
NORM CONTINUITY FOR STRONGLY CONTINUOUS FAMILIES OF

OPERATORS

CARLOS LIZAMA, ALDO PEREIRA, AND RODRIGO PONCE

Abstract. One-parameter strongly continuous families {R(t)}t≥0 of bounded operators, defined on a

Banach space, are useful instruments in the study of wide classes of abstract evolution equations. In this
paper we show conditions which secure the uniform continuity (or norm continuity) of (a, k)-regularized

resolvent families R(t) for t ≥ 0. We prove that on certain Banach spaces (e.g. L∞(S,Σ, µ)) each

exponentially bounded (a, k)-regularized resolvent family is in fact uniformly continuous for t ≥ 0. We
also characterize families R(t) such that R(t)−k(t)I is a compact operator for all t > 0. Finally, we prove

that in Hilbert spaces the uniform continuity of R(t) for t > 0 (also called immediate norm continuity)

is equivalent to the decay to zero of k̂(λ)(I − â(λ)A)−1 along some imaginary axis. Our results widely
generalize known properties for strongly continuous semigroups, cosine families of bounded operators

and α-resolvent families.

1. Introduction

The property of uniform continuity (or norm-continuity) for one-parameter families of bounded op-
erators is a topic of increasing interest in recent research, mainly because their important role in the
exploration of useful criteria for the existence of solutions to nonlinear partial differential equations when
they are modeled as an abstract evolution equation on vector-valued spaces of functions, see e.g. the
monographs [2] and [32]. The applications of uniform continuity are usually found in the use of fixed
point arguments that try to avoid hypothesis of compactness on the data of the problem, but where this
hypothesis needs to be replaced by some better behavior on the family of bounded operators dealing
with the well-posedness of the associated abstract linear problem. See e.g. [1, Remark 3.4], [5, Theorem
3.4], [12, Theorem 4.1], [35, Theorems 4.1 and 5.3] and [39] to cite a few references. Note that uniform
continuity also plays a crucial role in investigating the stability of solutions to abstract Volterra equations
[7, Theorem 2.9] and abstract Cauchy problems.

Recently, Zhenbin Fan [12], among other authors (see e.g. [35, p.208, item (ii)])), derives character-
izations of compactness for families of bounded operators associated to a class of semilinear fractional
Cauchy problem. In the searching of this characterizations, one of the difficult points is that they re-
quire the uniform continuity of the family under consideration [12, Theorem 3.6 and Theorem 3.7]. As
remarked by Fan, the main difficulty is the non-existence of practical criteria that can assure uniform
continuity of the given family of bounded operators.

The main goal of this paper is to give a complete answer to this question. Our framework will be the
theory of (a, k)-regularized family [26]. We reformulate the above question as an inverse problem in the
sense of to find a class of scalar kernels (a, k) such that property of the uniform continuity holds.

We give an exhaustive study of uniform continuity not only for families of bounded operators associated
to fractional Cauchy problems, but also for a very wide class of families of bounded operators {R(t)}t≥0,
namely, the class of (a, k)-regularized resolvent families [26]. We recall that this notion generalizes the
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theories of C0-semigroups [2, Section 3.1], α-times-integrated semigroups [2, Section 3.2], convoluted
semigroups [9], cosine functions [2, Section 3.14], n-times integrated cosine families [3], resolvent families
[32] and α -resolvent families [4], among others. For example, if a(t) = k(t) = 1 for all t ≥ 0 and if
a(t) = t, k(t) = 1, then we obtain the well-known cases of strongly continuous semigroups and cosine
operator functions, respectively. If a(t) = 1 and k(t) = tn/n! then R(t) is an n-integrated semigroup.
Taking a ∈ L1

loc(R+) and k(t) = 1 for all t ≥ 0 we have that R(t) is a resolvent family, which are the
central object of study in the theory of abstract Volterra equations [32]. Finally, if a(t) = tα−1/Γ(α)
(α > 0) and k(t) = 1 for all t ≥ 0, then R(t) corresponds to a α- resolvent family. For an up to date
overwiew we refer the reader to [27, Section 2] and references therein.

Previous studies on uniform continuity for families of bounded operators have been done mainly in
the case of C0-semigroups [19]. K. Latrach, Paoli and Simonett [16], [17] have studied the problem for
diverse perspectives. See also [24] and [25] for a study in the case of resolvent families associated to
Volterra equations. In the case of cosine and sine families of bounded operators, first studies are due to
Travis and Webb [33, Proposition 4.1], [34, Proposition 2.4]. See also [18] and the works of Liang and
Xiao [20, 21, 22, 37] for characterizations of norm continuity (t > 0) in the case of Cauchy problems
for higher-order abstract differential equations. More recently, in [14] the authors prove that when the
semigroup generated by the linear part of some linear neutral partial functional differential equations in
Lp-spaces is norm-continuous, then the solution semigroup associated to the neutral system is eventually
norm-continuous.

It is well known that if a C0-semigroup {T (t)}t≥0 of type (M,ω) defined on a Banach space X generated
by an operator A is continuous in the operator norm for all t > 0, then ‖(s+iτ−A)−1‖ → 0 as |τ | → ∞ for
all s > ω. See [11], [30] and [6]. The converse is also true in Hilbert spaces H (see [11, 13, 38]) but it may
fail in general Banach spaces. See for example [31]. We also note the recent paper [8] where the authors
construct an example where the semigroup is nowhere continuous in operator norm but the resolvent
tends to 0 along 2+ iτ almost logarithmically. However, the question of finding a similar characterization
for (a, k) regularized resolvent families under reasonable conditions on the kernels a and k remained as
an open problem.

One of the main issues of this paper is that we are able to solve this open problem assuming that a

and k are 2-regular (see Section 2 for definitions) and certain behavior of k̂(λ) along the imaginary axis.
More precisely, we prove that the following assertions are equivalent:

(i) {R(t)}t≥0 is continuous in B(H) for t > 0,

(ii) lim
|τ |→∞

||k̂(s+ iτ) (I − â(s+ iτ)A)
−1 || = 0 for some s > ω.

This paper is organized as follows: Section 2 is devoted to preliminaries, recalling the definition of
(a, k)-regularized resolvent families and their main properties related to the contents of this article. We
also recall in this section, the notion of Grothendieck space and the Dunford-Pettis property. A notion
of regularity on the kernels will be also useful as well as an important result due to Lotz [28] that is the
key to establishing one of our main results in the forthcoming sections. In Section 3, we give a somewhat
surprising result. We show in Theorem 3.3 that a strongly continuous (a, k)-regularized resolvent family
on a class of Banach spaces containing all L∞-spaces is necessarily uniformly continuous (t ≥ 0). This
result generalizes a known theorem in the case of C0-semigroups due to Lotz [28]. Then, we remark an
interesting corollary: The result is also true in the case of certain families of bounded operators (called
α-resolvent families) that play a central and decisive role in the development of qualitative properties for
solutions to fractional partial differential equations. In Section 4, we characterize those (a, k)-regularized
resolvent families which have the property of being near k(t) times the identity (i.e., R(t) − k(t)I is
compact for some positive value of t). First results on such property are due to Cuthbert [10], Henŕıquez
[15] and Lutz [29] among other authors. It turns out that this property is equivalent to the compactness
of the generator. This equivalence is proved in Theorem 4.1. Finally, Section 5 is concerned with an
important characterization of uniform continuity (t > 0) in case of Hilbert spaces. See Theorem 5.7. This
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characterization constitutes a remarkable and nontrivial extension of previous results (see [25] and [38])
and will be useful in establishing practical criteria on the e.g. compactness of (a, k)-regularized families
of operators in general, and their specialization in different cases of interest, in particular. An example
of this assertion is given in Corollary 5.8 and further applications are indicated in Remark 5.9.

2. Preliminaries

Let X be a Banach space, and A be a closed linear operator defined on X.

Definition 2.1. [23] Let k ∈ C(R+), k 6= 0 and a ∈ L1
loc(R+), a 6= 0 be given. A strongly continuous

family {R(t)}t≥0 ⊂ B(X) is called (a, k)-regularized resolvent family on X having A as a generator if the
following properties hold:

(i) R(0) = k(0)I;
(ii) R(t)x ∈ D(A) and R(t)Ax = AR(t)x for all x ∈ D(A) and t ≥ 0;

(iii) R(t)x = k(t)x+

∫ t

0

a(t− s)AR(s)x ds, t ≥ 0, x ∈ D(A).

It is well-known that if an (a, k)-regularized resolvent family exists, then it is unique [26]. Let {R(t)}t≥0

be an (a, k)-regularized resolvent family with generator A such that

(2.1) ‖R(t)‖ ≤Mk(t), t ≥ 0,

for some constant M > 0. Then, under certain hypothesis on the kernels a and k (see [27, Section 2] and
references therein) we have

D(A) = {x ∈ X : lim
t→0+

R(t)x− k(t)x

(a ∗ k)(t)
exists },

and

(2.2) Ax = lim
t→0+

R(t)x− k(t)x

(a ∗ k)(t)
.

Here we denote (a∗k)(t) :=
∫ t

0
k(t− s)a(s) ds the finite convolution between a and k. We note that there

is a one-to-one correspondence between (a, k)-regularized resolvent families and their generators.
We say that {R(t)}t≥0 is exponentially bounded (or, of type (M,ω)) if there exist constants M ≥ 0

and ω ∈ R such that

‖R(t)‖ ≤Meωt for all t ≥ 0.

For exponentially bounded (a, k)-regularized resolvent families is well known the following characteriza-
tion.

Theorem 2.2. [23] Let X be a Banach space and A be a closed and densely defined operator. The
following assertions are equivalent:

(i) A is the generator of an (a, k)-regularized resolvent family of type (M,ω);
(ii) For all λ > ω, the resolvent set ρ(A) contains the set { 1

â(λ) : λ > ω} and

k̂(λ) (I − â(λ)A)
−1
x =

∫ ∞
0

e−λtR(t)xdt, x ∈ X, λ > ω.

Here, without loss of generality, we are assuming that a and k are Laplace transformable for λ > ω.
We recall that a Banach space X is called a Grothendieck space if every weak∗ convergent sequence in

X ′ converges weakly, where X ′ denotes the dual space of X.

Definition 2.3. A Banach space X is said to have the Dunford-Pettis property if for all sequence {xn}n≥0

in X such that xn → 0 weakly in X and x′n → 0 in X ′ then 〈xn, x′n〉 → 0.
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For example, the spaces L∞(X,Ω, µ) where (X,Ω, µ) is a positive measure space, and C(X) (where X
is a compact σ−Stonian space) are examples of Grothendieck spaces with the Dunford-Pettis property.
Recall that X is Stonian if the closure of every open set is open, and it is σ-Stonian if the closure of
every open Fσ-set is open. On the other hand, a Banach space E is injective if for every Banach space X
and every subspace Y of X, each operator T : Y → E admits an extension T̂ : X → E. Every injective
Banach space is a Grothendieck space with the Dunford-Pettis property. Finally, a reflexive space does
not have the Dunford-Pettis property, unless the space is finite dimensional.

Definition 2.4. [32] Let a ∈ L1
loc(R+) be Laplace transformable and n ∈ N. The kernel a(t) is called

n-regular if there is a constant c > 0 such that

|λmâ(m)(λ)| ≤ c|â(λ)|,

for all Re(λ) > 0 and 0 ≤ m ≤ n.

We finally recall the following result due to Lotz [28].

Theorem 2.5. [28, Theorem 10] Let E be a Grothendieck space with the Dunford-Pettis property and
let (Tn) ⊂ B(E) with limn→∞ ‖Tm(Tn − I)‖ → 0 for all m ∈ N. If (Tn) tends to the identity in the
strong operator topology, then limn→∞ ‖Tn − I‖ → 0. If, in addition, limn→∞ ‖(Tn − I)Tm‖ → 0 for
every m ∈ N, in particular, if all operators Tn commute, then suffices to assume that (Tn) converges to
the identity in the weak operator topology.

Let X be a complex Banach space. We recall that a strongly continuous family of bounded and linear
operators {S(t)}t≥0 ⊂ B(X) is said to be uniformly continuous if

(2.3) ‖S(t)− S(s)‖B(X) → 0 as t→ s,

holds for all s ≥ 0. This property is also called norm-continuity for some authors [8], [11], [13], [31], but
also it sometimes refers to the case that (2.3) holds for all s > 0. To distinguish between both cases, some
authors say that {S(t)}t≥0 is immediate norm continuous when refers to the continuity of {S(t)}t≥0 in
the uniform operator topology for s > 0.

3. (a, k)-regularized resolvent families on L∞ and Similar Spaces

In this section, we will assume that a and k are exponentially bounded functions and hence Laplace

transformable. Moreover, we suppose that k̂(λ) 6= 0 and â(λ) 6= 0 for all λ sufficiently large. Our main
result in this section shows that in certain classes of Banach spaces the uniform continuity for (a, k)-
regularized resolvent families is automatic. This generalizes previous results of Lotz [28], the first author
[24] and also provides new results. See the corollaries below.

We will need two preliminaries Lemmas. Our first result is probably not surprising, but we do not find
a formal proof of this in the existing literature.

Lemma 3.1. Let {R(t)}t≥0 be a uniformly continuous (a, k)-regularized resolvent family with generator
A. Assume that a and k are exponentially bounded functions, a is positive, and |k(0)| ≥ 1. Then A must
be a bounded operator and

(3.1) R(t) = k(t) +

∞∑
n=1

An(a∗n ∗ k)(t), t ≥ 0.

Proof. Let t > 0 be fixed and define f(t) := 1
(1∗a)(t) (a ∗ R)(t) = 1

(1∗a)(t)

∫ t
0
a(t− s)R(s) ds. Because

{R(t)}t≥0 is an uniformly continuous family, there exist δ > 0 such that for 0 < s < δ we have
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‖R(s)− k(0)I‖ < 1. Let τ ∈ (0, δ) be fixed. Then

‖f(τ)

k(0)
− I‖ =

1

|k(0)|
‖f(τ)− k(0)I‖ ≤ ‖f(τ)− k(0)I‖

=

∥∥∥∥ 1

(1 ∗ a)(τ)

∫ τ

0

a(τ − s)(R(s)− k(0)) ds

∥∥∥∥
<

1

(1 ∗ a)(τ)

∫ τ

0

a(τ − s) ds = 1,

where we have used that a is positive and |k(0)| ≥ 1. Therefore, 1
k(0)f(τ) is invertible on X. Let x ∈ X

be fixed. There exists y ∈ X such that x = f(τ)y. But, according to [23, Lemma 2.2] for y ∈ X we have
f(τ)y = 1

(1∗a)(τ)

∫ τ
0
a(τ − s)R(s)y ds ∈ D(A). Then D(A) = X. Since A is closed, it implies that A is a

bounded operator, proving the first assertion of the theorem.
From the hypothesis, we may assume that a(t) ≤ Meλt and |k(t)| ≤ Meλt for the same constants

M > 0 and λ > 0. Denote eλ(t) = eλt, t ≥ 0 and observe that e∗nλ (t) = tn−1

(n−1)!eλ(t), t ≥ 0, n = 2, 3, ...

Hence |(a∗n ∗ k)(t)| ≤Mn+1 tn

n! eλ(t) for all t ≥ 0, n ∈ N, and we have

∞∑
n=1

‖An(a∗n ∗ k)(t)‖ ≤
∞∑
n=1

‖A‖n|(a∗n ∗ k)(t)| ≤M
∞∑
n=1

‖A‖nMn t
n

n!
eλ(t) = Me‖A‖Mteλ(t).

This proves that the series in the right hand side of (3.1) converges. Define S(t) := k(t) +
∑∞
n=1A

n(a∗n ∗
k)(t), t ≥ 0. It is easy to show that S(t) = k(t) + A(a ∗ S)(t), t ≥ 0. Now, by uniqueness, we conclude
that S(t) = R(t). It proves the representation (3.1). �

The following Lemma provide a converse of the above property. It is also new in the context of
(a, k)-regularized resolvent families with k 6= 1.

Lemma 3.2. Let {R(t)}t≥0 be an strongly continuous (a, k)-regularized resolvent family with generator
A. Assume that a and k are exponentially bounded, a is positive and k ∈ C1(R). If A is bounded then
{R(t)}t≥0 is uniformly continuous.

Proof. In order to see that the resolvent family R(t) is uniformly continuous, we take 0 < t < s and
observe that

‖R(t)−R(s)‖ ≤ ‖k(t)− k(s)‖+

∞∑
n=1

‖A‖n|(a∗n ∗ k)(t)− (a∗n ∗ k)(s)|.
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Since k ∈ C1(R), there exists p ∈ C(R) such that k(t) =
∫ t

0
p(r) dr + k(0) = (p ∗ 1)(t) + k(0). Hence,

‖R(t)−R(s)‖ ≤ ‖k(t)− k(s)‖+

∞∑
n=1

‖A‖n
∣∣(a∗n ∗ (p ∗ 1)

)
(s)−

(
a∗n ∗ (p ∗ 1)

)
(t)
∣∣

+|k(0)|
∞∑
n=1

‖A‖n
∣∣(a∗n ∗ 1

)
(s)−

(
a∗n ∗ 1

)
(t)
∣∣

≤ ‖k(t)− k(s)‖+

∞∑
n=1

‖A‖n
∣∣∣∣∫ s

t

(a∗n ∗ p)(v) dv

∣∣∣∣
+|k(0)|

∞∑
n=1

‖A‖n
∣∣∣∣∫ s

t

a∗n(v) dv

∣∣∣∣
≤ ‖k(t)− k(s)‖+ |t− s|

∞∑
n=1

‖A‖n
(

sup
t≤v≤s

|(a∗n ∗ p)(v)|

+|k(0)| sup
t≤v≤s

|a∗n(v)|
)

≤ ‖k(t)− k(s)‖+ |t− s|
∞∑
n=1

‖A‖n
(

sup
t≤v≤s

∣∣∣∣∫ v

0

a∗n(τ)p(v − τ) dτ

∣∣∣∣
+|k(0)| · |a∗n(v)|

)
.

Note that |a∗n(τ)| ≤ Mnτn−1

(n− 1)!
for 0 ≤ τ ≤ s, where M := sup

0≤τ≤s
|a(τ)|. Hence, we obtain

‖R(t)−R(s)‖ ≤ ‖k(t)− k(s)‖+ |t− s|
∞∑
n=0

(‖A‖M)n+1sn

n!
sup
t≤v≤s

(
|k(v)|+ |k(0)|

)
≤ ‖k(t)− k(s)‖+ |t− s| · sup

t≤v≤s

(
|k(v)|+ |k(0)|

)
· ‖A‖M · e‖A‖Ms.

This proves the lemma. �

Our main result in this section is the following theorem. It shows an interesting generalization of
a result of Lotz in case that the kernel a is dominated by the kernel k in the sense of their Laplace
transforms.

Theorem 3.3. Let X be a Grothendieck space with the Dunford-Pettis property. Suppose that A generates
an exponentially bounded (a, k)-regularized resolvent family {R(t)}t≥0 on X. Assume that a and k are
exponentially bounded, a is positive and k ∈ C1(R). Suppose that there exists a constant M > 0 such that

|â(λ)| ≤M |k̂(λ)| for all λ large enough, then {R(t)}t≥0 is uniformly continuous on X.

Proof. By hypothesis, there exists ω > 0 such that the functional equation

R̂(λ)R̂(µ) =
k̂(λ)

â(λ)

1
1

â(λ) −
1

â(µ)

R̂(µ)− k̂(µ)

â(µ)

1
1

â(λ) −
1

â(µ)

R̂(λ), λ, µ > ω

holds, see [27, Equation 3.8]. Here R̂(λ) = k̂(λ) (I − â(λ)A)
−1

by Theorem 2.2. Then, we get the formula

(3.2) (â(µ)− â(λ))(R̂(λ)− k̂(λ))R̂(µ) = â(λ)k̂(λ)R̂(µ)− â(λ)k̂(µ)R̂(λ), for all λ, µ > ω.
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Let us define T (λ) := 1
k̂(λ)

R̂(λ) = (I − â(λ)A)−1, λ > ω. Replacing in (3.2) we obtain the identity

â(µ)(T (λ)− I)T (µ) = â(λ)T (µ)− â(λ)

k̂(λ)
R̂(λ) +

â(λ)

k̂(λ)
R̂(λ)T (µ)− â(λ)T (µ).

Therefore,

‖â(µ)(T (λ)− I)T (µ)‖ ≤ ‖â(λ)T (µ)‖+

∣∣∣∣ â(λ)

k̂(λ)

∣∣∣∣‖R̂(λ)‖+

∣∣∣∣ â(λ)

k̂(λ)

∣∣∣∣‖R̂(λ)T (µ)‖+ ‖â(λ)T (µ)‖

and, by hypothesis and the fact that |â(λ)| → 0 and ‖R̂(λ)‖ → 0 as λ→ +∞, we obtain for each µ > ω
fixed

lim
λ→+∞

‖â(µ)(T (λ)− I)T (µ)‖ = 0.

In particular, we have that

lim
λ→+∞

‖(T (λ)− I)T (µ)‖ = 0,

for µ fixed. From Theorem 2.5, there exists λ1 > ω such that T (λ1) is invertible on X, that is, T (λ1)−1 ∈
B(X). Therefore, A is a bounded operator and, by Lemma 3.2, we conclude that the family {R(t)}t≥0 is
uniformly continuous. �

In case a(t) = k(t) = 1 we recover the following result due to Lotz [28].

Corollary 3.4. Let X be a Grothendieck space with the Dunford-Pettis property. Then every strongly
continuous one-parameter semigroup of operators on X is uniformly continuous.

In case k(t) = 1 and a ∈ ACloc(R+) is a Laplace transformable kernel, we recover [24, Theorem 3.2]
as follows.

Corollary 3.5. Let X be a Grothendieck space with the Dunford-Pettis property. Then every strongly
continuous resolvent family of operators on X is uniformly continuous.

We consider for α > 0 the function a(t) = tα−1/Γ(α) defined for t > 0, where Γ(·) denotes the Gamma
function. The Laplace transform is â(λ) = λ−α. Next, we consider the fractional abstract Cauchy
problem

(3.3) Dα
t u(t) = Au(t), t > 0,

where A is a closed and linear operator defined on a Banach space X, and Dα
t denotes the Caputo

fractional derivative. Recall that if A generates a ( t
α−1

Γ(α) ,1)-resolvent family {Sα(t)}t≥0, then one solution

of (3.3) is given by u(t) = Sα(t)u0 whenever u0 ∈ D(A). See [4].

Corollary 3.6. Let X be a Grothendieck space with the Dunford-Pettis property. Let α > 1 and suppose

that A generates an exponentially bounded ( t
α−1

Γ(α) , 1)-resolvent family {Sα(t)}t≥0 on X. Then {Sα(t)}t≥0

is uniformly continuous on X.

Remark 3.7. The above result is known that holds for α > 2 without restriction on the Banach space
X; See [4, Corollary 3.4].

It is interesting to observe that for integral resolvents, i.e. in case a = k, we also obtain automatically
uniform continuity for the class of Grothendieck spaces with the Dunford-Pettis property. An special
case is a(t) = k(t) = t corresponding to a sine family [2, Section 3.15].
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4. (a, k)-regularized resolvent families with compact generator

In Section 3, it was proved that if an operator A is bounded, then the (a, k)-resolvent family generated
by A is given by

R(t) = k(t)I +

∞∑
n=1

An(a∗n ∗ k)(t), t > 0.

In this section, we develop some aspects of (a, k)-regularized resolvent families of bounded linear
operators on a Banach space which have the property of being near k(t) times the identity (i.e., R(t)−k(t)I
is compact for some positive value of t). First results on such property are due to Cuthbert [10], Henŕıquez
[15], Lutz [29] and Lizama [24].

The following result generalizes all the above mentioned papers.

Theorem 4.1. Let {R(t)}t≥0 be an strongly continuous (a, k)-resolvent family of type (M,ω) with gen-
erator A. Suppose that the kernels a, k are exponentially bounded functions, a is positive and |k(0)| ≥ 1.
Then the following assertions are equivalent:

(i) R(t)− k(t)I is compact for all t > 0.
(ii) A is a compact operator.

Proof. Suppose that A is compact. Since the set of compact operators is a closed subspace of B(X), we
have by (3.1) that

R(t)− k(t)I =

∞∑
n=1

k(s)∗nAn = lim
N→∞

N∑
n=1

k(s)∗nAn,

and hence R(t)− k(t)I is a compact operator.
Conversely, suppose that R(t) − k(t)I is compact for all t > 0. According to the hypothesis we have

that for all Re(λ) > ω the operator (I − â(λ)A) is invertible and∫ ∞
0

e−λtR(t) dt = R̂(λ) = k̂(λ)(I − â(λ)A)−1

for Re(λ) > ω. For x ∈ X, define H(λ)x := k̂(λ)(I − â(λ)A)−1x. We have

λH(λ)x− λk̂(λ)x =

∫ ∞
0

λe−λtR(t)x dt− λk̂(λ)x

=

∫ ∞
0

λe−λtR(t)x dt−
∫ ∞

0

λe−λtk(t)x dt

=

∫ ∞
0

λe−λt(R(t)− k(t))x dt.

Hence by [36, Corollary 2.3], we obtain that λH(λ)x− λk̂(λ)x is a compact operator. From the identity

λH(λ)x− λk̂(λ) = −λk̂(λ)

(
I − H(λ)

k̂(λ)

)
,

we obtain that
(
I− H(λ)

k̂(λ)

)
is a compact operator, and this implies that Ran

(H(λ)

k̂(λ)

)
is closed. On the other

hand, Ran
(H(λ)

k̂(λ)

)
= D(A) is dense on X. Therefore D(A) = D(A) = X concluding that A is a bounded

operator. Next, we observe that the following identity holds

A =
(
λH(λ)x− λk̂(λ)I

) (I − â(λ)A)

λk̂(λ)â(λ)
,

and this implies that A is a compact operator. The proof is complete. �
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5. A characterization of immediate norm continuity in Hilbert spaces.

Since reflexive spaces do not have the Dunford-Pettis property, we can not apply Theorem 3.3 to
characterize the uniform continuity for t > 0 of (a, k)-regularized resolvent families in general Banach
spaces. Of course, in this case the generator A is not necessarily bounded. This is one of the reasons
why a characterization only in terms of the generator is desirable but unfortunately difficult to obtain in
general Banach spaces. However, we can obtain a positive result extending an important result due to O.
El Mennaoui and K.-J. Engel [11] valid for the case a ≡ k ≡ 1 to the case of (a, k)-regularized resolvent
families in Hilbert spaces (see also [25] for the case of resolvent families)

Let A be a closed operator with domain D(A) densely defined, a ∈ L1
loc(R+) and k ∈ C(R+). Moreover,

suppose a, k are 2-regular kernels.

Definition 5.1. Let k ∈ L1
loc(R+) be Laplace transformable. We say that k is an admissible kernel if

there exists limλ→iρk̂(λ) = k̂(iρ) for all |ρ| ≥ 1 and satisfies the following condition

(H) there exists a constant M > 0 such that

1

|ρ k̂(iρ)|
≤M

for all |ρ| ≥ 1.

Example 5.2. For instance, the function k(t) = tα−1

Γ(α) is an admissible kernel for 0 < α ≤ 1, but fails to

be admissible for α > 1. Moreover, is easy to check that k(t) is 2-regular (see Definition 2.4).

To prove our main result in this section, we need the following lemmata. The first Lemma, corresponds
to a general result for strongly continuous families of bounded operators.

Lemma 5.3. Let {R(t)}t≥0 be a strongly continuous family of type (M,σ) defined in a Hilbert space H.

Then for any x ∈ H and ω > σ, ‖R̂(ω + iu)x‖ and ‖R̂(ω + iu)∗x‖ are in L2(R, H), viewed as functions
of u ∈ R.

Proof. Without loss of generality, we can suppose that σ ≥ 0. Let ω > σ be given and define R1(t) :=
e−ωtR(t). Then ‖R1(t)‖ ≤ Me−(ω−σ)t for t ≥ 0. Let x ∈ H be fixed, and note that χ[0,∞)(·)R1(·)x is in

L2(R, H), where χ[0,∞)(·) denotes the characteristic function. In fact, we have

‖χ[0,∞)(·)R1(·)x‖22 ≤
∫ ∞

0

‖Me−(ω−σ)tx‖2 dt ≤ M2‖x‖2

2(ω − σ)
.(5.1)

On the other hand, because {R(t)}t≥0 is an exponentially bounded family of type (M,σ), its Laplace

transform R̂(λ) is well-defined for all Re(λ) > σ and is holomorphic there. Hence, we have for all x ∈ H
and s ∈ R

R̂(ω + is)x =

∫ ∞
0

e−(ω+is)tR(t)x dt =

∫ ∞
0

e−istR1(t)x dt

=

∫ ∞
−∞

e−istχ[0,∞)(t)R1(t)x dt = F
(
χ[0,∞)(·)R1(·)

)
(s).

It follows from (5.1) and the Plancherel theorem that R̂(ω + i(·))x ∈ L2(R, H). Analogously, we can

prove that R̂(ω + i(·))∗x ∈ L2(R, H). This proves the Lemma. �

Lemma 5.4. Let a, k ∈ L1
loc(R+) be Laplace transformable and A be a closed linear operator defined on

a Banach space X. Assume that H(λ) := k̂(λ)(I − â(λ)A)−1 exists for all Re(λ) > ω. Then there are
functions fi(λ), i = 1, 2 and hj(λ), j = 1, 2, 3 such that

(1) H ′(λ) = f1(λ)H(λ) + f2(λ)H(λ)2,
(2) H ′′(λ) = h1(λ)H(λ) + h2(λ)H(λ)2 + h3(λ)H(λ)3
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for all Re(λ) > ω.

Proof. A computation shows that for all Re(λ) > ω, we have

f1(λ) =
k̂′(λ)

k̂(λ)
− â′(λ)

â(λ)
, f2(λ) =

â′(λ)

k̂(λ)â(λ)
,(5.2)

and

h1(λ) =
k̂′′(λ)

k̂(λ)
− 2k̂′(λ)â′(λ)

k̂(λ)â(λ)
+

2â′(λ)2

â(λ)2
− â′′(λ)

â(λ)
,(5.3)

h2(λ) =
â′(λ)k̂′(λ)

k̂(λ)2â(λ)
− 4â′(λ)2

k̂(λ)â(λ)2
+

â′′(λ)

k̂(λ)â(λ)
,(5.4)

h3(λ) =
2â′(λ)2

k̂(λ)2â(λ)2
.(5.5)

�

Lemma 5.5. Let a, k ∈ L1
loc(R+) be Laplace transformable and 2-regular, and suppose that k is an

admissible kernel. Then, there exists a constant M > 0 such that

(1) |λf1(λ)| < M and |f2(λ)| < M for all Re(λ) > ω;
(2) sup

|τ |≥N
|h3(s+ iτ)| < M for all s > ω and N ≥ 1;

(3)

∫
|τ |≥N

|hj(s+ iτ)|j dτ < M for all s > ω and N ≥ 1, j = 1, 2.

Proof. Is a direct consequence of formulas (5.2) - (5.5). �

Lemma 5.6. [11] Let X be a Banach space and let R : [0,∞) → X be a function which is continuous
for t > 0. If there exist M > 0, ω ∈ R such that ‖R(t)‖ ≤Meωt, then

lim
|µ|→∞

‖R̂(µ0 + iµ)‖ = 0

for every µ0 > ω.

Our main result in this section is the following characterization. It extends the main result in [25,
Theorem 2.2] proved in the case k ≡ 1. See also [38] for the same characterization in case of C0-semigroups,
i.e. k ≡ 1 and a ≡ 1.

Theorem 5.7. Let A be a closed linear operator defined in a Hilbert space H with dense domain D(A).
Assume that A generates an strongly continuous (a, k)-regularized resolvent R(t) of type (M,ω), with
M > 0, ω ∈ R, a ∈ L1

loc(R+) and k ∈ C(R+) Laplace transformable. Assume that a and k are 2-regular
kernels, and that k is admissible. Then the following conditions are equivalent:

(a) {R(t)}t≥0 is continuous in B(H) for t > 0,

(b) lim
|τ |→∞

||k̂(s+ iτ) (I − â(s+ iτ)A)
−1 || = 0 for some s > ω.

Proof. (a) ⇒ (b). Follows from Lemma 5.6. (b) ⇒ (a). Let x ∈ H be fixed and µ > ω. Because
‖R(t)e−µtx‖ ≤Me−(µ−ω)t‖x‖, the function t 7→ χ[0,∞)(t)R(t)e−µt is in L2(R, H) for all µ > ω (compare
the inequality (5.1)). Since H is a Hilbert space, by Plancherel theorem is well known that the Fourier
transform is an unitary operator on L2(R, H), thus we obtain

F
(
χ[0,∞)(·)R(·)e−µ·x

)
= R̂(µ+ iτ)x,

and hence

(5.6) R(t)e−µtx =
1

2π

∫ ∞
−∞

eiτtR̂(µ+ iτ)x dτ.
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for t > 0 and each x ∈ H. Clearly, the resolvent R(t) is continuous in B(H) for t > 0 if and only if
R(t)e−µt is continuous in B(H) for t > 0. Next, note that for each x ∈ H we have

R̂(µ+ iτ)x = k̂(µ+ iτ) (I − â(µ+ iτ)A)
−1
x,

and observe that if |τ | → ∞, then we get â(µ+iτ)→ 0 and k̂(µ+iτ)→ 0, whence lim|τ |→∞ R̂(µ+iτ)x = 0.
Applying this to (5.6) and integrating by parts we have

R(t)e−µtx =
−1

2πt

∫ ∞
−∞

eiτtR̂′(µ+ iτ)x dτ.

for t > 0 and x ∈ H. Now, by Lemma 5.4 (1) and Lemma 5.5 (1) with H(λ) := ˆ̂R(λ) we also have

lim|τ |→∞ R̂′(µ+ iτ) = 0, whence, again integrating by parts, we get

(5.7) R(t)e−µtx =
1

2πt2

∫ ∞
−∞

eiτtR̂′′(µ+ iτ)x dτ, x ∈ H, t > 0.

Next we show that the operator family {t2R(t)e−µt}t>0 is continuous in B(H) for t > 0. Indeed, formula
(5.7) shows

‖t2R(t)e−µtx− s2R(s)e−µsx‖ =
1

π

∥∥∥∥∫ ∞
−∞

(eiτt − eiτs)R̂′′(µ+ iτ)x dτ

∥∥∥∥
≤ 1

π

∥∥∥∥∫
|τ |≥N

(eiτt − eiτs)R̂′′(µ+ iτ)x dτ

∥∥∥∥+
1

π

∫
|τ |≤N

|eiτt − eiτs|‖R̂′′(µ+ iτ)x‖ dτ

=: I1(N) + I2(N).

We estimate I1(N): Let ε > 0 and take x∗ ∈ H. Using Lemma 5.4 (2), and the Cauchy-Schwarz and
Hölder inequalities, we have

|〈I1(N), x∗〉| ≤ sup
|τ |≥N

‖R̂(µ+ iτ)‖ ·
(∫
|τ |≥N

|h1(µ+ iτ)| dτ · ‖x‖‖x∗‖

+
(∫
|τ |≥N

‖R̂(µ+ iτ)x‖2 dτ
)1/2(∫

|τ |≥N
‖h2(µ+ iτ)x∗‖2 dτ

)1/2

+ sup
|τ |≥N

‖h3(µ+ iτ)‖ ·

(∫
|τ |≥N

‖R̂(µ+ iτ)x‖2 dτ
)1/2(∫

|τ |≥N
‖R̂(µ+ iτ)∗x∗‖2 dτ

)1/2
)

Next, by the Plancherel Theorem for the Hilbert space valued Fourier transform, and Lemma 5.5 items
(2) and (3), we get

|〈I1(N), x∗〉| ≤ sup
|τ |≥N

‖R̂(µ+ iτ)‖
(
M · ‖x‖‖x∗‖+

(
2π

∫ ∞
0

‖e−µtR(t)x‖2 dt
)1/2

M‖x∗‖

+M ·
(

2π

∫ ∞
0

‖e−µtR(t)x‖2 dt
)1/2(

2π

∫ ∞
0

‖e−µtR(t)∗x∗‖2 dt
)1/2

)
Since (R(t))t≥0 is of type (M,ω), we have that the families {e−µtR(t)}t>0 and {e−µtR(t)∗}t>0 are expo-
nentially bounded of type (M,ω − µ), and that there exists a positive constant C > 0 such that∫ ∞

0

‖e−µtR(t)x‖2 dt ≤ C2‖x‖,
∫ ∞

0

‖e−µtR(t)∗x∗‖2 dt ≤ C2‖x‖.
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Combining the above with the Hahn - Banach Theorem, we obtain the existence of a constant K > 0
such that

I1(N) = sup
‖x∗‖≤1

|〈
∫
|τ |≥N

(eiτt − eiτs)R̂′′(µ+ iτ)x dτ, x∗〉|

≤ K · sup
|τ |≥N

‖R̂(µ+ iτ)‖‖x‖.

Since lim|τ |→∞ ‖R̂(µ+ iτ)‖ = 0, there exists N > 0 such that

K · sup
|τ |≥N

‖R̂(µ+ iτ)‖ < ε

which yields the estimate I1(N) < ε‖x‖ for each x ∈ H.
For estimating I2(N), we observe that |eiα − 1|2 = 4 sin2(α/2), α ∈ R. Therefore, for the above fixed

N we have

I2(N) =

∫
|τ |≤N

|eiτt − eiτs|‖R̂′′(µ+ iτ)x‖ dτ

≤
(∫
|τ |≤N

|eiτ(t−s) − 1|2 dτ
)1/2(∫

|τ |≤N
‖R̂′′(µ+ iτ)x‖2 dτ

)1/2

=
(

4

∫
|τ |≤N

∣∣∣ sin2
( (s− t)τ

2

)∣∣∣)1/2(∫
|τ |≤N

‖R̂′′(µ+ iτ)x‖2 dτ
)1/2

≤
(∫
|τ |≤N

|τ |2|s− t|2 dτ
)1/2(∫

|τ |≤N
‖R̂′′(µ+ iτ)x‖2 dτ

)1/2

≤ |s− t|
(2N3

3

)1/2(∫
|τ |≤N

‖R̂′′(µ+ iτ)x‖2 dτ
)1/2

.

Since R̂′′(µ + iτ) is a continuous function and the integral is defined over a compact subset of R, there

exists a constant C ′ > 0 such that ‖R̂′′(µ+ iτ)x‖ ≤ C ′‖x‖; this implies

I2(N) ≤ |s− t|
(2N3

3

)1/2

· (2N)1/2C ′‖x‖ ≤ |s− t|K ′N2‖x‖.

By using these estimates for I1(N), I2(N), we get

||t2R(t)e−µt − s2R(s)e−µs|| < 2ε,

for all |s− t| < δ. This completes the proof. �

We finish this paper with a direct application to results of Fan [12].

Corollary 5.8. Let A be a closed linear operator defined in a Hilbert space H with dense domain D(A).
Assume that A generates an α-regularized resolvent Sα(t) of type (M,ω) for some 0 < α < 1 and suppose

lim
|τ |→∞

‖(s + iτ)α−1((s + iτ)α − A)−1‖ = 0 for some s > ω. Then Sα(t) is compact for t > 0 if and only

if (λα −A)−1 is compact for all λα ∈ ρ(A).

Remark 5.9. In a Hilbert space, all the results on Section 4 of Fan’s paper [12] remain true when the
hypothesis on the given operator A, as generator of an analytic compact α-regularized resolvent (0 < α <
1), is replaced by

lim
|τ |→∞

‖(s+ iτ)α−1((s+ iτ)α −A)−1‖ = 0 for some s > ω.

Remark 5.10. In case a ≡ k ≡ 1, it is known that the characterization obtained in Theorem 5.7 cannot
be extended to Banach spaces. See [8] and [31], for instance. However, we can naturally ask: There exists
a class of kernels (a, k) 6= (1, 1) where this characterization remains true in general Banach spaces?.
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