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Departamento de Matemática y Ciencia de la Computación, Facultad de Ciencias

Universidad de Santiago de Chile
Casilla 307, Correo 2, Santiago, Chile

Luz Roncal

BCAM - Basque Center for Applied Mathematics

Alameda de Mazarredo 14, 48009 Bilbao, Spain

(Communicated by the associate editor name)

Abstract. We study the equations

∂tu(t, n) = Lu(t, n) + f(u(t, n), n); ∂tu(t, n) = iLu(t, n) + f(u(t, n), n)

and

∂ttu(t, n) = Lu(t, n) + f(u(t, n), n),

where n ∈ Z, t ∈ (0,∞), and L is taken to be either the discrete Laplacian op-

erator ∆df(n) = f(n+1)−2f(n)+f(n−1), or its fractional powers −(−∆d)σ ,
0 < σ < 1. We combine operator theory techniques with the properties of the

Bessel functions to develop a theory of analytic semigroups and cosine operators
generated by ∆d and −(−∆d)σ . Such theory is then applied to prove existence

and uniqueness of almost periodic solutions to the above-mentioned equations.

Moreover, we show a new characterization of well-posedness on periodic Hölder
spaces for linear heat equations involving discrete and fractional discrete Lapla-

cians. The results obtained are applied to Nagumo and Fisher–KPP models

with a discrete Laplacian. Further extensions to the multidimensional setting
ZN are also accomplished.

1. Introduction: background and main results. The study of lattice differ-
ential equations has experienced a rapid increase in the last few years. The lit-
erature in the subject is very vast, and we will try to give just a glimpse. For
instance, it is remarkable the thorough investigation of topics related to traveling
waves in spatially discrete dynamical systems, such as the study of their existence,
and monotonicity and stability properties, see [10, 28, 32, 33, 47] and references
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therein. Studies on qualitative properties, like the relationship between exponential
dichotomies of nonautonomous difference equations and admissibility for classes of
weighted bounded solutions have been developed in [52]. Spatial dynamics of lattice
differential equations with delay are investigated in [29]. Also, the existence of wave
train solutions for the semidiscrete wave equation with a discrete Laplacian in Z2

was considered in [51]. Quite recently, a study related to the semidiscrete trans-
port equation has been carried out in [2]. Finally, harmonic analysis associated to
a discrete Laplacian and in the context of ultraspherical expansions has been also
developed in [11] and [7], respectively.

On the other hand, lattice differential equations with a fractional discrete Lapla-
cian arise to understand the behavior of processes related to small objects where the
continuum limit cannot describe events on length scales comparable to nanometers
[42]–[46]. The lattice approach gives a possible microstructural basis for anomalous
diffusion in media that are characterized by the non-locality of power law type. Ex-
amples of such behavior can be found on the deformations and diffusion processes
in solid objects like nanocrystalline and ultrafine grain polycrystals, both with and
without external forces [3], nanomechanics [44] and N -dimensional physical lattices
with long-range particle interactions [45]. For instance, a 3D lattice Fokker-Plank
equation to describe space-fractional diffusion processes was proposed in [43]. In
all of these cases, the main advantage of the semidiscrete analysis over the con-
tinuum is the better accuracy in the description of the phenomena [9]. However,
much work remains to be done, especially concerning properties of the solutions
either in the linear or nonlinear cases and qualitative and regularity properties of
such solutions. It is worth to mentioning the analysis of nonlocal discrete equa-
tions driven by fractional powers of the discrete Laplacian on a mesh performed in
[13, 14], where some properties concerning this operator are studied, as well as error
estimates for the approximation problem and regularity estimates in Hölder spaces.
On the other hand, a relation between fractional powers of the discrete Laplacian
with a fractional derivative in the sense of Liouville was investigated in [12].

1.1. Background. To begin with, the typical equation describing semidiscrete dif-
fusion models is the semidiscrete heat equation

∂u(t, n)

∂t
= ∆du(t, n) + g(t, n), t > 0, n ∈ Z,

u(0, n) = ϕ(n), n ∈ Z,
(1)

where u is the unknown function, the sequence ϕ = {ϕ(n)}n∈Z is the initial datum,
g is a function representing a forcing term, and ∆d is the second order central
difference operator

∆df(n) = f(n− 1)− 2f(n) + f(n+ 1),

which we will call the discrete Laplacian. Analogously, we could formulate the
semidiscrete Schrödinger equation and the wave equation. In many cases, one has
to study nonlinear models associated to the above-mentioned processes.

The solution to the homogeneous version of the equation (1) (i.e., g ≡ 0) is known
to be the semidiscrete heat semigroup, which is represented by the series

Ttϕ(n) =
∑
m∈Z

Tt(n−m)ϕ(m), t ≥ 0, n ∈ Z,
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where the kernel is given by

Tt(n) = e−2tIn(2t), t ≥ 0, n ∈ Z, (2)

and In denotes the modified Bessel function. This result is known within a for-
mulation of probability theory in the framework of birth-and-death processes and
random walks, cf. [22, Ch. XVII.5] and [23, Ch. II.7 and Ch. XIV.6]. It has
been also found by means of statistical methods [48] or by using Fourier series tech-
niques [19]. Very recently, it has been used in different contexts. For instance, in
the study of physical models [26, 27], mutation models in population biology [9,
Section 4] or for the development of harmonic analysis associated to ∆d, see [11].
Furthermore, one more way to find the kernel (2) as the fundamental solution of
the semidiscrete heat equation has been rediscovered recently [29], where a lattice
differential equation model describing growth and spread of species in a shifting
habitat is studied.

Let 0 < σ < 1. The fractional powers of the discrete Laplacian can be defined as

(−∆d)σf(n) =
1

Γ(−σ)

∫ ∞
0

(
Ttf(n)− f(n)

) dt

t1+σ
, n ∈ Z,

see [11, Section 3], [12, Theorem 2], [13], and [41]. Let us consider equation (1) with
the fractional powers of the discrete Laplacian −(−∆d)σ, instead of ∆d, namely

∂u(t, n)

∂t
= −(−∆d)σu(t, n) + g(t, n), t > 0, n ∈ Z,

u(0, n) = ϕ(n), n ∈ Z.
(3)

It seems that basic properties for the solutions of the non-homogeneous equation (3)
involving the fractional discrete Laplacian either in the linear or in the nonlinear
cases, and qualitative and regularity properties of such solutions are not known.
The motivation for such study relies on recent formulations of fractional calculus
for N -dimensional lattices that showed to be helpful in applications where long-
range physical particle interactions appear, as well as in the field of nanomechanics.
The references [44, 45, 46] cover several of these phenomena and demonstrate the
importance of fractional discrete equations.

On the basis of analytic semigroups and cosine operators theory, we analyze the
heat, Schrödinger, and wave models, both in the case of integer and in the case
of fractional spatial discretization. We will show that this approach facilitates the
analysis of qualitative properties of the model, providing directly their main general
properties.

More precisely, the equations under investigation in this paper are

∂u(t, n)

∂t
= Lu(t, n) +G(t, n), u(0, n) = ϕ(n), (4)

∂w(t, n)

∂t
= iLw(t, n) +G(t, n), w(0, n) = ψ(n), (5)

and
∂2v(t, n)

∂t2
= Lv(t, n) +G(t, n), v(0, n) = ξ(n), vt(0, n) = η(n), (6)

where n ∈ Z. The notation L means either the discrete Laplacian ∆d or the
fractional powers −(−∆d)σ, and the sequences ϕ,ψ, ξ and η are the initial data
at t = 0. The function G(t, n) is the forcing term. We will consider both linear
and nonlinear type equations, namely, we will study the equations above in the
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case in which either G(t, n) is a function of the form g(t, n), t ≥ 0, or of the form
g(u(t, n), n), g(w(t, n), n), or g(v(t, n), n), with t ∈ J := [0, T ].

Our first aim is, therefore, to develop a detailed theory of analytic semigroups and
cosine operators generated by the operators ∆d and −(−∆d)σ. We will merge some
techniques from operator theory and a careful use of properties of Bessel functions.
Actually these results, contained in Theorems 1.1, 1.2, and 1.3, are the core of the
paper.

Our second goal will be to consider the existence of almost periodic solutions to
the equations (4), (5), and (6). The existence of solutions to the linear versions
of (4), (5) and (6) will follow from the general theory of semigroups and cosine
operators. We will prove, under appropriate conditions on the forcing term, an
almost periodic behavior of these solutions which is not present in the continuous
case, see Theorem 1.5. Concerning nonlinear models, we will show the existence
and uniqueness of solutions to the equations (4), (5) and (6) when G(t, n) is taken
to be either g(u(t, n), n), g(w(t, n), n), or g(v(t, n), n), see Theorem 1.6. As in the
linear models, under suitable conditions on the forcing terms, the solutions present
an almost periodic behavior. The proofs will be based on the previous results for
the solutions to the linear models, together with an application of the Banach fixed
point theorem.

As a third aim, we will show a completely new characterization of well-posedness
on periodic Hölder spaces for the linear model

∂u(t, n)

∂t
= ∆du(t, n) + ru(t, n) + f(t, n), t ∈ [0, 2π], n ∈ Z,

u(0, n) = u(2π, n), n ∈ Z,
(7)

on periodic Hölder spaces, where r > 0. Namely, we will prove that the problem
(7) is well-posed in Cαper

(
[0, 2π]; `p(Z)

)
if and only if r > 4, see Section 5 for the

definitions and the proof of the results. This characterization is particularly impor-
tant for the analysis of general nonlinear models by means of fixed point arguments
using the implicit function theorem. In the case in which the discrete Laplacian is
replaced by the fractional discrete Laplacian, we will also study the well-posedness
of the corresponding problem. Maximal regularity estimates will be deduced as
corollaries.

The theory of analytic semigroups and cosine operators generated by ∆d and
−(−∆d)σ can be also described in the multidimensional setting ZN . This will be
done in Section 6. The results for the one-dimensional case and the use of the
multidimensional discrete Fourier transform will be the ingredients to develop the
corresponding multidimensional theory of analytic semigroups and cosine functions.
With this extension, most of the results stated in Theorems 1.5 and 1.6 for the
solutions of the equations in the one-dimensional case will remain valid in the mul-
tidimensional case. We notice that the multidimensional discrete heat semigroup
was implicitly used in the study of asymptotic estimates concerning the fractional
discrete Laplacian (see [13, Section 5]).

Finally, we will call the attention on some nonhomogeneous and fractional ver-
sions of reaction-diffusion equations that are of particular interest, for instance in
Zinner’s model for the well known Fisher–KPP equation,

∂u(t, n)

∂t
= ∆du(t, n) + ru(t, n)− ru2(t, n) + g(t, n), t > 0, n ∈ Z,
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where r > 0 and g denotes an external forcing term. Another example is provided
by the semidiscrete Nagumo equation

∂u(t, n)

∂t
= ∆du(t, n)− au(t, n) + (1 + a)u2(t, n)− u3(t, n) + f(t, n), t > 0, n ∈ Z,

where 0 < a < 1 and once again f is a forcing term. As applications of the results in
Sections 4 and 5, we will provide results on the existence and uniqueness of almost
discrete solutions to the equations above, and information on the Cα−`p regularity,
see Section 7.

The structure of the paper is the following. We present the statements of the
main results in Subsection 1.2. The results on the theory of analytic semigroups and
cosine operators generated by ∆d and −(−∆d)σ are stated in Theorems 1.1, 1.2, 1.3,
and 1.4, and their proofs will be developed, respectively, in Sections 2 and 3. Such
theories will be applied to prove the existence and uniqueness of solutions to the
nonhomogeneous semidiscrete heat, Schrödinger and wave equations. These results
are stated in Theorems 1.5 and 1.6, and the proofs are contained in Section 4. The
results of well-posedness and maximal regularity for the linear semidiscrete heat
equations are stated in Theorems 1.7 and 1.8, and Section 5 will be devoted to their
proofs. In Section 6 we will show the extension of the theory of semigroups and
cosine operators to the multidimensional setting. In Section 7 we will present the
applications of our results to the semidiscrete Nagumo and Fisher–KPP equations.
Finally, we collect facts and results concerning analytic semigroups and cosine op-
erators, Bessel functions, almost periodic sequences and discrete almost periodic
functions, and the discrete Fourier transform in Appendices A, B, C, and D. These
are the general tools needed to develop the rest of the results, and we consider
convenient to move them to the end of the paper, for easy reading.

1.2. Main results. We collect in this subsection the main results of the paper.
For every 1 ≤ p ≤ ∞, we will denote by `p(Z), or just `p, the space of complex

sequences {a(n)}n∈Z such that

‖a‖`p :=
(∑
n∈Z
|a(n)|p

)1/p

<∞, 1 ≤ p <∞, ‖a‖`∞ := sup
n∈Z
|a(n)| <∞, p =∞.

If X is a Banach space, B(X) will denote the collection of all bounded linear oper-
ators from X into itself. With an abuse of notation, we will often just write a or
a(n) instead of {a(n)}n∈Z when referring to sequences.

Let us define Σπ := {z ∈ C : | arg z| < π}. We write

Tz(n) := e−2zIn(2z), z ∈ C, (8)

where Ik(z) is the Bessel function of imaginary argument (see Appendix B for the
definition and properties). We define the operator

Tzϕ(n) := (Tz ∗ ϕ)(n) =
∑
m∈Z

Tz(n−m)ϕ(m), z ∈ C, (9)

where the convolution is taken on Z. In Theorem 1.1 we will show that the familiy
of operators {Tz}z∈Σπ form an analytic semigroup in `p, see Definition A.1. Recall
also that the definitions and facts concerning almost periodic functions are collected
in Appendix C.

Theorem 1.1. (Semidiscrete heat analytic semigroup) Given z ∈ Σπ, let Tz be the
operators defined in (9).
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(i) We have {Tz}z∈Σπ ⊂ B(`p) and it is an analytic semigroup in Σπ, with
bounded generator ∆d on `p, 1 ≤ p ≤ ∞. Moreover, for all ϕ ∈ `p:

1. ‖(−∆d)ϕ‖`p ≤ 4‖ϕ‖`p .
2. ‖Tzϕ‖`p ≤ e4|z|‖ϕ‖`p for all z ∈ Σπ.

(ii) Concerning the sequence Tz(n), we have:
1. ‖Tz‖`p ≤ e4|z|, for 1 ≤ p ≤ ∞.
2. Tz(n) is almost periodic in the variable n, for each z ∈ Σπ.

(iii) The spectrum of the operators ∆d and Tz is, respectively,

σ(∆d) = {−4 sin2 θ/2}θ∈(−π,π] = [−4, 0], and σ(Tz) = {e−4z sin2 θ/2}θ∈(−π,π].

From Theorem 1.1, by the general semigroup theory, we have that the solution
to the homogeneous version of (5) with L = ∆d is given by

Utψ(n) =
∑
m∈Z

e−2itIn−m(2it)ψ(m).

Let us call

Ct(n) := J2n(2t), t ∈ R, n ∈ Z, (10)

where Jk is the Bessel function of first kind (see Appendix B for the definition and
properties) and consider the operator

Ctξ(n) := (Ct ∗ ξ)(n) =
∑
m∈Z

Ct(n−m)ξ(m), t ∈ R. (11)

We shall prove in the following result that {Ct}t∈R is a cosine operator family (see
Definition A.2) which is also bounded on `p and we provide several properties for
the sequence Ct(n).

Theorem 1.2. (Semidiscrete wave cosine family) Given t ∈ R, let Ct be the oper-
ators defined in (11).

(i) We have {Ct}t∈R ⊂ B(`p) and it is an uniformly continuous cosine family,
with bounded generator ∆d on `p, 1 ≤ p ≤ ∞.

(ii) Concerning the sequence Ct(n), we have
1. ‖Ct‖`p ≤ (2 cosh |t|p − 1)1/p, for 1 ≤ p <∞.
2. Ct(n) is almost periodic in the variable n, for each t ∈ R, and also almost

periodic in the variable t, for each n ∈ Z.
3. The spectrum of Ct is σ(Ct) = {cos(2t sin θ/2)}θ∈(−π,π].

It follows from Theorem 1.2 and the general theory of cosine operators ([5, 20])
that Ctξ is the solution to the homogeneous semidiscrete wave equation (6) with
η = 0. We observe that this fact is already known from the work by H. Bateman
[6, Formula (4.2) p. 502] (see also C. E. Pearson [37]). Here we just put that result
in a framework of operator theory.

Moreover, the relation

1√
πt

∫ ∞
0

e−s
2/4tJ2n(2s)ds = e−2tIn(2t)

holds, see Remark 3. This is understood as a discrete version of the abstract Weier-
strass formula, which is well-known from the theories of cosine and semigroups of
operators.

Given z ∈ Σπ let us define

Lσzϕ := e−z(−∆d)σϕ, ϕ ∈ `p. (12)
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We will show that the family of operators Lσz is an uniformly continuous and analytic
semigroup of angle π, as well as other qualitative properties of such operators, with
the associated kernel

Lσt (n) =

∫ ∞
0

e−2λIn(2λ)ft,σ(λ)dλ, t ≥ 0, n ∈ Z, 0 < σ < 1,

where ft,σ(λ) is the stable Lévy distribution [50]. Moreover, the latter expression
is positive due to the positivity of (2). An analytical expression is not available in
general, but in the case σ = 1/2 we have the precise formula

ft,1/2(λ) =
t√

4πλ3
e−t

2/4λ,

corresponding to the Van der Waals profile (or the probability density function
of the Lévy distribution over the domain λ ≥ 0 with scale parameter t2/2) used
commonly in spectroscopy. Analogously to the case of the discrete Laplacian ∆d,
we will also study the solutions to the fractional Schrödinger and wave semidiscrete
equations, that we will denote, respectively, by Uσt and Cσt .

Theorem 1.3. (Fractional discrete semigroup) Let 0 < σ < 1. Given z ∈ Σπ, let
Lσz be the operators defined in (12).

(i) We have {Lσz }z∈Σπ ⊂ B(`p) and it is an analytic semigroup, with bounded
generator −(−∆d)σ on `p, 1 ≤ p ≤ ∞. Moreover, for all ϕ ∈ `p:

1. ‖(−∆d)σϕ‖`p ≤ 2Γ(1+2σ)
Γ(1+σ)2 ‖ϕ‖`p .

2. ‖Lσzϕ‖`p ≤ e
2Γ(1+2σ)

Γ(1+σ)2
|z|‖ϕ‖`p , for all z ∈ Σπ.

(ii) We have the following representation for Lσz as a convolution operator with a
kernel. For each z ∈ Σπ and n ∈ Z:

Lσzϕ(n) = (Lσz ∗ ϕ)(n) =
∑
k∈Z

Lσz (n− k)ϕ(k),

where

Lσz (n) := (−1)n
∞∑
k=1

(−1)k
zk

k!

Γ(2kσ + 1)

Γ(1 + kσ + n)Γ(1 + kσ − n)
+ δ0,n

=
1

2π

∫ π

−π
e−z
(

4 sin2 θ
2

)σ
e−inθ dθ,

and δ0,n is the Kronecker delta function.
(iii) The spectrum of the operators −(−∆d)σ and Lσz is, respectively,

σ
(
− (−∆d)σ

)
= {−

(
4 sin2 θ/2

)σ}θ∈(−π,π] = [−4σ, 0],

and

σ(Lσz ) = {e−z(4 sin2 θ/2)σ}θ∈(−π,π].

(iv) Concerning the sequence Lσz , we have:

1. ‖Lσz ‖`p ≤ e
2

Γ(1+2σ)

Γ(1+σ)2
|z|

, for all z ∈ Σπ, 1 ≤ p ≤ ∞.
2. Lσz (n) is discrete almost periodic in the variable n, for each z ∈ Σπ.

(v) In the case z = t ≥ 0, we have
1. Lσt ϕ(n) ≥ 0 if ϕ ≥ 0 and Lσt (n) ≥ 0, for each n ∈ Z.
2.
∑
n∈Z L

σ
t (n) = 1, and Lσt is a Markovian semigroup.
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Let 0 < σ < 1 be given. For any ξ ∈ `p, 1 ≤ p ≤ ∞, we define:

Cσt ξ :=
Uσ/2t ξ + Uσ/2−t ξ

2
, t ∈ R. (13)

Concerning the fractional discrete cosine function generated by the fractional dis-
crete Laplacian, we have the following.

Theorem 1.4. (Fractional discrete cosine function) Let 0 < σ < 1. Given t ∈ R,
let Cσt be the operators defined in (13).

(i) We have {Cσt }t∈R ⊂ B(`p) and it is an uniformly continuous cosine family,
with bounded generator −(−∆d)σ on `p, 1 ≤ p ≤ ∞.

(ii) The following identity holds

Cσt ξ(n) = (Cσt ∗ ξ)(n) =
∑
m∈Z

Cσt (n−m)ξ(m), t ∈ R, (14)

where

Cσt (n) :=
2

π

∫ π/2

0

cos
(
t(4 sin2 θ)σ/2

)
cos(2nθ)dθ. (15)

(iii) The spectrum of Cσt is σ(Cσt ) = {cos
(
t(4 sin2 θ/2)σ/2

)
}θ∈(−π,π].

(iv) Concerning the sequence Cσt (n), we have

1. ‖Cσt ‖`p ≤ e
2

Γ(1+σ)

Γ(1+σ/2)2
|t|

, t ∈ R.
2. Cσt (n) is almost periodic in the variable n, for each t ∈ R, and also almost

periodic in the variable t, for each n ∈ Z.

The following result gives explicit solutions of the non homogeneous linear equa-
tions (4), (5) and (6), each one in both cases L = ∆d,−(−∆d)σ and establishes
qualitative properties of such solutions. Let us define

Stη =

∫ t

0

Csη ds, η ∈ `p, t ≥ 0,

and

Sσt η =

∫ t

0

Cσs η ds, η ∈ `p, t ≥ 0.

Recall that the definitions and facts on discrete almost periodic functions are col-
lected in the Subsection C in Appendix B.

Theorem 1.5. Let 0 < σ < 1. Let ϕ,ψ, ξ, η ∈ `∞ and g : (0,∞) × Z → C be
continuous in the first variable and such that g(t, ·) ∈ `∞ for each t ∈ [0,∞), and
g(·, n) ∈ L∞((0,∞)), for each n ∈ Z. Then, for t ≥ 0 and n ∈ Z, the functions

u(t, n) = Ttϕ(n) +

∫ t

0

Tt−sg(s, n) ds, w(t, n) = Utψ(n) +

∫ t

0

Ut−sg(s, n) ds,

and

v(t, n) = Ctξ(n) + Stη(n) +

∫ t

0

St−sg(s, n) ds;

and

uσ(t, n) = Lσt ϕ(n) +

∫ t

0

Lσt−sg(s, n) ds, wσ(t, n) = Uσt ψ(n) +

∫ t

0

Uσt−sg(s, n) ds,

and

vσ(t, n) = Cσt ξ(n) + Sσt η(n) +

∫ t

0

Sσt−sg(s, n) ds,
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are well-defined for every (t, n) ∈ (0,∞) × Z and they solve the problems (4), (5),
and (6), with L = ∆d or −(−∆d)σ, respectively, when G(t, n) = g(t, n).

Moreover, if ϕ,ψ, ξ, η ∈ `1, then the following statements also hold:

1. If g(t, ·) is discrete almost periodic in the second variable, for each t ≥ 0, then
u(t, ·), w(t, ·), v(t, ·), uσ(t, ·), wσ(t, ·), and vσ(t, ·) are also discrete almost
periodic in the second variable.

2. If g(·, n) is almost periodic in the first variable, for each n ∈ Z, then w(·, n),
v(·, n), wσ(·, n), and vσ(·, n) are also almost periodic in the first variable.

3. Let c > 4. If g(t, ·) ∈ `1 is such that
∑
n∈Z |g(t, n)| ≤Me−ct, for some M > 0,

then both u(t, n)→ 0 and uσ(t, n)→ 0 as t→∞, for each fixed n ∈ N.

We now treat nonlinear versions of the semidiscrete equations presented in Sub-
section 1.1. Recall that, given 0 < T <∞, we denote J := [0, T ].

Let us introduce the following definitions. Let ϕ,ψ, ξ, η ∈ `∞ and g : R × Z →
R be continuous in the second variable and such that g(x, ·) ∈ `∞, ∀x ∈ R.
We say that u(t, n), w(t, n), v(t, n), uσ(t, n), wσ(t, n), and vσ(t, n) are a solu-
tion of (4), (5), and (6), with L = ∆d or −(−∆d)σ, in the case in which G(t, n)
is either g(u(t, n), n), g(w(t, n), n), g(v(t, n), n), g(uσ(t, n), n), g(wσ(t, n), n), or
g(vσ(t, n), n), respectively, if they solve

u(t, n) = Ttϕ(n) +

∫ t

0

Tt−sg(u(s, n), n) ds,

w(t, n) = Utψ(n) +

∫ t

0

Ut−sg(w(s, n), n) ds,

and

v(n, t) = Ctξ(n) + Stη(n) +

∫ t

0

St−sg(v(s, n), n) ds;

and

uσ(t, n) = Lσt ϕ(n) +

∫ t

0

Lσt−sg(uσ(s, n), n) ds,

wσ(t, n) = Uσt ψ(n) +

∫ t

0

Uσt−sg(wσ(s, n), n) ds,

and

vσ(t, n) = Cσt ξ(n) + Sσt η(n) +

∫ t

0

St−sg(vσ(s, n), n) ds;

for t ∈ J , n ∈ Z. The main result concerning existence and uniqueness of solutions
to the nonlinear equations is the following.

Theorem 1.6. Let 0 < σ < 1. Let ϕ,ψ, ξ, η ∈ `∞, T > 0 and g : [0, T ]×Z→ C be
such that g(t, ·) ∈ `∞ for each t ∈ [0, T ]. Let us assume that there exists 0 < CL <∞
such that

|g(s, n)− g(u, n)| ≤ CL|s− u|, s, u ∈ R, n ∈ Z. (16)

If g(t, ·) is discrete almost periodic in the second variable, for each t ∈ R, then there
exists a unique solution u, w, v, uσ, wσ, and vσ on [0, T ]× Z to the problems (4),
(5), and (6), with L = ∆d or −(−∆d)σ, respectively, when G(t, n) is one of the
above, that is also discrete almost periodic in the second variable.
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The proofs of Theorems 1.5 and 1.6 are contained in Section 4.
Let r ∈ R+. We now focus on the problem

(
Pper(f)

) 
∂u(t, n)

∂t
= (∆d + r)u(t, n) + f(t, n), in [0, 2π]× Z,

u(0, n) = u(2π, n), on Z.
(17)

The aim is to characterize well-posedness (or maximal regularity) of the solution
of (17) in the sense of Hölder continuity on periodic times, and `p summability in
a lattice space. Observe that such characterizations have been studied earlier by
others authors with different methods [21, 30].

Let us define Cper

(
[0, 2π]; `p(Z)

)
the space of continuous functions F : [0, 2π]→

`p(Z) with F (0) = F (2π). Let 0 < α < 1. We denote by Cαper

(
[0, 2π]; `p(Z)

)
the space of α-Hölder continuous functions F taking values on `p(Z), such that
F (0) = F (2π). The seminorm on Cαper

(
[0, 2π]; `p(Z)

)
is given by

‖F‖α := sup
t 6=s

t,s∈(0,2π]

‖F (t)− F (s)‖`p
|t− s|α

= sup
t 6=s

t,s∈[0,2π]

(∑
n∈Z |f(t, n)− f(s, n)|p

)1/p
|t− s|α

.

Moreover, Cαper

(
[0, 2π]; `p(Z)

)
is a Banach space endowed with the norm

‖F‖Cα := ‖F‖α + ‖F (0)‖`p .
We will also define the space C1,α

per

(
[0, 2π]; `p(Z)

)
as the space of functions F ∈

C1([0, 2π]; `p(Z)
)

such that F (0) = F (2π), and F ′ ∈ Cαper

(
[0, 2π]; `p(Z)

)
(actually

we could define, more generally, the space of functions Ck,αper

(
[0, 2π]; `p(Z)

)
, for each

k ∈ N, but this is enough for our purposes).
We say that the problem (Pper) in (17) is well-posed in Cαper

(
[0, 2π]; `p(Z)

)
if,

for each f ∈ Cαper

(
[0, 2π]; `p(Z)

)
, there is a unique classical solution u ∈

C1,α
per

(
[0, 2π]; `p(Z)

)
of (Pper(f)).

We will characterize the Cαper

(
[0, 2π]; `p(Z)

)
-well-posedness of the problem (17)

only in terms of the parameter r. We remark that this is a notable qualitative
property that is certainly not present in the continuous setting. The key of the
proof is the fact that the spectrum of the operator A = ∆d + rI is bounded and
therefore the resolvent set of A can be defined on the left side of the complex plane.
This is a particular property of the discrete case; in the situation of the continuous
Laplacian this is not true because the Laplacian is an unbounded operator and its
spectrum is located in the entire negative real semiaxis.

Theorem 1.7. Let 0 < α < 1, 1 ≤ p ≤ ∞, and r ∈ R+. The problem (Pper) in
(17) is well-posed in Cαper

(
[0, 2π]; `p(Z)

)
if and only if r > 4.

Given 0 < σ < 1, we also consider the problem

(
Pσper(f)

) 
∂u(t, n)

∂t
= (−(−∆d)σ + r)u(t, n) + f(t, n), in [0, 2π]× Z,

u(0, n) = u(2π, n), on Z.
(18)

For this problem, we will state a result of well-posedness as well.

Theorem 1.8. Let 0 < α < 1, 1 ≤ p ≤ ∞, and 0 < σ < 1. Let r > 2Γ(1+2σ)
Γ(1+σ)2 .

Then the problem (Pσper) in (18) is well-posed in Cαper

(
[0, 2π]; `p(Z)

)
.

Theorems 1.7 and 1.8 will be proved in Section 5 and Cα−`p maximal regularity
results will be obtained as corollaries, see also Section 5.
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2. Analytic semigroups and cosine operators generated by ∆d. In this
section we will prove the main results on the theory of analytic semigroups and
cosine operators generated by the discrete Laplacian ∆d. We emphasize that this
operator is trivially bounded on `p, 1 ≤ p ≤ ∞, unlike the continuous Laplacian,
and this fact allows to employ known tools from functional calculus together with
the general theory of semigroups and cosine operators to obtain several particular
properties in an efficient way.

2.1. The semidiscrete heat analytic semigroup. Observe that, from the for-
mula [38, p. 456, 2.5.40 (3)]

In(z) =
1

π

∫ π

0

ez cos θ cosnθ dθ, | arg z| < π, n ∈ Z,

we can obtain

Tz(n) = e−2zIn(2z) =
1

2π

∫ π

−π
e−4z sin2 θ/2e−inθ dθ =

2

π

∫ π/2

0

e−4z sin2 θ cos(2nθ) dθ.

(19)

Proof of Theorem 1.1. It is clear that ϕ 7→ Tzϕ is a linear map. Let us see the
boundedness on `p. Because In(z) = I−n(z), In(z) = i−nJn(iz) and the upper
bound (44), we deduce∑

n∈Z
|e−2zIn(2z)| ≤ 2

∞∑
n=1

|e−2zIn(2z)|+ |e−2zI0(2z)|

= 2

∞∑
n=1

|e−2zi−nJn(2iz)|+ |e−2zJ0(2iz)|

≤ 2e−2 Re z
∞∑
n=1

|iz|ne| Im 2iz|

Γ(n+ 1)
+ e−2 Re ze| Im 2iz|

= 2e−2 Re z
∞∑
n=0

|iz|ne| Im 2iz|

Γ(n+ 1)
− 2e−2 Re ze| Im 2iz| + e−2 Re ze| Im 2iz|

≤ 2e−2 Re ze|z|e| Im 2iz| − e−2 Re ze| Im 2iz|

≤ e−2 Re ze| Im 2iz|(2e|z| − 1) =: Cz.

Hence by Minkowski’s integral inequality we obtain

‖Tz ∗ ϕ‖`p ≤ ‖Tz‖`1‖ϕ‖`p ≤ Cz‖ϕ‖`p .
The function z 7→ Tz is analytic in Σπ because Tz is analytic in Σπ. In order to
check that the semigroup properties hold, it is enough to observe that T0ϕ = ϕ and
that Tz1Tz2ϕ = Tz1+z2ϕ. But the first one was just proved in [11, Proposition 1]
and the second one can be shown analogously as it was proved in [11, Proposition
1], just noticing that the Neumann’s identity (50) is valid for z1, z2 ∈ Σπ.

Now we shall prove that the family has the bounded generator ∆d. We first
observe that Minkowski’s inequality shows that ‖∆d‖B(`p) ≤ 4, proving (i)-(1). It

suffices to check that ∆dϕ = ∂
∂zTzϕ|z=0, for an arbitrary sequence ϕ ∈ `p. Indeed,

the modified Bessel function Ik(z) satisfies I ′k(z) = 1
2 (Ik+1(z)+Ik−1(z)). From here

it follows

∂

∂z

(
e−2zIk(2z)

)
= e−2z

(
Ik+1(2z)− 2Ik(2z) + Ik−1(2z)

)
.
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Then, we have

T ′zϕ(n) = e−2z
∑
m∈Z

(
In−m+1(2z)− 2In−m(2z) + In−m−1(2z)

)
ϕ(m).

Therefore, taking into account (49), we conclude the desired statement. By unique-
ness of the generator we conclude that Tz = ez∆d for all z ∈ Σπ. This last identity
together with (i)-(1) shows the inequality (i)-(2).

Concerning (ii)-(1), we take u(n) = δ0,n in (i)-(2) obtaining in this way ‖Tz‖`p ≤
e4|z|, for 1 < p ≤ ∞.

Now we prove (ii)-(2). Let us assume that Re z ≥ 0. Otherwise, the argument
below is valid after slight modifications. The sequence {fθ(n)}n∈Z, where fθ(n) :=
cos(2πnθ) is almost periodic in n for any real valued θ, see [8]. Then, given ε > 0,
there exists a positive integer M(ε) such that any set consisting of M(ε) consecutive
integers contains at least one p ∈ Z such that

sup
n∈Z
|fθ(n+ p)− fθ(n)| < ε.

It follows from here and (19) that

|Tz(n+ p)− Tz(n)| ≤ 2

π

∫ π/2

0

|e−4z sin2 θ|| cos(2(n+ p)θ)− cos 2nθ| dθ

= 2

∫ 1/2

0

e−4 Re z sin2(πθ)|fθ(n+ p)− fθ(n)| dθ.

By Dominated Convergence Theorem, we thus have

sup
n∈Z
|Tz(n+ p)− Tz(n)| < 2ε

∫ 1/2

0

e−4 Re z sin2(πθ) dθ ≤ ε,

and the proof is complete.
Finally, part (iii) follows from the definition of the corresponding operators with

the discrete Fourier transform and the spectral mapping theorem for the case of Tz
(see e.g. [18, Lemma 3.13, p.19]).

Remark 1. By taking z = t ∈ (0,∞) in (9) we are led to the semidiscrete heat
semigroup, which is given by the series

Ttϕ(n) =
∑
m∈Z

e−2tIn−m(2t)ϕ(m), ϕ ∈ `p.

It was proved (see [11, Proposition 1]) that {Tt}t≥0 is a positive Markovian diffusion
semigroup, and is bounded on `p for 1 ≤ p ≤ ∞. In particular, ‖Tt‖`1 = 1, due
to (51). Observe that since In(z) is an entire function on z, it follows that the
semigroup Tt generated by ∆d is in fact a group. In other words, it can be defined
for all t ∈ R. In particular, the identity e−t∆dϕ = T−t ∗ ϕ holds for t ≥ 0 and for
each ϕ ∈ `p, 1 ≤ p ≤ ∞, and we also have

‖T−tϕ‖`p ≤ e4t‖ϕ‖`p .

Remark 2. As a by-product, from the proof of Theorem 1.1 we also obtain that

‖Tz‖`1 ≤ e−2 Re ze| Im 2iz|(2e|z| − 1),

which is valid for z ∈ C.
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It turns out that when considering z = it, t ∈ R, the operators

Ut := Tit,

form also a group. This is contained in the following theorem.

Theorem 2.1. Let t ∈ R.

(i) The family {Ut}t∈R ⊂ B(`p) and it forms a group with bounded generator i∆d,
1 ≤ p ≤ ∞. Moreover, ‖Ut‖ ≤ e4t.

(ii) Tit(n) is almost periodic in the variable t, for each n ∈ Z.

Proof. Concerning part (i), by taking into account (8), from the very definition
of the Bessel function Ik(z) in (47) we have that St(n) := T−t(n) = e2tIn(−2t).
Observe that the identity 2I ′n(z) = In−1(z) + In+1(z) imply

S′t(n) = −e2t
(
In+1(2t)− 2In(2t) + In−1(2t)

)
,

so that S′t(0) = −∆dδ0,n. By [36, Th. 6.3, p. 23], we get the conclusion. The
second part follows from Theorem 1.1, part (i)-(2).

On the other hand, it can be proved that the function Tit(n) in (19) (with the
choice z = it there) is almost periodic in t by following an argument parallel to the
one developed in Theorem 1.1, part (ii)-(2). This time we have to take into account

that e−4it sin2 θ is almost periodic in t, for any real valued θ.

2.2. The semidiscrete wave cosine family. Let Ct(n) be defined in (10). From
([25, p. 420, Formula 3.7.15 (9)]) we have

Ct(n) =
2

π

∫ π/2

0

cos(2t sinx) cos(2nx)dx. (20)

Proof of Theorem 1.2. We begin with part (i). By (42) and the upper bound (44)
we have, for each t fixed,∑
m∈Z
|J2m(2t)ϕ(n−m)|p ≤ ‖ϕ‖`p

∑
m∈Z
|J2m(2t)|

≤ ‖ϕ‖`p
(

2

∞∑
m=1

|t|2m

Γ(2m+ 1)
+ |J0(2t)|

)
≤ ‖ϕ‖`p

(
2(cosh |t| − 1) + |J0(2t)|

)
≤ (2 cosh |t| − 1)‖ϕ‖`p ,

so Ct is a linear and bounded operator on `p. Note that, by (43), we obtain

C0ϕ(n) =
∑
m∈Z

C0(n−m)ϕ(m) =
∑
m∈Z

J2n−2m(0)ϕ(m) = ϕ(n).

On the other hand, by using (46) and (42) it is easily verified that

J2n(2t− 2s) =
∑
m∈Z

J2n+2m(2t)J2m(2s) =
∑
m∈Z

J2n−2m(2t)J−2m(2s)

=
∑
m∈Z

J2n−2m(2t)J2m(2s)(−1)2m =
∑
m∈Z

J2n−2m(2t)J2m(2s).

Moreover, (45) shows that

J2n(2t+ 2s) =
∑
m∈Z

J2n−2m(2t)J2m(2s).
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Therefore it follows that

J2n(2t+ 2s) + J2n(2t− 2s) = 2
∑
m∈Z

J2n−2m(2t)J2m(2s).

Since Ct(n) = J2n(2t) we arrive at

CtCsϕ(n) = Ct
(∑
m∈Z

Cs(· −m)ϕ(m)
)

(n) =
∑
k∈Z

Ct(n− k)
(∑
m∈Z

Cs(k −m)ϕ(m)
)

=
∑
m∈Z

(∑
k∈Z

Ct(n− k)Cs(k −m)
)
ϕ(m)

=
1

2

∑
m∈Z

(
Ct+s(n−m) + Ct−s(n−m)

)
ϕ(m) =

1

2
(Ct+s + Ct−s)ϕ(n).

Now we will check that the family of cosine operators {Ct}t∈R has the bounded
generator ∆d and, in particular, is uniformly continuous. To that end, we will

see that ∆dϕ = ∂2

∂t2 Ct|t=0ϕ, for an arbitrary sequence ϕ ∈ `p. Indeed, the Bessel

function Jk(z) satisfies J ′k(z) = − 1
2 (Jk+1(z)−Jk−1(z)). With this, we readily obtain

∂2

∂z2
Jk(2z) = Jk+2(2z)− 2Jk(2z) + Jk−2(2z).

Then, we have

∂2

∂t2
Ctϕ(n) =

∑
m∈Z

(
J2(n−m+1)(2t)− 2J2(n−m)(2t) + J2(n−m−1)(2t)

)
ϕ(m).

Therefore, taking into account (43), we conclude the desired statement.
Now we pass to part (ii). To prove (ii)-(1) we follow an analogous reasoning to

the one used in part (i) that leads to

∑
n∈Z
|J2n(2t)|p ≤ 2

∞∑
n=1

( |t|2n

Γ(2n+ 1)

)p
+ |J0(2t)|p

≤ 2

∞∑
n=1

|t|2np

Γ(2n+ 1)
+ |J0(2t)|p ≤ (2 cosh |t|p − 1).

Part (2) follows immediately from the integral representation (20) for Ct.
Finally, part (3) follows from Theorem 1.1 (iii) and the spectral mapping theorem

for cosine operator functions, i.e., the identity

σ(Ct) = cosh(t
√
σ(∆d)).

Observe that we take into account that cosh(iz) = cos(z). The theorem is proved.

Remark 3 (Weierstrass formula). The following identity can be found in the lit-
erature: for Re p > 0, Re ν > −1, | arg c| < π, one has (see [39, p. 186, 2.12.9.
1.]) ∫ ∞

0

e−ps
2

Jν(cs) ds =
1

2

√
π

p
exp

(
− c2

8p

)
Iν/2

( c2
8p

)
.

Then, if we take above p = 1
4t , ν = 2n and c = 2, it holds

1√
πt

∫ ∞
0

e−s
2/4tCs(n) ds = Tt(n), t > 0, n ∈ Z,
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where Cs and Tt are the ones in (10) and (8), which yields

1√
πt

∫ ∞
0

e−s
2/4tCsϕ(n) ds = Ttϕ(n), t > 0, n ∈ Z.

So the identity can be reinterpreted as the Weierstrass formula in the discrete set-
ting. Observe that Weierstrass formula is valid in general in the framework of cosine
and semigroup theory.

3. Analytic semigroups and cosine operators generated by −(−∆d)σ. We
proceed in this section to construct the theory of analytic semigroups and cosine
operators generated by the fractional discrete Laplacian −(−∆d)σ.

3.1. The fractional discrete Laplacian. We begin this subsection by defining
the fractional powers of the discrete Laplacian. The first approach will be by means
of the discrete Fourier transform, see Appendix D. We define the following function
of order σ > 0:

Kσ(n) :=
1

2π

∫ π

−π
(4 sin2(θ/2))

σ
e−inθ dθ, n ∈ Z. (21)

A computation using [38, 2.5.12 (22), p. 402] shows that the function Kσ(n) can
be explicitly written as (see [12, Remark 1])

Kσ(n) =
(−1)nΓ(2σ + 1)

Γ(1 + σ + n)Γ(1 + σ − n)
, n ∈ Z, (22)

for each σ ∈ (0,∞)\N. This kernel has been also considered earlier by other authors.
See e.g. [44, formula (26)] and references therein. It can be checked, by Stirling’s
approximation, that

|Kσ(n)| ∼ Γ(2α+ 1)

π
|n|−2α−1, n→ ±∞,

so that the following expression can be well defined for f ∈ `∞ (see [12, Section 2]),

(−∆d)σf(n) :=
∑
k∈Z

Kσ(n− k)f(k), n ∈ Z, σ ∈ (0,∞) \ N (23)

and is called the fractional discrete Laplacian. It is clear from (21) that

FZ
(
(−∆d)σf

)
(θ) = (4 sin2(θ/2))σFZ(f)(θ),

where FZ denotes the discrete Fourier transform, which is defined in Appendix D.
On the other hand, we can also define, for good enough functions, the fractional

discrete Laplacian with the approach of the semidiscrete heat semigroup (9), as
follows:

(−∆d)σf(n) =
1

Γ(−σ)

∫ ∞
0

(Ttf(n)− f(n))
dt

t1+σ
, n ∈ Z, (24)

(see [11, 13, 41]). With this semigroup approach, we can derive another pointwise
explicit formula, see [13, Theorem 1.2]:

(−∆d)σf(n) =
∑
k 6=n

(
f(n)− f(k)

)
Rσ(k − n), (25)

where

Rσ(n) =
4σΓ(1/2 + σ)Γ(|n| − σ)√
π|Γ(−σ)|Γ(|n|+ 1 + σ)

, n ∈ Z \ {0}, Rσ(0) = 0. (26)
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Remark 4. It is proved in [13] that, if f is bounded then limσ→1−(−∆d)σf(n) =
−∆df(n), for each n ∈ Z.

The pointwise formulae (23) and (25) are equivalent, and the kernels (22) and
(26) are related. In order to prove this equivalence, we present a previous technical
lemma.

Lemma 3.1. Let a ∈ (0,∞) \ Z. Then we have the identity

∞∑
n=1

Γ(n− a)

Γ(n+ a+ 1)
=

Γ(1− a)

Γ(a+ 1)2a
.

Proof. Let us write the sum above as

∞∑
n=1

Γ(n− a)

Γ(n+ a+ 1)
=
∞∑
n=0

Γ(n− a)Γ(n+ 1)

Γ(n+ a+ 1)n!
− Γ(−a)

Γ(a+ 1)
,

and the sum
∑∞
n=0

Γ(n−a)Γ(n+1)
Γ(n+a+1)n! in the right hand side is the absolute convergent

Gauss hypergeometric series 2F1(−a, 1; a + 1; 1) times Γ(−a)
Γ(a+1) , see [1, 15.1.1]. This

particular series can be explicitly computed, see [1, 15.1.20], so that

2F1(−a, 1; a+ 1; 1) =
Γ(1 + a)Γ(2a)

Γ(1 + 2a)Γ(a)
=

1

2
.

Therefore we get

∞∑
n=1

Γ(n− a)

Γ(n+ a+ 1)
= −1

2

Γ(−a)

Γ(a+ 1)
=

Γ(1− a)

Γ(a+ 1)2a
,

as desired.

The following proposition shows that the kernel Kσ(n) is mass preserving [16,
Section 3] and coincides essentially with the kernel Rσ(n) except for a change of
sign.

Proposition 1. Let 0 < σ < 1. Then Kσ(n) = −Rσ(n), for all n ∈ Z \ {0}.
Moreover, Rσ(0) =

∑
n∈ZK

σ(n) = 0.

Proof. The pointwise formula (23) can be rewritten as

(−∆d)σf(n) =
∑
k 6=n

Kσ(n− k)f(k) +Kσ(0)f(n)

= −
∑
k 6=n

Kσ(n− k)
(
f(n)− f(k)

)
+
∑
k 6=n

Kσ(n− k)f(n) +Kσ(0)f(n)

= −
∑
k 6=0

Kσ(k)
(
f(n)− f(n− k)

)
+ f(n)

∑
k∈Z

Kσ(k).

Moreover, ∑
k∈Z

Kσ(k) = 0. (27)

Indeed, we split the sum into∑
k∈Z

Kσ(k) = 2

∞∑
k=1

Kσ(k) +Kσ(0).



HÖLDER–LEBESGUE REGULARITY AND ALMOST PERIODICITY 17

On one hand, by Lemma 3.1,

2

∞∑
k=1

(−1)k

Γ(1 + σ + k)Γ(1 + σ − k)
= 2

∞∑
k=1

(−1)k

Γ(1 + σ + k)Γ(1− (k − σ))

=
2

π

∞∑
k=1

(−1)kΓ(k − σ) sin
(
π(k − σ)

)
Γ(1 + σ + k)

= −2 sin(πσ)

π

∞∑
k=1

Γ(k − σ)

Γ(1 + σ + k)

= − sin(πσ)

π

Γ(1− σ)

Γ(1 + σ)σ
.

On the other hand,

Kσ(0) =
Γ(2σ + 1)

Γ(1 + σ)Γ(1 + σ)
=

sin(πσ)

π

Γ(1− σ)

Γ(1 + σ)σ
,

so we conclude (27).
Now, we will see that Kσ(k) = −Rσ(k) for all k ∈ Z \ {0}. Since both kernels

are even, it suffices to consider k > 0. Indeed, by applying in (22) the duplication
formula Γ(z)Γ(z + 1/2) = 21−2zΓ(2z)

√
π with z = 1+2σ

2 and then Euler’s reflection
formula Γ(1− z)Γ(z) = π

sin(πz) with z = 1 + σ − k, we get

−Kσ(k) =
(−1)k+1Γ(2σ + 1)

Γ(1 + σ + k)Γ(1 + σ − k)
=

(−1)k+1Γ(σ + 1/2)Γ(σ + 1)4σ

Γ(1 + σ + k)Γ(1 + σ − k)
√
π

=
(−1)k+1Γ(σ + 1/2)Γ(σ + 1)4σΓ(k − σ) sin[π(1 + σ − k)]

Γ(1 + σ + k)
√
ππ

=
(−1)Γ(σ + 1/2)Γ(σ + 1)4σΓ(k − σ) sin[π(1 + σ)]

Γ(1 + σ + k)
√
ππ

=
(−1)Γ(σ + 1/2)Γ(σ + 1)4σΓ(k − σ)π

Γ(1 + σ + k)
√
ππΓ(−σ)Γ(1 + σ)

=
Γ(σ + 1/2)4σΓ(k − σ)

Γ(1 + σ + k)
√
π|Γ(−σ)|

= Rσ(k),

and the proof is complete.

We finish this subsection with the explicit computation of ‖Kσ‖`1 , which will be
useful later on.

Lemma 3.2. Let 0 < σ < 1. Then

‖Kσ‖`1 = 2
Γ(1 + 2σ)

Γ(1 + σ)2
.

Proof. Observe that, by (22),

‖Kσ‖`1 = Γ(1 + 2σ)
∑

n∈Z\{0}

∣∣∣ (−1)n

Γ(1 + σ + n)Γ(1 + σ − n)

∣∣∣+
Γ(1 + 2σ)

Γ(1 + σ)Γ(1 + σ)
.
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Let us analyze the sum on the right hand side above. By Lemma 3.1 we have

∑
n∈Z\{0}

∣∣∣ (−1)n

Γ(1 + σ + n)Γ(1 + σ − n)

∣∣∣ = 2

∞∑
n=1

1

Γ(1 + σ + n)|Γ(1 + σ − n)|

= 2

∞∑
n=1

1

Γ(1 + σ + n)|Γ(1− (n− σ))|

=
2

π

∞∑
n=1

Γ(n− σ)| sin
(
π(n− σ)

)
|

Γ(1 + σ + n)

=
2 sin(πσ)

π

∞∑
n=1

Γ(n− σ)

Γ(1 + σ + n)

=
sin(πσ)

π

Γ(1− σ)

Γ(1 + σ)σ

On the other hand, by the reflection formula for the Gamma function, we get
sin(πσ)Γ(1−σ)

σπ = 1
Γ(1+σ) . Putting everything together, we conclude that

‖Kσ‖`1 = 2
Γ(1 + 2σ)

Γ(1 + σ)2
,

and the proof is finished.

3.2. The fractional discrete semigroup.

Proof of Theorem 1.3. Given a sectorial operator A, the spectral mapping theorem
for fractional powers states that (see for instance [34, Ch. 5.3])

σ(Aσ) = {zσ : z ∈ σ(A)}, σ > 0.

If, in addition, the operator A is bounded, then for any σ > 0 the operator Aσ

is bounded as well. Thus, (−∆d)σ is bounded on `p, for 1 ≤ p ≤ ∞. On the

other hand, the spectrum is σ
(
(−∆d)σ

)
= σ

(
(−∆d)

)σ
, obtaining in this way part

(iii), just by using Theorem 1.1, part (iii). We can say even more. According
to (23) the fractional discrete Laplacian is defined as a convolution operator on
Z as (−∆d)σf = Kσ ∗ f . Then by Minkowski’s integral inequality we have that
‖(−∆d)σf‖`p ≤ ‖Kσ‖`1‖f‖`p , for 1 ≤ p ≤ ∞. By Lemma 3.2, we conclude that
the estimate (i)-(1) holds. Therefore, the family of operators Lσzϕ defined in (12) is
contained in B(`p), it is an analytic semigroup and the estimate (i)-(2) holds.



HÖLDER–LEBESGUE REGULARITY AND ALMOST PERIODICITY 19

Concerning the proof of (ii) we obtain, by using (23),

e−z(−∆d)σϕ(n) =

∞∑
k=0

(−1)k
zk

k!
(−∆d)kσϕ(n)

=

∞∑
k=0

(−1)k
zk

k!

∑
m∈Z

(−1)m
Γ(2kσ + 1)

Γ(1 + kσ +m)Γ(1 + kσ −m)
ϕ(n−m)

=
∑
m∈Z

ϕ(n−m)(−1)m
∞∑
k=0

(−1)k
zk

k!

Γ(2kσ + 1)

Γ(1 + kσ +m)Γ(1 + kσ −m)

=
∑
m∈Z

ϕ(n−m)(−1)m
∞∑
k=1

(−1)k
zk

k!

Γ(2kσ + 1)

Γ(1 + kσ +m)Γ(1 + kσ −m)

+
∑
m∈Z

ϕ(n−m)(−1)m
1

Γ(1 +m)Γ(1−m)

=
∑
m∈Z

ϕ(n−m)(−1)m
∞∑
k=1

(−1)k
zk

k!

Γ(2kσ + 1)

Γ(1 + kσ +m)Γ(1 + kσ −m)
+ ϕ(n).

Let us prove the second equality in part (ii), and we start with the integral
expression. With the change of variable θ/2 = π/2− u, it follows

1

2π

∫ π

−π
e−z
(

4 sin2 θ
2

)σ
e−inθ dθ =

1

π

∫ π

0

e−z
(

4 sin2 θ
2

)σ
cos(nθ) dθ

=
2

π

∫ π/2

0

e−z
(

4 sin2(π2−u)
)σ

cos
(
2n(π/2− u)

)
du

= (−1)n
2

π

∫ π/2

0

e−z4
σ(cosu)2σ

cos(2nu) du.

Expand the exponential function and use the formula in [38, p. 402, 2.5.12 (22)]∫ π/2

0

(cosx)ν−1 cos(bx) dx = 2−νπ
Γ(ν)

Γ
(

1+ν+b
2

)
Γ
(

1+ν−b
2

) , Re ν > 0, | arg b| < π,

with ν = 2kσ + 1, b = 2n, to get the desired result. Indeed,∫ π/2

0

e−z4
σ(cosu)2σ

cos(2nu) du =

∫ π

0

∞∑
k=0

(−1)k
(
z4σ(cosu)2σ

)k
k!

cos(2nu) du

=

∞∑
k=0

(−1)k
(z4σ)k

k!

∫ π/2

0

(cosu)2σk cos(2nu) du

=
π

2

∞∑
k=1

(−1)k
zk

k!

Γ(2kσ + 1)

Γ(1 + kσ + n)Γ(1 + kσ − n)

+

∫ π/2

0

cos(2nu) du

=
π

2

∞∑
k=1

(−1)k
zk

k!

Γ(2kσ + 1)

Γ(1 + kσ + n)Γ(1 + kσ − n)
+ δ0,n.
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Let us prove now part (iv)-(1). Since the operator (−∆d)σ is bounded on `p, a
computation using the representation in series of e−z(−∆d)σ yields

‖e−z(−∆d)σϕ‖`p ≤ e‖K
σ‖`1Rez‖ϕ‖`p , for all ϕ ∈ `p.

We choose {ϕ(n)}n∈Z = {δ0,n}n∈Z ∈ `p. Then, by part (ii) we obtain

e−z(−∆d)σδ0,n = Lσz (n) for each n and consequently by Lemma 3.2 we obtain the
desired estimate.

In order to prove part (iv)-(2) we observe that, for any θ ∈ R, the sequence
{cos 2πnθ}n∈Z is almost periodic. Then, in view of the integral expression for Lσz
in part (ii), by the definition of discrete almost periodic function, and Dominated
Convergence Theorem, we have that Lσz is discrete almost periodic in n ∈ Z for
each z ∈ Σπ.

Proof of part (v)-(1). We recall the following representation describing a stable
Levy process, see [50, Ch. IX.11, Proposition1],

e−ta
σ

=

∫ ∞
0

e−λaft,σ(λ) dλ, t > 0, a > 0 (28)

where ft,σ(λ) is a transition probability density that satisfies, see [50, Ch. IX.11,
Propositions 2 and 3],

ft,σ(λ) ≥ 0 for all λ > 0,

∫ ∞
0

ft,σ(λ) dλ = 1.

Take any ϕ ≥ 0. Then by the representation (28) we have that

e−t(−∆d)σϕ(n) =

∫ ∞
0

eλ∆dϕ(n)ft,σ(λ) dλ ≥ 0.

Let us choose ϕ(n) = δ0,n. It follows immediately that

0 ≤
∫ ∞

0

eλ∆dδ0,nft,σ(λ) dλ = e−t(−∆d)σδ0,n = Lσt (n),

where the second equality is implied by part (ii).
Finally, for the proof of part (v)-(2), we use the representation (28) applied to

the sequence constantly equal to 1 (which we denote 1(n)). Therefore we have

Lσt 1(n) =

∫ ∞
0

eλ∆d1(n)ft,σ(λ) dλ = 1(n)

∫ ∞
0

ft,σ(λ) dλ = 1(n),

because eλ∆d = Tλ is Markovian. Moreover, the representation of Lσz as a convolu-
tion in part (ii) shows that

Lσt 1(n) =
∑
k∈Z

Lσt (k)1(n− k) =
∑
k∈Z

Lσt (k).

This yields
∑
k∈Z L

σ
t (k) = 1.

The proof of the theorem is complete.

Remark 5. From the fact that e−z(−∆d)σδ0n = Lσz (n) we deduce, for z, w ∈ Σπ
and each n ∈ Z, that

(Lσz ∗ Lσw)(n) = Lσz+w(n). (29)

Remark 6. Note that, for σ = 1, we recover the modified Bessel function, i.e.,
L1
z(n) = e−2zIn(2z). We could say that Lσz is some sort of generalized modified

Bessel function.
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For z = it, t ∈ R, let us define Uσt as

Uσt ψ(n) =
∑
m∈Z

Lσit(n−m)ψ(m), (30)

where ψ ∈ `p.

Theorem 3.3. The family {Uσt }t∈R forms a group of bounded and linear opera-
tors on `p with bounded generator −i(−∆d)σ. Moreover, the spectrum is σ(Uσt ) =

{e−it(4 sin2 θ/2)σ}θ∈(−π,π].

Proof. The group property follows from identity (29) applied to z = it, w = is,
with t, s ∈ R. Since Lσit ∈ `1, then Uσt is a well-defined operator from `p into
itself. In addition, ‖Uσt ‖B(`p) ≤ ‖Lσit‖`1 . The spectrum is a particular case of
Theorem 1.3.

3.3. The fractional discrete cosine function.

Proof of Theorem 1.4. Let us begin with part (i). Theorem 1.3, part (i), shows
that {Cσt }t∈R ⊂ B(`p) and it is an uniformly continuous family of operators. The

D’Alembert functional equation follows from the fact that Uσ/2t is a group. From
(21) and discrete Fourier transform, it follows that Kσ/2 ∗Kσ/2 = Kσ. Therefore,
formula (23) gives

(−∆d)σ/2(−∆d)σ/2 = (−∆d)σ.

The latter identity shows that Cσt is an uniformly continuous operator cosine func-
tion with generator −(−∆d)σ. Indeed, we have

2[Cσt ]′ = −i(−∆d)σ/2Uσ/2t + i(−∆d)σ/2Uσ/2−t
and hence

2[Cσt ]′′ = −(−∆d)σ/2(−∆d)σ/2Uσ/2t − (−∆d)σ/2(−∆d)σ/2Uσ/2−t
= −(−∆d)σUσ/2t − (−∆d)σUσ/2−t = −(−∆d)σ[Uσ/2t + Uσ/2−t ].

This implies

[Cσt ]′′ = −(−∆d)σCσt ,
and, after evaluating in t = 0, the conclusion follows.

For the proof of (ii) it is enough to note, from Theorem 1.3 part (ii), that we
have the identity

L
σ/2
it (n) + L

σ/2
−it (n)

2
= Cσt (n). (31)

Part (iii) follows from (15). From identity (31) above one can conclude part (iv)-(1),
by taking into account Theorem 1.3 part (iv)-(1). Finally, part (iv)-(2) is true by
(15).

Remark 7. Observe that in the limit case σ = 1 we obtain

C1
t ϕ =

L1/2
it ϕ+ L1/2

−itϕ

2
, t ∈ R.

with generator −(−∆d)1 = ∆d. We will check that

C1
t = Ct
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where Ct was defined in (11). Indeed, it is enough to prove that

Ct(n) =
L

1/2
it (n) + L

1/2
−it(n)

2
,

but this follows from formula (20) and the integral expression for Lσz (n) in Theo-
rem 1.3, part (ii). This fact also justifies the definition of discrete cosine function
given in Subsection 2.2.

Remark 8. From Theorem 1.3 in case σ = 1/2 we obtain ‖(−∆d)1/2‖ ≤ 4√
π
. Since

cosh [(−∆d)1/2t] is a cosine operator function with generator ∆d it follows from
uniqueness that Ct = cosh [(−∆d)1/2t] for all t ∈ R, where Ct is the semidiscrete
wave cosine family defined in the previous section. In particular, we obtain

‖Ct‖ ≤ e
4√
π
t
,

which complements Theorem 1.2 and provides the estimate

‖Ct‖`p ≤ e
4√
π
t
,

for the corresponding kernel. Compare this estimate with the one in Theorem 1.2,
part (ii)-(1).

4. Existence and uniqueness of almost periodic solutions: proofs of The-
orems 1.5 and 1.6. We devote this section to the proofs of Theorems 1.5 and
1.6 concerning the existence and uniqueness of almost periodic solutions to non-
homogeneous heat, Schrödinger, and wave equations involving a discrete Laplacian,
and some of their properties. The research carried out in the previous Theorems 1.1,
1.2, 1.3 and 1.4 and in the corresponding proofs in Sections 2 and 3 will be the key
to prove the results concerning these solutions. In order to unify the presentation,
we will show the problems in a general form. Therefore, recall from Subsection 1.1
that we will study the following equations:

∂u(t, n)

∂t
= Lu(t, n) +G(t, n), u(0, n) = ϕ(n), (32)

∂w(t, n)

∂t
= iLw(t, n) +G(t, n), w(0, n) = ψ(n), (33)

and
∂2v(t, n)

∂t2
= Lv(t, n) +G(t, n), v(0, n) = ξ(n), vt(0, n) = η(n), (34)

where n ∈ Z, L means either the discrete Laplacian ∆d or the fractional powers
−(−∆d)σ, the sequences ϕ,ψ, ξ and η are the initial data at t = 0 and G is a
function either of the form g(t, n), t ≥ 0, or of the form g(u(t, n), n), g(w(t, n), n),
or g(v(t, n), n), with t ∈ J := [0, T ] and 0 < T <∞ is given.

For easy reading, we will also collect some ingredients that have been already
presented in the previous sections. When L = ∆d, the solution to the homogeneous
version of the equation (32) is represented by the series

Ttϕ(n) =
∑
m∈Z

e−2tIn−m(2t)ϕ(m), t ≥ 0, n ∈ Z.
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Then, from Theorem 2.1 and semigroup theory we have that the solution to the
homogeneous version of (33) is given by

w(t, n) = Utψ(n) =
∑
m∈Z

e−2itIn−m(2it)ψ(m).

Recall that Ut := Tit, where Tz is the one in (8). It is clear that

w(t, n) = (Ut ∗ ψ)(n).

In its turn, let us define St, the one parameter family of operators in `p by

Stf =

∫ t

0

Csf ds, f ∈ `p, t ≥ 0,

where Cs is the given in (11). From Theorem 1.2 and cosine operator theory, we
have that

v(t, n) = Ctξ(n) + Stη(n)

is the solution to the homogenous version of (34) and it is explicitly given by

v(t, n) =
∑
m∈Z

J2(n−m)(2t)ξ(m) +
∑
m∈Z

(∫ t

0

J2(n−m)(2s) ds
)
η(m).

Let us define Sσt by

Sσt f =

∫ t

0

Cσs f ds, f ∈ `p, t ≥ 0.

It happens that, from semigroup and cosine operator theory, the functions Lσt ϕ(n),
Uσt ψ(n), and Cσt ξ(n) + Sσt η(n), where Lσt , Uσt , and Cσt are defined, respectively, in
Theorem 1.3, (30), and (14), are the solutions to the homogenous versions of (32),
(33) and (34) when L = −(−∆d)σ. See e.g. [5, Proposition 3.1.16 and Corollary
3.14.8].

4.1. The linear cases: proof of Theorem 1.5. It follows directly from semi-
group theory (see e.g. [36]) that u(t, n) is indeed the solution to (32). The proof for
the solution w(t, n) follows from Theorem 1.1, and concerning the function v(t, n)
the statement follows immediately from cosine operator theory shown in Theo-
rem 1.2. The proof for uσ(t, n), wσ(t, n) and vσ(t, n) is immediate from the results
contained in Theorem 1.3, Theorem 3.3, and Theorem 1.4.

Now let us prove (1). By Theorem 1.1, we know that Tt(n) is a discrete almost
periodic function in the variable n and Tt ∈ `1, for each t ∈ (0,∞). Then, under the
hypothesis that ϕ ∈ `1, by Theorem C.6 we have that

∑
k∈Z Tt(n − k)ϕ(k) is also

discrete almost periodic. On the other hand, again by Theorem C.6, the function
F (t, s, n) defined by

F (t, s, n) :=
∑
k∈Z

Tt−s(n− k)g(s, k)

is discrete almost periodic. Let

Ψ(t, n) :=

∫ t

0

F (t, s, n) ds.

Given ε > 0, there exists a positive integer M(ε) such that any set consisting of
M(ε) consecutive integers contains at least an integer p for which |F (t, s, n + p)−
F (t, s, n)| < ε, for each n ∈ Z and each t, s ∈ (0,∞). Then we obtain immediately
|Ψ(t, n+ p)−Ψ(t, n)| < ε. This completes the proof of (1) for u(t, ·). The proof for
w(t, ·), v(t, ·), uσ(t, ·), wσ(t, ·), and vσ(t, ·) is exactly the same.
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Following analogous arguments as the ones in part (1) we can conclude that
w(·, n), v(·, n), wσ(·, n), and vσ(·, n) are also almost periodic in the first variable, for
each n ∈ Z. One just has to consider, respectively, the expression in (19) for Tit(n),
the expression (20) for Ct(n), Theorem 1.3 part (ii) for Lσit, and Theorem 1.4, (15),
for Cσt . Then the result in (2) follows immediately from Dominated Convergence
Theorem.

Finally, let us prove part (3). On one hand, it follows that∑
m∈Z
|Tt(n−m)ϕ(m)| ≤ sup

n∈Z
|Tt(n)|

∑
m∈Z
|ϕ(m)|.

Then, in virtue of the representation (19) and since ϕ ∈ `1, we easily deduce that
the quantity above vanishes as t → ∞. On the other hand we have, again from
(19), that∫ t

0

∣∣ ∑
m∈Z

Tt−s(n−m)g(s,m)
∣∣ ds ≤ ∫ t

0

sup
n∈Z
|Tt−s(n)|

∑
m∈Z

∣∣g(s,m)
∣∣ ds

≤ 2

π

∫ t

0

(∫ π/2

0

e−4(t−s) sin2 θ dθ
)∑
m∈Z

∣∣g(s,m)
∣∣ ds

=
2

π

∫ π/2

0

e−4t sin2 θ
(∫ t

0

e4s sin2 θ
∑
m∈Z

∣∣g(s,m)
∣∣ ds) dθ.

Then, under the assumption on g, we readily conclude the proof of part (3) for
u(t, n). The analogous statement for uσ(t, n) also follows, taking into account the
integral representation in Theorem 1.3 part (ii). Theorem 1.5 is proved.

Remark 9. Observe that, under the assumption that ϕ,ψ, ξ, η ∈ APd(Z), we can
also prove that u(t, ·), w(t, ·), v(t, ·), uσ(t, ·), wσ(t, ·), and vσ(t, ·) are discrete almost
periodic in the first variable, for t ≥ 0. The reasoning is the same as the one in
Theorem 1.5 part (3), taking into account that Tz, Ct, L

σ
z , C

σ
t ∈ `1.

Remark 10. In the particular case g ≡ 0, if we assume that k 7→ Tt(n− k)ϕ(k) is
summable for each n ∈ Z, the solutions u,w, v, uσ in Theorem 1.5 are automatically
almost periodic independently of the regularity of the initial conditions ϕ,ψ, ξ, η.

4.2. The nonlinear cases: proof of Theorem 1.6. We will show in detail the
proof concerning the semidiscrete nonlinear heat equation. For the rest of the cases
we will give the appropriate hints to complete the proofs.

We define a map F : APd(J × Z)→ APd(J × Z) by

F (u)(t, n) := Ttϕ(n) +

∫ t

0

Tt−sg(u(s, n), n) ds, t ∈ J. (35)

Note that, by Theorem 1.5, F is well defined under the hypotheses for ϕ and g.
In order to prove the existence and uniqueness, we will apply a well known

extension of the contraction principle. Recall that

‖F (u)− F (v)‖APd(J×Z) = sup
(n,t)∈J×Z

|F (u)(t, n)− F (v)(t, n)|.
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Let us analyze |F (u)(t, n)− F (v)(t, n)|. In view of (16), we have

|F (u)(t, n)− F (v)(t, n)| ≤
∑
k∈Z

∫ t

0

Tt−s(n− k)|g(u(s, k), k)− g(v(s, k), k)| ds

≤ CL
∑
k∈Z

∫ t

0

Tt−s(n− k)|u(s, k)− v(s, k)| ds

≤ CL
∑
k∈Z

∫ t

0

Tt−s(n− k) sup
(s,k)∈J×Z

|u(s, k)− v(s, k)| ds

= CL‖u− v‖APd(J×Z)

∫ t

0

∑
k∈Z

Ts(k) ds

≤ tCL‖u− v‖APd(J×Z).

Using the last inequality, (35) and induction on m it follows easily that

|Fm(u)(t, n)− Fm(v)(t, n)| ≤ tmCL
m

m!
‖u− v‖APd(J×Z),

whence

‖Fm(u)− Fm(v)‖APd(J×Z) ≤
(TCL)m

m!
‖u− v‖APd(J×Z).

For m large enough we have that (TCL)m

m! < 1, and we can conclude that F has a
unique fixed point in APd(J × Z).

In order to prove the theorem for the case of the Schrödinger equation, we proceed
exactly as in the proof in the latter case. Observe that, by Remark 2, we have that∫ t

0

∑
k∈Z
|Tis(k)| ds ≤

∫ t

0

(
2es − 1

)
ds ≤ (2eT − 1)t, t ∈ J.

This yields

|F (u)(t, n)− F (v)(t, n)| ≤ t(2eT − 1)CL‖u− v‖APd(J×Z), t ∈ J,

and we can conclude analogously as in the case of the semidiscrete heat equation.
Finally, for the case of the wave equation, proceeding as in the previous cases,

by Theorem 1.2, we arrive at∫ t

0

∑
k∈Z

∣∣∣ ∫ s

0

Cu(k) du
∣∣∣ ds ≤ ∫ t

0

∫ s

0

(2 coshu− 1) du ds

=

∫ t

0

(2 sinh s− s) ds ≤ (2 sinhT − T )t, t ∈ J,

since (2 sinh s− s) is an increasing function of s. This yields

|F (u)(t, n)− F (v)(t, n)| ≤ t(2 sinhT − T )CL‖u− v‖APd(J×Z), t ∈ J,

and we proceed as in the previous cases.
In the case of uσ(t, n), we obtain an analogous result to the one for u(t, n), due

to Theorem 1.3 part (v)-(2). Concerning wσ(t, n), recall that ‖Lσz ‖`p ≤ e
2

Γ(1+2σ)

Γ(1+σ)2
|z|

,
again by Theorem 1.3. Then we conclude the result with the constant

Γ(1 + σ)2

2Γ(1 + 2σ)

(
e

2
Γ(1+2σ)

Γ(1+σ)2
|T | − 1

)
CL.
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Analogously, for the solution vσ(t, n), we have ‖Cσt ‖`p ≤ e
2

Γ(1+σ)

Γ(1+σ/2)2
|t|

, by Theo-
rem 1.4. Therefore, the result for vσ(t, n) holds with the constant

Γ(1 + σ/2)2

2Γ(1 + σ)

(Γ(1 + σ/2)2

2Γ(1 + σ)

(
e

2
Γ(1+σ)

Γ(1+σ/2)2
|T | − 1

)
− T

)
CL.

Indeed, we just have to observe that eAt−1−At
A is an increasing function of t, for

A > 0. Theorem 1.6 is proved.

5. Cα − `p maximal regularity: proof of Theorems 1.7 and 1.8. In order
to prove Theorem 1.7, we will use a result by W. Arendt, C. Batty, and S. Bu
[4], established in a more general context. Let X be a Banach space. We denote
by Cper([0, 2π];X) the space of all continuous functions F : [0, 2π] → X such that
F (0) = F (2π). Let 0 < α < 1, and

‖F‖α := sup
t 6=s

t,s∈(0,2π]

‖F (t)− F (s)‖
|t− s|α

.

Define the space of α-Hölder continuous periodic functions taking values on X as

Cαper([0, 2π];X) := {F ∈ Cper([0, 2π];X) : ‖F‖α <∞},

and

C1,α
per ([0, 2π];X) := {F ∈ C1([0, 2π];X) : F (0) = F (2π), F ′ ∈ Cαper([0, 2π];X)}.

Let A be a closed operator on X. For f ∈ C([0, 2π];X) we consider the problem(
PA,per(f)

){u′(t) = Au(t) + f(t), t ∈ [0, 2π],

u(0) = u(2π).

The problem (PA,per) is said to be well-posed in Cαper([0, 2π];X) if for each f ∈
Cαper([0, 2π];X) there exists a unique classical solution u ∈ C1,α

per ([0, 2π];X) of
(PA,per(f)). In the sequel, ρ(A) denotes the resolvent set of an operator A.

Theorem 5.1 (See [4, Theorem 4.2]). Let 0 < α < 1. The following assertions are
equivalent:

(i) the problem (PA,per) is well-posed in Cαper([0, 2π];X);

(ii) {ik}k∈Z ⊆ ρ(A) and supk∈Z ‖k(ik −A)−1‖ <∞.

We take X = `p, 1 ≤ p ≤ ∞, and A := ∆d + rI, where I is the identity operator.
The corresponding definitions were already introduced in Subsection 1.2.

Proof of Theorem 1.7. Let us first assume that the problem (17) is well-posed in
the Hölder space Cαper

(
[0, 2π]; `p(Z)

)
. By Theorem 5.1 we have that {ik}k∈Z ∈

ρ(∆d + rI). This implies that −r ∈ ρ(∆d). By Theorem 1.1,

σ(∆d) = {−4 sin2 θ/2}θ∈(−π,π] = [−4, 0].

From here, we easily deduce that −r < −4, proving one implication.
For the converse, we again observe that σ(∆d) = [−4, 0]. From r > 4 we nec-

essarily deduce {−r + ik}k∈Z ⊆ ρ(∆d) or, equivalently, {ik}k∈Z ⊆ ρ(∆d + rI), so
the first condition in part (ii) of Theorem 5.1 is satisfied. Now, observe that the
identity ik(ik −A)−1 = I +A(ik −A)−1 implies

‖k(ik −A)−1‖ ≤ 1 + ‖A‖ ‖(ik −A)−1‖, k ∈ Z.
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Since A is bounded, then both A and −A generate semigroups or, equivalently, A
generates a group. Therefore, it is enough to show that

sup
k∈Z
‖(ik +A)−1‖ <∞.

Indeed, we have

(ik +A)−1 =
(
(ik + r) + ∆d

)−1
=

∫ ∞
0

e−(ik+r)se−s∆dds

so that, by Theorem 1.1, part (i)-(2),∥∥∥ ∫ ∞
0

e−(ik+r)se−s∆dds
∥∥∥ ≤ ∫ ∞

0

e−rses‖∆d‖ds ≤
∫ ∞

0

e−rse4sds =
1

r − 4
,

valid for all r > 4. This implies the claim and finishes the proof of the theorem.

As a corollary of Theorem 1.7, we obtain the following result on estimates of
maximal regularity in the Hölder space Cαper

(
[0, 2π]; `p(Z)

)
.

Corollary 1. Let 0 < α < 1 and A = ∆d + rI. Let 1 ≤ p ≤ ∞. If r > 4
then u′, Au ∈ Cαper

(
[0, 2π]; `p(Z)

)
and there exists a constant C > 0 independent of

f ∈ Cαper

(
[0, 2π]; `p(Z)

)
such that the following estimate holds:

‖u′‖Cα + ‖Au‖Cα ≤ C‖f‖Cα .

Proof of Theorem 1.8. By Theorem 1.3, part (iii), we have that σ(−(−∆d)σ) =

[−4σ, 0]. Under the assumption, r > 2Γ(1+2σ)
Γ(1+σ)2 > 4σ, so we obtain {ik}k∈Z ⊆

ρ(−(−∆d)σ + rI), which is the first condition in part (ii) of Theorem 5.1. On
the other hand, following an analogous reasoning as in Theorem 1.7, and by Theo-
rem 1.3, part (i)-(2), we end up with∥∥∥∫ ∞

0

e−(ik+r)ses(−∆d)σds
∥∥∥ ≤ ∫ ∞

0

e−rses‖(−∆d)σ‖ds

≤
∫ ∞

0

e−rse
s2

Γ(1+2σ)

Γ(1+σ)2 ds =
1

r − 2Γ(1+2σ)
Γ(1+σ)2

,

which is valid under the restriction r > 2Γ(1+2σ)
Γ(1+σ)2 .

In view of Theorem 1.8, we also obtain a result of maximal regularity involving
the operator −(−∆d)σ + rI.

Corollary 2. Let 0 < σ < 1 and A = −(−∆d)σ + rI. If r > 2Γ(1+2σ)
Γ(1+σ)2 then the

same conclusion of Corollary 1 remains true.

Remark 11. For the case of p = 2 the condition r > 2Γ(1+2σ)
Γ(1+σ)2 can be replaced by

r > 4σ. This is a consequence of the fact that in such case the spectral radius of the
fractional discrete Laplacian (−∆d)σ, which is clearly a bounded and normal oper-
ator on the Hilbert space `2, coincides with its norm. Moreover, this last condition
on r turns out to be a characterization in such case. The proof of this assertion is
similar to that of Theorem 1.7. The problem of the extension of this characteriza-
tion to the general case of `p spaces seems to be a difficult task that relies on sharp
estimates of the fractional discrete Laplacian, and therefore is left open.
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6. Extension to higher dimensions. Our aim in this section is to extend to
higher dimensions the results contained in Theorems 1.1, 1.2, 1.3 and 1.4.

Let n = (n1, . . . , nN ) ∈ ZN . We are going to consider the multidimensional
discrete Laplacian ∆d,N , defined as

∆d,Nϕ(n) =

N∑
j=1

(
ϕ(n + ej)− 2ϕ(n) + ϕ(n− ej)

)
, (36)

where ej denotes the unit vector in the positive direction of the j-th coordinate.
It is easy to see that the operator ∆d,N maps `p(ZN ) into itself boundedly for all
1 ≤ p ≤ ∞.

The discrete and inverse discrete Fourier transforms in the multidimensional
setting are, respectively,

FZN (f)(θ) =
∑
n∈ZN

f(n)ein·θ, θ ∈ TN , (37)

where θ = (θ1, . . . , θN ), and

F−1
ZN (ϕ)(n) =

1

(2π)N

∫
[−π,π]N

ϕ(θ)e−in·θ dθ, n ∈ ZN .

Lemma 6.1. Let θ = (θ1, . . . , θN ). We have

1. FZN
(
(−∆d,N )ϕ

)
(θ) =

∑N
j=1 4 sin2(θj/2)FZN (ϕ)(θ).

2. FZN
(
Tzϕ

)
(θ) = e−z

∑N
j=1(4 sin2(θj/2))FZN (ϕ)(θ), for each z ∈ Σπ.

Proof. The proof is an exercise. For the first one, apply the discrete Fourier trans-
form (37) to ∆d,Nϕ(n) in (36). A direct computation yields the result. With
a similar computation, by taking into account (38) and (19), we get the second
one.

Let us define, for each z ∈ Σπ,

Tzϕ(n) :=
∑
k∈ZN

Tz(n− k)ϕ(k) = (Tz ∗ ϕ)(n) ϕ ∈ `p(ZN ),

where

Tz(n) :=

N∏
j=1

Tz(nj) =

N∏
j=1

e−2zInj (2z). (38)

We denote the multidimensional Kronecker delta by δ0n = δ0n1
· . . . · δ0nN .

Theorem 6.2. Let z ∈ Σπ. Then, {Tz}z∈Σπ ⊂ B(`p(ZN )) and it is an uniformly
continuous analytic semigroup in Σπ with bounded generator ∆d,N on `p(ZN ), 1 ≤
p ≤ ∞. Moreover, the spectrum of the operators ∆d,N and Tz is, respectively,

σ(∆d,N ) =
{
−

N∑
j=1

4 sin2(θj/2)
}
θ∈(−π,π]N

= [−4N, 0],

σ(Tz) = {e−z
∑N
j=1 4 sin2(θj/2)}θ∈(−π,π]N .

Proof. First, it is clear that the kernel Tz in (38) is in `p(ZN ), by Theorem 1.1.
Moreover, given z, w ∈ Σπ and n ∈ ZN , it holds

(Tz ∗Tw)(n) = Tz+w(n).
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Indeed, from (29),

(Tz ∗Tw)(n) =
∑
k∈ZN

Tz(n− k)Tw(n) =
∑
k∈ZN

N∏
j=1

Tz(nj − kj)
N∏
i=1

Tw(ki)

=
∑
k∈ZN

N∏
j=1

Tz(nj − kj)Tw(kj)

=
∑
k1∈Z

∑
k2∈Z
· · ·

∑
kN∈Z

N∏
j=1

Tz(nj − kj)Tw(kj)

=

N∏
j=1

∑
kj∈Z

Tz(nj − kj)Tw(kj) =

N∏
j=1

(Tz ∗ Tw)(nj)

=

N∏
j=1

Tz+w(nj) = Tz+w(n).

Now we compute the generator. We derive Tz with respect to z and evaluate in
z = 0, so that

T′zϕ(n)
∣∣
z=0

= (T′z ∗ ϕ)(n)
∣∣
z=0

= ∆d,Nδ0n,

where the last equality follows from the fact that T0(ni) = δ0ni , for each ni ∈ Z.
The statement concerning the spectra of the operators follows immediately from

Lemma 6.1.

Remark 12. If we take z = t ∈ (0,∞) in (38), we have that

‖Tt‖`1(ZN ) =
∑

n∈ZN

N∏
j=1

Tt(nj) =
∑

n∈ZN

N∏
j=1

e−2tInj (2t)

=
∑
n1∈Z

∑
n2∈Z

· · ·
∑
nN∈Z

N∏
j=1

e−2tInj (2t)

=

N∏
j=1

∑
nj∈Z

e−2tInj (2t) = 1.

For z ∈ C, with a similar computation as in the proof of Theorem 1.1 (see also
Remark 2) adapted to the multidimensional setting, we get

‖Tz‖`1(ZN ) ≤ e−2N Re zeN | Im 2iz|(2e|z| − 1)N .

Remark 13. Observe that, since ∆d,N is bounded on `p(ZN ), the expression ez∆d,N

has sense, and by uniqueness we conclude that

ez∆d,N = Tz. (39)

A multidimensional result analogous to Theorem 2.1 follows immediately. Let
Uitϕ := e−it(−∆d,N )ϕ.

Theorem 6.3. The family {Uit}t∈R ⊂ B(`p(ZN )) and it forms an uniformly con-
tinuous group with bounded generator i∆d,N , 1 ≤ p ≤ ∞.
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On the other hand, we define

Ct :=
U1/2
it + U1/2

−it
2

= cos
(
t(−∆d,N )1/2

)
,

where the second identity follows from (39), and we have the multidimensional result
analogous to Theorem 1.2.

Theorem 6.4. Let 0 < σ < 1. We have {Ct}t∈R ⊂ B(`p) and it is an uniformly
continuous cosine family, with bounded generator ∆d,N on `p(ZN ), 1 ≤ p ≤ ∞.

Moreover, the spectrum of Ct is σ(Ct) =
{

cos
[
2t
(∑N

j=1 sin2(θj/2)
)1/2]}

θ∈(−π,π]N
.

Let us define

(−∆d,N )σϕ(n) =
1

Γ(−σ)

∫ ∞
0

(
Ttϕ(n)− ϕ(n)

) dt

t1+σ
.

We can prove the following.

Lemma 6.5. Let θ = (θ1, . . . , θN ) and 0 < σ < 1. Then

FZN
(
(−∆d,N )σϕ

)
(θ) =

( N∑
j=1

4 sin2(θj/2)
)σ
FZN (ϕ)(θ).

Proof. We use the representation (24) and Lemma 6.1, part (2) with z = t ≥ 0,
then

FZN
(
(−∆d,N )σϕ

)
(θ) =

1

Γ(−σ)

∫ ∞
0

(FZN
(
Ttϕ

)
(θ)−FZN (ϕ)(θ)

dt

t1+σ

=
1

Γ(−σ)

∫ ∞
0

(e−t
∑N
j=1(4 sin2(θj/2)) − 1)

dt

t1+σ
FZN (ϕ)(θ)

=
( N∑
j=1

4 sin2(θj/2)
)σ
FZN (ϕ)(θ),

so we get the conclusion.

Observe that, by the spectral mapping theorem, (−∆d,N )σ is bounded on `p(ZN )

and the spectrum is σ
(
(−∆d,N )σ

)
=
(
σ(−∆d,N )

)σ
, being the latter bounded. Then,

the expression

Lσzϕ := e−z(−∆d,N )σϕ, z ∈ Σπ, (40)

has sense.
From the considerations above, we conclude the following.

Theorem 6.6. Let 0 < σ < 1. Given z ∈ Σπ, let Lσz be the operators defined
in (40). We have {Lσz }z∈Σπ ⊂ B

(
`p(ZN )

)
and it is an uniformly continuous and

analytic semigroup in Σπ, with bounded generator (−∆d,N )σ on `p(ZN ), 1 ≤ p ≤ ∞.
Moreover, the spectrum of the operators (−∆d,N )σ and Lσz is, respectively,

σ((−∆d,N )σ) =
{
−
( N∑
j=1

4 sin2(θj/2)
)σ}

θ∈(−π,π]N

σ(Lσz ) = {e−z(
∑N
j=1 4 sin2(θj/2))σ}θ∈(−π,π]N .

Taking into account Theorem 6.6, we can write an integral representation for the
semigroup e−t(−∆d,N )σ , by using the identity in (28).
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Theorem 6.7. Let 0 < σ < 1. We have, for ϕ ∈ `p(ZN ) and n ∈ ZN ,

e−t(−∆d,N )σϕ(n) =

∫ ∞
0

∑
k∈ZN

N∏
j=1

Tλ(nj − kj)ϕ(kj)ft,σ(λ) dλ, t ≥ 0.

From the latter result, we obtain the following corollary.

Corollary 3. Let 0 < σ < 1 and t ≥ 0. Then Lσt ϕ := e−t(−∆d,N )σ is an uniformly
continuous and Markovian semigroup.

We observe easily that Uσit = e−it(−∆d,N )σ is a group with generator −i(−∆d,N )σ.

Theorem 6.8. Let 0 < σ < 1. The family {Uσit}t∈R ⊂ B(`p(ZN )), and it forms a
uniformly continuous group with bounded generator −i(−∆d,N )σ, 1 ≤ p ≤ ∞.

Finally, we define

Cσt :=
Uσ/2it + Uσ/2−it

2
= cos

(
t(−∆d,N )σ/2

)
,

where the second identity follows from (40). We have the corresponding multidi-
mensional result.

Theorem 6.9. Let 0 < σ < 1. We have {Cσt }t∈R ⊂ B(`p) and it is an uniformly
continuous cosine family, with bounded generator (−∆d,N )σ on `p(ZN ), 1 ≤ p ≤ ∞.

Moreover σ(Cσt ) =
{

cos
[
t
(
4
∑N
j=1 sin2(θj/2)

)σ/2]}
θ∈(−π,π]N

.

Proof. The first assertion is clear. For the identity concerning the spectrum is
enough to observe that the uniform continuity of Cσt implies, by Theorem 6.6 and
the spectral mapping theorem, that

σ(Cσt ) = cosh
(
t
√
σ
(
(−∆d,N )σ

))
=
{

cos
[
t
(
4

N∑
j=1

sin2(θj/2)
)σ/2]}

θ∈(−π,π]N
.

Remark 14. From the theory developed in the present section, some of the results
concerning existence and uniqueness of solutions to linear and nonlinear semidis-
crete equations can be also stated on ZN . Nevertheless, since we do not have infor-
mation on the norm of the multidimensional cosine operator or of the multidimen-
sional fractional operators (in particular we cannot give quantitative information
about their `1(ZN ) norm), some of the statements are left open. Namely, Theo-
rem 1.5 remains completely valid except for part (3), which can be proved, with the
tools in the present section, for the case of semidiscrete heat and Schrödinger equa-
tions when L = ∆d,N . Also, with the multidimensional theory in this section, one
can prove Theorem 1.6 on ZN for the semidiscrete heat and Schrödinger equations
when L = ∆d,N .

Remark 15. In the special case of `2(ZN ), in view of the given characterizations
of the spectrum, we obtain the following identities

1. ‖∆d,N‖ = 4N

2. ‖Tz‖ = e4NRe(z)

3. ‖Ct‖ = 1
4. ‖(−∆d,N )σ‖ = (4N)σ

5. ‖Tσz ‖ = e(4N)σRe(z)
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6. ‖Cσt ‖ = 1.

Assertions (1), (2), (4) and (5) follow from Theorem 6.6 and the fact that on
a Hilbert space, the spectral radius of the fractional discrete Laplacian coincides
with its norm (because this is a bounded and normal operator) and the spectral
mapping theorem holds. Assertions (3) and (6) follow from Theorem 6.9 by the
same reasoning.

7. Applications to Nagumo and Fisher–KPP equations. In this section we
will apply the results obtained in the previous sections to Nagumo and Fisher–
KPP models involving a discrete Laplacian, or the fractional powers of a discrete
Laplacian. More precisely, we consider the following problems

∂u(t, n)

∂t
= Lu(t, n) + u(t, n)(u(t, n)− a)(1− u(t, n)), in (0,∞)× Z,

u(0, n) = f(n), on Z,

where 0 < a < 1, and
∂u(t, n)

∂t
= Lu(t, n) + ru(t, n)(1− u(t, n)), in (0,∞)× Z,

u(0, n) = f(n), on Z,

where r > 0 and the operators L above are any of the following: ∆d, i∆d, −(−∆d)σ,
or −i(−∆d)σ.

Our main results in this section are theorems on local existence of solutions for
the discrete Nagumo and Fisher equations. We highlight again that the qualitative
behavior concerning almost periodicity in the discrete variable is a remarkable prop-
erty that is not present in the continuous setting. It is also interesting to observe
that the same conclusion is valid also for the fractional case, i.e. when the discrete
Laplacian is replaced by the fractional discrete Laplacian.

Theorem 7.1. Let 0 < σ ≤ 1 and f ∈ `∞ be given. For each T > 0 there exists a
unique solution u : [0, T ]× Z→ C to the fractional discrete Fisher equation

∂u(t, n)

∂t
= −(−∆d)σu(t, n) + ru(t, n)(1− u(t, n)), in (0, T ]× Z,

u(0, n) = f(n), on Z.

Moreover, u(t, n) is discrete almost periodic in the second variable.

Proof. Define g(s, n) = rs(1 − s) and observe that g(s, ·) ∈ `∞ and that it is ob-
viously almost periodic in the discrete variable. It is easy to check that g satisfy
condition (16) with Lipchitz constant CL = r(1 + 2T ). Then, according to Theo-
rem 1.6 we can conclude that there exists a unique solution which is discrete almost
periodic in the second variable.

With a similar proof, we can prove the following result.

Theorem 7.2. Let 0 < σ ≤ 1 and f ∈ `∞ be given. For each T > 0 there exists a
unique solution u : [0, T ]× Z→ C to the fractional discrete Nagumo equation
∂u(t, n)

∂t
= −(−∆d)σu(t, n) + u(t, n)(u(t, n)− a)(1− u(t, n)), in (0, T ]× Z,

u(0, n) = f(n), on Z.

Moreover, u(t, n) is discrete almost periodic in the second variable.
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It is worthwhile to notice that similar results holds in the case that (−∆d)σ is
replaced by i(−∆d)σ, 0 < σ ≤ 1.

We finish this paper with a general result on non linear equations, which includes
as a particular case a non homogeneous version of the fractional discrete Fisher
equation. It corresponds to an application of Theorem 1.8 and gives information
about the Cα − `q regularity of solutions.

Theorem 7.3. Let 0 < α < 1, 1 ≤ p ≤ ∞ and r > 2Γ(1+2σ)
Γ(1+σ)2 for 0 < σ < 1 (respec-

tively r > 4 for σ = 1). Suppose that G : Cαper

(
[0, 2π]; `p(Z)

)
→ Cαper

(
[0, 2π]; `p(Z)

)
satisfies G(0) = 0 is continuously Fréchet differentiable at u = 0 and G′(0) = 0.
Then there exists ρ∗ > 0 such that the equation

∂u(t, n)

∂t
= (−(−∆d)σ + r)u(t, n) +G(u)(t, n) + ρf(t, n), in [0, 2π]× Z, (41)

is solvable for each ρ ∈ [0, ρ∗), with solution u = uρ ∈ Cαper

(
[0, 2π]; `p(Z)

)
.

Proof. We first prove the result for 0 < σ < 1. Define

Z := Cαper

(
[0, 2π]; `p(Z)

)
∩ C1,α

per

(
[0, 2π]; `p(Z)

)
.

Observe that the space Z becomes a Banach space under the norm |||w||| :=
‖(−∆)σw+ rw‖+‖w′‖. Define the operator Au(t, n) = ∂tu(t, n) +(−∆d)σu(t, n)−
ru(t, n) with D(A) = Cαper

(
[0, 2π]; `p(Z)

)
. Then A is an isomorphism onto. Indeed,

by Corollary 2 we have |||u||| ≤ C||Au||. On the other hand, by definition of the
operator A we have ‖Au‖ ≤ |||u|||. Therefore A is an isomorphism. By Theorem 1.8
we obtain that A is onto, proving the claim.

Let ρ ∈ (0, 1) and let us define the one parameter family of problems:

H[u, ρ] = −Au+G(u) + ρf.

By hypothesis it is clear that H[0, 0] = 0, H is continuously differentiable at (0, 0)
and the partial Fréchet derivative is H1

(0,0) = −A, which is invertible by the pre-

ceding argument. We now apply the implicit function theorem (see e.g. [24, The-
orem 17.6]) and then, we can find ρ∗ such that for all ρ ∈ [0, ρ∗) there exists
u = uρ ∈ Cαper

(
[0, 2π]; `p(Z)

)
which satisfies (41). The proof of the case σ = 1 is

analogous with the obvious modifications.

Remark 16. From the theory developed in Section 6, and with obvious modifica-
tions, the results provided in this section can be extended to the multidimensional
case.

Appendix A. Analytic semigroups and cosine operators. Let us define the
sector

Σπ := {z ∈ C : | arg z| < π}.

Definition A.1. Let X be a Banach space. A family {Wz}z∈Σπ ⊆ B(X) is said to
be an analytic semigroup in Σπ (see [36, Ch. 2, 2.5]) if

(i) z 7→ Wzx is analytic in Σπ for each x ∈ X.
(ii) W0 = I and lim z→0

z∈Σπ
Wzx = x for every x ∈ X.

(iii) Wz1+z2x =Wz1Wz2x, for z1, z2 ∈ Σπ and x ∈ X.
The semigroup Wz so defined will be just called analytic. The restriction of an
analytic semigroup to the real axis is a C0-semigroup.
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More information about the well established theory of semigroups of operators
can be found in the extensively bibliography on this topic. We refer the reader, for
instance, to the monograph [5, Section 3].

Definition A.2. A family of operators {Ct}t∈R ⊆ B(X) is called a cosine operator
function (see [20, Ch. II.3]) if

(i) C0 = I.
(ii) Cs+tx+ Cs−tx = 2CsxCtx, for all s, t ∈ R and x ∈ X.

(iii) t 7→ Ctx is continuous in R for each x ∈ X.

About the theory of cosine operator functions the reader can see the classical
monograph [20], or the recent reference [5, Sections 3.14 and 3.15].

Appendix B. Properties of the Bessel functions Jk and Ik. In this subsection
we list some definitions and properties related to Bessel functions. We provide
references of many of them and refer the reader to [31, Chapter 5], [35] and [49] for
further issues concerning these functions.

The Bessel function of the first kind and order k ∈ Z, Jk(z), can be defined by

Jk(z) =

∞∑
m=0

(−1)m

m! Γ(m+ k + 1)

(z
2

)2m+k

, |z| <∞.

Since k is an integer (and 1/Γ(n) is taken to be equal zero if n = 0,−1,−2, . . .), the
function Jk is defined in the whole real line, and even in the whole complex plane,
where Jk is an entire function. Therefore, if not otherwise indicated, from now on
we will consider z ∈ C. The Bessel function Jk(z) satisfies (see [49, Ch. II, 2.1, p.
15])

J−k(z) = (−1)kJk(z) (42)

for each k ∈ Z. It is also clear that

J0(0) = 1 and Jk(0) = 0 for k 6= 0. (43)

The following upper bound, for ν real and greater than −1/2, will be useful, see
[49, Ch. III, 3.31, p. 49] or [35, Formula 10.14.4]

|Jν(z)| ≤
| 12z|

νe| Im z|

Γ(ν + 1)
. (44)

Observe that (44) remains valid for all n ∈ Z, due to (42).
In [49, Ch. II. 2.4, p. 30] we find the following addition formula for Bessel

functions, also known as Neumann’s identity

Jk(z1 + z2) =
∑
m∈Z

Jm(z1)Jk−m(z2), z1, z2 ∈ C, (45)

where k ∈ Z but this formula is still valid for k unrestricted (see [49, Ch. V. 5.3, p.
143]). Analogously, see [49, Ch. V, 5.3, p. 145] it can be proved that

Jk(z1 − z2) =
∑
m∈Z

Jm(z1)Jk+m(z2), z1, z2 ∈ C. (46)

The addition formulae above are consequences of the generating function (see [49,
Ch. II, 2.1, p. 14] and also [35, formula 10.12.1])

e
1
2 z(u−u

−1) =
∑
k∈Z

ukJk(z), z ∈ C, u ∈ C \ {0},
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that serves also as a definition for Jk.
Now we pass to several properties and identities concerning the Bessel functions

Ik(z). The modified Bessel function of the first kind and order k ∈ Z, or Bessel
function of imaginary argument, Ik(z), is defined by

Ik(z) =

∞∑
m=0

1

m! Γ(m+ k + 1)

(z
2

)2m+k

. (47)

From the very definition of Ik we deduce that

Ik(t) ≥ 0,

for every k ∈ Z and t ≥ 0. Analogous observations as for the Bessel function Jk(z)
can be done. From now on we will also consider z ∈ C unless otherwise stated. The
Bessel functions Ik(z) and Jk(z) are related by (see [35, 10.27.6])

Ik(2z) = e−ikπ/2Jk(2iz). (48)

It is verified that I−k(z) = Ik(z) for each k ∈ Z. From (47) it is clear that

I0(0) = 1 and Ik(0) = 0 for k 6= 0. (49)

The following identity, which is the addition formula analogous to the one for Jk,
follows from Neumann’s identity (45) and the relationship between the Bessel func-
tions Ik and Jk in (48)

Ik(z1 + z2) =
∑
m∈Z

Im(z1)Ik−m(z2) for k ∈ Z, z1, z2 ∈ C; (50)

this formula is also an easy consequence of the generating function, which is valid
for z ∈ C and u ∈ C \ {0},

e
1
2 z(u+u−1) =

∑
k∈Z

ukIk(z)

see, for instance, [35, formula 10.35.1]. By taking u = 1 in the generating function
and changing z into 2z, we obtain∑

k∈Z
e−2zIk(2z) = 1. (51)

Appendix C. Discrete almost periodic functions. Let X be a (real or com-
plex) Banach space equipped with a norm ‖ · ‖. First we recall the definition of
almost periodic sequences (see e.g. [15, Ch. I. 6.]).

Definition C.1. A sequence F : Z→ X is called almost periodic if for every ε > 0,
there exists a positive integer M(ε) such that any set consisting of M(ε) consecutive
integers contains at least one integer p for which

‖F (n+ p)− F (n)‖ < ε, n ∈ Z.

We will denote by APd(X) the set of almost periodic sequences. Observe that each
almost periodic sequence is bounded, i.e., supn∈Z |F (n)| = C <∞.

Remark 17. Actually, the definition of almost periodic sequence above is the anal-
ogous to the definition of almost periodic functions given by H. Bohr, see [15, Ch.
VI, 1]. Throughout the paper we also consider almost periodic functions without
further comment on their definition.
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We will deal with a more general definition of almost periodic sequences. Previ-
ously, we need the following.

Definition C.2. A function F : X × Z→ C is said to be uniformly continuous on
each bounded subset of X uniformly in n ∈ Z if for every ε > 0 and every bounded
subset K ⊂ X, there exists δ(ε,K) > 0 such that

‖F (x, n)− F (y, n)‖ < ε, for all n ∈ Z,

and all x, y ∈ X with ‖x− y‖ ≤ δ(ε,K).

Definition C.3. A function F : X × Z → C is said to be discrete almost periodic
in n ∈ Z for each x ∈ X if for every ε > 0, there exists a positive integer M(ε) such
that any set consisting of M(ε) consecutive integers contains at least one integer p
for which

‖F (x, n+ p)− F (x, n)‖ < ε, n ∈ Z,
for each x ∈ X. If K ⊂ X is a compact set, we will denote by APd(K × Z) the
set of all discrete almost periodic functions in n ∈ Z for each x ∈ K. The space
APd(K × Z) is provided with the norm

‖F‖APd(K×Z) := sup
(n,x)∈K×Z

‖F (n, x)‖.

Remark 18. The definitions above can be stated analogously for almost periodic
functions F : X × R→ C.

Theorem C.4 below follows analogously to the classical result for almost periodic
functions depending on parameters contained in [15, Ch. II, Th. 2.8].

Theorem C.4. Let u : Z → X be a discrete almost periodic sequence. Let F :
X × Z → X be a discrete almost periodic function in n ∈ Z for each x ∈ X,
such that F (x, n) is uniformly continuous in each bounded subset of X uniformly in
k ∈ Z. Then, the Nemytskii operator U : Z → X defined by U(n) = F (u(n), n) is
discrete almost periodic.

As a consequence of Theorem C.4, we obtain the following composition theorem
for discrete almost periodic functions satisfying a global Lipschitz condition.

Theorem C.5. Let u : Z → X be a discrete almost periodic sequence. Let F :
X × Z → X be a discrete almost periodic function in n ∈ Z for each x ∈ X, such
that satisfies a global Lipschitz condition in x ∈ X uniformly in n ∈ Z; that is, there
is a constant L > 0 such that

‖F (x, n)− F (y, n)‖ ≤ L‖x− y‖, for all x, y ∈ X, n ∈ Z.

Then, the Nemytskii operator U : Z → X defined by U(n) = F (u(n), n) is discrete
almost periodic.

Finally, we have the following result on convolution of discrete almost periodic
functions with functions v : X × Z→ C that are summable in the first variable.

Theorem C.6. Let v : X × Z → C be summable in the first variable, that is, for
any x ∈ X ∑

n∈Z
|v(x, n)| <∞.
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Then for any discrete almost periodic function u : X × Z→ C the function w(x, n)
defined for each x ∈ X by

w(x, n) =
∑
k∈Z

v(x, k)u(x, n− k), n ∈ Z,

is also discrete almost periodic.

Proof. Let us assume w.l.o.g. that ‖v(x, ·)‖`1 = 1 for each x ∈ X. Given ε > 0
there exists M(ε) > 0 such that any set consisting of M(ε) consecutive integers
contains at least one p ∈ Z with ‖u(x, n+ p)− u(x, n)‖ < ε, for each x ∈ X and for
all n ∈ Z. Now, for all n ∈ Z, we have that

‖w(x, n+ p)− w(x, n)‖ ≤
∑
k∈Z
|v(x, k)|‖u(x, n+ p)− u(x, n)‖ < ε,

so w is discrete almost periodic.

Remark 19. Observe that, although the definitions and results in this subsection
are stated for Z, they can be analogously stated for ZN without critical modifications.

Appendix D. The discrete Fourier transform. For a given sequence f ∈ `1,
we define the discrete Fourier transform

FZ(f)(θ) =
∑
n∈Z

f(n)einθ, θ ∈ T,

where T ≡ R/(2πZ) is the unidimensional torus, that we identify with the interval
(−π, π]. We describe the integration over T by means of Lebesgue integration over
(−π, π]. The operator f 7→ FZ(f) can be extended as an isometry from `2 into
L2(T), where the inverse discrete Fourier transform is obtained by the formula

F−1
Z (ϕ)(n) =

1

2π

∫ π

−π
ϕ(θ)e−inθ dθ, n ∈ Z.

Therefore

f(n) =
1

2π

∫ π

−π
FZ(f)(θ)e−inθ dθ, n ∈ Z,

and it is easily verified that

FZ(f ∗ g)(θ) = FZ(f)(θ)FZ(g)(θ).

Although the definitions in this subsection are enough for our purposes, we refer
the reader to [17, 40] for details on discrete Fourier transform and an abstract theory
of discrete distributions.
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the Departamento de Matemática y Ciencia de la Computación for their kind hos-
pitality. The second author also wishes to thank Óscar Ciaurri, Pablo Raúl Stinga,
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