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Abstract. In this paper we completely solve the open problem of finding the fundamental
solution of the semidiscrete fractional-spatial damped wave equation. We combine operator
theory and Laplace transform methods with properties of Bessel functions to show an explicit
representation of the solution when initial conditions are given. Our findings extend known
results from the literature and also provide new insights into the qualitative behavior of the
solutions for the studied model. As an example, we show the existence of almost periodic
solutions as well as their profile in the homogeneous case.

1. Introduction

In this article, we are concerned with the Cauchy problem for the semidiscrete strongly
damped wave equation given by:

(1)
∂2u

dt2
(n, t) = −a(−∆d)

α∂u

dt
(n, t)− c(−∆d)

αu(n, t) + f(n, t), t ≥ 0, n ∈ Z,

where (−∆d)
α denotes the unidimensional discrete fractional Laplacian defined by

(2) (−∆d)
αf(n) =

1

Γ(−α)

! ∞

0

(et∆df(n)− f(n))
dt

t1+α
, n ∈ Z,

see [18] and references therein. We note that the unidimensional discrete fractional Laplacian
has been widely examined in [4, 5, 18] and can be used, for example, to model the non-local
motion of an electron in a one-dimensional chain with atoms [19]. The N -dimensional case
has been treated in [28].

The study of semidiscrete equations is an old topic that can be already found in the works
of H. Bateman [2]. In recent years, the investigation of this type of equations incorporating
the discrete fractional Laplacian has experienced a growing interest because, on the one hand,
they are capable of better describing the dynamics of physical and probabilistic processes
behind them [11, 13, 24] and, on the other hand, because they give a better understanding

Date: August 11, 2022.
2010 Mathematics Subject Classification. 35R11; 39A06; 26A33;44A10.
Key words and phrases. discrete fractional Laplacian; semidiscrete damped wave equation, Bessel func-

tions, almost periodic functions.
C. Lizama is partially supported by ANID Project Fondecyt 1220036 and Generalitat Valenciana, Project

PROMETEU/2021/070. M. Murillo-Arcila is supported by MCIN/AEI/10.13039/501100011033, Project
PID2019-105011GB-I00, and by Generalitat Valenciana, Project PROMETEU/2021/070.

1



2 LIZAMA AND MURILLO-ARCILA

of the dynamics beyond the continuous case [23]. For recent developments, we refer to
[17, 14, 15] and references therein.

It is well-known that, in general, initial value problems for semidiscrete equations like (1)
do not have unique solutions, see e.g. [25, 26] and its references. However, for well-behaved
initial data, there exists a unique solution. The explicit representation of these solutions is
also known in some cases. For example, for the semidiscrete diffusion equation

∂u

dt
(n, t) = a∆du(n, t), t ≥ 0, n ∈ Z,

satisfying u(n, 0) = ϕ(n), where ϕ(n) is a bounded sequence, it is well-known that the unique
solution is given by the superposition formula

u(n, t) = e−2at
"

k∈Z

In−k(2at)ϕ(k), t ≥ 0, n ∈ Z,

where Iα is the modified Bessel function of the first kind of order α. See e.g. [1] and references
therein.

The fundamental solution for the equation (1) in case a = 0 and α = 1, i.e. the semidiscrete
wave equation, appears in the works by H. Bateman and C. E. Pearson [2, 20]. More recently,
in the reference [18] combining operator theory techniques with the properties of the Bessel
functions it is proven that the second order equation

(3)
∂2u

dt2
(n, t) = ∆du(n, t), t ≥ 0, n ∈ Z,

with initial conditions u(n, 0) = ϕ(n), ∂u
dt
(n, 0) = ψ(n), has a unique solution given by [18,

p.1386]

u(n, t) =
"

k∈Z

J2(n−k)(2t)ϕ(n) +
"

k∈Z

#! t

0

J2(n−k)(2s)ds

$
ψ(n), t ≥ 0, n ∈ Z,

where Jk is the Bessel function of the first kind.
When the discrete Laplacian in (3) is replaced by the discrete fractional Laplacian−(−∆d)

α,
0 < α ≤ 1, it was found in [18, Theorem 1.4, Formulae (14) and (15)] that the Bessel function
must be replaced by the fundamental solution

(4) Cα
t (n) :=

2

π

! π/2

0

cos(t(4 sin2 θ)α/2) cos(2nθ)dθ, t ≥ 0, n ∈ Z,

where it is worth mentioning that in the case α = 1, by [16, Formula 8.411(2)], the above
expression coincides with J2k(2t).

However, an explicit representation of the solution of the damped wave equation (1), even
in case α = 1, remains as an open problem.

In general, this is a difficult problem. Until now, there is no known representations even
for the prototypical case α = 1 that corresponds to the so called strongly damped wave
equation without mass term [21], or α = 2 that corresponds to the damped extensible beam
equation [12] which is called the Kelvin-Voigt model [29]. We note that the importance of
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considering the fractional Laplacian in (1) for a continuous spatial domain has been recently
pointed out in the references [7, 8].

In this article, we completely solve this problem. We find that whenever 4α−1a2 ≤ c the
fundamental solution of (1) is given by

Dα
2t(2k) :=

1

π

! π/2

−π/2

e−aa2θt

%
cos t

&
a2θ(4c− a2a2θ)−

aa2θ sin t
&

a2θ(4c− a2a2θ)&
a2θ(4c− a2a2θ)

'
cos(2kθ)dθ,

where aθ = (4 sin2(θ/2))α. It is notable that this expression is comparable to recent results
stated in [9, Theorem 1.1] for the continuous Laplacian, therefore providing new insights.
We observe that Dα

2t(2k) reduces to (4) when a = 0 and c = 1. Then, we have succeeded in
showing that the unique solution for (1), bounded on Z× [0, T ] for each T > 0, with initial
conditions u(n, 0) = ϕ(n), ∂u

dt
(n, 0) = ψ(n), can be expressed as follows:

u(n, t) =
"

k∈Z

Dα
t (n− k)ϕ(n) +

"

k∈Z

Sα
t (n− k)[ψ(n) + a(−∆d)

αϕ(n)]

+
"

k∈Z

! t

0

Sα
t−s(n− k)f(k, s)ds, t ≥ 0, n ∈ Z,

where Sα
t :=

( t

0
Dα

s ds. In particular, this result generalizes [18, Theorem 1.5].
Our main result could be used to provide new insights on the behavior and properties of

the solutions, even in the multidimensional case, generalizing results of Slavik [26, 27], or to
search for additional qualitative behavior, as done e.g., in the reference [18]. As an example,
we show in Remark 3.5 the profile of the solutions of the homogeneous equation (1), and in
Theorem 3.6 we prove the existence of almost periodic solutions to the equation (1) under
appropriate conditions on the forcing term. We note that such qualitative behavior is not
present in the continuous case.

2. Preliminaries

We recall the following definition.

Definition 2.1. Let X be a complex Banach space. The Laplace transform of a function
f ∈ L1

loc(R+, X) will be denoted by

f̂(λ) =

! ∞

0

e−λtf(t)dt, ℜ(λ) > ω,

whenever the integral is absolutely convergent for ℜ(λ) > ω.

An equivalent formulation to the definition given in (2), but valid for any α > 0, is the
following [18, Section 3.1].

Theorem 2.2. Let 1 ≤ p ≤ ∞. The discrete fractional Laplacian of order α > 0 of a given
sequence f ∈ ℓp(Z) can be written as

(5) (−∆d)
αf(n) =

"

j∈Z

Kα(n− j)f(j), n ∈ Z
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where

(6) Kα(n) =
1

2π

! π

−π

(4 sin2(θ/2))αe−inθdθ =
1

2π

! π

−π

(4 sin2(θ/2))α cos(nθ)dθ, n ∈ Z.

From [18, Theorem 1.3 (ii)] we know that

(7) e−(−∆d)
αtϕ(n) =

"

k∈Z

Lα
t (n− k)ϕ(k), t ≥ 0, n ∈ Z, ϕ ∈ ℓp(Z),

is an analytic semigroup, where

(8) Lα
t (n) :=

1

2π

! π

−π

e−t(4 sin2 θ
2
)αe−inθdθ, t ≥ 0, n ∈ Z.

We will also need the following formula, which can be obtained from [10, Chapter IV, Section
4.1, Formula (36)] with ν = 0.

Lemma 2.3. Let f ∈ L1
loc(R+, X) and C > 0 be given. The Laplace transform of

F (t) =

! t

0

J0[2
√
C
&

(t− s)s]f(s)ds, t ≥ 0,

is given by
1

λ
f̂

#
λ+

C

λ

$
where J0(t) denotes the Bessel function.

We now recall the notion of discrete almost periodic functions. For more information
about almost periodic functions see [6].

Definition 2.4. Let (X, || · ||) be a Banach space. A function f : Z × X → C is discrete
almost periodic in n ∈ Z if for every x ∈ X and every ε > 0, there exists a positive integer
N(ε) such that any set consisting of N(ε) consecutive integers contains at least one integer
p with the property

|f(n+ p, x)− f(n, x)| < ε, n ∈ Z.

The following result stated in [18] shows discrete almost periodicity for the convolution of
discrete almost periodic functions with functions v : X ×Z → C which are summable in the
first variable.

Theorem 2.5. Let v : Z × X → C be a summable function in the first variable. If u :
Z×X → C is a discrete almost periodic function in n ∈ Z, then for each x ∈ X the function

w(n, x) :=
"

k∈Z

v(k, x)u(n− k, x), n ∈ Z

is also discrete almost periodic in n ∈ Z.
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3. Main results

Let c > 0 and a ∈ R. We consider the second order damped wave equation given by:

(9)

)
*****+

*****,

∂2u

dt2
(n, t) = −a(−∆d)

α∂u

dt
(n, t)− c(−∆d)

αu(n, t) + f(n, t), t ≥ 0, n ∈ Z,

u(n, 0) = ϕ(n), n ∈ Z,

u′(n, 0) = ψ(n), n ∈ Z,
where α > 0. Suppose that a ∕= 0 and we define the operator

(10) Sα
t ϕ(n) := e−(c/a)t

! t

0

J0[2(c/a)
&

(t− s)s]e2(c/a)se−as(−∆d)
α

ϕ(n)ds, ϕ ∈ ℓp(Z).

We will show that the above family of operators have several qualitative properties, together
with the associated kernel

(11) Sα
t (n) := e−(c/a)t

! t

0

J0[2(c/a)
&

(t− s)s]e2(c/a)sLα
as(n)ds, t ≥ 0, n ∈ Z,

where Lα
as is defined in (8).

In what follows, we denote aθ := (4 sin2(θ/2))α.

Theorem 3.1. Let {Sα
t }t≥0 be the operators defined in (10).

(i) We have {Sα
t }t≥0 ⊂ B(ℓp(Z)) for each 1 ≤ p ≤ ∞;

(ii) ‖Sα
t ϕ‖ℓp ≤ e(c/a+aaα)t‖ϕ‖ℓp for all ϕ ∈ ℓp(Z), where aα := 2Γ(1+2α)

Γ(1+α)2
;

(iii) If 4α−1a2 ≤ c then we have the following representation for Sα
t as a convolution

operator with a kernel:

(12) Sα
t ϕ(n) := (Sα

t ∗ ϕ)(n) =
"

m∈Z

Sα
t (n−m)ϕ(m), t ≥ 0, n ∈ Z,

where

(13) Sα
t (n) =

1

π

! π

−π

e
−aaθt

2 sin( t
2

&
aθ(4c− a2aθ))&

aθ(4c− a2aθ)
cos(nθ)dθ, t ≥ 0, n ∈ Z.

In particular, Sα
0 (n) = 0, n ∈ Z.

(iv) ‖Sα
t ‖ℓp ≤ e(c/a+aaα)t, for 1 ≤ p ≤ ∞.

Proof. Since by [18, Theorem 1.3 (i)] we have Lα
t ϕ := e−t(−∆d)

α
ϕ ∈ ℓp(Z) for all ϕ ∈ ℓp(Z)

we deduce (i). Moreover, the following inequality [18, Theorem 1.3 (i)-1]

‖Lα
t ϕ‖ℓp ≤ e

2Γ(1+2α)

Γ(1+α)2
t‖ϕ‖ℓp , t ≥ 0,

and the property |J0(x)| ≤ 1 for all x ≥ 0 shows (ii).
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Next, suppose that 4α−1a2 ≤ c. Inserting (7) in (10), we obtain

Sα
t ϕ(n) = e−(c/a)t

! t

0

J0[2(c/a)
&

(t− s)s]e2(c/a)s
"

k∈Z

Lα
as(n− k)ϕ(k)ds

=
"

k∈Z

Sα
t (n− k)ϕ(k), t ≥ 0, n ∈ Z,

where

Sα
t (n) = e−(c/a)t

! t

0

J0[2(c/a)
&

(t− s)s]e2(c/a)s
#

1

2π

! π

−π

e−as(4 sin2(θ/2))αe−inθdθ

$
ds(14)

= e−(c/a)t

-
1

2π

! π

−π

#! t

0

J0[2(c/a)
&

(t− s)s]e(2(c/a)−a(4 sin2(θ/2))α)sds

$
e−inθdθ

.

= e−(c/a)t

-
1

2π

! π

−π

#! t

0

J0[2(c/a)
&

(t− s)s]g(s)ds

$
e−inθdθ

.

with g(s) = e(2(c/a)−a(4 sin2(θ/2))α)s. Applying Lemma 2.3 we get that

(15)

! t

0

J0[2(c/a)
&

(t− s)s]g(s)ds, t ≥ 0,

corresponds to the inverse Laplace transform of

1

λ
ĝ

#
λ+

c2

λa2

$
=

1

λ

1

λ+ c2

λa2
− (2(c/a)− a(4 sin2(θ/2))α)

(16)

=
a2

λ2a2 + c2 − 2cλa+ a3λ(4 sin2(θ/2))α

=
a2

(λa− c)2 + a3λ(4 sin2(θ/2))α
.

Since aθ = (4 sin2(θ/2))α, we have (aλ− c)2 + a3aθλ = a2(λ− r1(θ)(λ− r2(θ)) where

r1(θ) =
c

a
− aaθ

2
+

1

2

&
aθ(a2aθ − 4c) and r2(θ) =

c

a
− aaθ

2
− 1

2

&
aθ(a2aθ − 4c).

Using [10, Chapter V, 5.2 (5)] to calculate the inverse Laplace transform of (16), we obtain

(17)

! t

0

J0[2(c/a)
&

(t− s)s]g(s)ds =
1

r1(θ)− r2(θ)
(er1(θ)t − er2(θ)t), t ≥ 0.
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Substituting (17) into (14), and since by hypothesis a24α−1

c
≤ 1 implies a2aθ − 4c ≤ 0, we

obtain:

Sα
t (n) =

1

2π

! π

−π

e−
aaθ
2

t
/
e

1
2
it
√

aθ(4c−a2aθ) − e−
1
2
it
√

aθ(4c−a2aθ)
0

i
&

aθ(4c− a2aθ)
e−inθdθ(18)

=
1

π

! π

−π

e
−aaθt

2 sin( t
2

&
aθ(4c− a2aθ))&

aθ(4c− a2aθ)
e−inθdθ

=
1

π

! π

−π

s(θ, t) cos(nθ)dθ, t ≥ 0, n ∈ Z,

where we have used that the function θ → s(θ, t) :=
e
−aaθt

2 sin( t
2

√
aθ(4c−a2aθ))√

aθ(4c−a2aθ)
is even. This

proves (iii).
For (iv), we choose {ϕ(n)}n∈Z = {δ0,n}n∈Z ∈ ℓp(Z). Then, by (12) we obtain Stδ0,n = Sα

t (n)
for each n and the conclusion follows from part (ii).

□
Remark 3.2. We note that formula (13) shows that Sα

t (n) corresponds to the Fourier coef-

ficients, or inverse discrete-time Fourier transform, of the term
e
−aaθt

2 sin( t
2

√
aθ(4c−a2aθ))√

aθ(4c−a2aθ)
.

For all t ≥ 0, n ∈ Z, we define

Dα
t (n) :=

1

2π

! π

−π

e
−aaθt

2

%
cos(

t

2

&
aθ(4c− a2aθ))−

aaθ sin(
t
2

&
aθ(4c− a2aθ))&

aθ(4c− a2aθ)

'
cos(nθ)dθ.

(19)

Note that Dα
t (n) :=

∂Sα
t (n)

∂t
, and in particular, Dα

0 (n) = δ0,n, n ∈ Z. We also have

∂Dα
t (n)

∂t
= − 1

2π

! π

−π

aaθ
2

e
−aaθt

2 ×

(20)

×
%
cos(

t

2

&
aθ(4c− a2aθ))−

aaθ sin(
t
2

&
aθ(4c− a2aθ))&

aθ(4c− a2aθ)

'
cos(nθ)dθ

− 1

2π

! π

−π

e
−aaθt

2 ×

×
#
sin(

t

2

&
aθ(4c− a2aθ))

1

2

&
aθ(4c− a2aθ) +

aaθ
2

cos(
t

2

&
aθ(4c− a2aθ))

$
cos(nθ)dθ,

and from here we deduce using formula (6) from Theorem 2.2 that
∂Dα

t (n)

∂t
= −aKα(n) at

t = 0.
Our main result is stated as follows:



8 LIZAMA AND MURILLO-ARCILA

Theorem 3.3. Let ϕ,ψ ∈ ℓ1(Z) and f : Z×R+ −→ C be continuous in the second variable
and such that sup

t≥0
‖f(·, t)‖ℓ1 < ∞. Suppose that for c > 0 and a ≥ 0 we have

4α−1a2 ≤ c.

Then, the unique solution bounded on Z× [0, T ] for each T > 0 of (9) is given by

(21) u(n, t) = Dα
t ∗ϕ(n) +Sα

t ∗ (ψ+ a(−∆d)
αϕ)(n) +

! t

0

Sα
t−s ∗ f(n, s)ds, t ≥ 0, n ∈ Z,

Proof. The case a = 0 is well-known and, as we said in the introduction, the formula (21)
coincides in such case. Suppose a ∕= 0. Denote by A := −(−∆d)

α. By [18, Theorem 1.3]
the operator A is bounded in ℓp(Z) for all 1 ≤ p ≤ ∞ and σ(A) = [−4α, 0]. We can apply
Laplace transform to (9) obtaining

λ2û(n,λ)− λϕ(n)− ψ(n)− aA(λû(n,λ)− ϕ(n))− cAû(n,λ) = f̂(n,λ), n ∈ Z.(22)

We then have:

(λ2 − aAλ− cA)û(n,λ) = λϕ(n) + (ψ(n)− aAϕ(n)) + f̂(n,λ), n ∈ Z.

Observe that for any z ∈ C we have the identity Re( z2

az+c
) = Re(z)3(a+c)+Im(z)2(aRez−c).

Therefore for any λ ∈ C with Re(λ) > c
a
we have that Re( λ2

aλ+c
) > 0 and hence λ2

aλ+c
∈ ρ(A),

the resolvent set of A. If we denote

R(λ) = (λ2 − aAλ− cA)−1 =
1

(aλ+ c)

#
λ2

aλ+ c
− A

$−1

, Re(λ) >
c

a
,

we get:

(23) û(n,λ) = λR(λ)ϕ(n) +R(λ)(ψ(n)− aAϕ(n)) +R(λ)f̂(n,λ), n ∈ Z.

Let now prove that P (t) ≡ Sα
t defined in (10) satisfies P̂ (λ) = R(λ). Indeed,

P̂ (λ) =

! ∞

0

e−(λ+(c/a))t

! t

0

J0[2(c/a)
&

(t− s)s]e2(c/a)seasAdsdt(24)

=

! ∞

0

e−(λ+(c/a))t

! t

0

J0[2(c/a)
&

(t− s)s]G(s)dsdt,

where G(s) := e(2(c/a)+aA)s ∈ B(ℓp(Z)) for all 1 ≤ p ≤ ∞. From Lemma 2.3, expression (24)
equals to

(25)
1

λ+ (c/a)
Ĝ

#
λ+ (c/a) +

(c/a)2

(λ+ (c/a))

$
.

Since Ĝ(µ) = (µ−2(c/a)−aA)−1 exists for all µ ∈ C with Re(µ) > 2c
a
, a computation shows

that:

1

λ+ (c/a)
Ĝ

#
λ+ (c/a) +

(c/a)2

(λ+ (c/a))

$
=

1

aλ+ c

#
λ2

aλ+ c
− A

$−1

= R(λ),(26)
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for all λ ∈ C with Re(λ) sufficiently large, and the claim is proved.
Since clearly t → P (t)ϕ is differentiable for each ϕ ∈ ℓp(Z), 1 ≤ p ≤ ∞, and P (0) = 0,

applying now inverse Laplace transform to (23) we obtain:

(27) u(n, t) = P ′(t)ϕ(n) + P (t)(ψ − aAϕ)(n) +

! t

0

P (t− s)f(n, s)ds, t ≥ 0, n ∈ Z,

is a solution of the equation in (9).
Note that a computation using the property Dα

0 (n) = δ0,n, n ∈ Z together with Theorem
3.1 part (iii), shows that P ′(0) = I and then:

(28) u(n, 0) = P ′(0)ϕ(n) + P (0)(ψ(n)− aAϕ(n)) = ϕ(n), n ∈ Z.

On the other hand, differentiating in (27) and evaluating in t = 0 we get:
(29)
∂u(n, 0)

∂t
= P ′′(0)ϕ(n)+P ′(0)(ψ(n)− aAϕ(n))+P (0)f(n, t) = P ′′(0)ϕ(n)+ψ(n)− aAϕ(n).

where, using the fact that
∂Dα

t (n)

∂t
= −aKα(n) at t = 0, we obtain from Theorem 2.2 that

P ′′(0)ϕ(n) = −a(−∆d)
αϕ(n) = aAϕ(n), n ∈ Z.(30)

Finally, replacing in (29) we arrive to ∂u(n,0)
∂t

= ψ(n). This proves that u(n, t) is a solution of
the initial value problem (9). In order to see that such solution is bounded on Z× [0, T ] for
each T > 0 we first note that the estimate | sin(x)/x| ≤ 1, x ∈ R, applied to formula (13)
shows that |Sα

t (n)| ≤ 1
π

( π

−π
t
2
dθ = t for each t ≥ 0, and analogously from the formula (19) we

obtain the estimate |Dα
t (n)| ≤ 1

2π

( π

−π
(1 + |a||aθ| t2)dθ ≤ 1

2π

( π

−π
(1 + |a|4α t

2
)dθ = 1 + |a|22α−1t

for all t ≥ 0. Then, Young’s convolution inequality implies

sup
n∈Z

|(Dα
t ∗ ϕ)(n)| = ‖Dα

t ∗ ϕ‖ℓ∞ ≤ ‖Dα
t ‖ℓ∞‖ϕ‖ℓ1 = sup

n∈Z
|Dα

t (n)|‖ϕ‖ℓ1 ≤ (1 + |a|22α−1t)‖ϕ‖ℓ1 .

Therefore, we conclude that sup
t∈[0,T ]

sup
n∈Z

|(Dα
t ∗ ϕ)(n)| ≤ (1 + |a|22α−1T )‖ϕ‖ℓ1 for each T > 0.

Analogously, since (−∆d)
α is well defined as a bounded operator in ℓ1(Z) we obtain the

estimate

sup
t∈[0,T ]

sup
n∈Z

|(Sα
t ∗ (ψ − aAϕ))(n)| ≤ T (‖ψ‖ℓ1 + |a|‖(−∆d)

α‖‖ϕ‖ℓ1),

for each T > 0. We also have

sup
n∈Z

1111
! t

0

Sα
t−s ∗ f(n, s)ds

1111 ≤
! t

0

sup
n∈Z

|Sα
t−s ∗ f(n, s)|ds ≤

! t

0

(t− s) sup
τ≥0

‖f(·, τ)‖ℓ1ds

= sup
τ≥0

‖f(·, τ)‖ℓ1
! t

0

sds = sup
τ≥0

‖f(·, τ)‖ℓ1
t2

2
.

Hence, by hypothesis, sup
t∈[0,T ]

sup
n∈Z

1111
! t

0

Sα
t−s ∗ f(n, s)ds

1111 ≤ sup
τ≥0

‖f(·, τ)‖ℓ1
T 2

2
< ∞ for each T >

0. It proves that the solution u(n, t) is bounded in Z× [0, T ] for each T > 0.
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Finally, assume that (9) has two bounded solutions u1 and u2 with the same initial data
ϕ,ψ, and set v := u1 − u2. Then v is a solution of the following initial value problem

)
*****+

*****,

∂2v

dt2
(n, t) = −a(−∆d)

α∂v

dt
(n, t)− c(−∆d)

αv(n, t), t ≥ 0, n ∈ Z,

v(n, 0) = 0, n ∈ Z,

v′(n, 0) = 0, n ∈ Z.

Integrating two times we obtain the equivalent abstract Volterra equation

w(t) =

! t

0

k(t− s)Aw(s)ds, w(t) ∈ ℓ∞(Z), t ≥ 0,

where w(t)(n) := v(n, t) and k(t) := a + ct. Since k(t) is a creep function [22, Chapter I,
Definition 4.4] and A generates a cosine family on ℓ∞(Z) because A is bounded in such space,
we deduce that the above abstract Volterra equation admits a unique resolvent [22, Theorem
4.3 and Corollary 1.1] and hence has zero as its unique solution. Therefore, we have that
v ≡ 0 and hence u1 ≡ u2. It proves the uniqueness and the theorem.

□

Remark 3.4. Looking at the formula (19), we note that the solutions exhibit oscillations
due to the trigonometric functions, but we see that the amplitude may decay in time due to

the factor e
−aaθt

2 . This behavior is consistent in the case a = 0 because in such case, this
factor disappears and the integrand in formula (19) entirely coincides with formula (4).

Remark 3.5. It should be noted that recently, by results from Ikehata-Todorova-Yordanov
and Ikehata-Onodera [9], we know that the asymptotic profile of the solution to the equation

(31) utt(x, t)−∆u(x, t)−∆ut(x, t) = 0, t ≥ 0, x ∈ R,

is the so-called diffusion wave, that is,

(32) û(ξ, t) ∼ P1e
−t|ξ|2/2 sin(t|ξ|)

|ξ| (t → ∞),

where û(t, ξ) represents the partial Fourier transform of the solution u(t, x) with respect to the
x-variable. In contrast, Theorem 3.3 and Theorem 3.1 show that the profile of the solution
of equation (1) with f ≡ 0, ϕ ≡ 0 and ψ(n) = δ0,n

utt(n, t) + a(−∆d)
αu(n, t) + c(−∆d)

αut(n, t) = 0, t ≥ 0, n ∈ Z,

has the form

ũ(θ, t) = e
−aaθt

2
sin( t

2

&
aθ(4c− a2aθ))&

aθ(4c− a2aθ)
,

which corresponds to the Fourier coefficients of the fundamental solution u(n, t) with respect
to the first variable. In particular, when c = a = 1 and α = 1 we find aθ = 2 − 2 cos θ =
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(2 sin(θ/2)2 and hence
&

aθ(4c− a2aθ) = 2| sin(θ)|. Therefore

ũ(θ, t) = e−t(2 sin(θ/2)2/2 sin(t| sin(θ)|
2| sin(θ)| ,

which is comparable to (32). An analogous similarity can be found in the reference [9,
Theorem 1] between the asymptotic profile of (31) with two nonzero initial conditions and
the Fourier coefficients of the fundamental solution (19).

Our next result provides qualitative properties of solutions to equation (9).

Theorem 3.6. Let ϕ,ψ ∈ ℓ1(Z) and f : Z×R+ −→ C be continuous in the second variable
and such that sup

t≥0
‖f(·, t)‖ℓ1 < ∞. Suppose that c > 0, a ∈ R and 4α−1a2 ≤ c. If f(·, t) is

discrete almost periodic in the first variable, for each t ≥ 0, then the unique solution u(·, t)
of (9) given by (21) is also discrete almost periodic in the first variable.

Proof. In order to prove that u(n, t) (9) is discrete almost periodic, it is sufficient to show

that Dα
t ∗ϕ(n), Sα

t ∗ ψ(n), Sα
t (−∆d)

αϕ(n) and
( t

0
Sα
t−s ∗ f(n, s) are discrete almost periodic.

Indeed, let show that Dα
t ∗ ϕ(n) is discrete almost periodic. According to Theorem 2.5,

since ϕ ∈ ℓ1(Z) it is sufficient to prove that Dα
t (n) is an almost periodic function in n ∈ Z.

If we denote gθ(n) := cos(nθ) the sequence {gθ(n)}n∈Z is almost periodic in n ∈ Z for every
θ ∈ R as shown in [3]. Thus, for every ε > 0, there exists a positive integer N(ε) such that
any set consisting of N(ε) consecutive integers contains at least one integer p such that

sup
n∈Z

|gθ(n+ p)− gθ(n)| < ε.

On the other hand, since by hypothesis 4α−1a2 ≤ c, then 4c − a2aθ ≥ 0 and the function

h : θ → sin( t
2

√
aθ(4c−a2aθ))√

aθ(4c−a2aθ)
is bounded for all θ ∈ (−π, π). Thus, there exists K > 0 such

that |h(θ)| < K for all θ ∈ (−π, π). It is also clear that |aθ| = |(4 sin2(θ/2))α| ≤ 4α for all
θ ∈ (−π, π). Consequently, we have

|Dα
t (n+ p)−Dα

t (n)| ≤ 1
2π

( π

−π
e

−aaθt

2 (1 + 4αa)K|gθ(n+ p)− gθ(n)|dθ.
Hence, we obtain

sup
n∈Z

|Dα
t (n+ p)−Dα

t (n)| <
ε

2π

! π

−π

e
−aaθt

2 (1 + 4αa)Kdθ

and the conclusion holds. The discrete almost periodicity of Sα
t ∗ ψ(n), Sα

t ∗ (−∆d)
αϕ(n)

follow similarly taking into account Theorem 3.1 formula (13).

Let now show that
( t

0
Sα
t−s ∗ f(n, s) is discrete almost periodic. Applying Theorem 2.5 it

follows that the function
F (n, t, s) := Sα

t−s ∗ f(n, s)
is discrete almost periodic. Thus, given ε > 0, there exists a positive integer N(ε) such that
any set consisting of N(ε) consecutive integers contains at least one integer p such that

|F (n+ p, t, s)− F (n, t, s)| < ε, n ∈ Z
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for each n ∈ Z and every t, s ∈ R+. If we denote ξ(n, t) :=
( t

0
F (n, t, s)ds it follows

immediately that |ξ(n+ p, t)− ξ(n, t)| < εt, n ∈ Z which finishes the proof.
□
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her/his suggestions that have contributed to improving its quality.
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