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Abstract. Many phenomena in mathematical physics and in the theory of stochastic processes
are recently described through fractional evolution equations. We investigate a general framework
for connections between ordinary non homogeneous equations in Banach spaces and fractional
Cauchy problems. When the underlying operator generates a strongly continuous semigroup, it
is known, using a subordination argument, that the fractional evolution equation is well posed.
In this case, we provide an explicit form of the solution involving special functions, one example
being the Airy function.

1. Introduction

In the last years, many phenomena in physics and in the theory of stochastic processes lead
with derivatives of non-integer order. In this paper, we are concerned with the connection between
well- posedness of the following two evolution equations:

(1.1)

{
v′(t) = Anv(t) + g(t), t > 0,

v(0) = x;

and

(1.2)

{
D

1/n
t u(t) = Au(t), t > 0,

u(0) = x.

Here, A is a closed linear operator with domain D(A) defined in some Banach space X and n ∈ N.
The question of interest is: under what conditions on the operator A and the X-valued function
g(·) do the initial value x problems (1.1) and (1.2) have the same unique solution?.

This close and somewhat unexpected relationship between equations (1.1) and (1.2) has ap-
peared recently in the literature. For example, in fluids dynamics by Kulish and Lage [12] in case
A = ∂/∂x and n = 2 or, in case A = ∆ and n = 2 in the context of stochastic processes by
Baeumer, Meerschaert and Nane [4]. Indeed, the connections of iterated Brownian motion and
the bi-Laplacian have been found by Allouba and Zheng [1] and by DeBlassie [8]. Then Baeumer,
Meerschaert and Nane [4] proved that when A is the generator of a certain semigroup associated
to a Markov process, then the initial value problems (1.1) and (1.2) have the same unique solution
with n = 2 and n = 3 respectively (cf.[4, Theorems 3.6 and 3.9]).

Our main results show that the above connection between time and space for partial differential
equations, observed in [4] and [12] (see also [1, 2, 8] and [15]), is valid when A is the generator of
an arbitrary C0-semigroup defined on a Banach space X, and more generally when A generates an
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α−resolvent family with α = 1
2 (see Definition 2.5). Note that, if A is a nonnegative self-adjoint

operator on a Hilbert space, then one cannot apply semigroup theory directly to solve problem
(2.9). However, our results allows us to construct a solution.

In the case n = 2 we are able to extend, and hence recover in Corollary 2.12, the main result in [4,
Theorem 3.1] (cf.also Theorem 0.1 in [1]) and, in passing, we generalize to the abstract setting the
conditions that the initial data must satisfy in order that the equations to have a strong solution.
This fact in the case of A2 = ∆2, the bi-Laplacian, has been analyzed and justified in [15, Lemma
3.1 and Lemma 3.3], after previous work of Allouba [2]. We show in this paper that the condition
f ∈ D(A) on the initial data is, in fact, a consequence of better regularity of the semigroup in case
e.g. of A = ∆, the Laplacian. The general result reads as follows.

Theorem 1.1. Assume that A generates an analytic semigroup T (t) on X. For f ∈ D(A), the
function

(1.3) u(t) =
1√
πt

∫ ∞

0

e−s2/4tT (s)fds, t > 0.

solves the problems

(1.4)
{

v′(t) = A2v(t) + 1√
πt

Af, t > 0
v(0) = f

and

(1.5)
{

D
1/2
t u(t) = Au(t), t > 0

u(0) = f.

In addition, we will give an explicit formula for the solution of equations (1.1)-(1.2) in case
n = 3 which involves the Airy function instead of the Gaussian function in (1.3). Airy functions
commonly appear in physics, especially in optics and quantum mechanics. Our approach allows
one to solve for example the evolution equation involving the operator A which can be an arbitrary
variable coefficient second order differential operator with boundary conditions.

In particular, our analysis will show that the fractional Cauchy problem (1.2) shows a oscillatory
behavior, in the temporal variable, between a dispersive and a diffusive equation, depending on
the parity of n. This qualitative property of fractional partial differential equations seems to be
new.

The paper is organized as follows: We consider the cases n = 2 and n = 3 in Section 2. There, we
first use Laplace transform and then subordination arguments. The general case is presented in the
last section. In our main general theorem, namely Theorem 3.3, we prove that when the operator
A generates a strongly continuous semigroup in X, then one obtains the solution of (1.2) by solving

problem (1.1) with g(t) =
n−1∑

k=1

t
k
n−1

Γ( k
n )

Akf, where f ∈ D(An) and Γ(·) is the Euler gamma function.

Comparing the cases n = 2, 3... we observe that a smaller fractional differentiation exponent
increases the number of free constants in the ordinary differential equation. This phenomena
is related with the lack of commutativity and the non-validity of the law of exponents for the
fractional derivative.

In order to prove Theorem 3.3 we first consider in Proposition 3.1 an auxiliary ordinary differ-
ential equation related to the Wright functions, which can be of own interest. In Section 2, we
consider the cases n = 2 and n = 3 while the general case is studied and stated in Section 3.

2. The cases n = 2 and n = 3

There are various concepts of fractional derivatives connected with diverse areas of mathematics
and the mathematical sciences. These notions are connected with several mathematicians, among
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them Liouville, Riemann, Weyl, Grünwald, Caputo and many others. In this paper, we deal with
the Caputo fractional derivative, defined as

(2.1) Dα
t u(t) :=

1
Γ(1− α)

∫ t

0

u′(τ)
(t− τ)α

dτ, 0 < α < 1 ,

whenever u ∈ C1(R+, X). In (2.1), Γ is the Euler gamma function. One of the main advantages
of the Caputo fractional derivative is that initial conditions are expressed in terms of initial values
of integer order derivatives. As a consequence, the Caputo fractional derivative appears more
suitable to be treated by the Laplace transform technique in that it requires the knowledge of the
initial values of the function and of its integer order derivatives. We have the following rule for the
Laplace transform (see [5, p.12] and the references therein)

(2.2) D̂α
t u(λ) = λαû(λ)− λα−1u(0), Re λ > 0, 0 < α < 1.

Actually, the Caputo fractional Dα
t derivative can be defined for α in the range (0, ∞). We will

restrict our considerations to the case α ∈ (0, 1).
The entire function

(2.3) φ(ρ, β; z) =
∞∑

k=0

zk

k!Γ(ρk + β)
, ρ > −1, z ∈ C,

was introduced for the first time in the case ρ > 0 by Wright in [19] in connection with his
investigations in the asymptotic theory of partitions.

The important special case of the Wright function, namely, the functions Φα(z) := φ(−α, 1 −
α,−z) in the case 0 < α < 1 has been considered in detail in [11] (where is denoted M(z;α)
and called the Mainardi function). For α = 1/m with an integer m ≥ 2, these functions can be
expressed as a sum of (m− 1) simpler entire functions as follows:

(2.4) Φ1/m(t) =
1
π

m−1∑
n=1

Γ(
n

m
) sin(

πn

m
)F (t, n, m),

with

(2.5) F (t, n, m) =
∞∑

k=0

(−1)k(m+1) Γ( n
m + k)
Γ( n

m )
tmk+n−1

(mk + n− 1)!
.

Moreover, for 0 < γ < 1, Φγ(t) is a probability density function, i.e. it satisfies

(2.6) Φγ(t) ≥ 0, t > 0;
∫ ∞

0

Φγ(t)dt = 1.

In the simplest cases m = 2 and m = 3 it was shown (see [11] and the references therein) that

Φ1/2(t) ≡ M(z; 1/2) =
1√
π

e−z2/4;

Φ1/3(t) ≡ M(z; 1/3) = 32/3Ai(
z

31/3
)

where Ai(z) is the the Airy function.
We give the definition of the solution operator for the general class of equations to be considered

in this paper. Let A and B be closed and linear operators in the Banach space X and 0 < α < 1.
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We consider the equations:

(2.7)

{
Dα

t u(t) = Au(t), t > 0
u(0) = x;

and

(2.8)

{
v′(t) = Bv(t) + g(t), t > 0
v(0) = x.

Definition 2.1. (1) A function u(·) is a solution of (2.7) if u(·) is continuous on [0, ∞), con-
tinuously differentiable on (0, ∞) with u(t) ∈ D(A) for all t > 0 and (2.7) is satisfied.

(2) A function v(·) is a solution of (2.8) if v(·) is continuous on [0, ∞), continuously differ-
entiable on (0, ∞) with v(t) ∈ D(B) for all t > 0 and (2.8) is satisfied.

The notion of exponentially bounded solution is defined in a standard way. In some cases we
consider solutions obtained using subordination arguments. In these situations, the solution will
actually be analytic.

Let Σφ ⊂ C denote the open sector

Σφ = {λ ∈ C \ {0} : | arg λ| < φ}.
For a closed linear operator B we denote by ρ(B) and ran(B) the resolvent set and the range of B
respectively.

Theorem 2.2. Let X be a Banach space and A a closed linear operator on X. Suppose Σπ/2 ⊂
ρ(A2). For f ∈ D(A), the problems

(2.9)
{

v′(t) = A2v(t) + 1√
πt

Af, t > 0
v(0) = f

and

(2.10)
{

D
1/2
t u(t) = Au(t), t > 0

u(0) = f

have both a same exponentially bounded solution.

Proof. Let u be an exponentially bounded solution of (2.10), say, with ‖u(t)‖ ≤ Meω1t for all t ≥ 0
where ω1 ≥ 0. Then the Laplace transform û(λ) exists for all Reλ > ω1. Taking Laplace transform
to (2.10) we obtain using (2.2)

(2.11) (λ1/2 −A)û(λ) = λ−1/2f

for all Reλ > ω1. Since f ∈ D(A) we can apply (λ1/2 + A) to the above equation and obtain

(2.12) (λ−A2)û(λ) = λ−1/2(λ1/2 + A)f = f + λ1/2Af,

for all Reλ > ω1. Since Σπ/2 ⊂ ρ(A2) we conclude that

(2.13) û(λ) = (λ−A2)−1(I + λ1/2A)f,

for all Reλ > ω1. Let v be now an exponentially bounded solution of (2.9), with ‖v(t)‖ ≤ Meω2t

for all t ≥ 0 where ω2 ≥ 0. Taking Laplace transform we get

(2.14) (λ−A2)v̂(λ) = f + λ1/2Af, Reλ > ω2.

It follows that û(λ) = v̂(λ) for Reλ > ω := max{ω1, ω2} and hence u = v by uniqueness of the
Laplace transform. This shows that if u solves (2.10) then u solves (2.9).
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Conversely, from (2.14) and since Σπ/2 ⊂ ρ(A2) we obtain

(λ1/2 −A)v̂(λ) = (λ1/2 −A)(λ−A2)−1(I + λ1/2A)f

= λ1/2(λ−A2)−1f + (λ−A2)−1Af

− A(λ−A2)−1f − λ1/2A(λ−A2)−1Af

= λ1/2(λ−A2)−1f − λ1/2A2(λ−A2)−1f

where we have used the fact that A commutes with (λ − A2)−1 on D(A). Then, multiplying by
λ−1/2 the identity I = λ(λ−A2)−1 −A2(λ−A2)−1 we get that

(λ1/2 −A)v̂(λ) = λ−1/2f,

for all Reλ large enough. We conclude that if v solves (2.9) then v solves (2.10). This proves the
theorem.

¤

Example 2.3. (1) Suppose B generates a strongly continuous group (U(t)) in X. Then A = B2

generates a strongly continuous analytic semigroup (and in fact a cosine function) (T (t)).
This semigroup is given through the abstract Weierstrass formula (see e.g. [3, Corollary
3.7.15]). Then (2.9) can be solved through the variation of constant formula:

v(t) = T (t)f +
∫ t

0

T (t− s)Af
ds√
πs

, t > 0.

(2) Take for A a negative self adjoint operator on a Hilbert space H, so that A generates a
holomorphic semigroup of angle π

2 . Then A2 is not the generator of a strongly continuous
semigroup on H unless A is bounded. Therefore, the solution to equation (2.9) cannot
be obtained by semigroup arguments. Moreover, although the H−valued function g(t) =

1√
πt

Af belongs to L1
loc(0, ∞; H), it does not belong to Lp

loc(0, ∞; H) if p ≥ 2.

The assumption of Theorem 2.2 can be weakened considerably. This reformulation is important
for the application to the concrete problems presented in Section 1. In particular, we will be able
to apply the result to the case where A is the generator of a strongly continuous semigroup on
X and more generally when A generates an α−resolvent family with α = 1

2 . For instance, if A is
a nonnegative self-adjoint operator on a Hilbert space, then one cannot apply semigroup theory
directly to solve problem (2.9). However, the result below allows us to construct a solution, the
uniqueness of which is then guaranteed by the well-posedness of (2.10).

Theorem 2.4. Suppose S = ρ(A2) ∩ Σπ/2 has a limit point in Σπ/2. For f ∈ D(A), the problems
(2.9) and (2.10) have both the same exponentially bounded strong solution.

Proof. Without loss of generality, we may assume that the solutions u and v satisfy ‖u(t)‖+‖v(t)‖ ≤
Meωt, t ≥ 0 where M ≥ 1 and ω ≥ 0. In fact, if u is a solution of (2.9), then proceeding as in the
preceding proof, we obtain

(2.15) û(λ) = (λ−A2)−1(I + λ1/2A)f,

for all λ ∈ S. Similarly, we get that the solution v of (2.9) satisfies

(2.16) v̂(λ) = (λ−A2)−1(I + λ1/2A)f,

for all λ ∈ S. Therefore, the two functions û(λ) and v̂(λ) which are analytic on {λ, Reλ > ω},
coincide for λ ∈ S. Since S has a limit point in Σπ/2, it follows that the two functions must coincide
for Reλ > ω.
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The converse assertion is handled in a similar manner.
¤

Applying functional analytical methods the solvability of the problem (2.7), by means of the
properties of solution operator families, was systematically investigated in [5]. This operator
theoretical framework will be very important for our purposes.

Definition 2.5. Let A be a closed linear operator with domain D(A) defined on a Banach space
X and α > 0. We call A the generator of an α-resolvent family if there exists ω ≥ 0 and a strongly
continuous function Sα : R+ → B(X) such that {λα : Reλ > ω} ⊂ ρ(A) and

λα−1(λα −A)−1x =
∫ ∞

0

e−λtSα(t)xdt, Reλ > ω, x ∈ X.

In this case, Sα(t) is called the α-resolvent family generated by A.

Because of the uniqueness of the Laplace transform, a 1-resolvent family is the same as a C0-
semigroup whereas a 2-resolvent family corresponds to the concept of cosine family. The concept
of α-resolvent family was explicitly introduced by Bazhlekova [5]. It was already implicitly present
in the paper [13] and in the monograph [18].

As in the situation of C0-semigroups we have various relations between an α-resolvent family
and its generator. We denote

gβ(t) :=
tβ−1

Γ(β)
, t > 0, β > 0.

For convenience, we may set g0 = δ0, the Dirac measure concentrated at the origin. The following
result is a direct consequence of [13, Proposition 3.1 and Lemma 2.2].

Proposition 2.6. Let 0 < α ≤ 2 and let Sα(t) be an α-resolvent family on X with generator A.
Then the following holds:

(a) Sα(t)D(A) ⊂ D(A) and ASα(t)x = Sα(t)Ax for all x ∈ D(A), t ≥ 0;

(b) Let x ∈ D(A) and t ≥ 0. Then

(2.17) Sα(t)x = x +
∫ t

0

gα(t− s)ASα(s)xds.

(c) Let x ∈ X and t ≥ 0. Then
∫ t

0

gα(t− s)Sα(s)xds ∈ D(A) and

Sα(t)x = x + A

∫ t

0

gα(t− s)Sα(s)xds.

In particular, Sα(0) = I.

Assume that A is the generator of a 1/2-resolvent family S1/2(t). Then (2.11) shows that

(2.18) u(t) = S1/2(t)f

is the unique solution of (2.10) for f ∈ D(A) (see also [5, p.20] or [18]), but not at first glance
of (2.9) or by using e.g. Theorem 2.2, since the condition Σπ/2 ⊂ ρ(A2) may not be satisfied.
However, we are able to prove the following result.
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Theorem 2.7. Assume that A generates a 1/2- resolvent family S1/2(t) on X. For f ∈ D(A2),
the function

u(t) = S1/2(t)f, t > 0
solves the problems (2.9) and (2.10).

Proof. We know that for all x ∈ D(A), the function u(t) = S1/2(t)x solves (2.9), and that is
satisfies

(2.19) D
1/2
t S1/2(t)x =

∫ t

0

g1/2(s)S
′
1/2(t− s)xds = AS1/2(t)x, t > 0

for all x ∈ D(A). Hence, for f ∈ D(A2) we have AS1/2(t)f = S1/2(t)Af ∈ D(A) and

(2.20) A2S1/2(t)f = AS1/2(t)Af.

Using (2.19) with x = Af we obtain

(2.21) A2S1/2(t)f = D
1/2
t S1/2(t)Af.

On the other hand, by Proposition 2.6,

(2.22) S1/2(t)f = f +
∫ t

0

g1/2(s)S1/2(t− s)Afds,

and hence

(2.23)

D
1/2
t S(t) = S

′
1/2(t)f

= g1/2(t)S1/2(0)Af +
∫ t

0

g1/2(s)S
′
1/2(t− s)Afds

= g1/2(t)Af +
∫ t

0

g1/2(s)S
′
1/2(t− s)Afds

=
1√
πt

Af + A2S1/2(t)f,

where in the last equality we have used (2.42). The proof is complete. ¤

Remark 2.8.
1) Examples of operators generating 1/2-resolvent families but not generating a C0-semigroup are
given in [5].
2) Observe that we cannot proceed beyond the case n = 2 with the above argument, because Sα(t)
with α ∈ (0, 1) is not differentiable at t = 0+, and hence the proof in case n ≥ 3 breaks down in
the analog part of the step (2.23).
3) We note that, in contrast with the case of equation (2.10), in general the solutions of the equation
(2.9) are not necessarily unique. An example is given in [4].

In order to obtain an explicit representation of the solution, we note that by the subordination
principle for α-resolvent families ([5, Theorem 3.1] or [18, Theorem 4.2 and Corollary 4.5]), we
have: If A is the generator of a β-resolvent family Sβ(t), then A is the generator of a α-resolvent
family Sα(t) for all 0 < α < β ≤ 2 and the following representation holds

(2.24) Sα(t)x =
∫ ∞

0

t−α/βΦα/β(st−α/β)Sβ(s)xds, x ∈ X, t > 0.

In particular, if A is the generator of a C0-semigroup T (t), we have

(2.25) S1/2(t)x =
∫ ∞

0

t−1/2Φ1/2(st−1/2)T (s)xds, x ∈ X, t > 0.
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Recall that Φ1/2(st−1/2) = 1√
π
e−s2/4t. We conclude that

(2.26) S1/2(t)x =
1√
πt

∫ ∞

0

e−s2/4tT (s)xds, x ∈ X, t > 0.

The previous observations give an immediate consequence of the above theorem that we state in
the following result.

Theorem 2.9. Assume that A generates a C0-semigroup T (t) on X. For f ∈ D(A2), the function

(2.27) u(t) =
1√
πt

∫ ∞

0

e−s2/4tT (s)fds, t > 0.

solves the problems (2.9) and (2.10).

Proof. We give an alternative proof. Is clear that (2.27) solves (2.10). It remains to show that the
function u(·) solves (2.9). Define q(t, s) = 1√

πt
e−s2/4t and note that ∂

∂tq(t, s) = ∂2

∂s2 q(t, s). Then
we can proceed as in [1] (see also [4, Remark 3.5]): Using integration by parts we obtain

∂

∂t
S1/2(t)f =

∫ ∞

0

∂

∂t
q(t, s)T (s)fds

=
∫ ∞

0

∂2

∂s2
q(t, s)T (s)fds

= q(t, s)
∂

∂s
[T (s)f ]|s=0 +

∫ ∞

0

∂2

∂s2
[T (s)f ]q(t, s)ds.

Since f ∈ D(A2) we have ∂2

∂s2 T (s)f = A2T (s)f and therefore

∂

∂t
S1/2(t)f = q(t, 0)Af +

∫ ∞

0

A2[T (s)f ]q(t, s)ds

= 1√
πt

Af + A2S1/2(t)f,

where the last step is justified because the operator A is closed.
¤

Remark 2.10. Note that the Riemann Liouville fractional derivative has the property that ∂1/21
∂t1/2 =

1√
πt

, so that in certain sense the fractional derivative is present in the formula of (2.27).

Remark 2.11. Let Lx be the generator of a continuous Markov semigroup T (t)f(x) = Ex[f(Xt)]
and take f ∈ D(L2

x), the domain of the generator, then we recover [4, Theorem 3.1] (see also
[15, Theorem 2.1]). However, note that in [4] the condition f ∈ D(Lx) instead of f ∈ D(L2

x) is
assumed. This fact in the case of the bi-Laplacian has been analyzed and justified in [15, Lemma
3.1 and Lemma 3.3], after previous work of Allouba [2]. We remark here that such situation is, in
fact, a consequence of better regularity of the semigroup in case e.g. of the Laplacian. We clarify
the situation in what follows.

We note that if A generates a strongly continuous semigroup T (t) such that

(2.28) ran(T (t)) ⊂ D(A) for all t > 0,

then the map t → T (t)f ∈ X is infinitely often differentiable for all t > 0 and f ∈ X and we have
(cf. [9, p.104]):

(2.29) T (t)f ∈ D(Ak)
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and

(2.30) AkT (t)f =
dk

dtk
T (t)f,

for all f ∈ X, k ∈ N and t > 0. Hence, we obtain the following important result, corresponding to
Theorem 1.1 given in the introduction.

Corollary 2.12. Assume that A generates an analytic semigroup T (t) on a Banach space X. For
f ∈ D(A), the function in (2.27) solves the problems (2.9) and (2.10).

Proof. By [5, Theorem 3.3] the solution operator S1/2(t), obtained by subordination of the semi-
group T (t) and given in (2.26), admits an analytic extension to the sector Σπ/2. Hence by [5,
Proposition 2.15], S1/2(t) enjoys the following regularity

(2.31) S1/2(t)x ∈ D(A) for all x ∈ X.

As a consequence we have by Proposition 2.6,

(2.32) AS1/2(t)f = S1/2(t)Af ∈ D(A) for f ∈ D(A).

Hence, for f ∈ D(A)

(2.33) A2S1/2(t)f = AS1/2(t)Af = A

∫ ∞

0

[T (s)Af ]q(t, s)ds.

Note that for an analytic semigroup on a Banach space X one always has that ran(T (t)) ⊂
D(A), t > 0 (see e.g. [9, Theorem 4.6]) implying that (2.29) and (2.30) holds. In particular,
T (s)Af ∈ D(A), s > 0 and since A is closed, we obtain

(2.34) A2S1/2(t)f =
∫ ∞

0

A[T (s)Af ]q(t, s)ds, t > 0.

Finally, since AT (s)Af = A2T (s)f we obtain the assertion from (2.34), using (2.30) and following
the alternative proof of Theorem 2.9.

¤

Remark 2.13. We note that we cannot go further the case n = 2 with the argument of the proof of
Corollary 2.12 because, in contrast to analytic semigroups, we cannot proceed beyond the regularity
(2.31) in case of α-resolvent families. This lack of regularity has been observed in [5] and proved
in [18, Theorem 2.2(iii)] in the context of evolutionary integral Volterra equations.

Example 2.14. Consider in X = Lp(RN ), 1 ≤ p < ∞ the diffusion semigroup:

(2.35) T (t)f(x) = (4πt)N/2

∫

RN

e−|x−s|2/4tf(s)ds, t > 0, x ∈ RN , f ∈ X.

By putting µt(x) = (4πt)−N/2e−|x|
2/4t, this can be written as

(2.36) T (t)f(x) = µt ∗ f(x)

It is well known that T (t) is a bounded analytic semigroup with generator ∆. Hence, for f ∈ D(∆)
the function

(2.37) u(t, x) =
1√
πt

∫ ∞

0

e−s2/4tT (s)f(x)ds, t > 0.

solves simultaneously the partial differential equation

(2.38)
{ ∂

∂tv(t, x) = ∆2v(t, x) + 1√
πt

∆f(x), t > 0
v(0, x) = f(x)
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and the fractional partial differential equation

(2.39)
{

∂1/2

∂t1/2 u(t, x) = ∆u(t, x), t > 0
u(0, x) = f(x)

Example 2.15. Suppose that X(t) = x + X0(t) where X0(t) is a Lévy process starting at zero. If
Lx is the generator in [4, (2.8)] of the semigroup T (t)f(x) = Ex[f(Xt)] on L1(Rd), then Lx is the
generator of a bounded analytic semigroup, because T (t) is obtained by subordination of another
semigroup (compare [4, formula (2.7)] and [6, formula (2)]). Hence, by Corollary 2.12, for any
f ∈ D(Lx) we recover [4, Theorem 3.6].

Example 2.16. In fluids dynamics, the momentum equation for a one-dimensional time-dependent
viscous-diffusion problem of a semi-infinite fluid bounded by a flat plate, is

(2.40)
∂F (x, t)

∂t
= v

∂2F (x, t)
∂x2

(see Kulish and Lage [12]). Here one assumes constant and uniform viscosity and neglects con-
vective media (advection). The function F (x, t) is the fluid vorticity, or the fluid velocity in case
of negligible pressure effect, t is the time, v is the fluid kinematic viscosity and x is the spacial
coordinate normal to, and with origin at, the plate. It is also assumed that the fluid is initially at
equilibrium, so that F (x, t < 0) = F0, with F0 being a constant value. Using the properties of the
fractional calculus, in [12] it was observed that equation (2.40) can be rewritten as

(2.41) v−1/2 ∂1/2F (x, t)
∂t1/2

= (πvt)−1/2F0 − ∂F (x, t)
∂x

,

where ∂1/2

∂t1/2 indicates the Riemann-Liouville half derivative. Therefore, the viscous-diffusion equa-
tion (2.40), which is a classical partial differential equation of first order in time and second order
in space, is transformed into a partial differential equation of fractional order order in time and
first order in the space variable. This transformation is general and not restricted by any additional
assumptions on the physics of the process in question.

We observe that (2.40) and (2.41) can be written as

(2.42)
∂F (x, t)

∂t
= A2

xF (x, t)

and

(2.43)
∂1/2F (x, t)

∂t1/2
= (πt)−1/2F0 + AxF (x, t).

respectively, where Ax := −v1/2 ∂

∂x
is the generator of a translation C0-semigroup. As remarked,

∂1/2

∂t1/2 is the Riemann-Liouville fractional derivative instead of the Caputo fractional derivative
considered in this paper. However, both fractional derivatives of a function g are in general related
by the formula:

∂1/2

∂t1/2
(g(t)− g(0)) = D

1/2
t g(t),

or, since ∂1/2

∂t1/2 1 = 1√
πt

, we obtain in our case

∂1/2F (x, t)
∂t1/2

− F (x, 0)
1√
πt

= D
1/2
t F (x, t),

where F (x, 0) = F0. Hence (2.43) is equivalent, in terms of the Caputo fractional derivative to

(2.44) D
1/2
t F (x, t) = AxF (x, t),
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with F (x, 0) = F0. In particular it shows that AxF (x, 0) = 0. Consequently, (2.42) is equivalent to

(2.45)
∂F (x, t)

∂t
= A2

xF (x, t) +
1√
πt

AxF (x, 0).

Therefore Theorem 2.9 applies in this case, recovering the results in [12].

Concerning the case n = 3, we prove:

Theorem 2.17. Assume that A generates a C0-semigroup T (t) on X. For f ∈ D(A3), the function

(2.46) u(t) =
3

3
√

3t

∫ ∞

0

Ai(s/ 3
√

3t)T (s)fds, t > 0,

where Ai(x) denotes the Airy function, solves the problems

(2.47)





u′(t) = A3u(t) +
t−2/3

Γ(1/3)
Af +

t−1/3

Γ(2/3)
A2f

u(0) = f.

and

(2.48)
{

D
1/3
t u(t) = Au(t)

u(0) = f.

Proof. Since A is the generator of a C0-semigroup, by the subordination principle A is the generator
of a 1/3-resolvent family given by

(2.49) S1/3(t)f =
∫ ∞

0

t−1/3Φ1/3(st−1/3)T (s)fds, f ∈ X

and is clear that u(t) = S1/3(t)f solves (2.48). We know that Φ1/3(t) = φ(−1/3, 2/3,−t) =
32/3Ai(t/31/3) (see [11, p.10]). In particular, Φ′′1/3(t) = 1

3 tΦ1/3(t). Denote p(s, t) = t−1/3Φ1/3(st−1/3).
Using the fact that the Airy function satisfies the differential equation y′′(z) − zy(z) = 0, we

deduce that

∂p(s, t)
∂t

= −∂3p(s, t)
∂s3

.

We note also that p(0, t) =
t−1/3

Γ(2/3)
,

∂p(0, t)
∂s

= − t−2/3

Γ(1/3)
and

∂2p(0, t)
∂s2

= 0. This, together with

the fact that eωsp(s, t) → 0, eωs ∂p(s,t)
∂s → 0 and eωs ∂2p(s,t)

∂s2 → 0 as s →∞ for every ω ∈ R (cf. [16,
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p.288-289] or [19]) and using integration by parts, we obtain

∂

∂t
S1/3(t)f =

∫ ∞

0

∂

∂t
p(s, t)T (s)fds

= −
∫ ∞

0

∂3

∂s3
p(s, t)T (s)fds

= − ∂2

∂s2
p(s, t)T (s)f

∣∣∞
s=0

+
∂

∂s
p(s, t)AT (s)f

∣∣∞
s=0

− p(s, t)A2T (s)f
∣∣∞
s=0

+
∫ ∞

0

∂3

∂s3
[T (s)f ]p(s, t)ds

= − ∂2

∂s2
p(0, t)Af − ∂

∂s
p(0, t)Af + p(0, t)A2f +

∫ ∞

0

A3[T (s)f ]p(s, t)ds

=
t−2/3

Γ(1/3)
Af +

t−1/3

Γ(2/3)
A2f + A3S1/3(t)f,

¤

Remark 2.18. 1. Note that for the Riemann-Liouville fractional derivative we have ∂1/31
∂t1/3 = t−1/3

Γ(2/3)

and ∂2/31
∂t2/3 = t−2/3

Γ(1/3) .

2. As remarked in the introduction, comparing the cases n = 2 and n = 3 we observe that a
smaller fractional differentiation exponent increases the number of free constants in the ordinary
differential equation. This phenomena is related with the lack of commutativity and the non-validity
of the law of exponents for the fractional derivative, i.e. in general Dα

t Dβ
t 6= Dβ

t Dα
t .

Example 2.19. Suppose that X(t) = x + X0(t) where X0(t) is a Lévy process starting at zero. If
Lx is the generator in [4, (2.8)] of the semigroup T (t)f(x) = Ex[f(Xt)] on L1(Rd) then, for any
f ∈ D(L3

x), we recover [4, Theorem 3.9].
We observe that in [4] no explicit formula, like (2.46) in terms of the Airy function, was given.

3. The general case

In this section we clarify the role played by the different actors in the previous results. In order
to do this, the following result is fundamental.

Proposition 3.1. For all m = 2, 3, ..., the ordinary differential equation

(3.1) f (m−1)(t) = (−1)m+1tf(t),

with initial conditions

(3.2) f (k−1)(0) =
(− m

√
m)k−1

Γ(1− k
m )

, k = 1, 2, ..., m− 1

has the unique solution

(3.3) f(t) = Φ1/m(t m
√

m).

Proof. Let m ≥ 2 be fixed. By simplicity of the notation, we define

y(t) := Φ1/m(t) = φ(
−1
m

, 1− 1
m

;−t) =
∞∑

k=0

(−t)k

k!Γ(1− k+1
m )

,
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then a direct calculation, and also using the fact that 1
Γ(0) = 0, gives

(3.4) y(k−1)(0) =
(−1)k−1

Γ(1− k
m )

, k = 1, 2...m− 1, y(m−1)(0) = 0.

Then we obtain

λm−1y(0) + λm−2y′(0) + ... + y(m−1)(0) =
m∑

k=1

(−1)k−1λm−k

Γ(1− k
m )

=
m−1∑
p=0

(−1)m−p−1λp

Γ( p
m )

= (−1)m−1
m−1∑

k=1

(−1)kλk

Γ( k
m )

,

and, since Γ( k
m + 1) = k

mΓ( k
m ), we get

(3.5)

λmŷ(λ)− λm−1y(0)− λm−2y′(0)− ...− y(m−1)(0) = λmŷ(λ) + (−1)m
m−1∑

k=1

(−1)kλk

Γ( k
m )

= λmŷ(λ) +
(−1)m

m

m−1∑

k=1

k(−λ)k

Γ(1 + k
m )

.

On the other hand, we note that

ŷ(λ) = E1/m(−λ) =
∞∑

k=0

(−λ)k

Γ(1 + k
m )

is the Mittag-Leffler function (see e.g. [5]). Then,

λ[ŷ(λ)]′ =
∞∑

k=1

k(−λ)k

Γ(1 + k
m )

and

λmŷ(λ) = (−1)m

∞∑
n=0

(−λ)n+m

Γ(1 + n
m )

= (−1)m

∞∑

k=m

(−λ)k

Γ( k
m )

=
(−1)m

m

∞∑

k=m

k(−λ)k

Γ(1 + k
m )

Hence, combining with (3.5), we obtain

(3.6)
ŷ(m)(λ) =

(−1)m

m

∞∑

k=1

k(−λ)k

Γ(1 + k
m )

=
(−1)m

m
λ[ŷ(λ)]′.

From the above, by uniqueness of the Laplace transform, and taking into account the fact that
y(m−1)(0) = 0, we get that y(t) satisfy the equation

(3.7) y(m−1)(t) =
(−1)m+1

m
ty(t).
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Now, define

(3.8) f(t) = y(t m
√

m).

Then f(t) satisfies

f (m−1)(t) =
m

m
√

m
y(m−1)(t m

√
m) =

(−1)m+1

m
√

m
t m
√

m y(t m
√

m) = (−1)m+1tf(t),

and

f (k−1)(0) =
k

k
√

k
y(k−1)(0) =

(− m
√

m)k−1

Γ(1− k
m )

k = 1, 2, ...,m− 1.

¤

Remark 3.2. In case m = 2 the equation

f ′(t) = tf(t)

with initial condition f(0) = 1
Γ(1/2) = 1√

π
has the solution f(t) = 1√

2
e−t2/2 which, in this case, can

be calculated directly. In particular, we get Φ1/2(t) = f(t/
√

2) = 1√
π
e−t2/4 as established in the

previous section.
In case m = 3 the equation is

(3.9) f ′′(t)− tf(t) = 0

Equation (3.9) is known as the Airy equation or the Stokes equation. This is the simplest second-
order linear differential equation with a turning point (a point where the character of the solutions
changes from oscillatory to exponential). With the initial conditions f(0) = 1

Γ(2/3) and f ′(0) =

− 3√3
Γ(1/3) , equation (3.9) has the solution f(t) = 32/3Ai(t) = Φ1/3(t

3
√

3), where Ai(x) denotes the
Airy function.

The general case appears to be studied only very recently in the literature (cf. [10] where our
equations (3.1), except by the term (−1)m+1, is called a higher order Airy equation). As proved in
[10], equations (3.1) are linked, by the Cole-Hopf transformation, to certain nonlinear differential
equations that, in case of the Airy function, corresponds to a equation of Riccati type.

Our main result is the following.

Theorem 3.3. Let m ≥ 2 be fixed. Assume that A generates a C0-semigroup T (t) on X. For
f ∈ D(Am), the function

(3.10) u(t) =
1

m
√

t

∫ ∞

0

Φ1/m(s/ m
√

t)T (s)fds, t > 0.

solves the problems

(3.11)
{

D
1/m
t u(t) = Au(t)

u(0) = f.

and

(3.12)





u′(t) = Amu(t) +
m−1∑

k=1

t
k
m−1

Γ( k
m )

Akf

u(0) = f.

Proof. Define

(3.13) p(s, t) = t−1/mΦ1/m(st−1/m).
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Since A is the generator of a C0-semigroup, by the subordination principle A is the generator of a
1/m-resolvent family given by

(3.14) S1/m(t)f =
∫ ∞

0

p(s, t)T (s)fds, f ∈ X

and is clear that u(t) = S1/m(t)f solves (3.11). To prove that solves (3.12) we observe that

(3.15)
∂k

∂sk
p(s, t) = t−

k+1
m Φ(k)

1/m(st−1/m), k = 1, 2, ...,m

and

(3.16) (−1)
∂

∂t
p(s, t) =

t−
m+1

m

m
[Φ1/m(st−1/m) + st−1/mΦ

′
1/m(st−1/m)].

By Proposition 3.1 we have Φ1/m(v) = f(v/ m
√

m) where f is the solution of equation (3.1). In
consequence, we have

(3.17)

Φ(m)
1/m(v) =

1
m

f (m)(v/ m
√

m) =
(−1)m+1

m
[f(v/ m

√
m) +

v
m
√

m
f ′(v/ m

√
m)]

=
(−1)m+1

m
[Φ1/m(v) + vΦ

′
1/m(v)].

We conclude that

(3.18)
∂m

∂sm
p(s, t) = (−1)m+1(−1)

∂

∂t
p(s, t) = (−1)m ∂

∂t
p(s, t).

Using the above relation in (3.14) and integration by parts, we obtain

(3.19)

u′(t) =
∂

∂t
S1/m(t)f =

∫ ∞

0

∂

∂t
p(s, t)T (s)fds

= (−1)m

∫ ∞

0

∂m

∂sm
p(s, t)T (s)fds

=
m∑

k=1

(−1)m+k−1 ∂m−k

∂sm−k
p(s, t)T (k−1)(s)f

∣∣s=∞
s=0

+
∫ ∞

0

p(s, t)
∂m

∂sm
T (s)fds.

By (3.15) and (3.4) we have

∂k−1

∂sk−1
p(0, t) = t−k/mΦ(k−1)

1/m (0) = t−k/m (−1)k−1

Γ(1− k
m )

,

and
∂m

∂sm
p(0, t) = t−(1+1/m)Φ(m)

1/m(0) = 0.

On the other hand, by (3.15)

(3.20) ∂k

∂sk
p(s, t) = t−

k+1
m Φ(k)

1/m(st−1/m) =
t−

k+1
m

( m
√

m)k
f (k)(

st−1/m

m
√

m
)

where f is defined in (3.8) and satisfies (3.1). Therefore

(3.21) ∂k

∂sk
p(s, t) =

t−
k+1
m

( m
√

m)k
(−1)k st−1/m

m
√

m
f(

st−1/m

m
√

m
) =

t−
k+1
m

( m
√

m)k+1
(−1)kst−1/mΦ1/m(st−1/m)



16 VALENTIN KEYANTUO AND CARLOS LIZAMA

By the asymptotic expansion of the function Φγ(v) in case 0 < γ < 1, (cf. [5, p.14], [11, Theorem
2.1.3] or [19]), we have for v ≥ 0

(3.22) Φγ(v) = Y γ−1/2e−Y {
M−1∑

k=0

AkY −k + O(|Y |−M )} as Y →∞

with Y = (1− γ)(γγv)1/(1−γ), where Ak are certain real numbers. In the particular case γ = 1/m

we have Ym = m−1
m ( 1

m )1/(m−1)v
m

m−1 , where 1 < m
m−1 ≤ 2. We deduce that eωvΦ1/m(v) → 0 as

v →∞ for all ω ∈ R. Hence, by (3.21) we get

lim
s→∞

∂m−k

∂sm−k
p(s, t)T (k−1)(s)f = 0

for all 1 ≤ k ≤ m. Using the above facts in (3.19), we obtain

(3.23)

u′(t) =
m∑

k=1

(−1)m+k ∂m−k

∂sm−k
p(0, t)Ak−1f +

∫ ∞

0

p(s, t)AmT (s)fds

=
m∑

k=1

(−1)m+k t
k−1
m −1

Γ(k−1
m )

(−1)m−kAk−1f + Am

∫ ∞

0

p(s, t)T (s)fds

=
m∑

k=2

t
k−1
m −1

Γ(k−1
m )

Ak−1f + Am

∫ ∞

0

p(s, t)T (s)fds

=
m−1∑

k=1

t
k
m−1

Γ( k
m )

Akf + Amu(t),

proving the theorem.
¤

Remark 3.4. In passing, we note that we have proved the following identity

(3.24)
∂m

∂xm
p(x, t) = (−1)m ∂

∂t
p(x, t),

which is the key in the argument of the previous theorem. Note that a similar relation has been
observed in [15, Lemma 3.2 and Lemma 4.3]. Performing the Ansatz:

(3.25) p(x, t) = eikxeiω(k)t

where ω(k) is the dispersion relation, we obtain ω(k) = km if m is odd and ω(k) = −km if m
is even. Hence (3.24) changes the behavior between a dispersive equation in case m is odd and
a diffusive equation in case m is even. Note that (3.24) corresponds to the heat equation in case
m = 2 and to the homogeneous Airy equation in case m = 3. Observe that the last is the linear
part of many KdV equations.

Since

u(t) = S1/m(t)f =
∫ ∞

0

p(s, t)T (s)fds,

solves (3.11) (and (3.12)) we note that, in terms of the temporal variable, equation (3.11) oscillate
between a diffusive and dispersive behavior when the fractional exponent 1/m changes between m
odd and m even.
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Remark 3.5. We have in (3.17) established the identity

(3.26) Φ(m)
1/m(v) =

(−1)m+1

m
[Φ1/m(v) + vΦ

′
1/m(v)].

This formula appears to be new for the Mainardi functions of rational order.

Remark 3.6. From our results and those in [10], we can deduce explicit representation of the
functions Φ1/m(x), for some numbers m ≥ 3, in terms of the improper integral

1
π

∫ ∞

0

cos(
tk(m)

k(m)
± xt)dt, k(m) ∈ N.
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