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Abstract. Operator-valued Fourier multipliers are used to study well-posedness of
integro-differential equations in Banach spaces. Both strong and mild periodic solu-
tions are considered. Strong well-posedness corresponds to maximal regularity which
has proved very efficient in the handling of nonlinear problems. We are concerned with
a large array of vector-valued function spaces: Lebesgue-Bochner spaces Lp, the Besov
spaces Bs

p,q (and related spaces such as the Hölder-Zygmund spaces Cs) and the Triebel
Lizorkin spaces F s

p,q. We note that the multiplier results in these last two scales of spaces
involve only boundedness conditions on the resolvents and are therefore applicable to
arbitrary Banach spaces. The results are applied to various classes of nonlinear integral
and integro-differential equations.

1. Introduction

Ever since completion of Fourier’s ground-breaking work on the propagation of heat
in solid bodies in 1807, followed by the monograph ”Théorie Analytique de la Chaleur”
in 1822, Fourier analysis has become an indispensable tool in analysis. It is not only
essential in the analysis of differential equations, but is also a very important tool in
most areas of pure and applied mathematics, science and technology. It was discovered
recently that in dealing with operator equations in abstract spaces, the theory of Fourier
multipliers can be used effectively. New challenges arise in this setting-the operator case-
that are not present in the scalar or even the vector-valued case. Although the fundamental
problem of characterizing bounded multiplier transformations in Lp remains open (that
is, for p /∈ {1, 2,∞}) even in the scalar case, in the case of resolvent operators, many
advances have come to the fore in the last few years. The abstract results developed have
concrete applications involving partial differential operators and integral equations arising
in mathematical physics.

The aim of this paper is to study the integro-differential equation

(1.1) µ ∗ u′ + ν ∗ u− η ∗Au = f

where A is a closed operator in a Banach space X; µ, ν, and η are finite scalar-valued
measures on R, u′ stands for the time derivative of u and f is a 2π-periodic function with
values in X. Here µ∗u′ represents the convolution product i.e. (µ∗u′)(t) =

∫
R u′(t−s)µ(ds),

and ν∗u and η∗Au are defined analogously. The function u is extended to R by periodicity
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without change of notation. We are concerned with strong and mild solutions of (1.1) in
various spaces of vector-valued functions. Specifically, we consider the Lebesgue-Bochner
spaces Lp((0, 2π);X), 1 6 p < ∞, the Besov spaces Bs

p,q((0, 2π);X), 1 6 p, q 6 ∞, and
in particular the Hölder-Zygmund spaces Cs, s > 0 (these are identified with the Besov
spaces Bs∞,∞((0, 2π);X) and correspond to the familiar Hölder spaces Cs, if 0 < s < 1).
Also considered later in the paper are the Triebel-Lizorkin spaces F s

p,q((0, 2π);X), 1 6
p, q < ∞. In the scalar case, the famous Littlewood-Paley inequalities show that F 0

p2 =
Lp, 1 < p < ∞, with equivalent norms. This is no longer true in the vector-valued case.
In fact, the equality F 0

p2((0, 2π);X) = Lp((0, 2π);X) holds if and only if X is isomorphic
to a Hilbert space. See [28] and [11].

Equation (1.1) was studied by Staffans [31]. He considered the case where X is a
Hilbert space and gave conditions for strong and mild well-posedness for L2 solutions.
The main tool he used was Plancherel’s Theorem. As is well known, this theorem is valid
in Lp((0, 2π);X) if and only if p = 2 and and X is (isomorphic to) a Hilbert space (see e.g.
[6]). The more general situation we consider here therefore calls for other methods. In our
study of equation (1.1), we employ the method of operator valued Fourier multipliers which
enables us to provide explicit conditions on the measures and on the operator A ensuring
well-posedness. In recent years, the theory of operator valued Fourier multipliers has been
extensively developed and applied to well-posedness of abstract differential equations. We
note for example the papers [2], [6], [5], [4], [11], [14], [18], [25], [23], [34] and the references
cited therein.

Strong well-posedness for special cases of (1.1) have been studied earlier (see [11], [25],
[24]) using Fourier multipliers. There are earlier papers dealing with the special equa-
tions treated in [25] and [24] which make the assumption that the operator A generates
an analytic semigroup (not necessarily strongly continuous) and use resolvent families to
construct the solution (see e.g. [15], [17] and the references given there). Among the equa-
tions not previously considered with the new methods, we mention the renewal equation
and the delay equation

(1.2) u′(t) = Au(t)− γu(t− τ) + f(t), t ∈ R,

where τ and γ are given real numbers. Of course, the differential equation

(1.3) Pper(f)

{
u′(t) = Au(t) + f(t), t ∈ [0, 2π],
u(0) = u(2π).

is also a special case of (1.1). This is obtained when µ = η is the Dirac measure concen-
trated at the origin and ν = 0. This equation is treated in [6], [5] and [11] (see also the
survey paper [4]).

In the present paper, we make a complete study of well-posedness of (1.1) in the above
mentioned function spaces. We consider mild and strong well-posedness. In the case
of mild well-posedness, it turns out that one can consider a one parameter family of
such notions. Both strong and mild well-posedness are important in the study of nonlin-
ear problems. There are three important notions that are needed in the study, namely
n−regularity of scalar sequences, M -boundedness and MR−boundedness of order n for op-
erator sequences. The concept of n−regular sequences was introduced in [25] as a discrete
version of k−regularity used in [27] and was subsequently used in [24] and [11]. On the
other hand, M stands for Marcinkiewicz. Define the differences ∆kMn by ∆0Mn = Mn,



PERIODIC SOLUTIONS 3

∆1Mn = ∆Mn = Mn+1 −Mn, and ∆k+1Mn = ∆(∆kMn), for k > 1. If {Mn} is the oper-
ator family under consideration, M− boundedness (resp. MR−boundedness) of order m
(m ∈ N ∪ {0}) means that the sequences {nj∆jMn} are bounded (resp. R−bounded) for
0 6 j 6 m.

Under appropriate assumptions on the Fourier coefficients of the measures involved, we
give necessary and sufficient conditions for strong well-posedness of (1.1). These conditions
are in terms of the resolvent. In the Lp case, as is shown in [6] (see also [18] and [34]),
R−boundedness is a necessary condition for an operator family to be a multiplier. In the
Bs

p,q((0, 2π);X) case, R−boundedness is not necessary but in general, one has to require a
Marcinkiewicz condition of order two. A Marcinkiewicz condition of order one is enough
if the Banach space X has non trivial Fourier type (see [6] and [20]). Likewise, for the
Triebel-Lizorkin spaces F s

pq((0, 2π);X) the R−boundedness condition is not necessary.
Sufficient conditions for multipliers involve M−boundedness of order 3 in general, and
order 2 if 1 < p < ∞, 1 < q 6 ∞, s ∈ R.

Compared to the previous papers [25] and [24] (see also [11]), we simplify our as-
sumptions. They are now more symmetric and depend solely on the differences ∆kMn.
Compared to the paper of Staffans even in the L2 context for Hilbert spaces, we give more
specific conditions ensuring well-posedness. For example, we give conditions under which
assumption (i) in [31, Theorem 3.2] already implies assumption (iii) of the same theorem.
Moreover, for nonlinear problems, L2 results are sometime not enough and one needs Lp

estimates (see [1]). One surprising feature of our results is that in some cases, it is possi-
ble to characterize mild well-posedness directly in terms of boundedness or R−boundeness
conditions on the resolvent.

The study of nonlinear equations is one of the main areas of application for maximal
regularity. For example, quasilinear equations of convolution type on the real line have
been studied in Amann [3] in the parabolic case. Maximal regularity is used by Chill and
Srivastava [14] for the treatment second order equations, both semilinear and quasilinear.
Other references include [4], [15], [24] and [31]. We take up nonlinear equations in Section
9. There, we illustrate through various examples the applicability of the results obtained
for linear problems to nonlinear integral and integro-differential equations in Banach and
Hilbert spaces. We now describe the content of the various sections. In Section 2, we
give some preliminary definitions on Fourier multipliers and R−boundedness. In Section
3, we consider the Marcinkiewicz conditions and their behavior with respect to sums and
products. Section 4 is devoted to n−regularity of scalar sequences and the behavior under
sums, products and quotients. Strong Lp solutions are studied in Section 5. In Section
6, we deal with mild Lp solutions. Solutions in Besov spaces are the subject matter of
Section 7 while the corresponding results in the Triebel-Lizorkin spaces are established in
Section 8. We apply the results to semilinear problems in Section 9.

2. Preliminaries

Let X, Y be complex Banach spaces. We denote by B(X,Y ) the Banach space of all
bounded linear operators from X to Y. When X = Y we write simply B(X) and denote
by I the identity operator in B(X). For a closed linear operator A with domain and
range in X we write ρ(A) for the resolvent set of A. When λ ∈ ρ(A) we denote by
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R(λ,A) = (λI −A)−1 the resolvent operator. When we consider D(A) as a Banach space
we always understand that it is equipped with the graph norm.

For a function f ∈ L1((0, 2π);X), we denote by

f̂(k) =
1
2π

∫ 2π

0
e−iktf(t)dt

the kth Fourier coefficient of f , where k ∈ Z. The Fourier coefficients determine the function
f ; i.e., f̂(k) = 0 for all k ∈ Z if and only if f(t) = 0 a.e. For µ ∈ M(R,C) (the space of
bounded measures) we denote by µ̃ the Fourier transform of µ, that is,

µ̃(ω) =
∫ ∞

−∞
e−iωtµ(dt), ω ∈ R.

If µ has a density a ∈ L1(R), then µ̃ is the Fourier transform of the function a and we will
continue to denote it by ã.

Let µ ∈ M(R,C). Let v ∈ L1((0, 2π);X) extended by periodicity to R. Using Fubini’s
theorem we obtain, for k ∈ Z,

µ̂ ∗ v(k) =
1
2π

∫ 2π

0
e−ik(t−s)v(t− s)dt

∫ ∞

−∞
e−iksµ(ds)

and hence

(2.1) µ̂ ∗ v(k) = µ̃(k)v̂(k), k ∈ Z.

This is a very important identity in our investigations.
As usual, we identify the spaces of (vector or operator-valued) functions defined on

[0, 2π] to their periodic extensions to R. Thus, in this section, we consider the space
Lp((0, 2π);X) (denoted also Lp

2π(R; X)), 1 6 p 6 ∞, of all 2π-periodic Bochner measur-
able X-valued functions f such that the restriction of f to [0, 2π] is p-integrable (usual
modification in case p = ∞).

We recall the notion of operator-valued Fourier multiplier in Lp spaces (see [6]). Cor-
responding definitions for Besov and Triebel-Lizorkin spaces will appear in sections 7 and
8 respectively.

Definition 2.1. Let X, Y Banach spaces and 1 6 p 6 ∞. A sequence {Mk}k∈Z ⊂ B(X, Y )
is an Lp-multiplier if for each f ∈ Lp((0, 2π);X) there exists a function g ∈ Lp((0, 2π);Y )
such that

Mkf̂(k) = ĝ(k), k ∈ Z.

If a sequence {Mk}k∈Z ⊂ B(X, Y ) is an Lp-multiplier, then and only then, there exists
a unique bounded operator M : Lp((0, 2π);X) → Lp((0, 2π);Y ) such that

(̂Mf)(k) = Mkf̂(k),

for all k ∈ Z and all f ∈ Lp((0, 2π);X).

Remark 2.2. (i) The set of Fourier multipliers is a vector space. Moreover, it is clear from
the definition that if X, Y, Z are Banach spaces and {Mk}k∈Z ⊂ B(X, Y ) and {Nk}k∈Z ⊂
B(Y, Z) are Fourier multipliers then {NkMk}k∈Z ⊂ B(X, Z) is a Fourier multiplier as well.
When X = Y, the space of Fourier multipliers is an operator algebra.
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(ii) We note that if for some fixed N ∈ N, Mk = 0 for |k| > N then {Mk}k∈Z is a
Fourier multiplier. This way, when we check conditions ensuring that a sequence {Mk}k∈Z
is a Fourier multiplier, what really matters is when |k| is large. This observation applies to
operator and scalar valued Fourier multipliers in various contexts considered throughout
the paper.

Example 2.3. If µ ∈ M(R,C) then the sequence {Mk = µ̃(k)I} is an Lp-multiplier for
every 1 6 p 6 ∞. This follows directly from the definition, equation (2.1) and Young’s
inequality.

Definition 2.4. For k ∈ Z, let

Mk =
{

I if k > 0,
0 if k < 0.

We say that X is a UMD space if the sequence {Mk}k∈Z is an Lp-multiplier for all
(equivalently one) p ∈ (1,∞).

Equivalently, X is a UMD space if and only if the sequence {Nk} defined by

Nk =
{

I if k > 0,
−I if k < 0.

is an Lp-multiplier. Note that {Mk} corresponds to the Riesz projection while {Nk} is the
representation of the Hilbert transform in the periodic case. For more on UMD spaces
we refer to [1, Chapter IV], [8], [12], [18], [16] and [27] where examples, properties and
several equivalent definitions, notably the one involving martingales in Banach spaces can
be found.

We introduce the means

‖(x1, ..., xn)‖R :=
1
2n

∑

εj∈{−1,1}n

‖
n∑

j=1

εjxj‖

for x1, ..., xn ∈ X.

Definition 2.5. Let X, Y be Banach spaces. A subset T of B(X, Y ) is called R-bounded
if there exists a constant c > 0 such that

(2.2) ‖(T1x1, ..., Tnxn)‖R 6 c‖(x1, ..., xn)‖R

for all T1, ..., Tn ∈ T , x1, ..., xn ∈ X, n ∈ N. The least c such that (2.2) is satisfied is called
the R-bound of T and is denoted R(T ).

An equivalent definition using the Rademacher functions can be found in the references
cited below.

The notion of R-boundedness was implicity introduced and used by Bourgain [9] and
later on also by Zimmermann [35]. Explicitly it is due to Berkson and Gillespie [8] and
to Clément, de Pagter, Sukochev and Witvliet [16]. Its importance for operator valued
Fourier multipliers was realized first by Weis [34] and later by Arendt and Bu [6]. For
abstract multipliers, it is also of great importance (see [16]).

R-boundedness clearly implies boundedness. If X = Y , the notion of R-boundedness is
strictly stronger than boundedness unless the underlying space is isomorphic to a Hilbert
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space [6, Proposition 1.17]. Some useful criteria for R−boundedness are provided in [6],
[18] and [20].

Remark 2.6. a) Let S, T ⊂ B(X,Y ) be R-bounded sets, then S + T := {S + T : S ∈
S, T ∈ T } is R- bounded.

b) Let T ⊂ B(X, Y ) and S ⊂ B(Y,Z) be R-bounded sets, then S · T := {S · T : S ∈
S, T ∈ T } ⊂ B(X,Z) is R- bounded and

R(S · T ) 6 R(S) ·R(T ).

c) Also, each subset M ⊂ B(X) of the form M = {λI : λ ∈ Ω} is R- bounded whenever
Ω ⊂ C is bounded. This follows from Kahane’s contraction principle (see [6], [16] or [18]).

3. Marcinkiewicz conditions

Sufficient conditions for operator valued Fourier multipliers in the Lp context have
been derived recently and used by many authors in the study of maximal regularity for
differential equations. We mention Weis [34], Arendt [4], Arendt and Bu [6], Denk, Hieber
and Prüss [18] and the paper by Hytönen [23]. In order to present the conditions that
we will need later we introduce some notation. Let {Mk}k∈Z ⊂ B(X, Y ) be a sequence of
operators. We set

∆0Mk = Mk, ∆Mk = ∆1Mk = Mk+1 −Mk

and for n = 2, 3, ...

∆nMk = ∆(∆n−1Mk).

Definition 3.1. We say that a sequence {Mk}k∈Z ⊂ B(X, Y ) is M -bounded of order n
(n ∈ N ∪ {0}), if

(3.1) sup
06l6n

sup
k∈Z

||kl∆lMk|| < ∞.

Observe that for j ∈ Z fixed, we have sup
06l6n

sup
k∈Z

||kl∆lMk|| < ∞ if and only if

sup
06l6n

sup
k∈Z

||kl∆lMk+j || < ∞. This follows directly from the binomial formula.

To be more explicit when n = 0, M -boundedness of order n for {Mk} means simply
that {Mk} is bounded. For n = 1 this is equivalent to

(3.2) sup
k∈Z

||Mk|| < ∞ and sup
k∈Z

||k (Mk+1 −Mk)|| < ∞.

When n = 2 we require in addition to (3.2) that

(3.3) sup
k∈Z

||k2 (Mk+2 − 2Mk+1 + Mk)|| < ∞.

and when n = 3, we require in addition to (3.3) and (3.2)

(3.4) sup
k∈Z

||k3 (Mk+3 − 3Mk+2 + 3Mk+1 −Mk)|| < ∞ .
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Remark 3.2. (i) The definition of M -boundedness, where M stands for Marcinkiewicz,
was introduced in [25] but was already implicit in [5]. Here we reformulate the definition
to make precise the order n.

(ii) Analogously, we define M - boundedness of order n in case of sequences {ak}k∈Z of
real or complex numbers (this amounts to taking Mk = akI in B(X)).

(iii) Note that if {Mk}k∈Z and {Nk}k∈Z are M -bounded of order n then {Mk±Nk}k∈Z
is M -bounded of order n. In fact, the set of n−bounded sequences is a vector space. This
is obvious from the definition.

The following result establishes a useful property of sequences satisfying the M -boundedness
condition of order n (n = 1, 2, 3). We will generally establish the properties for n 6 3. This
is enough for the various characterizations of well-posedness in the sequel.

Theorem 3.3. If {Mk}k∈Z and {Nk}k∈Z are sequences in B(Y,Z) and B(X, Y ) that are
M -bounded of order n (n 6 3) then {Mk Nk}k∈Z ⊂ B(X, Z) is also M -bounded of the
same order.

Proof. From the hypotheses, it is clear that sup
k∈Z

‖MkNk‖ < ∞ . To verify M -boundedness

of order n (n = 1, 2, 3) , we have the following identities:

(i) Order 1.
∆(MkNk) = ∆(Mk) Nk+1 + ∆(Nk) Mk ,

(ii) Order 2.

∆2(MkNk) = ∆2(Mk)Nk+2 + Mk+1∆2(Nk) + ∆(Mk)∆(Nk+1) + ∆(Mk)∆(Nk)

(iii) Order 3.

∆3(MkNk) = ∆3(Mk)Nk+3 + ∆2(Mk) (∆(Nk+2) + ∆(Nk+1) + ∆(Nk) )

+∆3(Nk)Mk+2 + 2∆(Mk+1)∆2(Nk) + ∆(Mk+1)∆2(Nk+1)

Since {Mk} and {Nk} are M -bounded of order n (n = 1, 2, 3) we obtain from the above
identities that {Mk Nk} verifies (3.2), (3.3) and (3.4).

Remark 3.4. A corresponding result holds in the case of sequences {ak}k∈Z of real or
complex numbers satisfying M -boundedness of order n (n = 1, 2, 3). In this case we identify
ak with akI as already indicated

Definition 3.5. We say that a sequence {Mk}k∈Z ⊂ B(X, Y ) is MR-bounded of order
n, if for each 0 6 l 6 n the set

(3.5) {kl∆lMk : k ∈ Z, 0 6 l 6 n},
is R-bounded.
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Remark 3.6. A sequence {Mk}k∈Z ⊂ B(X,Y ) is MR-bounded of order 1 if the sets

(3.6) {Mk : k ∈ Z} and {k (Mk+1 −Mk) : k ∈ Z}
are R-bounded.

If in addition we have that the set

(3.7) {k2 (Mk+1 − 2Mk + Mk−1) : k ∈ Z}
is R-bounded then {Mk}k∈Z is MR-bounded of order 2.

If (3.6) and (3.7) are satisfied and

(3.8) {k3 (Mk+1 − 3Mk + 3Mk−1 −Mk−2) : k ∈ Z}
is R-bounded, then {Mk}k∈Z is MR-bounded of order 3.

Remark 3.7. According to the second section, in Hilbert spaces MR-bounded and M -
bounded are identical concepts. In general, MR-bounded implies R-bounded which in
turn implies boundedness.

Using the same identities as in the proof of Theorem 3.3 one proves the following result.

Theorem 3.8. If {Mk}k∈Z and {Nk}k∈Z are MR-bounded sequences of order n (n 6 3)
then {Mk Nk}k∈Z is MR-bounded of order n.

The following theorem is the discrete analogue of the operator-valued version of Mikhlin’s
theorem due to Arendt and Bu in [6]. The continuous version was proved earlier by Weis
[34] using different methods. They used the multiplier theorems to study maximal regu-
larity for the first order Cauchy problem. In [6] maximal regularity for (1.3) is treated as
well as boundary valued problems for second order differential equations.

Theorem 3.9. Let X, Y be UMD-spaces. If the sequence {Mk}k∈Z ⊂ B(X, Y ) is MR-
bounded of order 1 then {Mk}k∈Z is an Lp-multiplier for 1 < p < ∞.

We observe that the condition of MR-boundedness of order 0 (that is, R−boundedness)
for {Mk}k∈Z is necessary.

The following corollary due to Zimmermann [35] is the vector-valued version of the
Marcinkievicz multiplier theorem. It shows the importance of the concept of UMD spaces.
It is an extension of earlier multiplier results known for Lp(lq).

Corollary 3.10. Let X be a UMD-space. If {mk}k∈Z ⊂ C is M -bounded of order 1 then
{mkI}k∈Z is an Lp-multiplier for 1 < p < ∞.

We note that if {Mk} is the sequence considered in Definition 2.4, then {Mk} is
R−bounded (Kahane’s inequality) of order n for any n but is not a Fourier multiplier
unless X is a UMD space. On the other hand, the MR-boundedness condition of order
1 is not necessary for multipliers: take for example Mk = (−1)kI, k ∈ Z ⊆ B(X).

4. n−Regular Sequences

The notion of 1−regular and 2−regular scalar sequences was introduced in [25] to study
maximal regularity of integro-differential equations on periodic Lebesgue and Besov spaces.
This concept is the discrete analogue for the notion of n−regularity related to Volterra
integral equations (see [27, Chapter I, Section 3.2]). Recently, Bu and Fang in [10] intro-
duced the notion of 3-regular sequence to study maximal regularity of integro-differential
equations on the scale F s

p,q of Triebel-Lizorkin spaces.
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Definition 4.1. A sequence {ak}k∈Z ⊆ C\{0} is called n-regular (n ∈ N) if

(4.1) sup
16l6n

sup
k∈Z

||kl(∆lak)/ak|| < ∞ ,

Note that if {ak}k∈Z is 1-regular then lim
|k|→∞

ak+1/ak = 1. Observe that an n−regular

sequence need not be bounded.
As an immediate consequence of the definition, we have the following result showing

the interplay between n-regularity and M -bounded sequences.

Proposition 4.2. If {ak}k∈Z is a bounded and n-regular sequence, then it is M -bounded
of order n.

Remark 4.3. The converse is false in general. For example, the sequence ak = e−k2
is

M -bounded of order n for every n but is not even 1-regular.

However, we have the following useful observation which follows at once from the defi-
nition of n-regular sequence.

Proposition 4.4. Let n ∈ N. If {ak}k∈Z is M -bounded of order n and { 1
ak
} is bounded,

then {ak}k∈Z is an n-regular sequence.

Remark 4.5. The boundedness of { 1
ak
} is not a necessary condition in order to have the

conclusion of the above proposition. For example the sequence ak = 1
ik+1 is M -bounded

of order n and n-regular for all n ∈ N.

In the next theorem, we give some useful properties of n-regular sequences for n 6 3.

Theorem 4.6. Let (ak)k∈Z, (bk)k∈Z be given sequences and let n 6 3.

(i) If {ak}k∈Z and {bk}k∈Z are n−regular sequences such that sup
k

∣∣∣∣
ak

ak + bk

∣∣∣∣ < ∞, then

the sequence {ak + bk}k∈Z is n−regular.
(ii) If the sequences {ak}k∈Z and {bk}k∈Z are n−regular, then the sequence {ak bk}k∈Z

is n−regular.
(iii) The sequence {ak}k∈Z is n−regular if and only if the sequence { 1

ak
}k∈Z is n−regular.

(iv) If the sequences {ak}k∈Z and {bk}k∈Z are n−regular, then the sequence {ak/bk}k∈Z
is n−regular.

Proof. First we prove (i). For 1-regularity observe that

k(∆[ak + bk])
ak + bk

=
k(∆ak)

ak

ak

ak + bk
+

k(∆bk)
bk

− k(∆bk)
bk

ak

ak + bk
.

In view of the hypothesis, 1-regularity of {ak + bk} follows. To verify 2-regularity, we
observe that

k2(∆2[ak−1 + bk−1])
ak + bk

=
k2(∆2ak−1)

ak

ak

ak + bk
+

k2(∆2bk−1)
bk

− k2(∆2bk−1)
bk

ak

ak + bk
.
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Finally, to verify 3-regularity, this time we note that

k3(∆3[ak−2 + bk−2])
ak + bk

=
k3(∆3ak−2)

ak

ak

ak + bk
+

k3(∆3bk−2)
bk

− k3(∆3bk−2)
bk

ak

ak + bk
.

This completes the proof of (i). As for the proof of (ii), is suffices to note that

k(∆[akbk])
akbk

=
k(∆ak)

ak

bk+1

bk
+

k(∆bk)
bk

.

Since {ak} and {bk} are 1-regular sequences, it follows that {ak bk} is 1-regular. In
order to show that {ak bk} is 2-regular, we take advantage of the following identity

k2(∆2[ak−1bk−1])
akbk

=
k2(∆2ak−1)

ak

bk+1

bk

+
k2(∆2bk−1)

bk
+

k(∆ak−1)
ak

k[(∆bk) + (∆bk−1)]
bk

.

Since {ak} and {bk} are 2-regular sequences, it follows that {ak bk} is 2-regular. Finally,
using the relation

k3(∆3[ak−2bk−2])
akbk

=
k3(∆3ak−2)

ak

bk+1

bk

+
k2(∆2ak−2)

ak−1

k[ (∆bk) + (∆bk−1) + (∆bk−2)]
bk

ak−1

ak

+
k3(∆3bk−2)

bk
+ 2

k2(∆2bk−2)
bk−1

k(∆ak−1)
ak

bk−1

bk

+
k(∆ak−1)

ak

k2(∆2bk−1)
bk

,

we see that {ak bk} is 3-regular.
Now we note that (iv) is a consequence of (ii) and (iii). Therefore to complete the proof

of the theorem it remains to verify (iii). To this end, observe that k(∆1/ak)
1/ak

= −k(∆ak)
ak

ak
ak+1

.

Since {ak} is a 1-regular sequence, it follows that |ak+1

ak
− 1| 6 M/|k|, k 6= 0, for some

M > 0 , and hence ak/ak+1 → 1 as |k| → ∞. It follows that {1/ak} is 1-regular.
To show 2-regularity, we write

k2(∆2 1/ak−1)
1/ak

=
k[(∆ak) + (∆ak−1)]

ak−1

k(∆ak)
ak+1

− k2(∆2ak−1)
ak−1

.

Finally, to verify 3-regularity, we write
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k3(∆3 1/ak−2)
1/ak

= −ak−1

ak−2

ak

ak−1

ak

ak+1

k3(∆3 ak−2)
ak

+ 3
ak−1

ak−2

ak

ak+1

k(∆ak−1)
ak−1

k2(∆2 ak−1)
ak

− 3
ak

ak+1

k(∆ak−1)
ak−1

k(∆ak−2)
ak−2

k(∆ak)
ak

− 3
ak−2

ak+1

k(∆ak−1)
ak−1

k(∆ak−2)
ak−2

k(∆ak−2)
ak−2

+ 3
ak−1

ak+1

k(∆ak−1)
ak−1

k2(∆2ak−2)
ak−1

.

The result follows immediately. This completes the proof of the theorem.

Remark 4.7. (i) In general, it is not enough to assume that the sequences {ak} and {bk}
are n−regular in order for the sum {ak + bk} to enjoy the same property. For example,
a direct computation shows that ak = ik + e−ik and bk = −ik are 1−regular sequences,
whereas the sequence ak + bk = e−ik is not 1-regular.

(ii) The condition sup
k

∣∣∣∣
ak

ak + bk

∣∣∣∣ < ∞ in Theorem 4.6 is equivalent to sup
k

∣∣∣∣
bk

ak + bk

∣∣∣∣ < ∞.

(iii) We also note that the condition sup
k

∣∣∣∣
ak

ak + bk

∣∣∣∣ < ∞ in Theorem 4.6 is not necessary.

This is evidenced by the following example. Take ak = k, bk = 1 − k, k ∈ Z. Both
sequences are n−regular for all n ∈ N. Also, ak + bk = 1, k ∈ Z is n−regular for all n ∈ N.
Yet, { ak

ak+bk
} is unbounded.

We now present a series of examples which correspond to various classes of equations
that are subsumed under our main results.

Example 4.8. Let ck 6= −1 for all k ∈ Z and define bk = ik
1+ck

. Suppose ck is M -bounded
of order n (n 6 3) and 1

1+ck
is bounded. Since 1 + ck is also M -bounded, it follows from

Proposition 4.4 that 1+ ck is n-regular and then, using Theorem 4.6 (iv) we conclude that
bk is an n-regular sequence (compare [25, p.741]).

Example 4.9. Let c0, γ0, γ∞ ∈ R be given and suppose {ak}, {bk} are M -bounded sequences

of order n (n 6 3) with { 1
c0 − ak

}, { 1
ik(γ0 + bk) + γ∞

} well defined and bounded. Define

dk =
ik(γ0 + bk) + γ∞

c0 − ak
. It follows by Theorem 3.3 and Remark 3.2(iii) that {c0 − ak} and

{ik(γ0 + bk) + γ∞} are M -bounded. Hence from Proposition 4.4 we obtain that the same
sequences are also n-regular. Finally, using Theorem 4.6 (iv) we deduce that {dk} is an
n-regular sequence (compare [24, p.30]).
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Example 4.10. Suppose {ak} is an M -bounded sequence of order n and such that { 1
ak
}

is bounded. Then we obtain from Proposition 4.4 and Theorem 4.6(iv) that dk = −ik
ak

is
an n-regular sequence. This example is important in the scalar case, i.e. with A = I and
X = Cn, as we will see later (cf. [22, Theorem 3.11, p.87]).

5. Well-posedness in Lp spaces

Having presented in the previous sections preliminary material on M -boundedness and
Fourier multipliers we will now show how these tools can be used to handle the integro-
differential equation (1.1).

In this section we proceed to study Lp well posedness of the general integro-differential
equation (1.1). Here we do not assume that A is densely defined but merely that A is
a closed operator. The results give concrete conditions on the measures ν, µ, η as well as
the operator A under which equation (1.1) is strongly well-posed. Special cases that have
been studied before are incorporated into the new framework. In the next section we will
study mild well-posedness in Lp spaces. Strong and mild well-posedness in other scales of
function spaces will be taken up in the subsequent sections.

The definition of strong well-posedness which we investigate in this section is as follows.

Definition 5.1. We say that the problem (1.1) is strongly Lp well-posed (1 6 p <
∞) if for each f ∈ Lp((0, 2π);X) there exists a unique function u ∈ H1

p ((0, 2π);X) ∩
Lp((0, 2π);D(A)) such that (1.1) is satisfied (for almost every t).

The function u in Definition 5.1 will be called the strong Lp solution of equation (1.1).

For a closed operator A in X with domain D(A) and 1 6 p < ∞, we define the operator
A on Lp((0, 2π);X) by D(A) = H1

p ((0, 2π);X) ∩ Lp((0, 2π);D(A)) and

Au = µ ∗ u′ + ν ∗ u− η ∗Au.

Here H1
p ((0, 2π);X) is the vector valued Sobolev space, which is denoted H1 in case p = 2.

Remark 5.2. In terms of the operatorA defined above, Definition 5.1 is equivalent to saying
that it is one-to-one and surjective. By the closed graph theorem, it follows that A has a
continuous inverse B that maps Lp((0, 2π);X) into H1

p ((0, 2π);X) ∩ Lp((0, 2π);D(A)).

We have the following.

Proposition 5.3. Let X be a UMD space and A a closed linear operator defined on X.
Let {ak}k∈Z, {bk}k∈Z be 1-regular sequences such that { bk

ak
} is bounded and {bk}k∈Z ⊂ ρ(A).

Then the following assertions are equivalent
(i) {ak(bkI −A)−1}k∈Z is an Lp-multiplier, 1 < p < ∞.
(ii) {ak(bkI −A)−1}k∈Z is R-bounded.

Proof. Let Mk = ak(bkI −A)−1. By [6, Proposition 1.11], it follows that (i) implies (ii).
Note that { 1

ak
} is 1-regular by Theorem 4.6 (iii). Then the result is a consequence of the

following identity

k(Mk+1 −Mk) = Mk+1
bk

ak+1
k
(bk − bk+1)

bk
Mk − k

1
ak+1

− 1
ak

1
ak

Mk+1.
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When ak = bk we obtain the following special case of Proposition 5.3 which will be used
later (see also [25, Proposition 2.8]). Note that condition (ii) is independent of p ∈ (1, ∞).

Corollary 5.4. Let X be a UMD space and A a closed linear operator defined on X. Let
{bk}k∈Z be a 1-regular sequence such that {bk}k∈Z ⊂ ρ(A). Then the following assertions
are equivalent

(i) {bk(bkI −A)−1}k∈Z is an Lp-multiplier, 1 < p < ∞.
(ii) {bk(bkI −A)−1}k∈Z is R-bounded.

In the remaining part of this section we will assume that η is a finite scalar-valued
measure on R which decomposes as

(5.1) η = aδ0 + ζ,

where a 6= 0 and ζ ∈ M(R,C). We now address strong well posedness of the integro-
differential equation (1.1).

Theorem 5.5. Assume that X is a UMD-space and 1 < p < ∞. Suppose that the se-
quences {ik µ̃(k) + ν̃(k)} and {η̃(k)} are 1-regular. Then the following assertions are
equivalent:

(i) Problem (1.1) is strongly Lp well-posed;

(ii) ikµ̃(k)+ν̃(k)
η̃(k) ⊆ ρ(A) and { ik

η̃(k)(
ikµ̃(k)+ν̃(k)

η̃(k) −A)−1} is an Lp-multiplier;

(iii) ikµ̃(k)+ν̃(k)
η̃(k) ⊆ ρ(A) and { ik

η̃(k)(
ikµ̃(k)+ν̃(k)

η̃(k) −A)−1} is R-bounded.

Proof. Set Mk = ik
η̃(k)

(
ikµ̃(k)+ν̃(k)

η̃(k) −A
)−1

.

(ii) ⇔ (iii). Let ak =
ik

η̃(k)
and bk =

ikµ̃(k) + ν̃(k)
η̃(k)

. From the hypotheses and

Theorem 4.6 we have that {ak} and {bk} are 1−regular sequences. Since
{

bk

ak

}
=

{
µ̃(k) +

ν̃(k)
ik

}

k∈Z\{0}
it follows by the Riemann-Lebesgue lemma that

{
bk

ak

}
is bounded,

the assertion now follows from Proposition 5.3.
(i) ⇔ (ii). Let Nk = 1

η̃(k)(
ikµ̃(k)+ν̃(k)

η̃(k) − A)−1, k ∈ Z. Thus, Mk = ikNk, k ∈ Z. The
solution u is constructed through

(5.2) û(k) = Nkf̂(k), k ∈ Z.

Indeed, as is well known [6, Lemma 2.2], the assumption that Mk is a Lp-multiplier implies
that Nk is an Lp multiplier as well.

Except for the verification that the solution u constructed using multipliers belongs to
Lp((0, 2π);D(A)), the proof follows the same lines as that of [24, Theorem 2.9] (see also
[25]). In fact, by Theorem 4.6(iii) we have that {η̃(k)} is 1-regular. It follows that { 1

η̃(k)}
is 1-regular and since 1

η̃(k) = 1
a+ζ̃(k)

is bounded by Riemann-Lebesgue lemma (cf. also
(5.1)), we obtain by Proposition 4.2 that the latter sequence is M -bounded of order 1.
Hence it is an Lp-multiplier.
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Let
bk

ik
=

1
η̃(k)

[µ̃(k) +
ν̃(k)
ik

]. From hypothesis and Remark 4.7 we have that {bk

ik
}

is 1−regular and bounded, hence it is M−bounded of order 1 and therefore is an Lp-
multiplier.

From the identity

(5.3) ANk =
bk

ik
Mk − 1

η̃(k)
I

we conclude that ANk is an Lp-multiplier. The proof is complete.

From the proof of Theorem 5.5 we deduce the following result on maximal regularity.

Corollary 5.6. The solution u of problem (1.1) given by Theorem 5.5 satisfies the fol-
lowing maximal regularity property: u, u′, Au ∈ Lp((0, 2π);X). Moreover, there exists a
constant C > 0 independent of f ∈ Lp((0, 2π);X) such that

(5.4) ||u||p + ||u′||p + ||Au||p 6 C||f ||p.
The result says that under the assumptions of Theorem 5.5, u, u′ as well as all the terms

in the left hand side of (5.4) belong to Lp with continuous dependence on f. Similarly
µ ∗ u′, ν ∗ u, η ∗Au belong to Lp((0, 2π);X) and for some positive constant K we have

||ν ∗ u||p + ||µ ∗ u′||p + ||η ∗Au||p 6 K||f ||p.
Example 5.7. Consider the equation

(5.5) u′(t) = Au(t) +
∫ t

−∞
c(t− s)Au(s)ds + f(t)

with the boundary condition u(0) = u(2π). This is a special case of equation (1.1) corre-
sponding to µ = δ0, ν = 0, η = δ0 − c(t)χ[0,∞)(t) where we identify an L1 function with
the associated measure. By Example 4.8, it follows that if

(5.6) ck := c̃(k) is M-bounded of order 1,

then by Theorem 5.5, equation (5.5) has a unique strong Lp-solution for every f ∈
Lp(0, 2π; X) if and only if the equivalent conditions (ii) and (iii) of Theorem 5.5 hold.
Hence we recover the results established in [25] in the Lp case (note incidentally that in
that paper, we used c̃ to denote the Laplace transform of c).

Example 5.8. Let γ, τ ∈ R and consider the delay equation

(5.7) u′(t) = Au(t)− γu(t− τ) + f(t), t ∈ R.

This problem is motivated by feedback-systems and control theory, see [7] and the refer-
ences therein. In equation (5.7) the operator A corresponds to the system operator which
is generally assumed to be the generator of a C0-semigroup. The term γu(t − τ) can be
interpreted as the feedback. We note that usually the above equation is studied in the
context of Hilbert spaces. Here we show that our theory applies and we obtain strong well
posedness.

Indeed, here we have µ̃(k) = 1, ν̃(k) = γe−ikτ and η̃(k) = 1. The hypotheses of the
Theorem are easily seen to be satisfied if |γ| /∈ N. More precisely, when X is a UMD space,
problem (5.7) is strongly Lp well posed (1 < p < ∞) if and only if {ik+γe−ikτ}k∈Z ⊂ ρ(A)
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and {ik(ik+γe−ikτ−A)−1}k∈Z is R-bounded. When X is a Hilbert space, the last condition
is equivalent to boundedness of {ik(ik + γe−ikτ − A)−1}k∈Z. For example, if A generates
an analytic semigroup T = {T (t)} of type ω(T ) < −|γ| then is easy to check that this
condition is satisfied.

6. Mild well-posedness in Lp

In this section we study mild solutions of the integro-differential equation (1.1). The
definition of mild solution we adopt here first appeared in Staffans [31] in the context of
mild L2 solutions on Hilbert spaces. For the special equation (1.3), another concept of
mild solution is studied in [6] and its relationship to the present approach is considered in
[26]. Later in this section we will relate the notion of mild solution to the strong solutions
studied in Section 5. This will be done in a natural way by constructing a one parameter
family of concepts of mild solutions.

Definition 6.1. We say that problem (1.1) is (H1
p , Lp) mildly well-posed if there exists a

linear operator B that maps Lp((0, 2π);X) continuously into itself as well as H1
p ((0, 2π);X)∩

Lp((0, 2π);D(A)) into itself and which satisfies

ABu = BAu = u

for all u ∈ H1
p ((0, 2π);X) ∩ Lp((0, 2π);D(A)). In this case the function Bf is called the

(H1
p , Lp) mild solution of (1.1) and B the solution operator.

More specifically, we require that the following diagram be commutative:

where I is the natural injection of H1
p ((0, 2π);X) ∩ Lp((0, 2π);D(A)) into Lp((0, 2π);X).

Clearly, the solution operator B above is unique, if it exists. Next, we characterize mild
solutions using operator valued Fourier multipliers.

Theorem 6.2. Assume that D(A) = X. Let 1 < p < ∞. Assume that η̃(k) 6= 0, for all
k ∈ Z. Then the following assertions are equivalent:

(i) Problem (1.1) is (H1
p , Lp) mildly well-posed ;

(ii) { ikµ̃(k)+ν̃(k)
η̃(k) }k∈Z ⊆ ρ(A) and { 1

η̃(k)(
ikµ̃(k)+ν̃(k)

η̃(k) −A)−1} is an Lp-multiplier.

Proof. (ii) ⇒ (i). Consider dk := ikµ̃(k)+ν̃(k)
η̃(k) , ck = 1

η̃(k) and let B be the operator which
maps f ∈ Lp((0, 2π);X) into the function u ∈ Lp((0, 2π);X) whose kth Fourier coefficient
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is ckR(dk, A)f̂(k), i.e.

(6.1) (̂Bf)(k) = ckR(dk, A)f̂(k) = û(k),

for all k ∈ Z and all f ∈ Lp((0, 2π);X). By the remark following Definition 2.1, B is a
bounded linear operator on Lp((0, 2π);X). Let g ∈ H1

p ((0, 2π);X)∩Lp((0, 2π);D(A)) and
set h = Bg. Then,

(6.2) ikĥ(k) = ckR(dk, A)ikĝ(k) = ckR(dk, A)ĝ′(k),

for all k ∈ Z. Since g′ ∈ Lp((0, 2π);X), by (i) there exists w ∈ Lp((0, 2π);X) such that

(6.3) ŵ(k) = ckR(dk, A)ĝ′(k)

for all k ∈ Z. Hence from (6.2), (6.3) and [6, Lemma 2.1] we obtain h ∈ H1
p ((0, 2π);X).

Note that ĥ(k) ∈ D(A), k ∈ Z since ĥ(k) = ckR(dk, A)ĝ(k) and then AB̂g(k) = B̂Ag(k).
Since by assumption Ag ∈ Lp((0, 2π);X), the closedness of A implies that
ABf ∈ Lp((0, 2π);X), that is Bf ∈ Lp((0, 2π);D(A)).

We have proved that B that maps H1
p ((0, 2π);X) ∩ Lp((0, 2π);D(A)) into itself. Con-

tinuity of B follows from the Closed Graph Theorem since the space H1
p ((0, 2π);X) ∩

Lp((0, 2π);D(A)) embeds continuously into Lp((0, 2π);X).
Finally, for u ∈ H1

p ((0, 2π);X) ∩ Lp((0, 2π);D(A)) we have

(6.4) (̂Au)(k) =
1
ck

(dkI −A)û(k),

for all k ∈ Z. Hence from (6.1) and [6, Lemma 3.1] we obtain ABu = BAu = u.

(i) ⇒ (ii). Let x ∈ X and xn ∈ D(A) such that xn → x. Fix k ∈ Z and let fn(t) = eiktxn

for all n ∈ N and f0(t) = eiktx. Note that f̂n(k) = xn and f̂n(j) = 0 for j 6= k. Clearly
fn → f0 in the Lp-norm as n →∞. Let un = Bfn. Then we have

ikµ̃(k)ûn(k) + ν̃(k)ûn(k)− η̃(k)Aûn(k) = (̂Aun)(k) = ̂(ABfn)(k) = f̂n(k) = xn.

Since B is bounded on Lp((0, 2π);X), un → u0 := Bf0 in the Lp-norm, we conclude that
ûn(k) → û0(k), and

(ikµ̃(k) + ν̃(k)− η̃(k)A)û0(k) = x.

Hence, for all k ∈ Z, (ikµ̃(k) + ν̃(k)− η̃(k)A) is surjective.
Let x ∈ D(A) be such that (ikµ̃(k) + ν̃(k) − η̃(k)A)x = 0, for k ∈ Z fixed. Define

u(t) = eiktx. Then, clearly, u ∈ W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) and Au = 0. Hence

u = BAu = 0,

and therefore x = 0. Since A is closed, we have proved that {dk}k∈Z ⊂ ρ(A).
To verify that (ckR(dk, A))k∈Z is an Lp-multiplier, let f ∈ Lp((0, 2π);X). We observe

that since D(A) = X and 1 6 p < ∞, the space H1
p ((0, 2π);X)∩Lp((0, 2π);D(A)) is dense

in Lp((0, 2π);X). Hence there exists a sequence fn ∈ H1
p ((0, 2π);X) ∩ Lp((0, 2π);D(A))

such that fn → f in the Lp-norm. Define

gn = Bfn, n ∈ N.

Then gn ∈ H1
p ((0, 2π);X) ∩ Lp((0, 2π);D(A)) and

Agn = ABfn = fn, n ∈ N.
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Taking Fourier coefficients and using the fact that {dk}k∈Z ⊂ ρ(A), we obtain from the
above that

(6.5) ĝn(k) = ck(dkI −A)−1f̂n(k)

for all k ∈ Z. Next, we note that {gn}n∈N is a Cauchy sequence in Lp((0, 2π);X). By
continuity of B, there exists g ∈ Lp((0, 2π);X) such that gn → g in the Lp-norm. From
this and using Hölder’s inequality we deduce that ĝn(k) → ĝ(k) and, analogously, f̂n(k) →
f̂(k). Therefore we conclude from (6.5) that ĝ(k) = ck(dkI −A)−1f̂(k), for all k ∈ Z. The
claim is proved.

As a direct consequence of Proposition 5.3 and Theorem 4.6, we obtain the following
result. It is remarkable that in some cases we can characterize mild well posedness in
terms of R-boundedness of resolvents. This phenomenon seems to be new.

Theorem 6.3. Let 1 < p < ∞. Let X be a UMD space and assume that D(A) = X.
Suppose that

(6.6) η̃(k) is 1-regular and ikµ̃(k) + ν̃(k) is 1-regular and bounded.

Then the following assertions are equivalent:
(i) Problem (1.1) is (H1

p , Lp) mildly well-posed ;
(ii) ikµ̃(k)+ν̃(k)

η̃(k) ⊆ ρ(A) and { 1
η̃(k)(

ikµ̃(k)+ν̃(k)
η̃(k) −A)−1} is an Lp-multiplier;

(iii) ikµ̃(k)+ν̃(k)
η̃(k) ⊆ ρ(A) and { 1

η̃(k)(
ikµ̃(k)+ν̃(k)

η̃(k) −A)−1} is R-bounded.

Remark 6.4. Condition 6.6 might seem strong. If we consider ϑ an arbitrary bounded
measure and set µ = 1

2i(ϑπ − ϑ−π), where ϑa denotes the a-translate of ϑ, then we have
µ̃(k) = 0 for all k ∈ Z. Another case is when µ has a density f with respect to the Lebesgue
measure and f ∈ W 1,1(R) = {g ∈ L1(R), g′ ∈ L1(R) in the distributional sense }.
Remark 6.5. Observe that when µ = δ0, ν = 0, η = δ0, condition (6.6) is not satisfied. In
this case, which corresponds to the equation of the first order

(6.7) u′(t) = Au(t) + f(t),

there is no regularization on the first derivative in equation (1.1). This case corresponds
to mild solutions for (6.7) and was investigated in [6]. There, it was observed that they
cannot be characterized in terms of R-boundedness of the set {(ikI −A)−1}k∈Z solely.

Example 6.6. (Renewal equation) We take ν = δ0, µ = 0 and η is chosen such that η̃(k)
is 1-regular. Then, an application of Theorem 4.6 (iii) shows that the assumptions in
Theorem 6.3 are satisfied and we obtain that the integral equation

u = η ∗Au + f

is (H1
p , Lp) mildly well-posed if and only if the equivalent conditions (ii), (iii) in Theorem

6.3 are verified. Note that maximal regularity to the above equation was characterized for
periodic Lp spaces in the scalar case (cf. [22, Theorem 4.7 p.48]). Our result extends such
characterization to the infinite dimensional setting.
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We now introduce a one parameter family of concepts of well-posedness for equation
(1.1). Related notions appear in [31]. In [6], the spaces Hα

p ((0, 2π); X) used below are
also considered but just to obtain continuity and even Hölder continuity of mild solutions
from a different definition.

For 1 < p < ∞ and 0 6 α, We define the space Hα
p ((0, 2π);X) as:

Hα
p ((0, 2π);X) = {f ∈ Lp((0, 2π);X), ∃g ∈ Lp((0, 2π);X) such that ĝ(k) = |k|αf̂(k), k ∈ Z}.
We note due to the UMD property (more precisely the continuity of the Hilbert trans-

form on Lp((0, 2π);X), we have

(6.8) Wm,p((0, 2π);X) = Hm
p ((0, 2π); X), for 1 < p < ∞ and m ∈ N ∪ {0}

(see for example [32, Chapter III], [1] and for the relationship with intermediate spaces, see
[13, Chapter IV, especially Section 4.4, p.272]). Now we give the definition of (H1

p ,H1−α
p )

well-posedness.

Definition 6.7. Let 0 6 α 6 1. We say that the problem (1.1) is (H1
p ,H1−α

p ) mildly
well-posed if there exists a linear operator B that maps Lp((0, 2π);X) continuously into
itself with range in H1−α

p ((0, 2π); X), as well as H1
p ((0, 2π);X) ∩ Lp((0, 2π);D(A)) into

itself and which satisfies

ABu = BAu = u

for all u ∈ H1
p ((0, 2π);X) ∩ Lp((0, 2π);D(A)).

This means that in the diagram following Definition 6.1, we replace Lp((0, 2π);X) in
the upper right corner with H1−α

p ((0, 2π);X). Thanks to the Closed Graph Theorem, this
means that B is continuous from Lp((0, 2π);X) into H1−α

p ((0, 2π);X).
We have the following result.

Theorem 6.8. Assume that D(A) = X. Let 1 < p < ∞ and 0 6 α 6 1. Assume that
η̃(k) 6= 0, for all k ∈ Z. Then the following assertions are equivalent:

(i) Problem (1.1) is (H1
p ,H1−α

p ) mildly well-posed ;

(ii) { ikµ̃(k)+ν̃(k)
η̃(k) }k∈Z ⊆ ρ(A) and { (ik)1−α

η̃(k) ( ikµ̃(k)+ν̃(k)
η̃(k) −A)−1} is an Lp-multiplier.

Proof. The proof is a modification of the proof of Theorem 6.2 and we omit it.

Remark 6.9. When α = 1, Theorem 6.8 corresponds to Theorem 6.2 and when α = 0 the
concept of solution that appears in the new context differs from that of strong solution
covered by Theorem 5.5. The main difference is that in the new context we do not require
that the solution operator B map into Lp((0, 2π), D(A)). However, in some cases, the
requirement that the range of B be in H1

p automatically implies that B also maps into
Lp((0, 2π), D(A)). Such is the case for the assumptions of Theorem 6.2. A specific example
is equation (6.7) for which the analysis was done in [26]. There, we also justified why it is
reasonable to assume that 0 6 α 6 1.

The next theorem characterizes (H1
p ,H1−α

p ) mild well-posedness.
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Theorem 6.10. Let 1 < p < ∞, 0 6 α 6 1 and X a UMD space. Assume that D(A) = X
and η̃(k) 6= 0, for all k ∈ Z and

(6.9) η̃(k) is 1-regular and (ik)αµ̃(k) +
ν̃(k)

(ik)1−α
is 1-regular and bounded.

Then the following assertions are equivalent:
(i) Problem (1.1) is (H1

p ,H1−α
p ) mildly well-posed ;

(ii) { ikµ̃(k)+ν̃(k)
η̃(k) }k∈Z ⊆ ρ(A) and { (ik)1−α

η̃(k) ( ikµ̃(k)+ν̃(k)
η̃(k) −A)−1} is an Lp-multiplier;

(iii) { ikµ̃(k)+ν̃(k)
η̃(k) }k∈Z ⊆ ρ(A) and { (ik)1−α

η̃(k) ( ikµ̃(k)+ν̃(k)
η̃(k) −A)−1} is R-bounded.

Proof. Thanks to (6.9) we can use Proposition 5.3 to prove the equivalence between (ii)
and (iii). The equivalence between (i) and (ii) follows from Theorem 6.8.

Example 6.11. Consider the equation

(6.10) u′(t) =
∫ ∞

−∞
Au(t− s)η(ds) + f(t).

This case corresponds to equation (1.1) with µ = δ0, ν = 0 and η a bounded measure. It
follows from Theorem 6.10 with α = 0 that if

(6.11) ak := η̃(k) is 1-regular,

then equation (6.10) is (H1
p ,H1

p ) mildly well-posed if and only if the equivalent conditions
(ii) and (iii) hold. Hence we extend the results established in [22, Theorem 3.11, p.87] to
the vector-valued Lp case.

Example 6.12. Let a > 0 and γ > −1. We take in (1.1) µ(dt) =
1

Γ(γ + 1)
tγe−atdt (t > 0)

and µ(t) = 0 for t < 0; ν = 0 and η a bounded measure. In this case equation (1.1),
which reads µ ∗ u′ = η ∗ Au + f , is (H1

p , Lp) mildly well-posed if γ > α − 1, γ > −1
and one of the equivalent conditions (ii) or (iii) is satisfied. We note that in this case

µ̃(k) =
1

(ik + a)γ+1
.

In case α = 0 we have

Proposition 6.13. Assume that either A is bounded or 1
η̃(k) is an Lp-multiplier. Then,

problem (1.1) is (H1
p ,H1

p ) mildly well-posed if and only if problem (1.1) is strongly Lp

well-posed.

Proof. Suppose problem (1.1) is (H1
p ,H1

p ) mildly well-posed. In case A is bounded,
we note that D(A) = H1

p ((0, 2π);X) and the assertion follows. On the other hand, let
Nk and Mk be as in the proof of Theorem 5.5. By Theorem 6.8 we have that Mk is
an Lp-multiplier. When 1

η̃(k) is an Lp-multiplier, the identity (5.3) and the fact that
dk

ik
=

1
η̃(k)

[µ̃(k) +
ν̃(k)
ik

] show that ANk is an Lp-multiplier as well(see Example 2.3).

Then the solution u, defined by (5.2), satisfies Au ∈ Lp((0, 2π), X) and hence the range
of B is contained in H1

p ((0, 2π);X) ∩ Lp((0, 2π);D(A)), proving the proposition.
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We point out that several concrete criteria for R−boundedness have been established
(see e.g. [18], [21] and [6]).

7. Well posedness on Besov spaces

In this section we consider solutions in Besov spaces. For the definition and main
properties of these spaces we refer to [5] or [24]. For the scalar case, see [13], [29]. Contrary
to the Lp case the multiplier theorems established so far are valid for arbitrary Banach
spaces; see [2], [5] and [20]. Special cases here allow one to treat Hölder-Zygmund spaces.
Specifically, we have Bs∞,∞ = Cs for s > 0. Moreover, if 0 < s < 1 then Bs∞,∞ is just the
usual Hölder space Cs. We begin with the definition of operator valued Fourier multipliers
in the context of Besov spaces.

Definition 7.1. Let 1 6 p 6 ∞. A sequence {Mk}k∈Z ⊂ B(X) is a Bs
p,q-multiplier if for

each f ∈ Bs
p,q((0, 2π);X) there exists a function g ∈ Bs

p,q((0, 2π);X) such that

Mkf̂(k) = ĝ(k), k ∈ Z.

The following general multiplier theorem for periodic vector-valued Besov spaces is due
to Arendt and Bu [5, Theorem 4.5].The continuous case (multipliers on the real line) was
studied by Amann [2] and later by Girardi and Weis [20].

Theorem 7.2. (i) Let X be a Banach space and suppose that {Mk}k∈Z ⊂ B(X) is
M -bounded of order 2. Then for 1 6 p, q 6 ∞ , s ∈ R , {Mk}k∈Z is a Bs

pq−multiplier.
(ii) Let X be a Banach space with nontrivial Fourier type. Then any sequence {Mk}k∈Z ⊂

B(X) which is M -bounded of order 1 is a Bs
pq−multiplier for all 1 6 p, q 6 ∞ , s ∈ R.

The analogue of Proposition 5.3 in the present context is:

Proposition 7.3. Let A be a closed linear operator defined on the Banach space X. Let
{ak}k∈Z, {bk}k∈Z be 2-regular sequences such that { bk

ak
} is bounded and {bk}k∈Z ⊂ ρ(A).

Then the following assertions are equivalent
(i) {ak(bkI −A)−1}k∈Z is a Bs

p,q-multiplier, 1 6 p 6 ∞, 1 6 q 6 ∞, s ∈ R,

(ii) {ak(bkI −A)−1}k∈Z is bounded.

Proof. Let Mk = ak(bkI − A)−1. By [6, Proposition 1.11], it follows that (i) implies
(ii). We turn to (ii) implies (i). The part corresponding to 1-regularity is contained in
Proposition 5.3. To complete the verification of 2-regularity we use the following identity

k2 (Mk+1 − 2Mk + Mk−1) = k2 (ak+1 − 2ak + ak−1)
1

ak+1
Mk+1

− 2 k[
ak − ak−1

ak
] k

1
ak−1

(bk+1 − bk) Mk Mk−1

− k2 1
ak

(bk+1 − 2bk + bk−1) Mk Mk−1
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+2 k
1

ak+1
(bk+1 − bk) k

1
ak−1

(bk+1 − bk−1) Mk+1 Mk Mk−1

− k
1
ak

(bk+1 − bk) k
1

ak+1
(bk+1 − bk−1) Mk+1 Mk Mk−1.

We remark that the case ak = bk was proved in [25, Proposition 3.4].
Next, we consider strong well-posedness for equation (1.1).

Definition 7.4. We say that problem (1.1) is strongly Bs
p,q well-posed if for each f ∈

Bs
p,q((0, 2π);X) there exists a unique function u ∈ Bs+1

p,q ((0, 2π);X) ∩ Bs
p,q((0, 2π);D(A))

and (1.1) is satisfied almost everywhere.

As above, we call u the strong solution of (1.1). As in section 5, in what follows we will
assume that η is a finite scalar-valued measure on R which decomposes as η = aδ0+ζ, where
a 6= 0 and ζ ∈ M(R,C). Strong well posedness of (1.1) in the Bs

p,q spaces is established in
the following theorem.

Theorem 7.5. Let 1 6 p, q 6 ∞ , s ∈ R. Suppose that the sequences {ik µ̃(k) + ν̃(k)}
and {η̃(k)} are 2-regular. Then the following assertions are equivalent:

(i) Problem (1.1) is strongly Bs
p,q well-posed;

(ii){ ikµ̃(k)+ν̃(k)
η̃(k) } ⊆ ρ(A) and { k

η̃(k)(
ikµ̃(k)+ν̃(k)

η̃(k) −A)−1} is a Bs
p,q-multiplier;

(iii) { ikµ̃(k)+ν̃(k)
η̃(k) } ⊆ ρ(A) and { k

η̃(k)(
ikµ̃(k)+ν̃(k)

η̃(k) −A)−1} is bounded.

Proof. The proof follows the same lines as the proof of Theorem 5.5 using Proposition 7.3
with ak = bk instead of Corollary 5.4 and making use of the properties on M -boundedness
of order 2 and 2- regularity for sequences established in Section 4 and Section 5.

Example 7.6. In reference to Example 4.9 we consider the following integro-differential
equation with infinite delay studied in [24]

(7.1)





γ0u
′(t) +

d

dt
(
∫ t

−∞
b(t− s)u(s)ds) + γ∞u(t)

= c0Au(t)−
∫ t

−∞
a(t− s)Au(s)ds + f(t), 0 6 t ∈ R,

where γ0, γ∞, c0 are constants and a(·), b(·) ∈ L1(R+). In [24], strong well-posedness on
periodic Besov spaces for equation (7.1) was characterized as in Theorem 7.5 (see [24,
Theorem 3.12]) under a set of conditions which we reformulate as

(IDE1) { 1
c0 − ak

}k∈Z is a bounded sequence.

(IDE2) {ak} and {bk} are M -bounded of order 2

(IDE3) {kak} and {kbk} are bounded sequences.

One easily checks that Theorem 7.5 applies under (IDE1) and (IDE2) and that (IDE3)
is not needed.
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We observe here that the removal of condition (IDE3) is due to Proposition 7.3. As
a consequence the hypotheses are formulated entirely in terms of M−boundedness and
n-regularity.

The particular case of equation (7.1) with γ∞ = 0 and c0 = γ∞ = 1 and b ≡ 0 was
considered in [25, Theorem 3.9]. From the above, we conclude that there, we only need
the condition

(7.2) {ak} is M-bounded of order 2

in order to have the characterization of strong well-posedness. It shows that the set of
conditions imposed in Theorem 7.5 are in some sense more natural, giving an improvement
of the above mentioned papers.

In analogy to mild solutions in the Lp case we proceed to define mild Bs
p,q solutions.

Definition 7.7. Let 1 6 p, q 6 ∞ and s > 0. We say that the problem (1.1) is (Bs+1
p,q , Bs

p,q)
mildly well-posed if there exists a linear operator B that maps Bs

p,q((0, 2π);X) continuously
into itself as well as Bs+1

p,q ((0, 2π);X) ∩Bs
p,q((0, 2π);D(A)) into itself and which satisfies

ABu = BAu = u

for all u ∈ Bs+1
p,q ((0, 2π);X) ∩ Bs

p,q((0, 2π);D(A)). In this case the function Bf is called
the (Bs+1

p,q , Bs
p,q) mild solution of (1.1) and B the associated solution operator.

The following result follows directly from Proposition 7.3 and Theorem 4.6.

Theorem 7.8. Let 1 6 p, q 6 ∞, s > 0 and X a Banach space. Assume that D(A) = X
and

(7.3) η̃(k) is 2-regular and ikµ̃(k) + ν̃(k) is 2-regular and bounded.

Then the following assertions are equivalent:
(i) Problem (1.1) is (Bs+1

p,q , Bs
p,q) mildly well-posed ;

(ii) { ikµ̃(k)+ν̃(k)
η̃(k) }k∈Z ⊆ ρ(A) and { 1

η̃(k)(
ikµ̃(k)+ν̃(k)

η̃(k) −A)−1} is a Bs
p,q-multiplier;

(iii) { ikµ̃(k)+ν̃(k)
η̃(k) }k∈Z ⊆ ρ(A) and { 1

η̃(k)(
ikµ̃(k)+ν̃(k)

η̃(k) −A)−1} is bounded.

Remark 7.9. When the space X has non trivial Fourier type, then the assumptions of
M -boundedness of order 2 and 2-regularity in Theorems 7.5 and 7.8 can be replaced by
M -boundedness of order 1 and 1-regularity respectively.

8. Well posedness on Triebel-Lizorkin spaces

In this section we study strong and mild well-posedness of problem (1.1) on the scale of
Triebel-Lizorkin spaces of vector-valued functions. The important feature in this case, as
in the context of Besov spaces, is that the results do not use R−boundedness but merely
boundedness conditions on resolvents. In concrete applications, one can therefore handle
operators on familiar spaces like C(Ω), the Schauder spaces Cs(Ω), 0 < s < 1 and L1(Ω)
where Ω is a bounded open subset of Rn. These spaces are not UMD, and are not even
reflexive. The price to pay is that when p = 1 or q = 1 then one needs a Marcinkiewicz
estimate of order 3 whereas, for the Besov scale, order 2 is enough.

We briefly recall the definition of periodic Triebel-Lizorkin spaces in the vector valued
case used in (see [11]). For the scalar case, these spaces have been studied for a long time,
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see Triebel[33, Chapter II, Section 9], Schmeisser-Triebel [29] and references therein. A
vector-valued Fourier multiplier in the Triebel-Lizorkin scale appears in [32, Chapter 3,
Section 15.6].

Let S be the Schwartz space on R and let S ′ be the space of all tempered distributions
on R. Let Φ(R) be the set of all systems φ = {φj}j>0 ⊂ S satisfying

supp(φ0) ⊂ [−2, 2]

supp(φj) ⊂ [−2j+1,−2j−1] ∪ [2j−1, 2j+1], j > 1∑

j>0

φj(t) = 1, t ∈ R

and for α ∈ N ∪ {0}, there exists Cα > 0 such that

(8.1) sup
j>0,x∈R

2αj ||φ(α)
j (x)|| 6 Cα.

Recall that such a system can be obtained by choosing φ ∈ S(R) with

supp(φ0) ⊂ [−2, 2]

and φ0(x) = 1 if ‖x‖ 6 1, then setting φ1(x) = φ0(x/2)−φ0(x) and φj(x) = φ1(2j−x), j >
2.

Let 1 6 p < ∞, 1 6 q 6 ∞, s ∈ R and φ = (φj)j>0 ∈ Φ(R). The X−valued periodic
Triebel-Lizorkin spaces are defined by

F s,φ
p,q = {f ∈ D′(T; X) : ||f ||

F s,φ
p,q

= ‖(
∑

j>0

2sjq||
∑

k∈Z
ek ⊗ φj(k)f̂(k)||q)1/q‖p < ∞}.

The usual modification is adopted when q = ∞.

Here (ek⊗x)(t) := eitx, t ∈ [0, 2π]. The space F s,φ
p,q is independent of φ ∈ Φ(R) and the

norms || · ||
F s,φ

p,q
are equivalent. We will simply denote || · ||

F s,φ
p,q

by || · ||F s
p,q

.

We remark that when X is a Banach space, the scale of Triebel-Lizorkin spaces does not
in general contain the Lp scale. In fact, the Littlewood-Paley assertions F 0

p,2((0, 2π);X) =
Lp((0, 2π);X), 1 < p < ∞ hold if and only if X can be renormed as a Hilbert space.
This follows from [28]. In the scalar case, the well-known assertions may be found in [32,
Chapter 3, Section 10]. For the non validity of the Littlewood-Paley assertions in the
vector-valued case, see also the introduction to [11].

Note that F s
p,p((0, 2π);X) = Bs

p,p((0, 2π);X). This relation is true when X is the scalar
field C (see [29, Remark 4, p.164]). Using the definitions of the spaces one easily sees that
the relation remains true in the vector-valued case.

Definition 8.1. Let 1 6 p < ∞. A sequence {Mk}k∈Z ⊂ B(X) is an F s
p,q-multiplier if, for

each f ∈ F s
p,q((0, 2π);X) there exists a function g ∈ F s

p,q((0, 2π);X) such that

Mkf̂(k) = ĝ(k), k ∈ Z.

The following multiplier theorem for periodic vector-valued Triebel-Lizorkin spaces is
due to Bu and Kim [11, Theorem 3.2 and Remark 3.4].

Theorem 8.2. Let X be a Banach space and suppose {Mk}k∈Z ⊂ B(X). Then the
following assertions hold.
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(1) Assume that {Mk}k∈Z is M -bounded of order 3. Then for 1 6 p < ∞, 1 6 q 6
∞, s ∈ R , {Mk}k∈Z is an F s

p,q−multiplier.

(2) Assume that {Mk}k∈Z is M -bounded of order 2. Then for 1 < p < ∞, 1 < q 6
∞, s ∈ R , {Mk}k∈Z is an F s

p,q−multiplier.

Remark 8.3. When p = q the assertion (2) of Theorem 8.2 holds true for {Mk}k∈Z M -
bounded of order 2. Moreover if X has nontrivial Fourier type, M -boundedness of order 1
suffices. This follows from the relation F s

p,p((0, 2π);X) = Bs
p,p((0, 2π);X) and [5, Theorems

4.2 and 4.5] (see also [20]).

The following result was proved in [10, Theorem 2.2].

Proposition 8.4. Let X be a Banach space and A a closed linear operator defined on
X. Let {bk}k∈Z be a 3-regular sequence such that {bk}k∈Z ⊂ ρ(A). Then the following
assertions are equivalent

(i) {bk(bkI −A)−1}k∈Z is an F s
p,q-multiplier, 1 6 p 6 ∞, 1 6 q < ∞, s ∈ R,

(ii) {bk(bkI −A)−1}k∈Z is bounded.

In case p = q the same observations as in Remark 8.3 allow us to simplify the hypotheses
of Proposition 8.4.

We have the following extension of this result (in analogy to Proposition 5.3 and Propo-
sition 7.3).

Proposition 8.5. Let X be a Banach space and A a closed linear operator defined on
X. Let {ak}k∈Z, {bk}k∈Z be 3-regular sequences such that {bk}k∈Z ⊂ ρ(A). Suppose that
{bk/ak} is bounded. Then the following assertions are equivalent

(i) {ak(bkI −A)−1}k∈Z is an F s
p,q-multiplier, 1 6 p 6 ∞, 1 6 q < ∞, s ∈ R,

(ii) {ak(bkI −A)−1}k∈Z is bounded.

Proof. Let Mk = ak(bk − A)−1 and Nk = bk(bk − A)−1. Note that Nk =
bk

ak
Mk. Since

by hypothesis {Mk} and {bk/ak} are bounded, we obtain that {Nk}k∈Z is bounded.
From the proofs of Proposition 5.3 and Proposition 7.3 we obtain that

sup
k∈Z

||Mk|| < ∞, sup
k∈Z

||k∆(Mk)|| < ∞ and sup
k∈Z

||k2∆2(Mk)|| < ∞.

Hence in order to prove that {Mk} is M−bounded of order 3, we need only check
that sup

k∈Z
||k3∆3(Mk)|| < ∞. In fact, from the proof of Theorem 3.3 part (iii) (writing

Nk = bk
ak

Mk, k ∈ Z), we have that

∆3(Mk) = ∆3

(
ak

bk
Nk

)
= ∆3

(
ak

bk

)
Nk+3 + ∆2

(
ak

bk

)
[∆(Nk+2) + ∆(Nk+1) + ∆(Nk)]

+ ∆3(Nk)
ak+2

bk+2
+ 2∆

(
ak+1

bk+1

)
∆2(Nk) + ∆

(
ak+1

bk+1

)
∆2(Nk+1).
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where, each term in the right hand side of the above identity can be handled separately
as follows.

∆3

(
ak

bk

)
Nk+3 =

∆3(ak/bk)
ak+2/bk+2

bk+3

bk+2

ak+2

ak+3
Mk+3 ,

∆2

(
ak

bk

)
∆(Nk+2) =

∆2(ak/bk)
ak+1/bk+1

[
∆(bk+2)

bk+1

ak+1

ak+3
Mk+3 − bk+3

bk+1

ak+1

ak+3

bk+2

ak+2
Mk+3

∆(bk+2)
bk+3

Mk+2

]
,

∆2

(
ak

bk

)
∆(Nk+1) =

∆2(ak/bk)
ak+1/bk+1

[
∆(bk+1)

bk+1

ak+1

ak+2
Mk+2 − bk+2

ak+2
Mk+2

∆(bk+1)
bk+2

Mk+1

]
,

∆2

(
ak

bk

)
∆(Nk) =

∆2(ak/bk)
ak+1/bk+1

[
∆(bk)
bk+1

Mk+1 − bk

ak
Mk+1

∆(bk)
bk+1

Mk

]
,

∆3(Nk)
ak+2

bk+2
= −∆3(bk)

bk+2
Mk+2 (Nk+1 − I)

+
∆2(bk+1)

bk+2

∆(bk+2) + ∆(bk+1) + ∆(bk)
bk+3

Mk+2Nk+3(Nk+1 − I)

+
∆2(bk)
bk+2

∆(bk+2) + ∆(bk+1) + ∆(bk)
bk+3

Mk+2Nk+3(Nk − I)

−2
∆(bk)
bk+1

∆(bk+1)
bk+2

∆(bk+2) + ∆(bk+1) + ∆(bk)
bk+3

Nk+1Mk+2Nk+3(Nk − I),

∆
(

ak+1

bk+1

)
∆2(Nk) =

∆(ak+1/bk+1)
ak+1/bk+1

∆(bk)
bk

∆(bk+1) + ∆(bk)
bk+1

Mk+1Nk(Nk+2 − I)

−∆(ak+1/bk+1)
ak+1/bk+1

∆2(bk)
bk+1

Mk+1(Nk+2 − I).

∆
(

ak+1

bk+1

)
∆2(Nk+1) =

∆(ak+1/bk+1)
ak+1/bk+1

∆(bk+1)
bk+1

∆(bk+2) + ∆(bk+1)
bk+2

Nk+2Mk+1(Nk+3 − I)

−∆(ak+1/bk+1)
ak+1/bk+1

bk+2

bk+1

ak+1

ak+2

∆2(bk+1)
bk+2

Mk+2(Nk+3 − I).

Then a moment of reflection shows that the assertion follows from the hypothesis and
Theorem 4.6 (see also the observation after Definition 4.1).

Definition 8.6. We say that the problem (1.1) is strongly F s
p,q well-posed if for each

f ∈ F s
p,q((0, 2π);X) there exists u ∈ F s+1

p,q ((0, 2π);X) ∩ F s
p,q((0, 2π);D(A)) such that (1.1)

is satisfied.
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We now discuss the conditions on the parameters appearing in equation (1.1) which
ensure that the above theorem applies. As in section 5, we assume that η is a finite scalar-
valued measure on R which decomposes as η = aδ0 + ζ, where a 6= 0 and ζ ∈ M(R,C).

Theorem 8.7. Let Then for 1 6 p < ∞, 1 6 q 6 ∞, s ∈ R. Suppose that the sequences
{ik µ̃(k) + ν̃(k)} and {η̃(k)} are 3-regular. Then the following assertions are equivalent:

(i) Problem (1.1) is strongly F s
p,q well-posed;

(ii){ ikµ̃(k)+ν̃(k)
η̃(k) } ⊆ ρ(A) and { ik

η̃(k)(
ikµ̃(k)+ν̃(k)

η̃(k) −A)−1} is an F s
p,q-multiplier;

(iii) { ikµ̃(k)+ν̃(k)
η̃(k) } ⊆ ρ(A) and { ik

η̃(k)(
ikµ̃(k)+ν̃(k)

η̃(k) −A)−1} is bounded.

Proof. (ii) ⇔ (iii). The assertion follows from hypothesis, Remark 4.7 and Proposition
8.5. The equivalence (ii) ⇔ (iii) is shown in the same way as the analogous parts of
Theorem 7.5 and Theorem 5.5

We note that when p > 1, the requirement can be relaxed to 2−regularity for the
sequences {ik µ̃(k) + ν̃(k)} and {η̃(k)}.

Finally, we observe that one can study mild solutions in this context as well.

9. Application to nonlinear equations

In this section, we apply the above results to nonlinear equations in Banach and Hilbert
spaces. We consider three situations where equations can be solved by the method of
maximal regularity. One corresponds to Theorem 9.1 leading in which one deals with a
semi-linear problem. Such problem were previously considered in [24] in Hölder spaces.
We cover here the complete scale of Lebesgue, Besov and Triebel-Lizorkin spaces. The
second application uses a method based on [15, Theorem 4.1] to solve a nonlinear integro-
differential equation. The third application is concerned with semi-linear equations in
Hilbert spaces (Theorem 9.6) corresponds to an extension of Staffans [31]. One of the main
assumptions made in Theorem 9.6 below is that A has compact resolvent. Typically, this
occurs in problems involving elliptic operators on bounded domains in Rn with appropriate
boundary conditions. Such equations arise in heat conduction of materials with memory.

As already indicated, linear results on maximal regularity are very useful in dealing
with non linear problems. For example the following problem was considered in [24], [30].

(9.1)





d

dt
(γ0u(t, x) +

∫ t

−∞
b(t− s)u(s, x)ds) + γ∞u(t, x) =

c0∆u(t, x)−
∫ t

−∞
a(t− s)Au(s)ds + g(x, u(t, x)) + f(t, x), x ∈ Ω.

Here, Ω ⊂ Rn is open and bounded, and ∆ =
n∑

j=1

∂

∂x2
j

is the Laplace operator with

Dirichlet boundary conditions on X = C(Ω). The positive constants γ0 and c0 represent
the heat capacity and the thermal conductivity respectively, for the material under study
(See e.g. [30] where Hölder continuous solutions on the real line are considered).
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Let X be a Banach space and µ, ν , η be bounded measures. We shall say that a closed
linear operator A belongs to the class K(X) if

(9.2) { ikµ̃(k) + ν̃(k)
η̃(k)

}k∈Z ⊆ ρ(A) and sup
k∈Z

|| ik

η̃(k)
(
ikµ̃(k) + ν̃(k)

η̃(k)
−A)−1|| < ∞.

On the other hand, we say that A belongs to the class KR(X) if

(9.3) { ikµ̃(k) + ν̃(k)
η̃(k)

}k∈Z ⊆ ρ(A) and { ik

η̃(k)
(
ikµ̃(k) + ν̃(k)

η̃(k)
−A)−1}k∈Z is R−bounded .

Given m ∈ {1, 2, 3}, we will say that µ, ν, η are m-admissible if the sequences {ik µ̃(k) +
ν̃(k)} and {η̃(k)} are m-regular, and η is a finite scalar-valued measure on R and we
decompose η as η = aδ0 + ζ, where a 6= 0 and ζ ∈ M(R,C).

We consider the semi-linear problem:

(9.4) (µ ∗ u′)(t) + (ν ∗ u)(t)− (η ∗Au)(t) = G(u)(t) + ρf(t), 0 6 t 6 2π,

with periodic boundary conditions. Here ρ > 0 is a small parameter and G is a nonlinear
mapping.

Suppose a ∈ L1(R) and b ∈ W 1,1(R). Note that equation (9.1) with periodic boundary
conditions corresponds to problem (9.4), where we have µ = γ0δ0, ν = (γ∞ + b(0))δ0 +
b′(t)χ[0,∞)(t) and η = −c0δ0 + a(t)χ[0,∞)(t). By Theorem 4.6 it follows that under the
hypothesis of n-regularity of ã(k) and b̃(k) we have that µ, η, ν are n- admissible (n =
1, 2, 3). In such case, for example condition (9.2) read as

(9.5) {dk}k∈Z ⊆ ρ(∆) and sup
k∈Z

|| ik

ã(k)− c0
(dk −∆)−1|| < ∞.

where dk := ik(γ0+b̃(k))+(γ∞+b(0))
ã(k)−c0

.

The following result deals with the general situation.

Theorem 9.1. Let X be a UMD space and suppose A ∈ KR(X); µ, η, ν are 1- admissible.
Furthermore, assume that 1 < p < ∞ and

(i) G maps H1
p ((0, 2π); X)∩Lp((0, 2π); D(A)) into Lp((0, 2π); X) and f ∈ Lp((0, 2π); X).

(ii) G(0) = 0; G is continuously (Fréchét) differentiable at u = 0 and G′(0) = 0.

Then there exists ρ∗ > 0 such that the equation (9.4) is solvable for each ρ ∈ [0, ρ∗),
with solution u = uρ ∈ Lp((0, 2π);X).

Proof. Define the operator L0 : H1
p ((0, 2π); X) ∩Lp((0, 2π); D(A)) → Lp((0, 2π); X)

where as usual, D(A) is endowed with the graph norm, by:

(9.6) (L0u)(t) = (µ ∗ u′)(t) + (ν ∗ u)(t)− (η ∗Au)(t)

Since A is closed, the space Z := H1
p ((0, 2π); X)∩Lp((0, 2π); D(A)) becomes a Banach

space with the norm

(9.7) ||u||Z = ||u||p + ||u′||p + ||Au||p.
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By hypothesis and Theorem 5.5 it follows that L0 is an isomorphism onto. We consider
for ρ ∈ (0, 1), the one-parameter family of problems:

(9.8) H[u, ρ] = −L0u + G(u) + ρf = 0.

Keeping in mind that G(0) = 0, we see that H[0, 0] = 0. Also, by hypothesis, H is contin-
uously differentiable at (0, 0). Since L0 is an isomorphism, the partial Fréchet derivative
H1

(0,0) = L0 is invertible. The conclusion of the theorem now follows from the implicit
function theorem (see [19, Theorem 17.6]).

¤
Remark 9.2. When X is an arbitrary Banach space, an analogous result holds for the
cases Besov or Triebel-Lizorkin spaces. In such cases we have to assume for the kernels
µ, η, ν the hypothesis of 2 or 3 admissibility, respectively.

Specifically, for the Besov case, we have:

Theorem 9.3. Let 1 6 p, q 6 ∞ and set s > 0. Let X be a Banach space and suppose
A ∈ K(X) and µ, η, ν are 2- admissible. Assume that

(i) G maps Bs
p,q((0, 2π); X) ∩ Bs+1

p,q ((0, 2π); D(A)) into Bs
p,q((0, 2π); X) and f ∈

Bs
p,q((0, 2π); X).
(ii) G(0) = 0; G is continuously (Fréchét) differentiable at u = 0 and G′(0) = 0.
Then there exists ρ∗ > 0 such that the equation (9.4) is solvable for each ρ ∈ [0, ρ∗),

with solution u = uρ ∈ Bs
p,q((0, 2π);X).

Let a ∈ R \ {0}, 0 < α < 1 and b ∈ L1(R, |t|αdt) ∩ L1
loc(R). Let D be a Banach

space continuously imbedded in X and let G : D → X be a nonlinear mapping. Let
g ∈ Cα((0, 2π);X). We consider next the following nonlinear integral equation:

(9.9) u(t) =
∫ t

−∞
b(t− s)(G(u(s)) + g(s))ds + aG(u(t)) + ag(t), t > 0,

with the boundary condition u(0) = u(2π). In case a = 0, existence and regularity of
solutions for equation (9.9) (on the line), in several vector valued spaces, has been studied
in [15] under the assumption that A := G′(0) generates an analytic semigroup.

Define T : Cα((0, 2π);X) → Cα((0, 2π);X) by

(9.10) T (v) = η ∗ v

where η = b(t)χ[0,∞)(t) + aδ0 (we identify an L1 function with the associated measure).

Proposition 9.4. Suppose {b̃(k)}k∈Z is 2-regular and b̃(k) + a 6= 0 for all k ∈ Z. Then T
defined as above is an isomorphism of Cα((0, 2π);X).

Proof. Suppose T (v) = 0. By (2.1) we have, for all k ∈ Z
T̂ (v) = η̂ ∗ v(k) = η̃(k)v̂(k) = (b̃(k) + a)v̂(k) = 0.

Then v̂(k) = 0 for all k ∈ Z, i.e. v = 0. Note that b ∈ L1(R) and thus, by the Riemann-
Lebesgue lemma, we have lim|s|→∞ b̃(s) = 0.

Define Mk =
1

b̃(k) + a
I. Let k ∈ N. It is not difficult to see, using the results of

Section 4 (specifically Proposition 4.2 and Theorem 4.6), that (Mk) is M -bounded of
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order 2 if {b̃(k)}k∈Z is 2-regular. In particular, it follows from Theorem 8.2 that (Mk) is
a Cα-multiplier. Let f ∈ Cα((0, 2π);X). Then there exists u ∈ Cα((0, 2π);X) such that
û(k) = Mkf̂(k) = 1

b̃(k)+a
f̂(k), for all k ∈ Z. This proves that u ∈ Cα((0, 2π);X) satisfies

T (u) = f.

Other conditions under which T defined as above is an isomorphism (in case a = 0)
have been studied in [15, Proposition 2.1].

Theorem 9.5. Suppose that T is an isomorphism and G : D → X is continuously
(Frechét) differentiable with G(0) = 0. Let A := G′(0) and assume that A is a closed oper-
ator with domain D(A) = D dense in X. Suppose moreover that A ∈ K(X) and {b̃(k)}k∈Z
is 2- regular. Then there exist r > 0, s > 0 such that for each g ∈ Cα((0, 2π);X) satisfying
||g||α < r the equation (9.9) has a unique solution u ∈ Cα+1((0, 2π);X)∩Cα((0, 2π);D(A))
verifying the estimate

||u||Cα+1((0,2π);X) + ||u||Cα((0,2π);D(A)) 6 s.

Proof. Define the mapping F : Cα+1((0, 2π);X) ∩ Cα((0, 2π);D(A)) → Cα((0, 2π);X)
by

F (u)(t) = T−1(u)(t)−G(u(t)),

where T is defined by (9.10).
Since T is an isomorphism, we see that equation (9.9) is equivalent to

(9.11) F (u) = g.

Note that by hypothesis, F is continuously differentiable, F (0) = 0 and

(9.12) F ′(u)v = T−1v −G′(u)v,

for all u, v ∈ Cα+1((0, 2π);X) ∩ Cα((0, 2π);D(A)). Then F ′(0)v = T−1v − Av. Consider
the linear problem
(9.13)

v(t) =
∫ t

−∞
c(t− s)Av(s)ds + aAu(t) +

∫ t

−∞
c(t− s)g(s)ds + ag(t) = (η ∗Av)(t) + T (g)(t).

Note that (9.13) is of the form (1.1) with µ = 0, ν = δ0 and η = b(t)χ[0,∞)(t) + aδ0 and
f(t) = T (g)(t). Since the sequence (b̃(k)) is 2-regular and A ∈ K(X), that is,

(9.14) { 1
b̃(k) + a

}k∈Z ⊆ ρ(A) and sup
k∈Z

|| ik

b̃(k) + a
(

1
b̃(k) + a

I −A)−1|| < ∞,

we conclude by Theorem 7.5 that equation (9.13) is Cα-well posed. We next prove that
F ′(0) is an isomorphism from Cα+1((0, 2π);X) ∩ Cα((0, 2π);D(A)) to Cα((0, 2π);X) .
In fact, for f = T (g) ∈ Cα((0, 2π);X) there exists a unique v ∈ Cα+1((0, 2π);X) ∩
Cα((0, 2π);D(A)) such that (9.13) is satisfied, that is F ′(0)v = T−1v − Av = f. This
shows that F ′(0) is onto. Suppose F ′(0)v = 0. Then v(t) = (η ∗ Av)(t). By uniqueness,
v = 0. Hence, F ′(0) is injective, proving the claim. The conclusion of Theorem 9.5 is now
a direct consequence of the implicit function theorem.
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In the next application, we consider semi-linear equations in Hilbert space associated
with operators with compact resolvent. Let H be a Hilbert space. We consider the
problem:

(9.15) (µ ∗ u′)(t) + (ν ∗ u)(t)− (η ∗Au)(t) = G(u)(t), t ∈ [0, 2π],

where G is a nonlinear function that maps L2((0, 2π);H) into L2((0, 2π);H).
We assume that for some M > 0,

(9.16) sup
‖u‖6M

‖G(u)‖L2((0,2π);H) 6 M/‖B‖,

then one proves the following result.

Theorem 9.6. Let H be a Hilbert space, and suppose A ∈ K(H) and µ, η, ν are 1-
admissible measures. Assume that the unit ball of D(A) is compact in H. Let G be given
such that (9.16) is satisfied. Then equation (9.15) has a solution u ∈ H1

2 ((0, 2π);H) ∩
L2((0, 2π);D(A)) such that (9.15) is satisfied, with ‖u‖L2((0,2π);H) 6 M.

Proof. We define the bounded linear operator

B : L2((0, 2π);H) → H1
2 ((0, 2π);H) ∩ L2((0, 2π);D(A))

by B(g) = u where u is the unique solution of the linear problem

(µ ∗ u′)(t) + (ν ∗ u)(t)− (η ∗Au)(t) = g(t), t ∈ [0, 2π].

Observe that B is well defined due to Theorem 5.5. Also, B is a bounded operator regarded
as an operator from L2((0, 2π);H) into itself (cf. Corollary 5.6).

Define dk :=
ikµ̃(k) + ν̃(k)

η̃(k)
and ck :=

1
η̃(k)

. Since A ∈ K(H), for each K ∈ N we can

define operators BK : L2((0, 2π);H) → L2((0, 2π);H) by

(9.17) (BKg)(t) =
K∑

k=−K

ckR(dk, A)ĝ(k)eikt, 0 6 t 6 2π.

Since the unit ball of D(A) is compact in H we have that R(dk, A) is compact for all
k ∈ Z. Hence for each K, the operator BK is a finite sum of compact operators, hence
compact. Now, because of (9.2), as K →∞, BK converges in norm to B, so B is compact.

Define H : L2((0, 2π);H) → H1
2 ((0, 2π);H) ∩ L2((0, 2π);D(A)) by H(u) = B(G(u)).

Let E := {u ∈ L2((0, 2π);H) : ‖u‖ 6 M} be the closed ball of radius M centered at the
origin in L2((0, 2π); H). Owing to (9.16) we have H : E → E and H is compact. Hence
the conclusion of the theorem is achieved by applying Schauder’s fixed point theorem to
the operator H in E.

Of course, if H is finite dimensional, then the assumption that the unit ball of D(A) is
compact in H is redundant.

We remark that in [31, Theorem 6.1] the additional condition supk∈Z || 1
η̃(k)A( ikµ̃(k)+ν̃(k)

η̃(k) −
A)−1|| < ∞ was required. Instead, we require admissibility of the kernels µ, ν and η only.
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We end this paper with the following application of Theorem 9.6. Let us consider the
equation

(9.18) u′(t)−M(η ∗ u)(t) = f(t), t ∈ [0, 2π]

where f ∈ L2((0, 2π);Cn) and η is a finite, scalar-valued, measure and M an n×n matrix.
Equation (9.18) corresponds to a particular case of an integro-differential equation stud-

ied in [22, Theorem 3.11, p.87]. There, it was proved that the equation (9.18) has a unique
solution in the same space as f if and only if det[ikI − η̃(k)M ] 6= 0 for all k ∈ Z. Here we
are interested in solutions of the semi-linear version:

u′(t)−M(η ∗ u)(t) = G(u)(t), t ∈ [0, 2π].

To recast (9.18) in the form of equation (1.1) we make µ = δ0 and ν = 0 and A = M.
Then Theorem 5.5 gives that, provided η̃(k) is 1-regular (recall that η decomposes as
aδ0 + ζ with a 6= 0), there exists a unique solution u ∈ H1

2 ((0, 2π);Cn) if and only if
det[ikI − η̃(k)M ] 6= 0 for all k ∈ Z and

(9.19) sup
k∈Z

|| ik

η̃(k)
(

ik

η̃(k)
−M)−1|| < ∞.

Observe that condition (9.19) is always satisfied (since ik
η̃(k) →∞ as |k| → ∞ ). We note

that the condition of 1-regularity of η̃(k), or equivalently 1-regularity of ζ̃(k), is satisfied
by the class of functions ζ ∈ W 1,1(R+). This follows from [24, Remark 3.5].

The foregoing comments, together with Theorem 9.6, lead to the following corollary.

Corollary 9.7. Assume that
(i) det[ikI − η̃(k)M ] 6= 0 for all k ∈ Z,
(ii) {η̃(k)} is an 1-regular sequence, where η = aδ0 + ζ, a 6= 0
(iii) G maps L2((0, 2π);Cn) into L2((0, 2π);Cn) and there exists δ > 0 such that

∫ 2π

0
||G(φ)(s)||2ds 6 δ2

whenever φ ∈ L2((0, 2π);Cn) satisfies
∫ 2π

0
||φ(s)||2ds 6 ||B||2δ2.

Then there exists a solution u ∈ H1
2 ((0, 2π);Cn) of the equation

u′(t)−K(η ∗ u)(t) = G(u)(t), t ∈ [0, 2π],

satisfying
∫ 2π

0
||u(s)||2ds 6 ||B||2δ2.
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Verlag, 1993.

[28] J.L. Rubio de Francia, J.L. Torrea. Some Banach space techniques in vector-valued Fourier analysis,
Coll. Math. 54 (1987), 273 - 284.

[29] H.J.-Schmeisser, H. Triebel. Topics in Fourier Analysis and Function Spaces. Chichester, Wiley, 1987.

[30] D. Sforza. Existence in the large for a semilinear integrodifferential equation with infinite delay. J.
Differential Equations. 120(1995), 289-303.

[31] O.J. Staffans. Periodic L2-solutions of an integrodifferential equation in Hilbert space. Proc. Amer.
Math. Soc. 117(3) (1993), 745-751.

[32] H. Triebel. Fractals and Spectra. Related to Fourier Analysis and Function Spaces. Monographs in
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