
(n− k)!

(−1)n−k
a(n− k)

k!

(−1)k
S(k)x

=

n∑
k=0

a(n− k)S(k)x

for all x ∈ X and n ∈ N0, proving the theorem.
�

In order to establish our next result, we recall that the Riemann-Liouville fractional integral of
order α > 0, of a locally integrable function u : [0,∞)→ X is given by:

Iαt u(t) := (gα ∗ u)(t) :=

∫ t

0
gα(t− s)u(s)ds,

where gα is defined in (3.2). The Riemann-Liouville fractional derivative of order 0 < α < 1 of a
function u is defined by

Dα
t u(t) :=

d

dt

∫ t

0
g1−α(t− s)u(s)ds.

The next Theorem establishes a notably and very interesting relation between the discrete and
continuous fractional concepts in the sense of Riemann-Liouville, that is achieved by means of
sampling with the Poisson distribution.

Theorem 3.5. Let u : R+ → X be locally integrable and bounded. Then we have∫ ∞
0

pn+1(t)Dα
t u(t)dt = ∆αu(n), n ∈ N0,

where u(n) is given by (1.2).
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Proof. Set n ∈ N0 and 0 < α < 1. Since u is bounded, there exists a constant M > 0 such that
‖u(t)‖ ≤M for all t ≥ 0. Moreover,

‖g1−α ∗ u(t)‖ ≤M
∫ t

0
g1−α(t− s)ds = M

∫ t

0
g1−α(τ)dτ = Mg2−α(t),

for all t ≥ 0. Therefore, ‖pn(t)(g1−α ∗ u)(t)‖ ≤ e−t 1
n! t

n+1−α 1
Γ(2−α) and consequently an integration

by parts gives∫ ∞
0

pn+1(t)Dα
t u(t)dt =

∫ ∞
0

pn+1(t)
d

dt
(g1−α ∗ u)(t)dt = −

∫ ∞
0

p′n+1(t)(g1−α ∗ u)(t)dt,

for all n ∈ N0. Note that

−p′n+1(t) = pn+1(t)− pn(t), n ∈ N0.

Then ∫ ∞
0

pn+1(t)Dα
t u(t)dt =

∫ ∞
0

pn+1(t)(g1−α ∗ u)(t)dt−
∫ ∞

0
pn(t)(g1−α ∗ u)(t)dt.

By Theorem 3.4, Example 3.3 and Definition we get∫ ∞
0

pn+1(t)Dα
t u(t)dt =

n+1∑
k=0

k1−α(n+ 1− k)u(k)−
n∑
k=0

k1−α(n− k)u(k)

= (k1−α ∗ u)(n+ 1)− (k1−α ∗ u)(n) = ∆−(1−α)u(n+ 1)−∆−(1−α)u(n)

= ∆ ◦∆−(1−α)u(n) = ∆αu(n),

proving the theorem. �

For further use, we give the following application.

Corollary 3.6. Let 0 < α < 1 and 0 < α < β be given. Then

∆αkβ(n) = kβ−α(n+ 1), n ∈ N0.

Proof. Since Dα
t gβ = gβ−α (see e.g. [10, (1.19), p.11] ) we obtain by the preceding theorem

∆αkβ(n) =

∫ ∞
0

pn+1(t)Dα
t gβ(t)dt =

∫ ∞
0

pn+1(t)gβ−α(t)dt = kβ−α(n+ 1),

for all n ∈ N0. �

The following result tell us that, by the method outlined here, several properties of the family
{S(t)}t≥0 can be inherited by the corresponding operator valued sequence {S(n)}n∈N0 defined by
(3.1).

Proposition 3.7. Let {S(t)}t≥0 be a strongly continuous and exponentially bounded family of lin-
ear operators defined on a Banach space X.

(i) If {S(t)}t≥0 is bounded then {S(n)}n∈N0 is bounded.

(ii) If there are constants M > 0 and ω > 0 such that ‖S(t)‖ ≤ Me−ωt for all t ≥ 0 then

‖S(n)‖ ≤ M

(1 + ω)n+1
for all n ∈ N0.

(iii) Let X be a Banach lattice. If S(t)x ≥ 0 for all x ≥ 0 and t ≥ 0 then S(n)x ≥ 0 for all
x ≥ 0 and n ∈ N0.

Proof. (i) Let M > 0 such that ‖S(t)≤M for all t ≥ 0. Then

‖S(n)‖ ≤
∫ ∞

0
pn(t)‖S(t)‖dt ≤M

∫ ∞
0

pn(t)dt = M,
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for all n ∈ N0.
(ii) We have

‖S(n)‖ ≤M
∫ ∞

0
pn(t)e−ωtdt = M

∫ ∞
0

tn

n!
e−(1+ω)tdt =

M

(1 + ω)n+1
,

for all n ∈ N0.
(iii) Is clear from the definitions involved. �

4. Linear fractional difference equations on Banach spaces

Let A be a closed linear operator with domain D(A) defined on a Banach space X. In this
section we study the problem

(4.1)

{
C∆αu(n) = Au(n+ 1), n ∈ N0;

u(0) = u0 ∈ X.
First studies on the model (4.1) when A is a complex or real valued matrix, have only recently
appeared [18, 8]. However, to the best of our knowledge, the unbounded case, i.e. when A is merely
a closed linear operator, has not been studied in the literature.

We introduce the following notion of solution.

Definition 4.1. We say that a vector valued sequence u ∈ s(N0;X) is a solution for (4.1) if
u(n) ∈ D(A) for all n ∈ N and u(n) satisfies (4.1).

We recall the following concept (see [10], [32] and references therein).

Definition 4.2. Let A be a closed and linear operator with domain D(A) defined on a Banach
space X and α > 0. We call A the generator of an α-resolvent family if there exists ω ≥ 0 and
a strongly continuous function Sα : [0,∞) → B(X) such that {λα : Re(λ) > ω} ⊂ ρ(A), the
resolvent set of A, and

λα−1(λα −A)−1x =

∫ ∞
0

e−λtSα(t)xdt, Re(λ) > ω, x ∈ X.

In this case, Sα(t) is called the α-resolvent family generated by A.

By the uniqueness theorem for the Laplace transform, a 1-resolvent family is the same as a C0-
semigroup, while a 2-resolvent family corresponds to a cosine family. See e.g. [3] and the references
therein for an overview on these concepts. A systematic study in the fractional case is carried out
in [10].

Some properties of (Sα(t)) are included in the following lemma. For a proof, see [32].

Lemma 4.3. The following properties hold:

(i) Sα(0) = I.
(ii) Sα(t)D(A) ⊂ D(A) and ASα(t)x = Sα(t)Ax for all x ∈ D(A), t ≥ 0.

(iii) For all x ∈ D(A) : Sα(t)x = x+

∫ t

0
gα(t− s)ASα(s)xds, t ≥ 0.

(iv) For all x ∈ X : (gα ∗ Sα)(t)x ∈ D(A) and

Sα(t)x = x+A

∫ t

0
gα(t− s)Sα(s)xds, t ≥ 0.

Our main result in this section is the following theorem.

Theorem 4.4. Suppose that A is the generator of a bounded α-resolvent family Sα(t) on X. Then
the fractional difference equation of order α ∈ (0, 1)

(4.2) C∆αu(n) = Au(n+ 1), n ∈ N0

with initial condition u(0) = u0 ∈ D(A) admits the solution

u(n) = Sα(n)(I −A)u0 :=

∫ ∞
0

pn(t)Sα(t)(I −A)u0dt, n ∈ N0.
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Proof. Fix x ∈ X. We first show that Sα(n)x ∈ D(A) for all n ∈ N0. Indeed, for all n ∈ N0 we have
by [3, Theorem 1.5.1]

Sα(n)x =
(−1)n

n!
[Ŝα(λ)](n)x|λ=1,

where Ŝα(λ) = λα−1(λα − A)−1. Denote a(λ) = λα−1, b(λ) = λα and R(λ) = (λ − A)−1. Then

Ŝα(λ) = a(λ)R(b(λ)). By the Leibniz’s rule for the n-th derivative of a product, we obtain

[Ŝα(λ)](n) =
n∑
k=0

(
n

k

)
a(λ)(n−k)[(R ◦ b)(λ)](k).

By the rule for the n-th derivative of a composite function (see e.g. [28, Formula 0.430]), we get

[(R ◦ b)(λ)](k) =
k∑
j=1

Uj(λ)

j!
[R(λ)](j),

where

Uj(λ) = [b(λ)j ](n) − j!

1!
b(λ)[b(λ)j−1](n) +

j(j − 1)

2!
b(λ)2[b(λ)j−2](n) − ...+ (−1)j−1jb(λ)j−1[b(λ)](n).

Note that for all m ∈ N0, we have

[R(λ)](m)x = (λ−A)−(m+1)x.

Therefore [R(λ)](j)|λ=1x = (I − A)−(j+1)x ∈ D(A) and consequently [(R ◦ b)(λ)](k)|λ=1x ∈ D(A).

It follows that [Ŝα(λ)](n)|λ=1x ∈ D(A). In particular, this shows that Sα(n)x ∈ D(A) proving the
claim.

Next, from the identity

Sα(t)x = x+A

∫ t

0
gα(t− s)Sα(s)xds, t ≥ 0,

valid for all x ∈ X, we obtain

pn(t)Sα(t)x = pn(t)x+Apn(t)(gα ∗ Sα)(t)x, t ≥ 0, n ∈ N0.

Therefore,

Sα(n)x :=

∫ ∞
0

pn(t)Sα(t)xdt =

∫ ∞
0

pn(t)xdt+

∫ ∞
0

pn(t)A(gα ∗ Sα)(t)xdt

= x+
n∑
k=0

kα(n− k)ASα(k)x = x+A(kα ∗ Sα)(n)x, n ∈ N0.

Note that k1(n) = 1 for all n ∈ N0. Hence, convolving the above identity by k1−α, we obtain

k1−α ∗ Sα(n)x = k1−α ∗ k1(n)x+A(k1−α ∗ kα ∗ Sα)(n)x, n ∈ N0.

Using the semigroup property for the kernels kα we have

k1−α ∗ Sα(n)x = k2−α(n)x+A(k1 ∗ Sα)(n)x, n ∈ N0.

This is equivalent, by definition, to the following identity

∆−(1−α)Sα(n)x = k2−α(n)x+A

n∑
k=0

Sα(k)x, n ∈ N0.

Therefore, by Corollary 3.6 and definition of ∆ we get

∆ ◦∆−(1−α)Sα(n)x = ∆k2−α(n)x+A[
n+1∑
k=0

Sα(k)x−
n∑
k=0

Sα(k)x] = k1−α(n+ 1)x+ASα(n+ 1)x,
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for all n ∈ N0. We note that the left hand side in the above identity corresponds to the fractional
difference of order α ∈ (0, 1) in the sense of Riemann-Liouville. Therefore, using Theorem 2.4, we
obtain

C∆αSα(n)x = ASα(n+ 1)x,

for all n ∈ N0. Define u(n) := Sα(n)(I − A)u0 for all n ∈ N. It then follows that u(n) ∈ D(A)
for all n ∈ N and u(n) solves (4.2). Finally, from the identity Sα(0)x = x + A(kα ∗ Sα)(0) =
x+Akα(0)Sα(0) = x+ASα(0)x we obtain u(0) = Sα(0)(I −A)u0 = u0 proving the theorem.

�

In case α = 1 we obtain the following consequence. Observe that boundedness of a C0-semigroup
automatically implies that 1 ∈ ρ(A).

Corollary 4.5. Let A be the generator of a bounded C0-semigroup {T (t)}t≥0 on X. Then the
solution of

∆u(n) = Au(n+ 1), n ∈ N
with initial condition u(0) = u0 ∈ X is given by

u(n) = (I −A)−nu0, n ∈ N.

In case A = λI where λ ∈ C we recover a well known result.

Corollary 4.6. Let λ 6= 1. Then the solution of

∆u(n) = λu(n+ 1), n ∈ N

with initial condition u(0) = u0 ∈ X exists and is given by

u(n) = (1− λ)−nu0, n ∈ N.

We also note that in the scalar case we have explicit representation for Sα(n). To see this, first
recall that the Mittag-Leffler function, defined by

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
,

is an entire function for any α > 0, because the series converges for all values of the argument z.
It is well known that ∫ ∞

0
e−µtEα(λtα)dt = µα−1(µα − λ)−1,

for all Re(µ) > |λ|1/α (see e.g. [32] and references therein). In particular, given λ ∈ C, it follows
from Definition 4.2 that

Sα(t) = Eα(λtα), t ≥ 0,

is the α-resolvent family generated by A = λI.

Theorem 4.7. For all λ ∈ C such that |λ| < 1 we have

(4.3) Sα(n) =

∞∑
k=0

λk
Γ(αk + n+ 1)

Γ(n+ 1)Γ(αk + 1)
, n ∈ N0.

Proof. Note that we can write

Γ(αk + 1 + n)

Γ(n+ 1)Γ(αk + 1)
= kαk+1(n),

where kαk+1 is defined in (2.1). Since, by [45, Vol. I, (3.11)(2)] or [28, Formula 8.328(2)], we have

kβ(n) =
nβ−1

Γ(β)

(
1 +O(

1

n
)
)
, n ∈ N, β > 0,
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we conclude that the series in the right hand side of (4.3) is convergent for |λ| < 1. Finally, we
obtain

Sα(n) :=

∫ ∞
0

e−t
tn

n!
Eα(λtα)dt =

∫ ∞
0

e−t
tn

n!

∞∑
k0

λktαk

Γ(αk + 1)
dt

=
∞∑
k=0

λk

Γ(αk + 1)n!

∫ ∞
0

e−ttαk+ndt =
∞∑
k=0

λk
Γ(αk + n+ 1)

Γ(αk + 1)Γ(n+ 1)
,

for all n ∈ N0. �

For example, in case α = 1 we deduce from Corollary 4.6 that for |λ| < 1,
∞∑
k=0

λk
(k + n)!

k!n!
=

1

(1− λ)n+1
, n ∈ N0.

In passing, we observe that such identity seems not to be well known in the literature.

Corollary 4.8. For any λ ∈ C, |λ| < 1 and 0 < α ≤ 1 the solution of the equation

C∆αu(n) = λu(n+ 1)

is given by

(4.4) u(n) =
∞∑
k=0

λk
Γ(αk + n)

Γ(n)Γ(αk + 1)
u(0), n ∈ N.

Remark 4.9. By the definition of kα(n) we can rewrite (4.4) as follows

u(n) =

∞∑
k=0

λkkαk+1(n− 1)u(0), n ∈ N, |λ| < 1.

5. Stability properties

As an application of the theorems and corollaries in the preceding section, we will give necessary
conditions for stability of solutions. Recall that a vector-valued sequence u ∈ S(N0, X) is said to
be stable if

‖u(n)‖ → 0 as n→∞.
We begin with the following criteria.

Theorem 5.1. Let 0 < α < 1. Suppose that A is the generator of an α-resolvent family {Sα(t)}t≥0

on X and that there exist constants M > 0 and 0 < γ < 1 such that

‖Sα(t)‖ ≤ M

tγ
,

for all t > 0. Then the solution of the fractional difference equation of order α ∈ (0, 1)

(5.1) C∆αu(n) = Au(n+ 1), n ∈ N,
is stable for all initial condition u(0) = u0 ∈ D(A).

Proof. For all n ∈ N, we have by Theorem 4.4, hypothesis and definition of Gamma function,

‖u(n)‖ ≤M‖(I −A)u0‖
∫ ∞

0
pn(t)

1

tγ
dt = MC

∫ ∞
0

e−t
tn−γ

n!
dt = MC

Γ(n+ (1− γ))

nΓ(n)

= MC
n−(1−γ)Γ(n+ (1− γ)))

Γ(n)

1

n

1

n−(1−γ)
,

and using the fact that lim
k→∞

Γ(k + β)k−β

Γ(k)
= 1 for any β > 0 (see [28, Formula 8.328(2)]) the

assertion follows. �
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Using the subordination principle for α-resolvent families (cf. [32]) and (the proof of) the Datko-
Pazy theorem, we obtain the following theorem.

Theorem 5.2. Suppose that A is the generator of an uniformly exponentially stable semigroup,
then the solution of the fractional difference equation of order α ∈ (0, 1]

C∆αu(n) = Au(n+ 1), n ∈ N
is stable.

Proof. Let T (t) be the uniformly stable semigroup generated by A. In case α = 1 the result follows
by Proposition 3.7(i). Suppose now that 0 < α < 1. Observing the proof of the Datko-Pazy theorem
(see [20, Chapter V, Theorem 1.8, p.300]), it follows that there exist constants M > 0 and p > 1
such that

‖T (t)‖ ≤ M

t1/p
, t > 0.

Define

Sα(t)x =

∫ ∞
0

Φα(τ)T (τtα)xdt, t ≥ 0,

where

Φα(z) =

∞∑
n=0

(−z)n

n!Γ(−αn+ 1− α)
,

is a Wright type function (see [32] and references therein). Then by [10, Theorem 3.1] it follows
that Sα(t) is an α-resolvent family generated by A. Hence

‖Sα(t)‖ ≤ M

tα/p

∫ ∞
0

Φα(τ)

τ1/p
dt.

Since p > 1 we have by [43, Formula (W3), p.212] that∫ ∞
0

Φα(τ)

τ1/p
xdt =

Γ(1− 1/p)

Γ(1− α/p)
.

Hence there exists a constant C > 0 such that

‖Sα(t)‖ ≤ C

tα/p
.

Therefore by Theorem 5.1 with γ = α/p the assertion is proved. �

Using the Gearhart-Prüss-Greiner theorem that characterizes the uniform exponential stability
of semigroups in Hilbert spaces (see [20, Chapter V, Theorem 1.11]), we obtain the following
remarkable corollary.

Corollary 5.3. Let A be the generator of a C0-semigroup on a Hilbert space H such that {µ ∈ C :
Re(µ) > 0} ⊂ ρ(A) and satisfy

sup
Re(µ)>0

‖(µ−A)−1‖ <∞.

Then the solution of the fractional difference equation of order α ∈ (0, 1)

C∆αu(n) = Au(n+ 1), n ∈ N,
is stable.

From Corollary 4.5 we deduce the following result in case α = 1.

Corollary 5.4. Let A be the generator of a bounded C0-semigroup. Suppose that

‖(I −A)−1‖ < 1.

Then the solution of the equation

∆u(n) = Au(n+ 1), n ∈ N,
is stable.
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Denote D(z0, r) := {z ∈ C : |z − z0| < r }. In case A = λI with λ ∈ C we obtain directly from
the preceding Corollary, or as application of Corollary 4.6, the following consequence.

Corollary 5.5. Let λ ∈ C \ D(1, 1). Then the solution of

∆u(n) = λu(n+ 1), n ∈ N

is stable.

In particular, in case of λ ∈ R, the condition on λ reads: λ < 0 and λ > 2.

Remark 5.6. Note that stability and asymptotic properties for the equation (4.1) has been studied
in recent times [13, 14]. More precisely, results has been obtained in case of A is a constant
matrix with real entries, see [14] or A = λI is an scalar. We observe that in the scalar case
a characterization has been recently given, see [13, Theorem 3.1], and it coincides with ours. An
spectral characterization in the general case that A is an unbounded operator seems to be a difficult
problem and is left open.
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